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Abstract In this paper, we investigate the long-time behavior of stochastic reaction–
diffusion equations of the type du = (Au + f (u))dt + σ(u)dW (t), where A is an
elliptic operator, f and σ are nonlinear maps and W is an infinite-dimensional nuclear
Wiener process. The emphasis is on unbounded domains. Under the assumption that the
nonlinear function f possesses certain dissipative properties, this equation is known
to have a solution with an expectation value which is uniformly bounded in time.
Together with some compactness property, the existence of such a solution implies
the existence of an invariant measure, which is an important step in establishing the
ergodic behavior of the underlying physical system. In this paper, we expand the
existing classes of nonlinear functions f and σ and elliptic operators A for which
the invariant measure exists, in particular in unbounded domains. We also show the
uniqueness of the invariant measure for an equation defined on the upper half space if
A is the Shrödinger-type operator A = 1

ρ
(divρ∇u) where ρ = e−|x |2 is the Gaussian

weight.
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1 Introduction and Main Results

We study the long-time behavior of the equation

{
∂
∂t u(t, x) = Au(t, x)+ f (x, u(t, x))+ σ(x, u(t, x))Ẇ (t, x), t > 0, x ∈ G;
u(0, x) = u0(x).

(1)

Here, G ⊂ R
d is a (possibly unbounded) domain, A is an elliptic operator, f and σ

are measurable real functions, and the Gaussian noise Ẇ (t, x) is white in time and
colored in space. In particular, we are interested in the existence and uniqueness of
invariant measures for Eq. (1).

Equations of this type model the behavior of various dynamical systems in physics
and mathematical biology. For instance, this equation describes the well-known
Hodgkin–Huxley model in neurophysiology (where u is the electric potential on nerve
cells [22]), as well as the Dawson and Fleming model of population genetics [8] (u(t, ·)
is the mass distribution of population). Besides, Eq. (1) with infinite-dimensional noise
is an interesting object from the mathematical point of view since its analysis involves
subtle interplay between PDE and probabilistic techniques.

Reaction–diffusion equations of type (1) have been extensively studied by a variety
of authors. The analysis of the long-time behavior of solutions of (1) is a nontrivial
question even in the deterministic case σ(x, u) ≡ 0. This question was addressed,
for example, by Dirr and Yip [13] and references therein. In their work, the authors
describe a certain class of nonlinearities f (x, u), for which the deterministic equation
(1) admits a bounded solution (as t → ∞), while for a different class of nonlinearities
all solutions of the deterministic equation (1) have linear growth in t (and hence are
not uniformly bounded). The transition between those two classes of nonlinearities is
also studied in the paper.

A comprehensive study of stochastic equation (1) has been performed by Da Prato
and Zabczyk ([11,12] and references therein). The ergodic properties of the solutions
of (1) are a question of separate interest in these works. This question was addressed
from the point of view of the existence of an invariant measure for (1), which is a
key step in the study of the ergodic behavior of the underlying physical systems [12,
Theorems 3.2.4, 3.2.6]. Based on the pioneering work of Kryloff and Bogoliouboff
[18], the authors suggested the following approach to establishing the existence of
invariant measures:

• Establish the compactness and Feller property of the semigroup generated by A;
• Establish the existence of a solution which is bounded for t ∈ [0,∞) in certain

probability sense.

The existence of invariant measures using the aforementioned procedure was estab-
lished in [3,17,21], in particular in the case when A = Δ and G is a bounded domain.

A different approach to the existence of invariant measures, based on the coupling
method, was used by Bogachev and Roechner [2] and Mueller [23]. This method can
be applied even for space-white noise but only in the case when the space dimension
d is one.
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The existence and uniqueness of the solutions of stochastic reaction–diffusion equa-
tions in bounded domains with Dirichlet boundary condition, as well as the existence
of an invariant measure, was studied by Cerrai [5–7] and references therein.

The question of the existence of invariant measures in unbounded domains with
A = Δ was studied in [1,12,15,26]. The key condition for the existence of a solution
bounded in probability, and hence, the existence of an invariant measure in these works
is the following dissipation condition for the nonlinearity f : for some k > 0,

{
f (u) ≥ −ku − c, u ≤ 0;
f (u) ≤ −ku + c, u ≥ 0.

(2)

To the best of our knowledge, the only case the existence of an invariant measure in
R

d is proved when f (u) does not satisfy the dissipativity condition (2) is the work of
Assing and Manthey [1]. For spatial dimensions three or higher, these authors show the
existence of an invariant measure for (1) if f (u) ≡ 0 and σ(u) is a Lipschitz function
of u with a sufficiently small Lipschitz constant. One of the goals of the present work
is to extend the results of [1] to incorporate f which might not satisfy the condition
(2).

We establish two types of existence results for invariant measures in unbounded
domains. The first is to make use of the boundedness and compactness property of the
solution. The dissipativity required comes not from the nonlinear function f but from
the decaying property of the Green’s function in three and higher dimensions in R

d .
The second is to make use of the exponential stability of the equation. This approach
also gives the uniqueness of the invariant measure. Both strategies are similar to [9,10],
while the analytical framework is different.

Before describing our results, we introduce some weighted L2-space. Let ρ be a
nonnegative continuous L1(Rd)

⋂
L∞(Rd) function. Following [26], we call ρ to be

an admissible weight if for every T > 0 there exists C(T ) > 0 such that

G(t, ·) ∗ ρ ≤ C(T )ρ, ∀t ∈ [0, T ], where G(t, x) = 1

(4π t)d/2
e− |x |2

4t .

Some examples of admissible weights include ρ(x) = exp(−γ |x |) for γ > 0, and
ρ(x) = (1 + |x |n)−1 for n > d.

For an admissible weight ρ, define

H = L2
ρ(R

d) :=
{
w : R

d → R,

∫
Rd

|w(x)|2ρ(x) dx < ∞
}

(3)

and

‖w‖2
H :=

∫
Rd

|w(x)|2ρ(x) dx .

The choice of ρ is more flexible for the first part, while it is quite specific for the
second. The noise process W is defined and constructed at the beginning of Sects. 2
and 3.
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Our first set of results is stated as follows.

Theorem 1 Let d ≥ 3. Assume

1. σ : R
d × R → R satisfies |σ(x, u1)− σ(x, u2)| ≤ c|u1 − u2| and |σ(x, u)| ≤ σ0

for some σ0 > 0.
2. f : R

d × R → R satisfies | f (x, u1) − f (x, u2)| ≤ c|u1 − u2| and there exists
ϕ(x) ∈ L1(Rd) ∩ L∞(Rd) such that

| f (x, u)| ≤ ϕ(x),∀(x, u) ∈ R
d × R. (4)

Let u(t, x) be a solution of (1) with E‖u(0, x)‖2
L2(Rd )

< ∞. Then, we have

sup
t≥0

E‖u(t, x)‖2
H < ∞.

Our second result deals with a nonlocal stochastic reaction–diffusion equation.

{
∂
∂t u = Au + f (u)+ σ(u)Ẇ , t ≥ 0;
u(0, x) = u0(x) .

(5)

For example, in this case f : L2(Rd) → L2(Rd) is a nonlocal map of the form

f (u) =
∫

Rd
g(x, y, u(t, y))dy.

Nonlocal deterministic equations of such type are well known in the literature
and have a wide range of applications. In particular, this equation is used in modeling
phytoplankton growth in the work [14] by Du and Hsu. Nonlocal equations also model
the distant interactions in epidemics models (see, e.g., Capasso and Fortunato [4]). A
comprehensive description of deterministic and stochastic nonlocal reaction–diffusion
equations can be found in the monograph [27].

The conditions for the existence of bounded solutions for nonlocal equations of
type (5) were obtained by Da Prato and Zabczyk [12], Proposition 6.1.6, in terms of
Liapunov functions. These conditions are rather general. In this paper, we establish the
existence of a bounded solution for (5) in the case when the conditions of Proposition
6.1.6 [12] are not fulfilled.

A particular example of a nonlocal nonlinearity, which is used in the model of
nonlocal consumption of resources, as well as in nonlocal Fisher–KPP equation, is
f (u) = u(1 − ‖u‖) if ‖u‖ ≤ 1 and 0 otherwise (see, e.g., [27,28]). For nonlinearities
of this type, we have the following result:

Theorem 2 Let d ≥ 3. Assume

(i) ∀u, v ∈ L2(Rd), ‖ f (u) − f (v)‖L2(Rd ) ≤ C‖u − v‖L2(Rd ) and ‖σ(·, u(·)) −
σ(·, v(·))‖L2(Rd ) ≤ C‖u − v‖L2(Rd );

(ii) For some N > 0, f (u) = 0 if ‖u‖L2(Rd ) ≥ N.
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(iii) There exists ψ(x) ∈ L2(Rd) such that

|σ(x, u)| ≤ ψ(x),∀(x, u) ∈ R
d × R. (6)

Let u(t, x) be a solution of (1) with u(0, x) = u0(x) ∈ L2(Rd). Then,

sup
t≥0

E‖u(t, x)‖2
L2(Rd )

< ∞. (7)

Remark 1 Note that (7) implies supt≥0 E‖u(t, x)‖2
L2
ρ(R

d )
< ∞ for any weight ρ ∈

L∞(Rd).

Remark 2 For both of the above theorems, the Lipschitz conditions for f and σ are
mainly used for the existence and uniqueness of the solutions, while their global
bounds and constraints are for proving the uniform boundedness in time.

Remark 3 Comparing with the results of [1], we do not require the smallness of the
Lipschitz constants of f and σ . These are replaced by their somewhat more global
conditions.

Roughly speaking, in the case d ≥ 3, the Laplace operator has sufficiently strong
dissipative properties which compensate for the lack of dissipation coming from f (u).
These results, in conjunction with the compactness property of the semigroup for the
Laplace operator in some weighted space defined on R

d , yield the existence of an
invariant measure for (1) using the Krylov–Bogoliubov approach [12, Theorem 6.1.2].

In the analysis of the ergodic behavior of dynamical systems, the uniqueness of
invariant measures is a key step. As shown in [12, Theorem 3.2.6], the uniqueness of the
invariant measure implies that the solution process is ergodic. However, establishing
the uniqueness property of the invariant measure is highly nontrivial. One approach,
illustrated in [12, Chapter 7], shows that the uniqueness is a consequence of a strong
Feller property and irreducibility. Typically, in order to apply this result, one needs
to impose rather restrictive conditions both on the diffusion coefficient and on the
semigroup {S(t)}t≥0 generated by the elliptic operator. In particular, the diffusion
operator has to be bounded and nondegenerate, while the semigroup has to be square
integrable in some Hilbert–Schmidt norm [12, Hypothesis 7.1(iv)]. However, this
condition does not hold for the Laplace operator in unbounded domains.

In the second part of our work, we use a different approach to establishing the
uniqueness of invariant measures which does not require [12, Hypothesis 7.1(iv)].
This approach, reminiscent of [12, Theorem 6.3.2], is based on the fact that if the
semigroup has an exponential contraction property

‖S(t)u‖ ≤ Me−γ t‖u‖, (8)

for some M, γ > 0, then the corresponding dynamical system possesses a unique
solution which is stable and uniformly bounded in expectation. This solution is utilized
in the proof of the uniqueness of the invariant measure. The condition (8) holds in
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particular if A is the Laplace operator Δ in a bounded domain G with Dirichlet
boundary condition. Our result, however, deals with an example when G is unbounded.

Consider

{
∂
∂t u(t, x) = Au(t, x)+ f (x, u(t, x))+ σ(x, u(t, x))Ẇ (t, x), t > 0, x ∈ G;
u(0, x) = u0(x)

(9)

where

• G = R
d+ := {x = (x1, x2, . . . , xd) ∈ R

d , xd > 0};
• ρ(x) := e−|x |2 , x ∈ G;
• H = L2

ρ(G);

Au := 1

ρ
div(ρ∇u); (10)

• D(A) := H2
ρ (G) ∩ H1

0,ρ(G);• f (x, u) : G × R → R and σ(x, u) : G × R → R satisfy

| f (x, u1)− f (x, u2)| ≤ L|u1 − u2|; |σ(x, u1)− σ(x, u2)| ≤ L|u1 − u2|,
(11)

with Lipschitz constant L independent of x ;
•

f (x, 0) ∈ L∞(G) and σ(x, 0) ∈ L∞(G). (12)

Note that the elliptic operator A given by (10) appears in quantum mechanics in
the analysis of the energy levels of harmonic oscillator.

Under the assumptions above, the initial value problem (9) is well posed (see
Theorem 4, p. 14). Our main result for (9) is the following theorem.

Theorem 3 Assume the Lipschitz constant L in (11) is sufficiently small [see (43) and
(44) below]. Then, Eq. (9) has a unique solution u∗(t, x)which is defined for all t ∈ R

and satisfies

sup
t∈R

E‖u∗(t, x)‖2
H < ∞.

This solution is exponentially stable (in the sense of Definition 3, p. 14).

In Sect. 4, the above solution will be used to prove the existence and uniqueness of
the invariant measure for (9). In fact, it will be shown that u∗ is a stationary random
process.
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Remark 4 Our approach was motivated by the following simple observation: if
v(t, x), x ∈ [0, 1], t ∈ R solves

⎧⎪⎨
⎪⎩
vt (t, x) = vxx (t, x);
v(t, 0) = v(t, 1) = 0, t ∈ R;
v(0, x) = ϕ(x), x ∈ [0, 1],

(13)

then the only exponentially stable solution that satisfies

sup
t∈R

‖v(t, x)‖2
L2([0,1]) < ∞

is v ≡ 0 (with ϕ ≡ 0). Theorem 3 is an analog of this fact for the nonlinear stochastic
reaction–diffusion equation (9).

Remark 5 In contrast to Theorems 1 and 2, where the condition d ≥ 3 is essential,
here there is no restriction on the spatial dimension.

The paper is organized as follows. Section 2 deals with the existence of invariant
measure for the reaction–diffusion equation (1) with A = Δ in R

d and d ≥ 3 (Theo-
rems 1, 2). Section 3 is devoted to the proof of Theorem 3 for Eq. (9). The uniqueness
of the invariant measure as a consequence of Theorem 3 is established in Sect. 4.

2 Invariant Measure in the Entire Space

In this section, we study the problem (1) with A = Δ and G = R
d . Let {ek, k ≥ 1}

be an orthonormal basis in L2(Rd) such that

sup
k

‖ek(x)‖L∞(Rd ) ≤ 1. (14)

We note that such a basis exists. For example, consider

e(k)n (x) :=
{

1

π
sin (nx) χ[2πk,2π(k+1)](x), cos (nx) χ[2πk,2π(k+1)](x)

}
, n ≥ 0, k ∈ Z,

where χ[2πk,2π(k+1)](x) is the characteristic function of [2πk, 2π(k + 1)]. Clearly,

sup
n≥0,k∈Z

‖e(k)n (x)‖L∞(R) ≤ 1,

and
{

e(k)n (x), n ≥ 0, k ∈ Z

}
is a basis in L2(R).

The basis in R
d for d > 1 can be constructed analogously.

123



J Theor Probab

We now define the Wiener process W (t, x) as

W (t, x) :=
∞∑

k=1

√
akβk(t)ek(x) (15)

with

a :=
∞∑

k=1

ak < ∞

In the above, theβk(t)s are independent standard one-dimensional Wiener processes
on t ≥ 0. Let (�,F , P) be a probability space, and Ft is a right-continuous filtration
such that W (t, x) is adapted to Ft and W (t) − W (s) is independent of Fs for all
s < t . As shown in [11, pp. 88–89], (15) is convergent both in mean square and with
probability one.

We next proceed with a rigorous definition of a mild solution of (1) [11,12]:

Definition 1 Let H be a Hilbert space of functions defined on R
d . An Ft -adapted

random process u(t, ·) ∈ H is called a mild solution of (1) if it satisfies the following
integral relation for t ≥ 0:

u(t, ·) = S(t)u0(·)+
∫ t

0
S(t − s) f (·, u(s, ·))ds +

∫ t

0
S(t − s)σ (u(s, ·))dW (s, ·)

(16)

where {S(t), t ≥ 0} is the semigroup for the linear heat equation, i.e.,

S(t)u(x) :=
∫

Rd
G(t, x − y)u(y)dy.

It was shown (see, for example, [1,19,20]) that if both f and σ are Lipschitz in u,
the initial value problem (1) admits a unique mild solution u(t, x) if H = L2

ρ(R
d).

Moreover, as proved in [26, Proposition 2.1], if two nonnegative admissible weights
ρ(x) and ζ(x) in R

d satisfy

∫
Rd

ζ(x)

ρ(x)
dx < ∞, (17)

then

S(t) : L2
ρ(R

d) → L2
ζ (R

d) is a compact map. (18)

Based on this result, the theorem of Krylov–Bogoliuibov yields the existence of
invariant measure on L2

ζ (R
d) provided

sup
t≥0

E‖u(t, x)‖2
L2
ρ(R

d )
< ∞. (19)
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([26, Theorem 3.1] and [1, Theorem 2]). The statements of Theorems 1 and 2 exactly
show the existence of a solution satisfying the above condition.

We now proceed to the proof of Theorem 1.

Proof Let u(t, x) be a solution of (1). Applying the elementary inequality (a + b +
c)2 ≤ 3(a2 + b2 + c2) to (16), we have

‖u(t, x)‖2
H ≤ 3

(
I1(t)+ I2(t)+ I3(t)

)

where

I1(t) =
∫

Rd
|S(t)u(0, x)|2ρdx;

I2(t) =
∫

Rd

∣∣∣∣
∫ t

0
S(t − s) f (x, u(s, x))ds

∣∣∣∣
2

ρdx;

I3(t) =
∫

Rd

∣∣∣∣
∫ t

0
S(t − s)σ (u(s, x))dW (s, x)

∣∣∣∣
2

ρdx .

We will show that

sup
t≥0

EIi (t) < ∞, i = 1, 2, 3.

For I1, we have by the L2-contraction property of S(t) that

sup
t≥0

EI1(t) ≤ ‖ρ‖∞ sup
t≥0

E‖S(t)u(0, x)‖2
L2(Rd )

≤ ‖ρ‖∞E‖u(0, x)‖2
L2(Rd )

< ∞.

We next estimate I2 for t ≥ 1 in the following manner:

I2(t) =
∫

Rd

∣∣∣∣
∫ t

0

∫
Rd

G(t − s, x − y) f (y, u(s, y))dyds

∣∣∣∣
2

ρdx

≤ 2
∫

Rd

∣∣∣∣
∫ t−1

0

∫
Rd

G(t − s, x − y) f (y, u(s, y))dyds

∣∣∣∣
2

ρdx

+ 2
∫

Rd

∣∣∣∣
∫ t

t−1

∫
Rd

G(t − s, x − y) f (y, u(s, y))dyds

∣∣∣∣
2

ρdx .

First, using (4), we have

∫
Rd

∣∣∣∣
∫ t

t−1

∫
Rd

G(t − s, x − y) f (y, u(s, y))dyds

∣∣∣∣
2

ρdx ≤ ‖ϕ‖2∞‖ρ‖L1(Rd )
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Second, consider,

∫
Rd

∣∣∣∣
∫ t−1

0

∫
Rd

G(t − s, x − y) f (y, u(s, y))dyds

∣∣∣∣
2

ρdx

≤
∫

Rd

∣∣∣∣
∫ t−1

0

∫
Rd

1

(4π(t − s))d/2
e− |x−y|2

4(t−s) ϕ(y)dyds

∣∣∣∣
2

ρdx

≤ ‖ρ‖L1(Rd )‖ϕ‖2
L1(Rd )

∣∣∣∣
∫ t−1

0

ds

(4π(t − s))d/2

∣∣∣∣
2

.

Therefore,

sup
t≥0

EI2(t) ≤ ‖ϕ‖2∞‖ρ‖L1(Rd ) + 1

(4π)d
‖ρ‖L1(Rd )‖ϕ‖2

L1(Rd )

(∫ ∞

1

dτ

τ d/2

)2

< ∞

where the condition d ≥ 3 is used in the last step.
It remains to show that sup

t≥0
EI3(t) < ∞. First note that

E

∣∣∣∣
∫ t

0

∫
Rd

G(t − s, x − y)σ (y, u(s, y))dydW (s, y)

∣∣∣∣
2

= E

∫ t

0

∞∑
k=1

ak

(∫
Rd

G(t − s, x − y)σ (y, u(s, y))ek(y)dy

)2

ds

= E

∫ t−1

0

∞∑
k=1

ak

(∫
Rd

G(t − s, x − y)σ (y, u(s, y))ek(y)dy

)2

ds

+ E

∫ t

t−1

∞∑
k=1

ak

(∫
Rd

G(t − s, x − y)σ (y, u(s, y))ek(y)dy

)2

ds

≤ σ 2
0

∫ t−1

0

∫
Rd

G2(t − s, x − y)dy
∞∑

k=1

ak

∫
Rd

e2
k (y)dy

+ σ 2
0

∫ t

t−1

∞∑
k=1

ak

(∫
Rd

G(t − s, x − y)dy

)2

ds.

≤ aσ 2
0

(∫ t−1

0

∫
Rd

G2(t−s, y)dyds+1

)
≤ aσ 2

0

(∫ t−1

0

1

(t−s)
d
2

ds+1

)
≤C<∞

Therefore,

EI3(t)=
∫

Rd
E

∣∣∣∣
∫ t

0

∫
Rd

G(t−s, x−y)σ (y, u(s, y))dydW (s, y)

∣∣∣∣
2

ρdx ≤ C‖ρ‖L1(Rd )

which is uniformly bounded independent of t , thus concluding the proof. ��
We next prove Theorem 2.
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Proof (For simplicity, we omit the x variable in f and σ .) Let ‖u(0, x)‖L2(Rd ) = Z
and M := max{Z , N } where N is given by the condition (ii). For given t > 0, consider
the random variable

τ =
{

sup
{
0 < s ≤ t : ‖u(s, x)‖L2(Rd ) = M + 1

}
if the given set is nonempty

t, otherwise.

Introduce

C := {ω ∈ � : ‖u(t, x, ω)‖Rd > M + 1
}

It follows from the local Hölder continuity in time of solutions of (1) [25] that
‖u(s, x, ω)‖L2(Rd ) is continuous in s. Therefore, for ω ∈ {τ(ω) < t}⋂C , we have

‖u(s, x, ω)‖L2(Rd ) > M + 1, s ∈ (τ, t]

Note that a stochastic integral f (t) := ∫ t
0 g(s)dW (s) is an a.e. continuous function

of t . Thus, if τ is another random variable, the expression f (τ ) is well defined [16].
This fact, in conjunction with the uniqueness property of the mild solution, enables us
to write

u(t) = S(t − τ)u(τ )+
∫ t

τ

S(t − s) f (u(s))ds +
∫ t

τ

S(t − s)σ (u(s))dW (s).

(20)

Furthermore,

E‖u(t, ω)‖2
L2(Rd )

=
∫
{
ω:‖u‖L2(Rd )≤M+1

} ‖u(t, ω)‖2
L2(Rd )

d P(ω)

+
∫

C
‖u(t, ω)‖2

L2(Rd )
d P(ω)

≤ (M+1)2+
∫

C
‖u(t, ω)‖2d P(ω)

It follows from the condition (ii) and (20) that for ω ∈ C

u(t, ω) = S(t − τ)u(τ, ω)+
∫ t

τ

S(t − τ)σ (u(s))dW (s)

then
∫

C
‖u(t, ω)‖2

L2(Rd )
d P(ω) ≤ 2

[∫
C

‖S(t − τ)u(τ )‖2
L2(Rd )

d P(ω)

+
∫

C

∥∥∥∥
∫ t

τ

S(t − s)σ (u(s))dW (s)

∥∥∥∥
2

L2(Rd )

d P(ω)

]

≤ 2

[
E‖S(t − τ)u(τ )‖2

L2(Rd )
+ E

∥∥∥∥
∫ t

τ

S(t − s)σ (u(s))dW (s)

∥∥∥∥
2

L2(Rd )

]
(21)
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The first term is bounded by using the contraction property of S(t) in L2(Rd):

E‖S(t − τ)u(τ )‖2
L2(Rd )

≤ E‖u(τ )‖2
L2(Rd )

= (M + 1)2

For the second term in (21), we compute,

E

∥∥∥∥
∫ t

τ

S(t − s)σ (u(s))dW (s)

∥∥∥∥
2

L2(Rd )

≤ E

(
sup

0≤ν≤t

∥∥∥∥
∫ t

ν

S(t − s)σ (u(s))dW (s)

∥∥∥∥
2

L2(Rd )

)

≤ 2E

∥∥∥∥
∫ t

0
S(t − s)σ (u(s))dW (s)

∥∥∥∥
2

L2(Rd )

+ 2E

(
sup

0≤ν≤t

∥∥∥∥
∫ ν

0
S(t − s)σ (u(s))dW (s)

∥∥∥∥
2

L2(Rd )

)

By the following Doob’s inequality for martingales,

E

⎛
⎝ sup

0≤ν≤t

∣∣∣∣∣
∫ ν

0

∞∑
k=1

gk(s)dβk(s)

∣∣∣∣∣
2
⎞
⎠ ≤ 4

∞∑
k=1

E

∫ t

0
|gk(s)|2ds,

we have

E

(
sup

0≤ν≤t

∥∥∥∥
∫ ν

0
S(t − s)σ (u(s))dW (s)

∥∥∥∥
2

L2(Rd )

)

= E

⎛
⎜⎝ sup

0≤ν≤t

⎛
⎜⎝
∫
Rd

∣∣∣∣∣∣
∫ ν

0

∞∑
k=1

√
ak

∫
Rd

G(t − s, x − y)σ (y, u(s, y, ω))ek(y)dydβk(s)

∣∣∣∣∣∣
2

dx

⎞
⎟⎠
⎞
⎟⎠

≤ 4
∫
Rd

⎛
⎝E

∫ t

0

∞∑
k=1

ak

(∫
Rd

G(t − s, x − y)σ (y, u(s, y, ω))ek(y)dy

)2
ds

⎞
⎠ dx

(22)

Similar to the proof of Theorem 1, we split
∫ t

0 = ∫ t−1
0 + ∫ t

t−1. Then,

∫
Rd

(
E

∫ t

t−1

∞∑
k=1

ak

(∫
Rd

G(t − s, x − y)σ (y, u(s, y, ω))ek(y)dy

)2

ds

)
dx

≤
∞∑

k=1

ak

∫ t

t−1

∫
Rd

(∫
Rd

G(t−s, x−y) dy

)(∫
Rd

G(t−s, x−y)ψ2(y)e2
k (y)dy

)
dxds
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=
∞∑

k=1

ak

∫ t

t−1

∫
Rd

∫
Rd

G(t − s, x − y)ψ2(y)e2
k (y)dydxds

=
∞∑

k=1

ak

∫ t

t−1

∫
Rd

G(t−s, x−y)dx
∫

Rd
ψ2(y)e2

k (y)dyds ≤
∞∑

k=1

ak‖ψ‖2
L2(Rd )

<∞.

Next,

∫
Rd

(
E

∫ t−1

0

∞∑
k=1

ak

(∫
Rd

G(t − s, x − y)σ (y, u(s, y, ω))ek(y)dy

)2

ds

)
dx

≤
∞∑

k=1

ak

∫ t−1

0

∫
Rd

(∫
Rd

G2(t − s, x − y)e2
k (y) dy

)(∫
Rd
ψ2(y) dy

)
dxds

≤
∞∑

k=1

ak‖ψ‖2
L2(Rd )

∫ t−1

0

∫
Rd

G2(t − s, z)dzdt

≤
∞∑

k=1

ak‖ψ‖2
L2(Rd )

∫ t−1

0

1

(t − s)
d
2

dt < ∞.

The above complete the proof of Theorem 2. ��

3 Proof of Theorem 3

In this section, we analyze Eq. (9). We follow the notations immediately after (9) on
page 5. For the proof, we introduce the following infinite-dimensional Wiener process:

W (t, x) =
∞∑

k=1

√
akβk(t)ek(x) (23)

where ek(x)s satisfy (14) and we also require

a :=
∞∑

k=1

ak < ∞

In contrast to the previous section, the Wiener process in this section is defined for
all t ∈ R. This can be constructed by the following formula:

βk(t) =
{
β
(1)
k (t), for t ≥ 0
β
(2)
k (−t), for t ≤ 0

,
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where β(1)k and β(2)k are independent standard one-dimensional Wiener processes.
Also, let

Ft :=
⋃

{βk(v)− βk(u) : u ≤ v ≤ t, k ≥ 1}

be the σ -algebra generated by {βk(v)− βk(u) : u ≤ v ≤ t, k ≥ 1}.
Our proof heavily relies on the spectral properties of the operator A in some

weighted space. These are described next.

3.1 Eigenvalue Problem for A

In the case d = 1, consider the weight function ρ = e−x2
. We then have the following

problem for determining the spectrum: find all μ ∈ R and w ∈ H = L2
ρ(R

+) such
that

ex2 d

dx

(
dw

dx
e−x2

)
= μw, x > 0; (24)

satisfying

∫ ∞

0
w2e−x2

dx < ∞ (25)

and

w(0) = 0. (26)

The problem (24) is a well-known problem for harmonic oscillator [24, pp. 218–
219]. It has a nonzero solution satisfying (25) only for μ = −2n, n = 0, 1, 2, . . ..
The solutions are the Hermite polynomialswn = Hn(x). Moreover, the condition (26)
implies that n must be odd. Therefore, the eigenvalues of (24) are μ = 2 − 4p, p =
1, 2, 3, . . .

If d > 1, the eigenvalue problem reads as

�w − 2(∇w, x) = μw, (27)

subject to

∫
R

d+
w2e−|x |2 dx < ∞ (28)

and

w(x1, . . . , xd−1, 0) = 0. (29)
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We proceed with looking for the solutions of (27) using separation of variables,

w(x1, x2, . . . , xd) = w1(x1)w2(x2) . . . wd(xd),

with wi solving

ex2
i

d

dxi

(
dwi

dxi
e−x2

i

)
= λiwi , i = 1, . . . , d (30)

subjects to

∫
R

w2
i (x)e

−x2
dx < ∞, i = 1, . . . , d − 1; (31)

and

∫ ∞

0
w2

d(x)e
−x2

dx < ∞, wd(0) = 0. (32)

It follows from the condition (31) that for i = 1, . . . , d − 1, we have

λi = −2p, p = 0, 1, 2, . . .

while due to (32)

λd = −2 − 4p, p = 0, 1, 2, . . .

An arbitrary eigenvalue μ of (27) satisfies μ = λ1 +· · ·+λd . In particular, the largest
eigenvalue of (24) is given by μ1 = −2 (which corresponds to λ1 = . . . = λd−1 =
0, λd = −2).

With the above, we have the following technical lemmas.

Lemma 1 Let S(t) : H → H be a semigroup generated by A, i.e., S(t)u0(x) :=
u(t, x), where u(t, x) solves

{
ut (t, x) = Au(t, x)

u(0, x) = u0(x).
(33)

Then,

‖S(t)u0‖H ≤ e−2t‖u0‖H (34)
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Proof Let 0 > μ1 > μ2 ≥ μ3 ≥ · · · , with μ1 = −2, be the eigenvalues of A, and
let {ϕk(x), k ≥ 1} ∈ H be the corresponding orthonormal eigenbasis. We have the
following representations for u0 ∈ H and u(t, x) ∈ H :

u0(x) =
∞∑

k=1

c0
kϕk(x)

and

u(t, x) =
∞∑

k=1

ck(t)ϕk(x)

It follows from (33) that

∞∑
k=1

c
′
k(t)ϕk(x) =

∞∑
k=1

ck(t)Aϕk(x) =
∞∑

k=1

μkck(t)ϕk(x)

Thus,

ck(t) = c0
k eμk t

Hence,

‖u(t, x)‖2
H =

∞∑
k=1

c2
k (t) = e−4t

∞∑
k=1

e(2μk+4)t (c0
k )

2 ≤ e−4t‖u0(x)‖2
H

concluding the proof. ��
Lemma 2 For any u ∈ H, we have

E

∥∥∥∥
∫ t

t0
S(t − s)σ (u(s))dW (s)

∥∥∥∥
2

H

≤
∞∑

k=1

ak

∫ t

t0
e−4(t−s)

E‖σ(u(s))‖2
H ds (35)

Proof It is a consequence of the following computation.

E

∥∥∥∥
∫ t

t0
S(t − s)σ (u(s))dW (s)

∥∥∥∥
2

H

=E

∥∥∥∥∥
∞∑

k=1

√
ak

∫ t

t0
S(t−s)σ (u(s))ek(x)dβk(s)

∥∥∥∥∥
2

H

=
∫

G
E

( ∞∑
k=1

√
ak

∫ t

t0
S(t − s)σ (u(s))ek(x)dβk(s)

)2

ρ(x) dx

=
∫

G

∞∑
k=1

akE

(∫ t

t0
S(t − s)σ (u(s))ek(x)dβk(s)

)2

ρ(x) dx
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=
∞∑

k=1

ak

∫
G

∫ t

t0
E (S(t − s)σ (u(s))ek(x))

2 ds ρ(x) dx

=
∞∑

k=1

ak

∫ t

t0
E ‖S(t − s)σ (u(s))ek(x)‖2

H ds ≤
∞∑

k=1

ak

∫ t

t0
e−4(t−s)

E‖σ(u(s))‖2
H ds.

��
We proceed with the existence and uniqueness result for (9). For simplicity again,

we omit the x variable in f and σ .

Theorem 4 Assume that f and σ satisfy (11) and (12). Then, for given u0(x) ∈ H,
there exists a unique mild solution of (9) (see Definition 1).

The proof of this result uses fairly standard techniques and is presented in the
“Appendix.”

Next, we will construct and analyze solutions of (9) defined for all t ∈ R. First we
introduce the following definition.

Definition 2 We say that an H -valued process u(t) is a mild solution of (9) on R
1 if

1. for ∀t ∈ R, u(t) is Ft -measurable;
2. u(t) is continuous almost surely in t ∈ R with respect to H -norm;
3. ∀t ∈ R, E‖u(t)‖2

H < ∞
4. for all −∞ < t0 < t < ∞ with probability 1 we have

u(t) = S(t − t0)u(t0)+
∫ t

t0
S(t − s) f (u(s))ds +

∫ t

t0
S(t − s)σ (u(s))dW (s)

(36)

The proof of Theorem 3 is divided into its linear and nonlinear versions.

3.2 Proof of Theorem 3: Linear Version

Let B be the class of H -valued, Ft -measurable random processes ξ(t) defined on R
1

such that

sup
t∈R1

E‖ξ(t)‖2
H < ∞ (37)

For ϕ(t) and α(t) in B consider

du = (Au + α(t))dt + ϕ(t)dW (t) (38)

Definition 3 A solution u∗ is exponentially stable in mean square if there exist K > 0
and γ > 0 such that for any t0 and any other solution η(t), with Ft0 measurable η(t0)
and E‖η(t0)‖2

H < ∞, we have

E‖u∗(t)− η(t)‖2
H ≤ K e−γ (t−t0)E‖u∗(t0)− η(t0)‖2

H

for t ≥ t0.

123



J Theor Probab

Theorem 5 Equation (38) has a unique solution u∗ in the sense of the Definition 2.
This solution is in B and is exponentially stable in the sense of Definition 3.

Proof Define

u∗(t) :=
∫ t

−∞
S(t − s)α(s)ds +

∫ t

−∞
S(t − s)ϕ(s)dW (s) (39)

We start with showing that the function given by (39) is well defined in the sense
that the improper integrals are convergent. Let

ξn(t) :=
∫ t

−n
S(t − s)α(s)ds (40)

ζn(t) :=
∫ t

−n
S(t − s)ϕ(s)dW (s) (41)

For n > m, we have

E‖ξn(t)− ξm(t)‖2
H ≤ E

(∫ −m

−n
‖S(t − s)α(s)‖H ds

)2

≤ E

(∫ −m

−n
e−2(t−s)‖α(s)‖H ds

)2

≤
∫ −m

−n
e−2(t−s)ds ·

∫ −m

−n
e−2(t−s)

E‖α(s)‖2
H ds

≤ sup
t∈R

E‖α(t)‖2
H ·
(∫ −m

−n
e−2(t−s)ds

)2

which can be made as small as possible as n,m → ∞.Thus, for all t ∈ R the sequence
(40) is a Cauchy sequence.

Similarly, using Lemma 2, we have

E‖ζn(t)− ζm(t)‖2
H

= E

∥∥∥∥
∫ −m

−n
S(t − s)ϕ(s)dW (s)

∥∥∥∥
2

H
≤

∞∑
k=1

ak

∫ −m

−n
e−2(t−s) ds sup

t∈R

E‖ϕ(t)‖2
H

which is again uniformly small for all large n and m. Thus, {ζn}n is also a Cauchy
sequence. The above show that the process given by (39) is well defined.

We will show that this process is the solution in the sense of Definition 2. First,
we note that u∗(t) is Ft -measurable. Furthermore, the continuity of u∗ in time with
probability 1 follows from the factorization formula for the stochastic integrals [12,
Theorem 5.2.5]. Next, we show that
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sup
t∈R

E‖u∗(t)‖2
H < ∞ (42)

From (39), we have

E

∥∥∥∥
∫ t

−∞
S(t − s)α(s)ds

∥∥∥∥
2

H
≤ E

(∫ t

−∞
‖S(t − s)α(s)‖H ds

)2

≤
∫ t

−∞
e−2(t−s)ds

∫ t

−∞
e−2(t−s)ds sup

t∈R

E‖α(t)‖2
H = 1

4
sup
t∈R

E‖α(t)‖2
H

as well as

E

∥∥∥∥
∫ t

−∞
S(t − s)ϕ(s)dW (s)

∥∥∥∥
2

H
≤

∞∑
k=1

ak

∫ t

−∞
e−4(t−s) sup

t∈R

E‖ϕ(t)‖2
H < ∞.

Thus, (42) holds.
Finally, since

u∗(t0) =
∫ t0

−∞
S(t0 − s)α(s)ds +

∫ t0

−∞
S(t0 − s)ϕ(s)dW (s)

we compute:

u∗(t) =
∫ t

−∞
S(t − s)α(s)ds +

∫ t

−∞
S(t − s)ϕ(s)dW (s)

=
∫ t0

−∞
S(t − s)α(s)ds +

∫ t0

−∞
S(t − s)ϕ(s)dW (s)

+
∫ t

t0
S(t − s)α(s)ds +

∫ t

t0
S(t − s)ϕ(s)dW (s)

=
∫ t0

−∞
S(t − t0)S(t0 − s)α(s)ds +

∫ t0

−∞
S(t − t0)S(t0 − s)ϕ(s)dW (s)

+
∫ t

t0
S(t − s)α(s)ds +

∫ t

t0
S(t − s)ϕ(s)dW (s)

= S(t − t0)u
∗(t0)+

∫ t

t0
S(t − s)α(s)ds +

∫ t

t0
S(t − s)ϕ(s)dW (s).

Hence, u∗ is a solution in the sense of Definition 2.
To show the exponential stability of u∗ (in the sense of Definition 3), let η(t) be

another solution of (38), such that E‖η(t0)‖2
H < ∞. Then,

η(t) = S(t − t0)η(t0)+
∫ t

t0
S(t − s)α(s)ds +

∫ t

t0
S(t − s)ϕ(s)dW (s),
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and thus

E‖u∗(t)− η(t)‖2
H = E‖S(t − t0)(u

∗(t0)− η(t0))‖2
H ≤ e−4(t−t0)E‖u∗(t0)− η(t0)‖2

H

which implies the stability of u∗.
Finally, we show the uniqueness of u∗. Let u0 be another solution, such that

sup
t∈R

E‖u0(t)‖2
H < ∞

Then, z(t) = u∗(t)− u0(t) satisfies

E‖z(t)‖2 ≤ e−4(t−τ)
E‖z(τ )‖2

H

for arbitrary τ ≤ t . Clearly, supt∈R E‖z(t)‖2
H ≤ e−4(t−τ)C for some C > 0. Letting

τ → −∞, we have E‖z(t)‖2 = 0 for all t ∈ R. Therefore,

P
(
u0(t) �= u∗(t)

) = 0, ∀t ∈ R.

Since the processes u0 and u∗ are continuous in time with probability 1,

P

(
sup
t∈R

‖u0(t)− u∗(t)‖H > 0

)
= 0.

Now we are ready to prove Theorem 3.

3.3 Proof of Theorem 3: Nonlinear Version

Proof Suppose the constant L in (11) satisfies

L2 + L2
∞∑

k=1

ak < 1 (43)

L2

2
+ L2

∞∑
k=1

ak <
2

3
. (44)

The idea of the proof is to construct a sequence of approximations which converges
to the solution u∗(t, x). Let u0 ≡ 0. For n ≥ 0, define un+1(t, x) as

dun+1 = (Aun+1 + f (x, un)) dt + σ(x, un)dW (t) (45)

Equation (45) satisfies the conditions of the Theorem 5, since

sup
t∈R

E‖ f (x, un(t, x))‖2
H ≤ C sup

t∈R

E

∫
G
(1 + |un(t, x)|2)e−|x |2 dx < ∞.
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for some C > 0. The bound for σ(x, un) is obtained analogously. Therefore, by
Theorem 5, we can find the unique un+1(t, x) satisfying

sup
t∈R

E‖un+1‖2
H < ∞.

First, we show that supt∈R E‖un‖2
H has a bound which is independent of n. To this

end, un+1 has the presentation

un+1(t) =
∫ t

−∞
S(t − s) f (un(s))ds +

∫ t

−∞
S(t − s)σ (un(s))dW (s) := I1 + I2

thus

E‖un+1(t)‖2
H ≤ 2E‖I1‖2

H + 2E‖I2‖2
H .

We now estimate each term separately:

E‖I1‖2
H = E

∥∥∥∥
∫ t

−∞
S(t − s) f (un(s))ds

∥∥∥∥
2

H

≤ 2 E

∥∥∥∥
∫ t

−∞
S(t − s) f (0)ds

∥∥∥∥
2

H

+ 2 E

∥∥∥∥
∫ t

−∞
S(t − s)[ f (un(s))− f (0)]ds

∥∥∥∥
2

H

≤ C0

∫ t

−∞
e−2(t−s)ds + L2

E

∫ t

−∞
e−2(t−s)‖un(s)‖2

H ds ≤ C0

+ L2

2
sup
t∈R

E‖un(t)‖2
H

Applying Lemma 2, we proceed with a similar estimate for I2:

E‖I2‖2
H = E

∥∥∥∥
∫ t

−∞
S(t − s)σ (un(s))dW (s)

∥∥∥∥
2

H

≤ 2 E

∥∥∥∥
∫ t

−∞
S(t − s)σ (0)dW (s)

∥∥∥∥
2

H

+ 2 E

∥∥∥∥
∫ t

−∞
S(t − s)[σ(un(s))− σ(0)]dW (s)

∥∥∥∥
2

H

≤ C1 + 2
∞∑

k=1

ak

∫ t

−∞
e−4(t−s)

E‖un(s)‖2
H ds ≤ C1

+
∞∑

k=1

ak
L2

2
sup
t∈R

E‖un(t)‖2
H
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so that we have

sup
t∈R

E‖un+1(t)‖2
H ≤ C2 + L2(1 +

∞∑
k=1

ak) sup
t∈R

E‖un(t)‖2
H

where C2 = 2C0 + 2C1 does not depend on L . Hence, if L2(1 + ∑∞
k=1 ak) < 1

[condition (43)], we have a bound for supt∈R E‖un(t)‖2
H which is independent of n:

sup
t∈R

E‖un(t)‖2
H ≤ C2

1 − L2(1 +∑∞
k=1 ak)

(46)

The bound (46) follows from the fact that if a nonnegative numerical sequence
{xn, n ≥ 1} satisfies

xn+1 ≤ a + bxn

with b < 1, then xn ≤ a
1−b .

Second, we establish that un is convergent.

un+1(t)− un(t) =
∫ t

−∞
S(t − s)[ f (un(s))− f (un−1(s))]ds +

+
∫ t

−∞
S(t − s)[σ(un(s))− σ(un−1(s))]dW (s) := J1 + J2.

Thus,

E‖un+1(t)− un(t)‖2
H ≤ 2E ‖J1‖2

H + 2E ‖J2‖2
H .

Estimating the first term, we have

‖J1‖2
H = E

∥∥∥∥
∫ t

−∞
S(t − s)[ f (un(s))− f (un−1(s))]ds

∥∥∥∥
2

H

≤ L2

2

∫ t

−∞
e−2(t−s)

E‖un(s)− un−1(s)‖2
H ds

≤ L2

4
sup
t∈R

E‖un(t)− un−1(t)‖2
H .

Using Lemma 2 again, we have

‖J2‖2
H ≤ L2

∞∑
k=1

ak

∫ t

−∞
e−4(t−s)

E‖un(s)− un−1(s)‖2
H ds

≤ L2

4

∞∑
k=1

ak sup
t∈R

E‖un(t)− un−1(t)‖2
H .
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Therefore,

sup
t∈R

E‖un+1(t)− un(t)‖2
H ≤ L2

2

(
1 +

∞∑
k=1

ak

)
sup
t∈R

E‖un(t)− un−1(t)‖2
H . (47)

where, due to (43),

L2

2

(
1 +

∞∑
k=1

ak

)
<

1

2
.

Iterating (47), we get

sup
t∈R

E‖un+1(t)− un(t)‖2
H ≤ C

2n

for some positive constant C . Therefore, ∀n,m ≥ 1

sup
t∈R

√
E‖un(t)− um(t)‖2

H = sup
t∈R

√√√√
E

∥∥∥∥∥
n∑

i=m

(ui+1(t)− ui (t))

∥∥∥∥∥
2

H

≤
n∑

i=m

√
sup
t∈R

E‖ui+1(t)− ui (t)‖2
H → 0, as n,m → ∞,

and thus, un(t) is a Cauchy sequence. Consequently, there is a limiting function
u∗(t, ·) ∈ H such that

sup
t∈R

E‖un(t)− u∗(t)‖2
H → 0, n → ∞.

Using (46), it follows from Fatou’s Lemma that

sup
t∈R

E‖u∗‖2
H ≤ C2

1 − L2(1 +∑∞
k=1 ak)

The function u∗(t) is Ft -measurable as a limit of Ft -measurable processes.
Third, we show that u∗ solves Eq. (9). To this end, we need to pass to the limit in

the identity

un+1(t) = S(t − t0)un+1(t)+
∫ t

t0
S(t − t0) f (un(s))ds

+
∫ t

t0
S(t − s)σ (un(s))dW (s) (48)
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Using Markov’s inequality, ∀ε > 0

sup
t∈R

P
{‖un(t)− u∗(t)‖H > ε

} ≤ supt∈R E‖un(t)− u∗(t)‖2

ε2 → 0, n → ∞.

So un(t) → u∗(t), n → ∞ in probability, uniformly in t . Thus, since S(t − t0) is
a bounded operator,

S(t − t0)un+1(t) → S(t − t0)u
∗(t), n → ∞.

Next, ∀ε > 0

P

{∥∥∥∥
∫ t

t0
S(t − s)[ f (un(s))− f (u∗(s))]ds

∥∥∥∥
H

> ε

}

≤ P

{∫ t

t0

∥∥S(t − s)[ f (un(s))− f (u∗(s))]∥∥H ds > ε

}

≤ P

{
L
∫ t

t0
e−2(t−s)

∥∥un(s)− u∗(s)
∥∥

H ds > ε

}

≤ L

ε2 sup
t∈R

√
E(un(t)− u∗(t)) → 0, n → ∞.

So
∫ t

t0
S(t − s) f (un(s)) ds →

∫ t

t0
S(t − s) f (u∗(s)) ds

in probability pointwise for every t ∈ R as n → ∞. Finally, using Lemma 2,

E

∥∥∥∥
∫ t

t0
S(t − s)[σ(un(s))− σ(u∗(s))] dW (s)

∥∥∥∥
2

H

≤
∫ t

t0
E
∥∥S(t − s)[σ(un(s))− σ(u∗(s))]∥∥2

H ds

≤ L2
∞∑

k=1

ak

∫ t

t0
e−4(t−s)

E‖un(s)− u∗(s)‖2
H ds

≤ L2

4

∞∑
k=1

ak sup
t∈R

E‖un(t)− u∗(t)‖2
H → 0, n → ∞.

It follows from Proposition 4.16 [11] that

∫ t

t0
S(t − s)σ (un(s))dW (s) →

∫ t

t0
S(t − s)σ (u∗(s))dW (s)

in probability. Therefore, passing to the limit in (48), we have
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u∗(t) = S(t − t0)u
∗(t0)+

∫ t

t0
S(t − t0) f (u∗(s))ds

+
∫ t

t0
S(t − s)σ (u∗(s))dW (s) (49)

The process u∗, defined through the integral relation (49), has continuous trajec-
tories with probability 1. Indeed, while the continuity of the first two terms can be
checked straightforwardly, the continuity of the third one is a consequence of the
factorization formula [12, Theorem 5.2.5].

We now show that u∗ is a stable solution. To this end, let η(t) be another solution
of (9) such that η(t0) is Ft0 measurable and E‖η(t0)‖2

H < ∞. We have

E‖u∗(t)− η(t)‖2
H ≤ 3 E

∥∥S(t − t0)(u
∗(t0)− η(t0))

∥∥2
H

+ 3 E

(∫ t

t0

∥∥S(t − s)[ f (u∗(s))− f (η(s))]∥∥H ds

)2

+ 3 E

∥∥∥∥
∫ t

t0
S(t − s)(σ (u∗(s))− σ(η(s)))dW (s)

∥∥∥∥
2

H

. (50)

Estimating each term separately, we have

E
∥∥S(t − t0)(u

∗(t0)− η(t0))
∥∥2

H ≤ e−4(t−t0)E‖u∗(t0)− η(t0)‖2
H

≤ e−2(t−t0)E‖u∗(t0)− η(t0)‖2
H ,E

(∫ t

t0

∥∥S(t − s)[ f (u∗(s))− f (η(s))]∥∥H ds

)2

≤ L2

2

∫ t

t0
e−2(t−s)

E‖u∗(s)− η(s)‖2
H ds,

and, using Lemma 2,

E

∥∥∥∥
∫ t

t0
S(t − s)(σ (u∗(s))− σ(η(s)))dW (s)

∥∥∥∥
2

H

≤ L2
∞∑

k=1

ak

∫ t

t0
e−4(t−s)

E‖u∗(s)− η(s)‖2
H ds

≤ L2
∞∑

k=1

ak

∫ t

t0
e−2(t−s)

E‖u∗(s)− η(s)‖2
H ds.

Thus, (50) reads as

E‖u∗(t)− η(t)‖2
H ≤ 3e−2(t−t0)E‖u∗(t0)− η(t0)‖2

H

+ 3

(
L2

2
+ L2

∞∑
k=1

ak

)∫ t

t0
e−2(t−s)

E‖u∗(s)− η(s)‖2
H ds. (51)
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Rewriting (51) as

e2t
E‖u∗(t)− η(t)‖2

H ≤ 3e2t0E‖u∗(t0)− η(t0)‖2
H +

+ 3L2

(
1

2
+

∞∑
k=1

ak

)∫ t

t0
e2s

E‖u∗(s)− η(s)‖2
H ds, (52)

we are now in position to apply Gronwall’s inequality to conclude that

E‖u∗(t)− η(t)‖2
H ≤ 3e

(
−2+3

(
L2
2 +L2∑∞

k=1 ak

))
(t−t0)

E‖u∗(t0)− η(t0)‖2
H

Thus, u∗ is stable, provided (44) holds.
The uniqueness of u∗ can be shown similarly to the linear case. ��

4 Uniqueness of the Invariant Measure

In this section, we show that the solution u∗(t) is a stationary process for t ∈ R,
which defines an invariant measure μ for (9). The stability property of u∗ gives the
uniqueness of the invariant measure. We follow the overall procedure in [11, Section
11.1] and [12, Theorem 6.3.2].

Following [12], u∗ defines a probability transition semigroup

Ptϕ(x) := Eϕ(u∗(t, x)), x ∈ H

so that its dual P
∗
t is an operator in the space of probability measures μ:

P
∗
t μ(�) =

∫
H

Pt (u0, �)μ(du0), t ≥ 0, � ⊂ H.

Here

Pt (u0, �) = Eχ�(u(t, u0)),

and χ� is the characteristic function of the set �. An invariant measure μ is a fixed
point of P

∗
t , i.e., P

∗
t μ = μ for all t ≥ 0.

Throughout this section, u(t, t0, u0) will denote the solution of{
∂
∂t u(t, x) = Au(t, x)+ f (x, u(t, x))+ σ(x, u(t, x))Ẇ (t, x), t ≥ t0, x ∈ G;
u(t0, x) = u0(x)

(53)

for t ≥ t0. Here, t0 can be any number, in particular we can choose t0 = 0. Also, for
any H -valued random variable X , we use L(X) to denote the law of X , which is the
following measure on H :

L(X)(A) := P(ω : X (ω) ∈ A), A ⊂ H
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We now show thatμ := L(u∗(t0)) is the unique invariant measure for (9). Following
[11, Prop 11.2, 11.4], it is sufficient to show that

∀u0 ∈ H, P∗
t δu0 = L(u(t, t0, u0)) → μ weakly as t → ∞. (54)

Since the equation is autonomous and t −t0 = t0 −(2t0 −t)), we have the following
property of the solution

L(u(t, t0, x)) = L(u(t0, 2t0 − t, u0)), for all t > t0. (55)

By the stability property (Definition 3) of (9), we have

E‖u(t0, 2t0 − t, u0)− u∗(t0)‖2
H ≤ e−2(t0−2t0+t)

E‖u(2t0 − t, 2t0 − t, u0)

−u∗(2t0 − t)‖2
H

= e−2(t−t0)E‖u∗(2t0 − t)− u0‖2
H → 0, t → ∞,

since supt∈R E‖u∗(2t0 − t)− u0‖2
H < ∞. Thus, u(t0, 2t0 − t, u0) converges in prob-

ability to u∗(t0), which, in turn, implies the weak convergence (54). The above simul-
taneously proves the existence and uniqueness of the invariant measure for (9).

The stationarity of u∗ follows from [11, Prop 11.5].

5 Appendix

For the sake of completeness of presentation, we provide the proof of the existence of a
mild solution (Theorem 4). The argument used in this proof is fairly standard; however,
the classic existence theorems (which may be found, e.g., in the works of Da Prato
and Zabczyk [11,12] or Cerrai [6]) cannot be formally applied in the particular setting
due to the specific choice of the operator, the weight and the boundary conditions.

Proof (Theorem 4). Write the integral relation (9) as

u(t, x) = �[u(t, x)] (56)

where

�[v(t, x)] := S(t)u0(x)+
∫ t

0
S(t − s) f (v(s))ds

+
∞∑

k=1

√
ak

∫ t

0
S(t − s)σ (v(s))ekdβk(s)

For T > 0, let

B :=
{
v ∈ H is Ft measurable for ∀t ∈ [0, T ], sup

t∈[0,T ]
E‖v(t)‖2

H < ∞
}

123



J Theor Probab

and

‖v‖2
B := sup

t∈[0,T ]
E‖v(t)‖2

H

We will establish the contraction property of �: for T sufficiently small, it holds
that

(i) � : B → B;

(ii) ‖�(v1)−�(v2)‖B ≤ γ ‖v1 − v2‖B for some 0 < γ < 1

To show (i), for u ∈ B and t ∈ [0, T ], we have:

‖�[u]‖B = sup
t∈[0,T ]

‖�[u]‖2
H ≤ 3

(
sup

t∈[0,T ]
‖S(t)u0(x)‖2

H + sup
t∈[0,T ]

I1 + sup
t∈[0,T ]

I2

)

where

I1 := E

∥∥∥∥
∫ t

0
S(t − s) f (u(s))ds

∥∥∥∥
2

H
and

I2 := E

∥∥∥∥∥
∞∑

k=1

√
ak

∫ t

0
S(t − s)σ (u(s))ekdβk(s)

∥∥∥∥∥
2

H

First, note that by Lemma 1,

sup
t∈[0,T ]

‖S(t)u0(x)‖2
H ≤ sup

t∈[0,T ]
e−4t‖u0‖2

H < ∞

We next proceed with estimating I1 and I2.

I1 ≤ E

(∫ t

0
‖S(t − s) f (u(s))‖H ds

)2

≤ E

(∫ t

0
e−2(t−s)‖ f (u(s))‖H ds

)2

≤
∫ t

0
e−2(t−s)

∫ t

0
e−2(t−s)

E‖ f (u(s))‖H ds ≤ C
(

1 + ‖u‖2
B

)
.

Hence,

sup
t∈[0,T ]

I1 ≤ C
(

1 + ‖u‖2
B

)
< ∞
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Similarly, using (14)

I2 =
∫ t

0

∞∑
k=1

akE‖S(t − s)σ (u(s, x))ek(x)‖2
H ds

≤
∞∑

k=1

ak

∫ t

0
e−4(t−s)

E‖σ(u(s))ek(x)‖2
H ds

≤
∞∑

k=1

ak

∫ t

0
e−4(t−s)

E‖σ(u(s))‖2
H ds ≤ C

(
1 + ‖u‖2

B

)

Thus, (i) follows.
To show (ii), let u1 and u2 be arbitrary elements in H . For t ∈ [0, T ], we have

E‖�(u1)−�(u2)‖2
H ≤ 2(J1 + J2)

where

J1 := E

∥∥∥∥
∫ t

0
S(t − s)( f (u1(s))− f (u2(s)))ds

∥∥∥∥
2

H

and

J2 := E

∥∥∥∥∥
∞∑

k=1

√
ak

∫ t

0
S(t − s)(σ (u1(s))− σ(u2(s)))ekdβk(s)

∥∥∥∥∥
2

H

For t ∈ [0, T ], we have

J1 ≤ E

(∫ t

0
‖S(t − s)( f (u1(s))− f (u2(s)))‖H ds

)2

≤ E

(∫ t

0
e−2(t−s)‖ f (u1(s))− f (u2(s))‖H ds

)2

≤
∫ t

0
e−2(t−s)ds

∫ t

0
e−2(t−s)

E‖ f (u1(s))− f (u2(s))‖2
H ds ≤ L2T

2
‖u1 − u2‖2

B

Similarly,

J2 ≤ L2
∞∑

k=1

ak

∫ t

0
e−4(t−s)

E‖(u1(s)− u2(s))ek‖2
H ds ≤ L2T

4

∞∑
k=1

ak‖u1 − u2‖2
B

Thus, we have

‖�(u1)−�(u2)‖2
B ≤ γ ‖u1 − u2‖2

B
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where

γ = L2T

2

(
1 + 1

2

∞∑
k=1

ak

)
< 1

for sufficiently small T > 0. Therefore, � is a contraction which implies a unique
fixed point for the operator � leading to a mild solution of (1) on [0, T ].

Repeating the above procedure for the intervals [T, 2T ], [2T, 3T ], . . ., we get the
existence result on [0,∞). ��
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