
Physica D 297 (2015) 1–32

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

The long time behavior of Brownian motion in tilted
periodic potentials
Liang Cheng ∗, Nung Kwan Yip
Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

h i g h l i g h t s

• We study the Langevin equation describing diffusion in tilted periodic potentials.
• In the over-damped limit the long time average velocity converges in probability.
• In the over-damped and vanishing noise limit the convergence rate varies as the tilt crosses threshold.
• In the under-damped limit we recover Risken’s results about the bi-stability.
• In the under-damped limit we derive asymptotics of the transition times.
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a b s t r a c t

A variety of phenomena in physics and other fields can be modeled as Brownian motion in a heat bath
under tilted periodic potentials. We are interested in the long time average velocity considered as a
function of the external force, that is, the tilt of the potential. In many cases, the long time behavior –
pinning and de-pinning phenomenon – has been observed. We use the method of stochastic differential
equation to study the Langevin equation describing such diffusion. In the over-damped limit, we show the
convergence of the long time average velocity to that of the Smoluchowski–Kramers approximation, and
carry out asymptotic analysis based on Risken’s and Reimann et al.’s formula. In the under-damped limit,
applying Freidlin et al.’s theory, we first show the existence of three pinning and de-pinning thresholds of
the normalized tilt, corresponding to the bi-stability phenomenon; and second, as noise approaches zero,
derive formulas of the mean transition times between the pinning and running states.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We are concerned with the pinning and de-pinning behavior of particles moving in inhomogeneous materials when a driving force F
crosses over some threshold value F∗. That is, as shown in Fig. 1, there exists a threshold F∗ of the driving force F such that if F is less than
F∗, the long time average velocity of the particle VF (considered as a function of F ) is zero; whilst if F is greater than F∗, VF is positive.

The study of pinning and de-pinning phenomenon is motivated by many applications, for example, the observations regarding charge-
density waves at low temperatures and the concomitant nonlinear conductivity characterized by non-Ohmic behavior above a small
threshold electric field. It is believed that the non-Ohmic conduction is caused by the sliding of charge-density wave which is prevented
from moving below the threshold field by pinning to impurities and other lattice defects [1]. The pinning effect due to the crystal defects
or impurities can also be observed frequently in a type II superconductor with impurities. Analogous pinning phenomena in a Josephson
junction – an array of superconductors separated by a thin insulating barrier – in the presence of different types of structural disorder
is investigated both analytically and numerically [2–5]. In addition, the pinning and de-pinning (stick–slip) character in the motion of a
phase boundary leads to the widely observed rate-independent hysteresis feature in shape-memory alloys [6]. This phenomenon is also
related to systems such as dynamics of cracks and geological faults, which can be modeled as front propagation describing the evolution
of an interface driven by an external force through an inhomogeneous medium [7,8].
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Fig. 1. Pinning and de-pinning phenomena.

In order to obtain more quantitative information about dynamical behaviors, we consider a one dimensional model of particle motion
in a periodic medium. Thismodel has been applied to study the dynamics of a de-pinned, uniform charge-density wave [9].We analyze the
dynamics in both the over-damped (dissipation driven) and under-damped (inertia driven) limits. A specific example, in the one-dimensional
deterministic case, is given by the following equation:

ẋ = −Ψ ′(x) + F , x(0) = x0, (1.1)

where x(·) is the position of a particle which evolves on a periodic potential function Ψ . The constant F signifies an external forcing. The
long time average velocity VF is defined as

VF := lim
t→∞

x(t)
t

. (1.2)

For the above example, if Ψ satisfies some non-degenerate condition, then we have [1,9,6,10]:

VF ∼ C(F − F∗)
1
2 for 0 < F − F∗

≪ 1. (1.3)

(The above scaling will be explained in page section.)
The goal of this paper is to extend the understanding of (1.1) and (1.3) to incorporate stochastic noise and inertial effects. For this

purpose, the following second order Langevin equation [11,12] which is an analogue of Newton’s Second Law, is often considered:

mq̈ = F − ∇Ψ (q) − γ q̇ +


2γ β−1Ẇ , q(0) = q0, q̇(0) = p0, (1.4)

where the position variable q is a d-dimensional vector in Rd, m is the mass of the particle, F is the driving force, Ψ denotes a smooth
periodic potential function depending on the position variable q, γ is the damping coefficient, β = (kT )−1 is the inverse temperature
(k is the Boltzmann constant and T is the absolute temperature), and Ẇ is a standard d-dimensional white noise. Note that the fluctua-
tion–dissipation criterion is imposed in the above form of the equation. It is often useful to consider the above equation in the form of a
first order system:

q̇ = p, ṗ =
F − ∇Ψ (q)

m
−

γ

m
p +


2γ β−1

m
Ẇ , q(0) = q0, p(0) = p0, (1.5)

where q and p are the position and velocity variables. We want to study the long time average velocity of the particle diffusion described
by (1.4) or (1.5) as a function of the driving force F in various regimes. In order to obtain more quantitative results we restrict ourselves to
one dimensional case, i.e., d = 1. We first give an outline of our results.

For the over-damped limit, wewill state the convergence of the long time average velocity in the limits of vanishing noise and vanishing
mass in Sections 3 and 4.

• In Section 3, we concentrate on the following first order equation

γ q̇ = F − Ψ ′(q) +


2γ β−1Ẇ , q(0) = q0, (1.6)

which is often called the Smoluchowski equation. We show in Theorem 3.1 that VF converges to its deterministic version as the noise
goes to zero (β → ∞). The convergence rate is exponential (inβ) when the driving force is below the pinning and de-pinning threshold
(Region I), but only algebraic when the driving force is at or above the threshold (Regions II and III). This is illustrated in Fig. 2. Themain
technique used is Laplace’s method applied to an explicit formula for VF .

• In Section 4, we will consider the second order Langevin equation (1.5) which incorporates inertia effects. We show the convergence of
VF in the vanishing mass limit (m → 0) in both the deterministic and stochastic versions. For the deterministic case (Theorem 4.1), we
make use of the classifications of theω-limit sets of the dynamics (see for example [13]). For the stochastic case (Theorem 4.2) wemake
use of the ergodicity of systems (1.5) and (1.6). The ergodicity of the former is nontrivial, since the system is driven by a degenerate
noise — the noise is directly applied only to the velocity variable q̇ (but not the spatial variable q). This is proved by M. Hairer and G.A.
Pavliotis in [14] which makes use of the hypoellipticity of the Fokker–Planck operator for system (1.5).
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Fig. 2. Convergence of long time average velocity VF for the Smoluchowski equation (1.6) as noise approaches zero.

(a) Deterministic process (γ = 0, β = ∞). (b) Noisy process (γ ≪ 1, β ≫ 1).

Fig. 3. Long time average velocity for the Langevin equation (1.4) in the limit γ → 0.

Fig. 4. Trajectories of the Langevin equation (1.4) in the under-damped limit. It clearly demonstrates the switching between pinning and running states.

In Section 5, we concentrate on the under-damped limit (γ → 0) of the second order equation (1.4). In this case, the inertia effects
become important. The interesting phenomenon of bi-stability arise. It refers to the fact that the particle can stay in either the pinning or
the running state. We only consider F of the same order as γ , i.e. the scaled tilt F0 :=

F
γ
being finite. Otherwise, the particle velocity will

become unbounded over time. For the deterministic process, there are two thresholds, F01 and F03 for F0. For F0 < F01, only the pinning
state exists whilst for F0 > F03, only the running state exists. For F0 between F01 and F03, the initial condition determines which state the
particle will stay and it is not possible to switch between these two states (see Fig. 3(a)). However, for the noisy process, transitions can
occur. See Fig. 4. This phenomenon can be intuitively explained in terms of the (relative) stability of the pinning and de-pinning states. For
F0 < F01, only the former is stable while for F0 > F03, only the latter is stable. In addition, there arises a new threshold F02 in between F01
and F03 at which the stability properties of the two states change (Fig. 3(b)).

To make the above description rigorous, we apply Freidlin et al.’s theory [15] to a properly time re-scaled version of (1.4) so that the
position and momentum become the fast variables while the Hamiltonian becomes the slow variable in the under-damped limit. In this
regime, the distribution of the re-scaled process converges weakly to a diffusion on a graph Γ , called the Hamiltonian graph. Making use
of the invariant measure on the configuration space (position and momentum), we can calculate the long time average velocity VF .
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Fig. 5. The graphs of the forward transition time Tf (from pinned to running states) and backward transition time Tb (from running to pinning states). Note the switching
of the order at F02 . The quantity Tr = Tf + Tb represents the mean return time from the pinning state back to itself.

• In Theorem 5.1, we obtain the asymptotics of VF as β → ∞ (vanishing noise limit) in the under-damped regime (γ → 0). This leads
to a precise formula for VF and also the bi-stability thresholds. The results show a rapid change of the long time average velocity as F0
passes across F02 (Fig. 3(b)).

• In Theorem 5.2, we derive asymptotics in the mean transition time Tf from the pinning to the running state and Tb for the reverse
transition. They can better illustrate the behavior of the trajectories and in fact indicate the fluctuation from the average long time
velocity. It also gives another property of F02. As β → ∞, F02 is exactly the tilt at which Tf and Tb switch their order (Fig. 5).

Next we give some survey of existing literature about the question we are considering. The Langevin equation (1.4) has been widely
studied. An extensive bibliography can be found in [16,17]. Among others, the most important quantities are the diffusion coefficient D
and long time average velocity V of the position process q(t):

D = lim
t→∞


q(t) − ⟨q(t)⟩

2
t

and V = lim
t→∞

q(t)
t

where ⟨·⟩ refers to ensemble average. In the case of potentials without tilt (so that V = 0), there are quite a few results concerning the
computation of D. The underlying formula involves the invariant measure of the process q(t) and the Green–Kubo Formula. See [18,19]
for some recent accounts. These works also consider various long-time/large-spatial scaling to demonstrate that the process converge to
a Brownian motion. The relationship between D and the dissipation coefficient γ are analyzed in various regimes. When external force F
or tilt of the potential is present, the computation of V has also been performed extensively. Most results concern linear response theory
in the regime F → 0, characterizing the value of the mobility µ:

µ = lim
F→0

V
F

,

leading to the celebrated Einstein–Smoluchowski relation connecting the value of D to µ. See [20] for a discussion and refinement of this
relation. In contrast to the aboveworks, we emphasize the nonlinear response of V to F , in particular the behavior of V near the pinning and
de-pinning threshold of F .We also investigate the long time behaviors for different regimes of themassm, friction γ and the noise strength
β−1. To the best of our knowledge, these have not been investigated collectively together. We do wish to point out some closely related
works. In [21,22], the behavior ofD as a function of F is analyzed, leading to some enhancement ofD – giant diffusion phenomena – near the
threshold value. Theirworks essentially quantify themean square fluctuation of the position process from the linearmotion determined by
V . This is a step toward central limit theorem type of results in comparisonwith our strong law of large number statements. However, their
results are only for the first order equation (1.6) while our work also touches upon the second order equation (1.4) in various parameter
regimes. Themotivation for all these works is to capture critical phenomena as the external forcing passes through some threshold values.
The work [23] analyzes (1.4) demonstrating that under stochastic perturbation, only the locked (pinned) state can survive even though
running states are possible without the presence of noise. This phenomenon is proved in some sub-exponential time scale (in terms of
the noise strength β−1) and is only applicable at certain specific value of the tilt (in fact at F01 using our notation). Our results work for a
whole range of F but the time scale is exponentially large.

We also point out here some specific works which we rely on very much for their results and techniques. In the over-damped limit, it
was discovered that a Markov process q(t) satisfying the following Smoluchowski equation:

γ q̇ = F − Ψ ′(q) +

2γ β−1Ẇ , q(0) = q0, (1.7)

is a good approximation to the position process of (1.4) or (1.5). More precisely, in this regime (γ → ∞ or m → 0), the position process
q(t) of the Langevin equation (1.4) converges in probability to that of the Smoluchowski equation (1.6), uniformly over every finite time
interval [24,11,25] [26, Ch. 10]. This is called the Smoluchowski–Kramers approximation. However, over a long time interval of scale O


γ

m


,

the convergence of the long time average velocity of (1.4) has not yet been proved rigorously. For (1.6), Risken [17] and Reimann et al. [22]
derived formulas for the long time average velocity through different approaches. On the other hand, in the vanishing noise limit, a regime
of physical interest, the convergence rates of the long time average velocity of (1.6) have not been fully discussed. In the under-damped
limit (γ → 0), the bi-stability phenomenon and its three thresholds have been discussed by Risken in [17, Ch.11]. In spite of this, rigorous
mathematical treatment is lacking.

For convenience, we list here the notations to be used in the remaining of this paper:

N1 • Ψ (q) = − cos q denotes the periodic potential
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N2 • Φ(q) = − cos q − Fq denotes the tilted periodic potential
N3 • Γ (z) =


∞

0 tz−1e−t dt denotes the Gamma function [27]
N4 • B(x, y) =

 1
0 tx−1(1 − t)y−1 dt denotes the beta function [27]

N5 • T = R/[0, 2π ] denotes the one dimensional torus
N6 • C r

per(T), r = 1, 2, denotes the space of the restriction to T of functions in C r(R) that are 2π-periodic
N7 • C r

per(T×R), r = 1, 2, denotes the space of the restriction to T×R of functions in C r(T×R) that are 2π-periodic in the first variable
N8 • a ∼ bmeans that a

b converges to 1 in some limiting process (stated in context).

We remark here that the assumptions made in notations N1 and N2 on the potential do not undermine the generality of our results. They
are made mainly for the convenience of computation.

2. Preliminary remarks

2.1. The scaling law

Here we briefly explain how the scaling law (1.3) arises in the deterministic case. The potential function Ψ is assumed to be smooth,
periodic and non-degenerate in the sense that Ψ ′′′(q) ≠ 0 if Ψ ′′(q) = 0. Another assumption which simplifies the following discussion is
that Ψ ′ is ‘‘single-peaked’’, i.e., it has one unique local maximum within each period. (Note that both of these assumptions are satisfied by
notation N1.) Removing the noise term from Smoluchowski equation (1.6) leads to the following deterministic equation

q̇ =
F − Ψ ′(q)

γ
, q(0) = q0. (2.1)

We define the long time average velocity VF of the solution q(t) of the above as follows:

VF := lim
t→∞

q(t)
t

. (2.2)

The existence of the above limit follows from the periodicity of Ψ (q). If F ≤ ∥Ψ ′
∥L∞(R), the process gets pinned whenever F = Ψ ′, leading

to VF = 0. Whereas, if F > ∥Ψ ′
∥L∞(R), then VF > 0. This leads us to define the pinning and de-pinning threshold as F∗

= ∥Ψ ′
∥L∞(R).

The asymptotics of VF as F → (F∗)+ can be obtained in the following way. We assume that Ψ ′ reaches its maximum at q∗
∈ [0, 2π ],

i.e., Ψ ′(q∗) = F∗. By the non-degeneracy assumption on Ψ , Ψ ′′(q∗) = 0 and Ψ ′′′(q∗) < 0 (since Ψ ′ peaks at q∗). Let η = F − F∗, we have

γ q̇ = (F − F∗) + (F∗
− Ψ ′(q)) ≈ η −

Ψ ′′′(q∗)(q−q∗)2

2 + o((q − q∗)2). (2.3)

Let ϵ (0 < ϵ ≪ 1) be some fixed number independent of η, and let T be the time needed for q(t) to extend from 0 to 2π . Then we obtain

T = γ

 q∗
−ϵ

0

dq
F − Ψ ′(q)

+ γ

 q∗

q∗−ϵ

dq

η −
Ψ ′′′(q∗)(q−q∗)2

2 + o((q − q∗)2)

+ γ

 q∗
+ϵ

q∗

dq

η −
Ψ ′′′(q∗)(q−q∗)2

2 + o((q − q∗)2)
+ γ

 2π

q∗+ϵ

dq
F − Ψ ′(q)

∼ γ
2
√
2

√
η
√

−Ψ ′′′(q∗)
arctan


−Ψ ′′′(q∗)

2η
ϵ



∼ γ
2
√
2

√
η
√

−Ψ ′′′(q∗)

π

2
∼ γ

√
2π

√
η
√

−Ψ ′′′(q∗)
∼ γ O


(F − F∗)−

1
2


, as F → (F∗)+.

We therefore obtain the following scaling law:

VF =
2π
T

∼
1
γ


−2Ψ ′′′(q∗)(F − F∗)

1
2 for 0 < F − F∗

≪ 1. (2.4)

2.2. Ergodicity

Here we introduce the infinitesimal generator and its adjoint for the stochastic differential equation we are considering. The notations
are mainly taken from [28].

The generator L1 and its formal L2-adjoint operator L∗

1 of the Smoluchowski equation (1.6) are defined as:

L1f =
1
γ

· (F − Ψ ′(q))
df (q)
dq

+
β−1

γ
·
d2f (q)
dq2

, (2.5)

and

L∗

1f = −
1
γ

·
d

(F − Ψ ′(q))f (q)


dq

+
β−1

γ
·
d2f (q)
dq2

. (2.6)
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Similarly, the generator L2 and its formal L2-adjoint operator L∗

2 for (1.5) are given as:

L2f = p ·
∂ f (q, p)

∂q
+

F − Ψ ′(q) − γ p
m

·
∂ f (q, p)

∂p
+

γ β−1

m2
·
∂2f (q, p)

∂p2
, (2.7)

and

L∗

2f = −
∂

pf (q, p)


∂q

−
1
m

·
∂

(F − Ψ ′(q) − γ p)f (q, p)


∂p

+
γ β−1

m2
·
∂2f (q, p)

∂p2
. (2.8)

For stochastic dynamical systems, ergodicity is characterized by the existence of a unique (up to normalization) function in the null
space of the adjoint of the generator. We refer to this function as the invariant distribution, stationary distribution or the density function of
the invariant measure [28, Sec. 6.4]. More specifically, for the Smoluchowski equation (1.6), ergodicity means that the following stationary
Fokker–Planck equation

L∗

1ρ
∞

= 0, inf
q∈T

ρ∞(q) > 0,


T
ρ∞(q) dq = 1, (2.9)

admits a unique invariant density function ρ∞(q) on T. Then it holds for all φ ∈ C r
per(T) and the solution process q(t) of (1.6) that

lim
t→∞

1
t

 t

0
φ(q(s)) ds =


T φ(q)ρ∞(q) dq, a.s. (2.10)

It can be shown that the Smoluchowski process equipped with periodic drift and diffusion coefficients is ergodic [28].
Similarly, for Eq. (1.5), ergodicitymeans the process admits a unique invariant density ρ∞(q, p) on the configuration spaceT×Rwhich

solves the following stationary Fokker–Planck equation

L∗

2ρ
∞

= 0, inf
(q,p)∈T×R

ρ∞(q, p) > 0,


T×R
ρ∞(q, p) dq dp = 1. (2.11)

Then for all φ ∈ C r
per(T × R) and the solution process (q(t), p(t)) of (1.5), it holds that

lim
t→∞

1
t

 t

0
φ(q(s), p(s)) ds =


T×R

φ(q, p)ρ∞(q, p) dq dp, a.s. (2.12)

The ergodicity of (1.5) is nontrivial since it is driven by degenerate noise. Making use of the works [29,30], it is shown by M. Hairer and G.
A. Pavliotis [14, Thm. 3.1] that (1.5) admits a unique invariant distribution on the configuration space T × R. The argument makes use of
the hypoellipticity of the parabolic operator L2.

3. The first order process (Smoluchowski equation)

We start with the study of the long time average velocity of the first order Smoluchowski equation (1.6). It can be considered as the
over-damped limit of the Langevin equation (1.4) withm = 0.

3.1. Smoothened transition

Comparing to the transition (see Fig. 1) for the deterministic process (2.1), due to the white noise term, the transition between the
pinning and running states for the Smoluchowski process (1.6) is smoothened (as illustrated by Fig. 2). It also demonstrates the convergence
of the long time average velocity of the noisy process (1.6) to that of the deterministic process (2.1) as noise approaches zero. Here we
investigate the convergence rate.

Note that the solution process q(t) for (1.6) is Markovian. In the one-dimensional case, the invariant density ρ∞(q) can be derived
explicitly (see for example [17, Ch. 11]). By the ergodicity of the Smoluchowski process (1.6) and formula (2.10), the long time average
velocity VF of (1.6) is equal to the expectation of the function φ(q) =

F−Ψ ′(q)
γ

with respect to the invariant density ρ∞(q) on T. In this way,
Risken obtained in [17] the following formula for VF :

VF =
2πβ−1

γ
(1 − e−2πFβ)

 2π

0
eΦ(q)β dq

 2π

0
e−Φ(q′)β dq′

− (1 − e−2πFβ)

 2π

0
e−Φ(q)β

 q

0
eΦ(q′)β dq′ dq

−1

. (3.1)

Using the concept of first passage time, Reimann et al. derived in [22] another formula for VF :

VF =
1−e−2πFβ

1
2π
 q0+2π
q0 I±(q) dq

, (3.2)

where

I+(q) = βγ eΦ(q)β
 q

q−2π
e−Φ(q′)β dq′, I−(q) = βγ e−Φ(q)β

 q+2π

q
eΦ(q′)β dq′,

and ‘‘I±’’ means one can choose either ‘‘I+’’ or ‘‘I−’’ (see N2 for definition of Φ). With I+ in (3.2), the above formula reads

VF =
1
γ

·
2πβ−1(1 − e−2πFβ) 2π

0

 q
q−2π e−β(Φ(q′)−Φ(q)) dq′ dq

. (3.3)

One can show easily by switching the order of integration that formulas (3.1) and (3.2) are equivalent. It turns out that it is easier to apply
asymptotic analysis to the latter.
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(a) F < 1. (b) F > 1. (c) F = 1.

Fig. 6. Global minima of f (q′, q) in D.

3.2. Asymptotics of VF

Here we apply Laplace’s method [31] to (3.2) to obtain the asymptotics of VF as noise approaches zero (β → ∞). The result is stated
as follows.

Theorem 3.1. For the long time average velocity VF of the Smoluchowski process (1.6), for β ≫ 1, it holds that:

(1) for 0 ≤ F < 1,

VF ∼
1
γ

·

√
1−F2(1−e−2πβF )

eβ(2
√

1−F2−πF+2F arcsin F)
; (3.4)

(2) for F = 1,

VF ∼ C ·
1
γ

· β−
1
3 (1 − e−2πβF ) (3.5)

(with the constant C explicitly given in the proof (A.1));
(3) for F > 1,

VF ∼
1
γ

·

√
F2−1(1−e−2πFβ )

1− 3(1+4F2)

8(F2−1)
5
2

β−2+O(β−3)
. (3.6)

The above result shows that for F below F∗
= 1, VF converges exponentially fast as β → ∞, whilst for F at and above F∗

= 1, VF
converges algebraically.

In the proof of this result, we use the following notations:

N9 • f (q′, q) = Φ(q′) − Φ(q) = cos q − cos q′
+ F(q − q′)

N10 • J(β) =
 2π
0

 q
q−2π e−βf (q′,q) dq′ dq =

 2π
0

 q
q−2π e−β(Φ(q′)−Φ(q)) dq′ dqwhich is the double integral in the denominator of (3.2).

Recall formula (3.3) for VF . Its asymptotics for β ≫ 1 is determined by that of J(β), which is in turn related to the global minimum of
f (q′, q) within the integration region D of J(β):

D := {(q′, q) : q − 2π ≤ q′
≤ q, 0 ≤ q ≤ 2π}.

See Fig. 6. It can be checked that when F is below the threshold value 1, f (q′, q) has an interior global minimum. Then a direct usage of
Laplace method is possible. When F is equal to 1, the global minimum of f (q′, q) is degenerate and located on ∂D— the boundary of D; and
when F is above 1, the global minima of f (q′, q) accumulate on ∂D. In these two latter cases, more refined calculation in some appropriate
neighborhood of the minima is needed in order to determine the asymptotics of J(β).

3.3. Proof of Theorem 3.1

In the following we prove (3.4) and (3.6). The proof for (3.5) is postponed to the appendix as it requires more computations.

Proof of (3.4). For 0 < F < 1, f attains its global minimum −2
√
1 − F 2 + Fπ − 2F arcsin F at (arcsin F , π − arcsin F) which is strictly

inside D, the domain of integration of J(β) (Fig. 6(a)). Thus by [32, Sec. VIII.10, (10.10), pp. 461], we get that for β ≫ 1,

J(β) ∼ 2πβ−1

det

D2f (arcsin F , π − arcsin F)

−
1
2
e−βf (arcsin F ,π−arcsin F),

where D2f and det(D2f ) are given as:

D2f :=


fq′q′ fq′q

fqq′ fqq


=


cos q′ 0
0 − cos q


, det(D2f ) =

fq′q′ fq′q

fqq′ fqq

 = − cos q′ cos q.

We immediately obtain that for β ≫ 1,

J(β) ∼
2πβ−1

√
1 − F 2

eβ(2
√

1−F2−Fπ+2F ·arcsin F).

The assertion then follows. �
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Proof of (3.6). For F > 1, f (q′, q) has no interior minima in D. Instead, all the global minima of f (q′, q) accumulate on the line segment
q = q′, q′

∈ [0, 2π ] (Fig. 6(b)). As β → ∞, the asymptotics of J(β) depends on the asymptotics of the following integral

Iδ (β) =


Dδ

e−f (q′,q)β dq′ dq where Dδ = {(q′, q)
0 ≤ q ≤ 2π, q − δ ≤ q′

≤ q}. (3.7)

For each fixed q, we expand f (q′, q) near q′
= q,

f (q′, q) = f (q, q) +

∞
s=0

as(q′
− q)s+µ

= (sin q − F)(q′
− q) +

cos q
2

(q′
− q)2 −

sin q
6

(q′
− q)3 + O


(q′

− q)4

,

with µ = 1, a0 = sin q − F , a1 =
cos q
2 and a2 = −

sin q
6 . Next set 1 =


∞

s=0 bs(q
′
− q)s+α−1 with α = 1, b0 = 1 and 0 = b1 = b2 = · · · .

Then [32, Thm. II.1, pp. 58] gives: q

q−δ

e−f (q′,q)β dq′
= −

 q−δ

q
e−f (q′,q)β dq′

∼ −e−f (q,q)β
∞
s=0

Γ (s + 1)Csβ
−(s+1)

= −Γ (1)C0β
−1

− Γ (2)C1β
−2

− Γ (3)C2β
−3

+ O

β−4 ,

where

C0 =
b0

µaα/µ

0

=
1

sin q − F
,

C1 =


b1
µ

−
(α + 1)a1b0

µ2a0


1

a(α+1)/µ
0

= −
cos q

(sin q − F)3
,

C2 =


b2
µ

−
(α + 2)a1b1

µ2a0
+

(α + µ + 2)a21 − 2µa0a2

 (α + 2)b0
2µ3a20


1

a(α+2)/µ
0

=
3 cos2 q

2(sin q − F)5
+

sin q
2(sin q − F)4

.

Hence q

q−δ

e−f (q′,q)β dq′
∼

β−1

F − sin q
+

4 cos q
(sin q − F)3

β−2
−


9 cos2 q

(sin q − F)5
+

3 sin q
(sin q − F)4


β−3

+ O

β−4 ,

so that as β → ∞,

Iδ (β) =

 2π

0

 q

q−δ

e−f (q′,q)β dq′ dq

∼

 2π

0


β−1

F − sin q
+

4 cos q
(sin q − F)3

β−2
−


9 cos2 q

(sin q − F)5
+

3 sin q
(sin q − F)4


β−3

+ O

β−4 dq

=
2πβ−1

√
F 2 − 1

−
3(1 + 4F 2)π

4(F 2 − 1)
7
2

β−3
+ O


β−4 .

The claim then follows. �

4. The over-damped limit

We show in this section that the long time average velocity of the Langevin equation (1.4) converges in the over-damped limit (m → 0)
to that of the Smoluchowski process. The results are stated for both the deterministic and stochastic versions.

First, removing the noise term from the Langevin equation (1.4) gives

mq̈ = F − Ψ ′(q) − γ q̇, q(0) = q0, q̇(0) = p0, (4.1)

which can be recast as:

q̇ = p, ṗ = −
γ

mp +
1
m (F − Ψ ′(q)), q(0) = q0, p(0) = p0. (4.2)

The long time average velocity V q
F of (4.1) (or (4.2)) is defined as

V q
F := lim

t→∞

q(t)
t . (4.3)

In the over-damped limit, it is natural to neglect the inertial term in (4.1) and consider the following equation:

Q̇ =
1
γ
(F − Ψ ′(Q )), Q (0) = Q0. (4.4)
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The long time average velocity VQ
F is similarly defined as

VQ
F := lim

t→∞

Q (t)
t . (4.5)

As explained in Section 2.1, the pinning and de-pinning threshold F∗ of the process Q (t) solving (4.4) is 1.
We first state the convergence result for the deterministic case.

Theorem 4.1. For (4.2) and (4.4), it holds that

lim
m→0

V q
F = VQ

F . (4.6)

For the stochastic case, we can again recast Eq. (1.4) into the following system:

˙̃q = p̃, ˙̃p =
1
m (F − Ψ ′(q̃)) −

γ

m p̃ +
1
m


2γ β−1Ẇ , q̃(0) = q̃0, p̃(0) = p̃0. (4.7)

On the other hand, neglecting the inertial term of (1.4) gives:

˙̃Q =
1
γ

(F − Ψ ′(Q̃ )) +
1
γ


2γ β−1Ẇ , Q̃ (0) = Q̃0. (4.8)

It has been shown that for any fixed finite time T > 0, we have

lim
m↓0

max
0≤t≤T

|q̃(t) − Q̃ (t)| = 0, in probability.

This statement is called the Smoluchowski–Kramers approximation [24,11] [26, Ch. 10] [25]. However, this approximation is not enough to
guarantee the convergence of the long time behavior.

We similarly define the long time average velocities V q̃
F and V Q̃

F of (4.7) and (4.8) as:

V q̃
F := lim

t→∞

q̃(t)
t

and V Q̃
F := lim

t→∞

Q̃ (t)
t

. (4.9)

By the ergodicity of the processes (see Section 2.2), the above quantities exist almost surely and their values can be computed by using
φ(q, p) = p in (2.12) and φ(q) =

F−Ψ ′(q)
γ

in (2.10) respectively.
Next we state the convergence result for the stochastic case.

Theorem 4.2. For (4.7) and (4.8), it holds that

lim
m→0

V q̃
F = V Q̃

F in probability.

We now proceed to the proofs of the above theorems.

4.1. Proof of Theorem 4.1 (Deterministic case)

We first describe the idea of the proof. We consider three cases: F < 1, F = 1 and F > 1. For F < 1, we apply a result of Andronov,
et al. in [13] (stated in page 11) about the ω-limit set of (4.1). For F > 1, we use pieces of the first order process of (4.4) to approximate
the position process of the second order (4.2). Each piece of (4.4) starts from a prescribed Q , which is the position of (4.2) at that moment,
and stops at Q + 2π . The periodicity of Ψ is used to connect these pieces together to form a ‘‘complete’’ first order process of (4.4) starting
at q0. This ‘‘complete’’ first order process is the one used to approximate the position process of the second order equation (4.2). The case
F = 1 is taken to be the limit of F → 1+.

Now we present the proof rigorously. Let

η(q) =
1
γ

(F − Ψ ′(q)). (4.10)

The above expression works as an approximation of p(·), the velocity of (4.2). Note that there exists a constant C1 > 0 such that

|η(q)| ≤ C1, |η′(q)| ≤ C1. (4.11)

Following the idea of [28, Ch. 15], we give some estimates for p(t) and q(t).

Lemma 4.3. For (4.2) and (4.4), there exist positive constants C2, C3, C4, K independent of m such that the following statements hold:

|p(t)| < C2 for all t ∈ [0, ∞), (4.12)

lim sup
t→∞

|p(t) − η(q(t))| ≤
mC3

γ
, (4.13)

|q(t) − Q (t)|2 ≤ C4eKt

m
γ

|p(0) − η(q(0))|2 +
m2

γ 2


. (4.14)
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Proof. Estimate (4.12) follows by first integrating (4.2). Then

|p(t)| =

e−
γ
m tp(0) +

1
m

e−
γ
m t
 t

0
e

γ
m s(F − Ψ ′(q(s))) ds

 ≤ |p(0)| +
F + 1

γ
.

Next we write p(t) = η(q(t)) + r(t). Then

dr(t)
dt

=
dp
dt

− η′(q)
dq
dt

=


−

γ

m
p +

1
m

(F − Ψ ′(q))


− η′(q)
dq
dt

= −
γ

m
(p − η(q)) − pη′(q) = −

γ

m
r(t) − pη′(q).

It follows that
1
2

d
dt

|r(t)|2 = r(t) ·
dr(t)
dt

= r(t) ·


−

γ

m
r(t) − pη′(q)


≤ −

γ

m
|r(t)|2 + (max{C1, C2})

2
|r(t)|

≤ −
γ

m
|r(t)|2 +

m
2γ

(max{C1, C2})
4
+

γ

2m
|r(t)|2 ≤ −

γ

2m
|r(t)|2 +

m
2γ

(max{C1, C2})
4 .

By Gronwall’s lemma, we get

|r(t)|2 ≤ e−
γ
m t

|r(0)|2 +


1 − e−

γ
m t
 m2 (max{C1, C2})

4

γ 2
. (4.15)

Statement (4.13) can be obtained by letting t tend to infinity in (4.15).
For (4.14), note that d

dt (q − Q ) = η(q) + r(t) − η(Q ). Then

1
2

d
dt

|q − Q |
2

= (q − Q ) ·
d
dt

(q − Q ) = (q − Q ) · (η(q) + r(t) − η(Q ))

≤ |r(t)||q − Q | + C1|q − Q |
2

≤ C1|q − Q |
2
+

1
2
|r(t)|2 +

1
2
|q − Q |

2.

Thus

d
dt

|q − Q |
2

≤ (2C1 + 1)|q − Q |
2
+ e−

γ
m t

|r(0)|2 +


1 − e−

γ
m t
 m2 (max{C1, C2})

4

γ 2
.

By Gronwall’s lemma again, we get

|q − Q |
2

≤ e(2C1+1)t
 t

0
e−(2C1+1)s


e−

γ
m s

|r(0)|2 + (1 − e−
γ
m s)

m2 (max{C1, C2})
4

γ 2


ds


≤ max{(max{C1, C2})
4 , 1}e(2C1+1)t


|p(0) − η(q(0))|2

m
γ

+
m2

γ 2


which gives (4.14). �

The proof of Theorem 4.1 is divided into the following three cases.

Lemma 4.4. When F > 1, for (4.2) and (4.4), it holds that

lim
m→0

V q
F = VQ

F .

Proof. Let

T0 = 0, Ti =

 q(
j=i−1
j=1

Tj)+2π

q(
j=i−1
j=1

Tj)

F − Ψ ′(q)
γ

dq, for i = 1, 2, . . . .

By periodicity, all the Ti’s (i = 1, 2, . . .) are equal to some fixed finite number T > 0which gives the time it takes for the first order process
to travel from any point q to q + 2π .

Let Q i(t) be the piece of the first order process started at Q (0) = q((i − 1)T ) and terminated at Q (0) + 2π , for i = 1, 2, . . . . Define
the deviation of the second order process from the first order process as Ei := q(iT ) − Q i(T ). Then by Lemma 4.3,

lim sup
t→∞

q(t)t − VQ
F

 = lim sup
n→∞

1n
n

i=1

Q i(T )

T
+

1
n

n
i=1

Ei
T

− VQ
F

 ≤ lim sup
n→∞

1
n

n
i=1

|Ei|
T

≤ lim sup
n→∞

1
n

n
i=1

1
T


C4eKT ·


|p(iT ) − η(q(iT ))|2

m
γ

+
m2

γ 2

 1
2

≤
1
T


C4eKT


m3C2

3

γ 3
+

m2

γ 2

 1
2

.

Lettingm go to 0 gives limm→0 lim supt→∞

 q(t)t − VQ
F

 = 0, i.e. limm→0 V
q
F = VQ

F for F > 1. �



L. Cheng, N.K. Yip / Physica D 297 (2015) 1–32 11

We now state the result from [13] which is used in the proof for F < 1. By time re-scaling τ =
t

√
m and setting γ ∗

=
γ

√
m , (4.1) can be

normalized into:

dq
dτ

= p,
dp
dτ

= F − Ψ ′(q) − γ ∗p, q(0) = q0, p(0) =
√
mp0. (4.16)

In [13, Sec. VII.3], it is shown that there exists a threshold F∗∗
= 1 for Eq. (4.16) with the following properties:

(i) above F∗∗, no equilibria exist and the ω-limit set (see [33, Ch. 10]) of (q(τ ), p(τ )) in (4.16) is a single stable limit cycle encircling
the phase cylinder T × R independent of initial data. The uniqueness of this limit cycle can be seen by Poincaré–Bendixson’s criteria
([13, Sec. V.9, V.11]). Its stability is due to the fact that (4.16) is a dissipative system (γ ∗ > 0) [13, Sec. V.6];

(ii) below F∗∗, for small γ ∗ (γ ∗ < γ ∗

0 ), depending on the initial data, theω-limit set of (q(τ ), p(τ )) in (4.16) can be either a single stable
limit cycle encircling the phase cylinder T × R or a single fixed point; whereas for γ ∗ big enough (γ ∗ > γ ∗

0 ), the ω-limit set of (q(τ ), p(τ ))
in (4.16) is a single fixed point independent of initial data.

Lemma 4.5. When F < 1, for (4.2) and (4.4), it holds that

lim
m→0

V q
F = VQ

F = 0.

Proof. Consider the re-scaled (4.16). When F < 1, by (ii) above, there exists a threshold γ ∗

0 > 0 for γ ∗ such that when γ ∗ > γ ∗

0 the long
time average velocity limτ→∞

q(τ )

τ
of (4.16) is zero. We can first choose m small enough such that γ ∗

=
γ

√
m > γ ∗

0 . Note limτ→∞
q(τ )

τ
= 0

for each suchm. This gives limm→0 V
q
F = 0. �

Lemma 4.6. When F = F∗∗(= 1), for (4.2) and (4.4), it holds that

lim
m→0

V q
F = VQ

F = 0.

Proof. On one hand, V q
F ≥ 0 due to the tilted potential. To see this, let the total energy E be the sum of the kinetic energy and potential

energy, that is, E =
1
2mp2 + (−Fq + Ψ (q)). Since the system is dissipative (γ > 0), it follows that dE

dt = −γ p2 < 0. Suppose V q
F < 0.

Then E (t) ≥ −Fq(t) + Ψ (q(t)) → ∞ as t → ∞ since q(t) → −∞ as t → ∞. But E (t) ≤ E (0) < ∞, leading to a contradiction.
On the other hand, by (4.13) of Lemma 4.3, the second order position process q(t) satisfies that

q̇ =
1
γ

(F − Ψ ′(q) + O (m)),

where by (4.13), we have O (m) < C3m for some constant C3. Now consider the following first order process

Q̇1 =
1
γ

((F + C3m) − Ψ ′(Q1)).

Let Tq and TQ1 denote the traveling time from 0 to 2π of q(t) and Q1(t) respectively. Let V
Q1
F+C3m

denote the long time average velocity of
Q1. Then we have

Tq =

 2π

0

γ dq
F − Ψ ′(q) + O (m)

, and TQ1 =

 2π

0

γ dQ1

(F + C3m) − Ψ ′(Q1)
.

It follows from O (m) < C3m that Tq > TQ1 leading to V q
F < VQ1

F+C3m
. Hence for F = 1, limm→0 V

q
F ≤ limm→0 V

Q1
F+C3m

= VQ
F = 0. �

4.2. Proof of Theorem 4.2 (Stochastic Case)

The idea of proof, as illustrated by Fig. 7, is still to use pieces of the first order process of (4.8) to approximate the position process of
the second order equation (4.7). Each piece of the first order process of (4.8) starts from a prescribed Q̃ , which is the position of the second
order process of (4.7) at that moment, and terminates after running for time Tm. The deviation of each second order piece from the first
order process gives rise to an error term. We will let Tm tend to infinity as m tends to zero. On one hand, with increasing Tm, the average
velocity of each such first order piece gets closer and closer to the long time average velocity of Q̃ (t). On the other hand, with properly
chosen Tm (which does not tend to infinity too fast), the error term generated by deviation vanishes as m goes to zero. We will show that
the approximation error converges to zero in L2(Ω), which leads to the convergence in probability for V q̃

F to V Q̃
F in Theorem 4.2. We now

proceed to the rigorous proof.
First we let Q̃ have the same initial value as q̃, i.e. q̃(0). Then we define

r̃(t) = q̃(t) − Q̃ (t) (4.17)

to be the deviation at time t between the two processes. We have the following estimate:

Lemma 4.7. Given p̃(0), for T > 0 and 0 ≤ t ≤ T , it holds that

E(|r̃(t)|2) ≤


|p̃(0)|2 4m2

γ 2 +
4m2

γ 4


F + ∥Ψ ′

∥L∞
2

+
4C1m
βγ 2


e

4T∥Ψ ′′
∥
2
L∞

γ 2 ·t
. (4.18)
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Fig. 7. Approximate the second order process q̃(t) of (4.7) by pieces of the first order process Q̃ (i)(t), i = 1, 2, 3 . . . . The first order pieces Q̃ (i) are defined in (4.24) and
their deviations from the second order process q̃ are denoted by r̃i in this graph.

In particular, taking t = T in (4.18) yields

E(|r̃(T )|2) ≤


|p̃(0)|2 4m2

γ 2 +
4m2

γ 4


F + ∥Ψ ′

∥L∞
2

+
4C1m
βγ 2


e

4T2∥Ψ ′′
∥
2
L∞

γ 2 . (4.19)

Proof. By direct computation, we have

r̃(t) = p̃(0)
m
γ

(1 − e−
γ
m t) −

1
γ
e−

γ
m t
 t

0
e

γ
m s(F − Ψ ′(q̃(s))) ds

+
1
γ

 t

0
(Ψ ′(Q̃ (s)) − Ψ ′(q̃(s))) ds −


2γ β−1

γ
e−

γ
m t
 t

0
e

γ
m s dW (s).

It yields that

|r̃(t)|2 ≤ 4


(p̃(0))2
m2

γ 2
+

1
γ 2

e−
2γ
m t
 t

0
e

γ
m s(F − Ψ ′(q̃(s))) ds

2

+
1
γ 2

 t

0
(Ψ ′(Q̃ (s)) − Ψ ′(q̃(s))) ds

2

+
2

βγ
e−

2γ
m t
 t

0
e

γ
m s dW (s)

2
.

Note that t

0
e

γ
m s(F − Ψ ′(q̃(s))) ds

2

≤

F + ∥Ψ ′

∥L∞
2 m2

γ 2


e

γ
m t

− 1
2

, (4.20) t

0
(Ψ ′(Q̃ (s)) − Ψ ′(q̃(s))) ds

2

≤ ∥Ψ ′′
∥
2
L∞

 t

0

r̃(s) ds2

≤ ∥Ψ ′′
∥
2
L∞T

 t

0

r̃(s)2 ds. (4.21)

In the above, we have used Hölder inequality to establish the second inequality. In addition, by martingale moment inequalities
[34, Sec. 3.3.D], we get

E

 t

0
e

γ
m s dW (s)

2


≤ C1E
 t

0 e
2γ
m s ds


= C1

m
2γ


e

2γ t
m − 1


≤ C1

m
2γ e

2γ t
m . (4.22)

We thus obtain

E(|r̃(t)|2) ≤ |p̃(0)|2
4m2

γ 2
+

4m2

γ 4


F + ∥Ψ ′

∥L∞
2

+
4T∥Ψ ′′

∥
2
L∞

γ 2

 t

0
E

|r̃(s)|2


ds +

4C1m
βγ 2

.

By Gronwall inequality, we get

E(|r̃(t)|2) ≤


|p̃(0)|2

4m2

γ 2
+

4m2

γ 4


F + ∥Ψ ′

∥L∞
2

+
4C1m
βγ 2


e

4T∥Ψ ′′
∥
2
L∞

γ 2 ·t
,

which is the desired result. �

To supplement the above result which depends on the initial velocity p(0), the following estimate gives some uniform estimate for p(t).

Lemma 4.8. For the velocity process p̃(t) of (4.7), we have for all t > 0

E(
p̃(t)2) ≤ 3


|p̃(0)|2 +

(F+∥Ψ ′
∥L∞)

2

γ 2 +
C1
mβ


. (4.23)



L. Cheng, N.K. Yip / Physica D 297 (2015) 1–32 13

Proof. By straightforward computation, we have

p̃(t) = e−
γ
m t p̃(0) +

1
m

e−
γ
m t
 t

0
e

γ
m s(F − Ψ ′(q̃(s))) ds +

1
m

e−
γ
m t
 t

0
e

γ
m s

2γ β−1 dW (s).

It follows by Cauchy–Schwarz inequality thatp̃(t)2 ≤ 3

e−

2γ
m t

|p̃(0)|2 +
1
m2 e−

2γ
m t
 t

0 e
γ
m s(F − Ψ

′

(q̃(s))) ds
2

+
1
m2 e−

2γ
m t
 t

0 e
γ
m s

2γ β−1 dW (s)

2
.

By (4.20) and (4.22), we obtain

E

|p̃(t)|2


≤ 3


|p̃(0)|2 +


F + ∥Ψ ′

∥L∞
2

γ 2
+

C1

mβ


,

where C1 is the same as in (4.22). �

Note that the above estimate is uniform in time but blows up as m → 0. This is not surprising as in the vanishing mass limit, the velocity
process is driven by Brownian motion so that the velocity process is not defined in the point-wise manner.

We now start the proof of Theorem 4.2. Assume that the second order process q̃(t) of (4.7) starts from q̃0 ∈ R. Construct below pieces
Q̃ (k)(t), k = 1, 2, . . . of the first order process of (4.8):

˙̃Q
(k)

=
F−Ψ ′(Q̃ (k))

γ
+

√
2γ β−1

γ
Ẇ , Q̃ (k)(tk0) = q̃(tk0), (4.24)

where

Tm > 0 and tk0 = (k − 1)Tm for k = 1, 2, . . . .

Inwords,we start Q̃ (k)(t) at time tk0 with initial data q̃(tk0) and terminate it at time tk0+Tm.Wewill use these first order pieces to approximate
the second order process. We let Tm =

√
α| lnm| with α > 0. Hence Tm → ∞ asm → 0. The choice of α will be specified later.

Now we analyze the long time average velocity of q̃(t) using pieces Q̃ (k)(t) as follows:

lim
t→∞

q̃(t)
t

= lim
n→∞

n
k=1


Q̃ (k)(tk+1

0 ) − q̃(tk0) + q̃(tk+1
0 ) − Q̃ (k)(tk+1

0 )


nTm

= lim
n→∞


n

k=1

Q̃ (k)(tk+1
0 )−Q̃ (k)(tk0)

Tm

n
+

n
k=1

q̃

tk+1
0


−Q̃ (k)(tk+1

0 )

Tm

n

 ,

= lim
n→∞


n

k=1
Ak,m

n
+

n
k=1

Bk,m

n

 (4.25)

where

Ak,m =
Q̃ (k)(tk+1

0 ) − Q̃ (k)(tk0)
Tm

, Bk,m =
q̃

tk+1
0


− Q̃ (k)(tk+1

0 )

Tm
(4.26)

i.e. Ak,m and Bk,m respectively represent the displacement of Q̃ (k) and the difference between q̃ and Q̃ (k) during the time interval [tk0, t
k+1
0 ].

Next let ρ(Q ) be the invariant density of Q̃ (t) and introduce

V Q̃ ,∞
F =


T

F − Ψ ′(Q )

γ
ρ(Q ) dQ .

Then by the ergodicity of Q̃ , we have that limt→∞
Q̃ (t)
t = V Q̃ ,∞

F almost surely. Theorem 4.2 follows if we can show that

lim
m→0

E

 limn→∞

n
k=1

Ak,m

n
− V Q̃ ,∞

F


2

= 0 and lim
m→0

E

 limn→∞

n
k=1

Bk,m

n


2

= 0.

Furthermore, combining the ergodicity of the processes q̃ and Q̃ , the following limits

lim
n→∞

n
k=1

Ak,m

n
, lim

n→∞

n
k=1

Bk,m

n
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also exist almost surely. Then we have

E

 limn→∞

n
k=1

Ak,m

n
− V Q̃ ,∞

F


2

= E lim
n→∞


n

k=1
Ak,m

n
− V Q̃ ,∞

F


2

= E lim inf
n→∞


n

k=1
Ak,m

n
− V Q̃ ,∞

F


2

≤ lim inf
n→∞

E


n

k=1
Ak,m

n
− V Q̃ ,∞

F


2

where the last inequality is by Fatou’s lemma. Similar argument applies for E
limn→∞

n
k=1 Bk,m

n

2. Hence it suffices to show the following
two statements:
Claim #1.

lim
m→0

lim inf
n→∞

E


n

k=1
Ak,m

n
− V Q̃ ,∞

F


2

= 0 (4.27)

Claim #2.

lim
m→0

lim inf
n→∞

E


n

k=1
Bk,m

n


2

= 0. (4.28)

The proof of the above relies on the convergence rate of transition probability density to the invariant density. Let P(Q , t|Q0, 0)
be the transition probability and ρ(Q ) be the invariant density of Q̃ (t). Then we note that following rate of convergence of P to ρ
[28, Theorem 6.4.1]: there exist positive constants C1 and C2 such that

∥P(Q , t|Q0, 0) − ρ(Q )∥L1(T) ≤ C1e−C2t . (4.29)

Proof of Claim #1. Let Ãk,m = Ak,m − E(Ak,m) be the fluctuation of Ak,m around its mean value. This leads to the following rewriting
n

k=1
Ak,m

n
=

n
k=1

E(Ak,m)

n
+

n
k=1

Ãk,m

n
so that

E


n

k=1
Ak,m

n
− V Q̃ ,∞

F


2

= E


n

k=1
Ãk,m

n
+

n
k=1

E(Ak,m)

n
− V Q̃ ,∞

F


2

≤ 2E




n
k=1

Ãk,m

n


2+ 2


n

k=1
E(Ak,m)

n
− V Q̃ ,∞

F


2

.

The proof of this claim will be completed by showing

lim
m→0

lim
n→∞

E




n
k=1

Ãk,m

n


2 = 0 and lim

m→0
lim
n→∞

n
k=1

E(Ak,m)

n
= V Q̃ ,∞

F .

We divide the proof into the following four steps.
Step I (Computation of E


(Ãk,m)2


). Note that E((Ãk,m)2) = E(A2

k,m) − E(Ak,m)2 represents the variance of Ak,m. We make use of the
dynamics of the first order process to get

Ak,m =

 tk+1
0

tk0

F−Ψ ′(Q̃ (k)(s))
γ

ds

Tm
+


2γ β−1

γ Tm
· W (Tm).
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Taking expectation of its square yields

E(A2
k,m) = E



 tk+1

0
tk0

F−Ψ ′(Q̃ (k)(s))
γ

ds

Tm


2+ 2E

2γ β−1

γ
·

 tk+1
0

tk0

F−Ψ ′(Q̃ (k)(s))
γ

ds

T 2
m

· W (Tm)

+ E


2
γ β

·
(W (Tm))2

(Tm)2


. (4.30)

For convenience of presentation, we denote

Dk,m =

 tk+1
0

tk0

F−Ψ ′(Q̃ (k)(s))
γ

ds

Tm
.

For the last two terms on the right hand side of (4.30), we have the following estimatesE
2γ β−1

γ
·

 tk+1
0

tk0

F−Ψ ′(Q̃ (k)(s))
γ

ds

T 2
m

· W (Tm)


 ≤


2γ β−1

γ
·
F + ∥Ψ ′

∥L∞

γ
·

√
2

√
πTm

,

E  2
γ β

·
(W (Tm))2

(Tm)2

 ≤
2

γ βTm
.

In the above inequality, E(|W (Tm)|) =


2Tm
π

is used. Furthermore, by the mean zero property of Brownian motion, we have

E(Ak,m) = E

Dk,m


. (4.31)

Immediately, we get

E(Ã2
k,m) = E(A2

k,m) − (E(Ak,m))2 ≤ C3(m) + C4T
−

1
2

m + C5T−1
m , (4.32)

where

C3(m) =

E D2
k,m


− E


Dk,m

2 , C4 =
2
√

2γ β−1

γ
·

F+∥Ψ ′
∥L∞

γ
·

√
2

√
π
, C5 =

2
γ β

. (4.33)

Note that C4 and C5 are positive constants independent of n and m, whereas C3(m) depends onm.
To obtain estimate of C2(m) asm → 0, we compute its two components E(D2

k,m) and (E(Dk,m))2 in Steps II and III below.
Step II (Estimation of E(D2

k,m)). We compute

E(D2
k,m) =

1
T 2
m
E

 tk+1
0

tk0

F − Ψ ′(Q̃ (k)(s))
γ

ds

2


=
1
T 2
m
E

 tk+1
0

tk0

F − Ψ ′(Q̃ (k)(s))
γ

ds
 tk+1

0

tk0

F − Ψ ′(Q̃ (k)(s′))
γ

ds′


=
1

γ 2T 2
m

 tk+1
0

tk0

 tk+1
0

tk0

E

(F − Ψ ′(Q̃ (k)(s)))(F − Ψ ′(Q̃ (k)(s′)))


ds ds′

=
2

γ 2T 2
m

 Tm

0

 Tm

s′


T


T
(F − Ψ ′(Q ))(F − Ψ ′(Q ′))P(Q ′, s′|Q0, 0)P(Q , s − s′|Q ′, 0) dQ dQ ′ ds ds′ Q0 = Q̃ (k)(0)

= J1 + J2 + J3 + J4,

where

J1 =
2

γ 2T 2
m

 Tm

0

 Tm

s′


T


T
(F − Ψ ′(Q ))(F − Ψ ′(Q ′))


P(Q ′, s′ | Q0, 0) − ρ(Q ′)

 
P(Q , s − s′ | Q ′, 0) − ρ(Q )


dQ dQ ′ ds ds′,

J2 =
2

γ 2T 2
m

 Tm

0

 Tm

s′


T


T
(F − Ψ ′(Q ))(F − Ψ ′(Q ′))


P(Q ′, s′ | Q0, 0) − ρ(Q ′)


ρ(Q ) dQ dQ ′ ds ds′,

J3 =
2

γ 2T 2
m

 Tm

0

 Tm

s′


T


T
(F − Ψ ′(Q ))(F − Ψ ′(Q ′))


P(Q , s − s′ | Q ′, 0) − ρ(Q )


ρ(Q ′) dQ dQ ′ ds ds′,

J4 =
2

γ 2T 2
m

 Tm

0

 Tm

s′


T


T
(F − Ψ ′(Q ))(F − Ψ ′(Q ′))ρ(Q )ρ(Q ′) dQ dQ ′ ds ds′.
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Next we make use of (4.29) to estimate the above:

|J1| ≤
2

F + ∥Ψ ′

∥L∞
2

γ 2T 2
m

 Tm

0

 Tm

s′

P(Q ′, s′|Q0, 0) − ρ(Q ′)

L1(T)

P(Q , s − s′|Q ′, 0) − ρ(Q )

L1(T)

ds ds′

≤
2

F + ∥Ψ ′

∥L∞
2

γ 2T 2
m

 Tm

0

 Tm

s′
C1e−C2s′ · C1e−C2(s−s′) ds ds′

≤
2C2

1


F + ∥Ψ ′

∥L∞
2

C2γ 2Tm


1 − e−C2Tm


,

|J2| ≤
2V Q̃ ,∞

F


F + ∥Ψ ′

∥L∞


γ T 2
m

 Tm

0

 Tm

s′

P(Q ′, s′|Q0, 0) − ρ(Q ′)

L1(T)

ds ds′

≤
2C1V

Q̃ ,∞
F


F + ∥Ψ ′

∥L∞


C2γ Tm


1 − e−C2Tm


,

|J3| ≤
2V Q̃ ,∞

F


F + ∥Ψ ′

∥L∞


γ T 2
m

 Tm

0

 Tm

s′

P(Q , s − s′|Q ′, 0) − ρ(Q )

L1(T)

ds ds′

≤
2C1V

Q̃ ,∞
F


F + ∥Ψ ′

∥L∞


C2γ Tm
+

2C1V
Q̃ ,∞
F


F + ∥Ψ ′

∥L∞


C2
2γ T 2

m


1 − e−C2Tm


.

Direct computation also gives

J4 =
1

γ 2T 2
m

 Tm

0

 Tm

s′


T


T
(F − Ψ ′(Q ))(F − Ψ ′(Q ′))ρ(Q )ρ(Q ′) dQ dQ ′ ds ds′

+
1

γ 2T 2
m

 Tm

0

 s

0


T


T
(F − Ψ ′(Q ))(F − Ψ ′(Q ′))ρ(Q )ρ(Q ′) dQ dQ ′ ds′ ds

=
1

γ 2T 2
m

 Tm

0

 Tm

0


T


T
(F − Ψ ′(Q ))(F − Ψ ′(Q ′))ρ(Q )ρ(Q ′) dQ dQ ′ ds′ ds

=


T

F − Ψ ′(Q )

γ
ρ(Q ) dQ


T

F − Ψ ′(Q ′)

γ
ρ(Q ′) dQ ′


=


V Q̃ ,∞
F

2
.

All above lead to

E(D2
k,m) =


V Q̃ ,∞
F

2
+ o(1) asm → 0. (4.34)

Step III (Estimation of E(Dk,m)). By direct computation, we get

E(Dk,m) = E


1
Tm

 tk+1
0

tk0

F − Ψ ′(Q̃ (k)(s))
γ

ds


=

1
Tm

 tk+1
0

tk0

E


F − Ψ ′(Q̃ (k)(s))

γ


ds

=
1
Tm

 Tm

0


T

F − Ψ ′(Q )

γ
P(Q , s|Q0, 0) dQ ds (Q0 = Q̃ (k)(tk0))

=
1
Tm

 Tm

0


T

F − Ψ ′(Q )

γ
(P(Q , s|Q0, 0) − ρ(Q )) dQ ds +


T

F − Ψ ′(Q )

γ
ρ(Q ) dQ .

For the approximation error term in E(Dk,m), we have

1
Tm

 Tm

0


T

F − Ψ ′(Q )

γ
|P(Q , s|Q0, 0) − ρ(Q )| dQ ds ≤

F + ∥Ψ ′
∥L∞

γ Tm

 Tm

0


T
|P(Q , s|Q0, 0) − ρ(Q )| dQ ds

≤
F + ∥Ψ ′

∥L∞

γ Tm

 Tm

0
∥P(Q , s|Q0, 0) − ρ(Q )∥L1 ds

≤
F + ∥Ψ ′

∥L∞

γ Tm

 Tm

0
C1e−C2s ds

=
C1(F+ ∥ Ψ ′) ∥L∞

C2γ Tm


1 − e−C2Tm


.

The above leads to

lim
m→0

E(Dk,m) = V Q̃ ,∞
F . (4.35)
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Hence

lim
m→0

C3(m) =
E(D2

k,m) − E(Dk,m)2
 = 0.

Step IV (Convergence in L2(Ω)). For each n, we have

E




n
k=1

Ãk,m

n


2 =

1
n2

n
k=1

E

Ã2
k,m


+

1
n2


j<l

E(2Ãj,mÃl,m)

≤
1
n2

n
k=1

E

Ã2
k,m


+

1
n2


j<l


E(Ã2

j,m) + E(Ã2
l,m)


≤
C3(m) + C4T

−
1
2

m + C5T−1
m

n
+

n(n − 1)(C3(m) + C4T
−

1
2

m + C5T−1
m )

n2

≤ C3(m) + C4T
−

1
2

m + C5T−1
m . (4.36)

By Steps I, II, III, (4.31)–(4.36) and Tm → ∞, Claim #1 follows. �

Proof of Claim #2. By (4.19) and (4.23), form ≪ 1 the error term satisfies

E

B2
k,m


≤

C6me
4∥Ψ ′′

∥
2
L∞

γ 2 ·T2m

Tm
,

where C6 is a universal constant independent of k and m. Note that the 1
m factor in (4.23) is multiplied by the m2 in (4.19). Recall that we

set Tm =
√

α| lnm| at the beginning. Then we obtain

E(B2
k,m) ≤

C6me
4∥Ψ ′′

∥
2
L∞

γ 2 ·α| lnm|

√
α| lnm|

=
C6m

1−
4∥Ψ ′′

∥
2
L∞

γ 2 ·α

√
α| lnm|

.

We choose α small enough such that 1 −
4∥Ψ ′′

∥
2
L∞

γ 2 · α > 0. It leads to that for each n

E


n

k=1
B2
k,m

n

 ≤
C6m

1−
4∥Ψ ′′

∥
2
L∞

γ 2 ·α

√
α| lnm|

m→0
−→ 0.

Claim #2 follows then. �

5. The under-damped limit

In this section, we study the long time behavior of the Langevin equation (1.4) in the under-damped limit (γ → 0). Throughout this
section, we use VF = V q̃

F to denote the long time average velocity as defined in (4.9).

5.1. Bi-stability and three thresholds of the scaled tilt

In the under-damped limit (γ → 0) of (1.4), inertial effects become significant. We only consider finite value of the scaled tilt F0 :=
F
γ
.

Otherwise, the kinetic energy gain due to decreasing of the potential energy can not be compensated by energy dissipation, leading to
unbounded long time average velocity [17, Sec.11.4]. Even for finite F0, the pinning and de-pinning behavior can be quite complicated due
to the fact that both states can co-exist. We call this bi-stability phenomenon. It is best depicted in Fig. 4.

For the deterministic process obtained by removing the noise term from (1.4), we observe two thresholds F01 and F03 of F0 (see Fig. 3):
below F01 (above F03), only the pinning (running) state exists; between F01 and F03, the pinning and running states can both occur – which
state the particle ends up with depends on the initial condition [13, Sec. VII.3] – but for fixed F0, a particle cannot switch between these
two states. For Ψ (q) = − cos q, the derivation of F01 =

4
π
is carried out by balancing the kinetic energy gain and the energy loss due to

friction [17, Sec.11.6.1]. It can also be shown that for general Ψ , F03 =
∥Ψ ′

∥L∞
γ

[13, Sec. VII.3].
For the noisy process (1.4), by ergodicity (see Section 2.2), VF exists. Besides F01 and F03 mentioned above, a new threshold F02 emerges,

which can be observed (see Fig. 3(b)) in the asymptotics of VF in the iterated limits by first taking γ → 0 (the under-damped limit) and
then letting β → ∞ (the vanishing noise limit): between F01 and F02, VF converges to 0; between F02 and F03, it converges to a positive
number which is the long time average velocity of the running state of the corresponding deterministic (noiseless) process; and near F02,
VF has a steep jump. Note that in this iterated limit, F03 =

∥Ψ ′
∥L∞
γ

is not observed in the asymptotics of VF since it goes to infinity.
The purpose of this section is to make the above description mathematically rigorous. The derivation of F01 and F02 consists of the

following steps. First, in the under-damped limit (γ → 0), we make use of the existing machinery invented by Freidlin et al. [15] to
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(a) Hamiltonian level sets. (b) Graph Γ .

Fig. 8. Homeomorphism between Hamiltonian level sets and graph Γ . Each point on Γ corresponds to a level curve ofH . Note that O1 is theminimum point of the potential
function Ψ (q) = − cos q, O2 is the heteroclinic orbits between two saddle points of Ψ . Segments I2 and I3 correspond to the regions in the phase space with unbounded
orbits (with positive and negative p).

reduce the dynamics of a properly time re-scaled system of (1.4) onto a lower dimensional Hamiltonian graph Γ . Second, making use of
the invariant measure of (1.4) on the configuration space C = T × R, we derive a formula for VF in the under-damped limit (γ → 0).
Third, by Laplace’s method we compute the asymptotics of VF in the vanishing noise limit (β → ∞) leading to the precise values of F01
and F02.

We now describe the procedure in more detail. We first state the reduction of the dynamics (1.4) to a diffusion on a Hamiltonian graph
Γ . Without loss of generality, we consider the following stochastic system (withm = 1 and Ψ (q) = − cos q):

˙̃q = p̃, ˙̃p = −γ p̃ + F − sin(q̃) +


2γ β−1Ẇ (5.1)

which can be written as
˙̃q
ϵ

= p̃ϵ, ˙̃p
ϵ

= − sin(q̃ϵ) + ϵb(q̃ϵ, p̃ϵ) +
√

ϵẆ , (5.2)

where

ϵ =
2γ
β

and b(q, p) =
β

2
(−p + F0) .

Note that with fixed β , we have ϵ → 0 when γ → 0.
Introducing the Hamiltonian function H(q, p) = − cos(q) +

1
2p

2, the deterministic dynamical system is given by:

q̇ = Hp(q, p), ṗ = −Hq(q, p). (5.3)

The value of the Hamiltonian is conserved by the dynamics. On the other hand, for the noisy process, the motion (q̃ϵ(t), p̃ϵ(t)) can be
roughly decomposed as (i) motion along the trajectories of (5.3), which are connected components of a level curve {(q, p) : H(q, p) = H}

(see Fig. 8); and (ii) diffusion across them. To study the interactions between these two motions, in particular to identity the limiting
description as γ → 0, it is convenient to do the time re-scaling qϵ

= q̃ϵ(t/ϵ). Then the dynamics is written as

q̇ϵ
=

1
ϵ
Hp(qϵ, pϵ), ṗϵ

= −
1
ϵ
Hq(qϵ, pϵ) + b(qϵ, pϵ) + Ẇ . (5.4)

With the above, the process (qϵ(t), pϵ(t)) becomes a diffusion on R2 with infinitesimal generator

Lϵ f (q) =
1
2
fpp(q) +

1
ϵ
∇̄H(q) · ∇f (q) + b(q)fp(q), (5.5)

where q := (q, p) ∈ R2 and ∇̄H(q, p) := (Hp, −Hq).
Note that in the under-damped limit (γ → 0), we have ϵ → 0. Then (qϵ, pϵ) become the fast variables whilst H(qϵ, pϵ) becomes the

slow variable in (5.4). If we identify all points belonging to the same connected component of a level curve {(q, p) : H(q, p) = H}, we
obtain a graph Γ consisting of three edges I1, I2, I3 connected by one interior vertex O2. There is also an exterior vertex O1 at the other
end of I1. The shapes of the level curves of H and the graph Γ are shown in Fig. 8. Their connection is described as follows. Edge I1 is the
collection of periodic orbits parametrized by its energy level which is related to the size of the orbit. Vertex O1 is the ‘‘smallest periodic
orbit’’ and in fact is the stable point representing the minimum of the potential energy. Vertex O2 is the ‘‘biggest periodic orbit’’ and in
fact is a heteroclinic orbit joining two adjacent wells of the potential energy. Edges I2 and I3 are the collections of running states in the
positive and negative directions. These occur when the initial energy level is high enough and are exactly the unbounded orbits in which
the particle overcomes the potential energy barriers indefinitely. Again they are parametrized by the energy level. Edges I1, I2 and I3 are
joined together at O2 which also represents the transition or boundary point between the bounded (periodic) and unbounded states.

The above description thus leads to a homeomorphism Y : C := T × R → Γ . The graph Γ is commonly known as the Hamiltonian
graph. For concreteness, this graph is parametrized in the following way:

Γ =

3
i=1

Ii, where

I1 = {(z; 1), −1 < z < 1},
I2 = {(z; 2), 1 < z < ∞},
I3 = {(z; 3), 1 < z < ∞};

(5.6)

O1 = (−1; 1) and O2 = (1; 1) = (1; 2) = (1; 3). (5.7)

Note that we use ‘‘;’’ to separate the coordinate z and the index i on each edge of the graph Γ .
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In [15], M. Freidlin et al. show that the law of the process Y (qϵ(t), pϵ(t)) converges weakly as ϵ tends to zero to some diffusion process
z(t) on Γ . This limiting process is described by the following two ingredients:

1. infinitesimal generators on each edge, Li, i = 1, 2, 3:

Livi(z) =
1

2T (z)

 d
dz S(z)v

′

i(z)

±

 q∗
−q∗ b(q,±

√
2z+2 cos(q)) dq q∗

−q∗ ( dq/
√
2z+2 cos(q))

v′

i(z) (5.8)

where

T (z) =

 q∗

−q∗

dq
√
2z + 2 cos(q)

and S(z) =

 q∗

−q∗


2z + 2 cos(q) dq (5.9)

with q∗ =


arccos(−z) if z < 1,
π if z > 1 . In the expressions (5.8) for the Li’s, ‘‘+’’ is taken if i = 2, ‘‘−’’ is taken if i = 3 and the mean value of

the ‘‘+’’ and ‘‘−’’ expressions is taken if i = 1. Note that T (1) = ∞ and S ′(z) = T (z).
2. gluing condition at O2: the domains of the generator Li’s satisfy

2v′

1(1) = v′

2(1) + v′

3(1) (5.10)

which works as an ‘‘interior boundary’’ determining the behavior of the process z(t) when it reaches the interior vertex O2.

The invariant density ρΓ
i (z) for the process z(t) on each edge Ii associated with the generator Li is given explicitly as [15, pp. 624, (3.9),

(3.10)]:

ρΓ
1 (z) =

4CT (z)
S(1)

e−β(z−1), for z ∈ (−1, 1), (5.11)

ρΓ
2 (z) =

2CT (z)
S(1)

e−β((z−1)−F0g(z)), for z ∈ (1, ∞), (5.12)

ρΓ
3 (z) =

2CT (z)
S(1)

e−β((z−1)+F0g(z)), for z ∈ (1, ∞) (5.13)

where C is the integration constant set to make ρΓ
i (z) probability densities and

g(z) =
 z
1

2π
S(ζ )

dζ , for z ≥ 1. (5.14)

The existence of invariant density also implies that the diffusion on Γ is recurrent.
The first result of this section is stated below.

Theorem 5.1. For the stochastic system (5.1), in the under-damped limit (γ → 0) described by the diffusion on Γ , we have

VF =
2πC2
C0+C1

F0, (5.15)

where

C0 =

√
2π

2
√

β

 π

−π

eβ cos q dq, (5.16)

C1 =


∞

1
T (z)e−βz

{cosh(βF0g(z)) − 1} dz, (5.17)

C2 =


∞

1

2πe−βz

S(z)
cosh(βF0g(z)) dz. (5.18)

Taking β → ∞ in the above formula, i.e. the vanishing noise limit, we have

VF ∼




2π
S(1) − 2πF0

+
2π

S(1) + 2πF0


· e−2βF0, F0 < F01;

2π · S ′(ξ)−
1
2 · β

1
2 e−β(ξ+1−F0g(ξ))F

1
2
0 , F01 < F0 < F02;

2π · (S ′(ξ))−1, F02 ≤ F0,

(5.19)

where ξ is the unique solution of S(ξ) = 2πF0. (For the last case, F02 < F0, β appears in the higher-order asymptotics.)
The thresholds are given by

F01 =
S(1)
2π


=

4
π


, F02 =

S(ξ ∗)

2π
≈ 3.3576, (5.20)

with ξ ∗ being the unique solution of S(ξ∗)

2π =
1+ξ∗

g(ξ∗)
. (Note that S(1) = 8.)

We will give some remarks about the above result. Formula (5.15) recovers Risken’s work about the asymptotics of VF in the under-
damped limit [17, (11.129), (11.135)], whilst (5.19) has not been derived before. The value of F01 and F02 is the same as in [17, (11.190),
(11.196)]. These formulas and the connection between F0 and the function S is best explained using the concept of effective potential (see
Section 5.2). Some property of the two thresholds is given here:
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• the value of F01 in (5.20) coincideswith that of the deterministic process (recall F01 =
4
π
for deterministic processwithΨ (q) = − cos q);

• for the first case of (5.19) (F0 < F01), the convergence rate as β → ∞ is e−2β . For the second case (F01 < F0 < F02), to be shown later,
we have 0 < ξ + 1 − F0g(ξ) < 2. Hence VF converges to zero but with a slower rate.

• for F0 > F02, VF converges to the positive constant 2π · (S ′(ξ))−1
= 2πT (ξ)−1 which is the long time average velocity of the

corresponding deterministic equation of (1.4) (see [17, Sec.11.6.1]).

Thus, near F02 a steep jump of VF is observed in its asymptotics in the iterated limits. This behavior is illustrated in Fig. 3(b). The proof of
Theorem 5.1 will be presented in Section 5.3.

In order to better describe the phenomenon of the bi-stability and the behavior of the trajectories, we further consider the mean
transition times between the pinning and running states. They provide another interpretation of the thresholds indicating the change of
relative stability of two states. For the sake of presentation, we will first heuristically call Tf and Tb to be the ‘‘mean transition times’’ from
pinning to running states and vice versa. Their precise definitions will be given later in Section 5.4. With that said, we present our second
result.

Theorem 5.2. In the iterated limits (first γ → 0 and then β → ∞), for F0 > F01, we have the following asymptotics:

Tf ∼
4S(1)

2πF0 − S(1)
· β−1e2β , (5.21)

Tb ∼
S(ξ)T (ξ)

1
2

(2πF0 − S(1))F
1
2
0

· β−
3
2 eβ(1−ξ+F0g(ξ)). (5.22)

Furthermore,

Tf
Tb


>1, for F01 < F0 < F02;
<1, for F0 > F02.

(5.23)

By the asymptotics of Tf and Tb obtained in the above theorem, it can be seen that in the iterated limits, Tf > Tb if F0 < F02 whilst
Tf < Fb if F0 > F02. Thus F02 can also be considered as a threshold across which the relative ordering between Tf and Tb is switched. This
is illustrated by Fig. 5.

Before presenting the proof, we will give some heuristic remarks about the above two Theorems. First, our asymptotic results are
obtained by performing the following iterated limits: (i) vanishing dissipation (γ → 0) and then (ii) vanishing noise (β → ∞). The
first procedure allows us to reduce the dynamics onto the lower dimensional Hamiltonian graph Γ while the second facilitates the
use of Laplace method leading to precise analytical results. Reversing the order of the limits seems also reasonable, though somewhat
unnatural. To illustrate this, consider (5.1) or (5.2). In the original time scale t , letting β → ∞ will drive the stochastic dynamics toward
its deterministic version which is quite well understood (see for example the work [13] which is also used extensively in the proof of
Theorem 4.1). Hence to arrive at more interesting statements, we need to consider longer time scale(s). For this purpose, we explicitly
write (5.2) in time scale O (β) as

q̇ = βp, ṗ = β(− sin q) + βγ (−p + F0) +

2γ Ẇ . (5.24)

(Using the time scale O


β

γ


will lead to similar consideration.) Letting β → ∞ (with γ fixed) is to consider on a fast time scale the

Hamiltonian dynamics with dissipation and tilt which come from the term γ (−p + F0). The long time behaviors can still be captured by the
deterministic process perturbed by relatively weak noise (since γ ≪ β). As a further rescaling, we can decrease the dissipation by letting
γ → 0 (simultaneously as β → ∞) so that the conservative part will dominate. We believe that with proper time rescaling, this will lead
to similar analysis and results, though the overall procedure might not be as transparent as the approach adopted in the current paper.
Essentially, the consideration of long time scales leads to some kind of averaging or homogenization of the underlying inhomogeneous
potential.

Second, our results are applicable in the exponentially long time scale O

eCβ

for β ≫ 1. This is revealed in the values of Tf and Tb as

β → ∞. Readers might wonder how informative the value of the long time average velocity VF is. Complementing this information is the
motivation for considering Tf and Tb. They provide more refined properties of the trajectories, illustrating the fluctuations around VF . In
fact, the process on Γ can in principle be recast as a Markov chain with two states: locked and running states. The values of Tf and Tb thus
give indication about the transition rates between them. Further quantities related to fluctuations include the distance traveled during the
running states, the variances of Tf and Tb and the diffusion coefficient. Central Limit Theorems for long time behaviors of Markov chains
can also be considered for our process. In order to keep the current paper within reasonable scope, we do not pursue these ideas.

Third, we find it illustrative to interpret the above results using the concept of effective potential function. This is described in the next
section.

5.2. Effective potential and mean transition and return times

The results of Theorem 5.2 enable us to study the long jump phenomenon in the under-damped limit [35,36]: in this regime, at low
temperatures the surface diffusion of atoms or small clusters proceeds by uncorrelated thermally activated jumps over the barrier from
one minimum of the external potential to another. It is related to bi-stability in the following way: the pinning state corresponds to the
state of being trapped in a potential well; the running state corresponds to the state of jumping across the barriers between neighboring
potential wells; the return to the pinning or running state corresponds to being captured again after a long jump or being activated again
after being bounded in a potential well for a while. Fig. 4 illustrates the phenomenon of bi-stability and long jumps.
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Fig. 9. The graphs of the effective potentials Ψ i
e(z) + 1, i = 1, 2, 3. Note that the horizontal axis represents (I3 ∪ I1) ∪ (I1 ∪ I2). It is parametrized using z + 1.

To best illustrate the diffusion on Γ , we make use of the concept of effective potential Ψ i
e(z) to characterize the energy level. This is

introduced by Risken in [17, Ch.11] which is very much related to the invariant densities (5.11)–(5.13) for the diffusion on Γ :

Ψ i
e(z) =


z, i = 1 and z ∈ (−1, 1);
z + (−1)i+1F0g(z), i = 2, 3 and z ∈ (1, ∞),

where z(q, p) = H(q, p) is the Hamiltonian at (q, p). It is depicted in Fig. 9. It will be shown later that the invariant measure of the limiting
motion on the configuration space C is in the form of a Gibbs measure, that is, its density function has the following form:

1
Ui(β)

e−βΨ i
e(z(q,p)), i = 1, 2, 3

where the normalizing constant Ui(β) is the effective partition function. The exact formulas for the density function will be given in
(5.25)–(5.27).

The above concept of effective potential function can be used to give an interpretation of the thresholds F01 and F02. Recall the meaning
of the Hamiltonian graph Γ . Each point on I1 represents a bounded (periodic) orbit while each point on I2 and I3 represents an unbounded
running state. To better illustrate the idea, we plot in Fig. 9 the overall effective potential Ψe as a function over (I3 ∪ I1) ∪ (I1 ∪ I2) so that
Ψe is the union of the graphs Ψ 3

e , Ψ 1
e , Ψ 1

e and Ψ 2
e .

Now O1 = (−1; 1) is always a local minimum of Ψe(z) representing the stable pinning state of (5.1). However, depending on the value
of F0, another local minimumwill appear on Ψ 2

e . (Note that as F0 is positive, there is no local minima on the graph of Ψ 3
e .) We can find the

minimum on Ψ 2
e by taking its derivative,

Ψ 2
e

′
(z) = 1 − F0g ′(z) = 1 −

2πF0
S(z)

= 0 (for z > 1)

leading to the solution ξ satisfying S(ξ) = 2πF0. The smallest value of the function S (for z ≥ 1) is at z = 1. This gives the first threshold,

F01 =
S(1)
2π

=
4
π

.

Hence for F0 ≤ F01, O1 = (−1; 1) is the only minima ofΨe whilst for F01 < F0, (ξ ; 2) (on I2) is another local minimum representing a stable
running state. Comparing the energy value Ψ 1

e (−1) = −1 and Ψ 2
e (ξ) = ξ − F0g(ξ), we can determine which is the global minimum. The

cross over point is given by F0 = F02 and ξ = ξ ∗ which satisfy

ξ ∗
− F02g(ξ ∗) = −1, i.e.

S(ξ ∗)

2π
= F02 =

ξ ∗
+ 1

g(ξ ∗)
.

Hence for F01 < F0 < F02, (ξ ; 2) is less stable than (−1; 1) while for F02 < F0, (ξ ; 2) becomes more stable. To conclude, F02 is exactly the
(rescaled) tilt such that the relative stabilities of (−1; 1) and (ξ ; 2) switch.

The switching of the stability property of the pinning and running states also leads to the reversal of the order between the mean
transition times Tf and Tb. This is analogous to the Kramer’s rate of escape from local minimum: the rate is essentially determined by the
energy difference between the localminimumand the barrier to be overcome. In this case, the two barriers to compare areΨ 1

e (1)−Ψ 1
e (−1)

andΨ 2
e (1)−Ψ 2

e (ξ). However, to go beyond the above heuristic and qualitative description, due to the inhomogeneous diffusion along the
Hamiltonian graph Γ , the analytical verification will require some work as seen from the proof of Theorem 5.2.

Now we present the proofs of Theorems 5.1 and 5.2 in the rest of this section.

5.3. Proof of Theorem 5.1

First we derive the invariant density

ρC
i (q, p)


i=1,2,3 on the configuration space C = T × R induced by the invariant density

ρΓ
i (z)


i=1,2,3 on the Hamiltonian graph Γ . For the following computation, we make use of the crucial fact that the function ρC

i (q, p)
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is constant along the trajectories of the unperturbed Hamiltonian system (5.3), which is a consequence of the Liouville Theorem. This can
also be seen alternatively by the fact that ρΓ

i = Y#ρ
C
i and Y maps orbits (with constant value of H) to a single point on Γ .

Note that the independent variables on C and Γ are (q, p) and z respectively. Recall z(q, p) := − cos q +
1
2p

2 and let p(q, z) =
√
2z + 2 cos q. Then for all (q, p) ∈ T × R,

ρC
i (q, p) dq dp = ρC

i (q, sgn(p) · p(q, z)) ·

∂(q, p)
∂(q, z)

 dq dz, where
∂(q, p)
∂(q, z)

 =
1

√
2z + 2 cos q

.

Here sgn(p) denotes the sign of p. On each Hamiltonian level set with level value z where ρC
i is constant, by the correspondence between

ρC
i and ρΓ

i , we obtain the following identities (recall q∗ = arccos(−z) if z < 1 and q∗ = π if z > 1):

2
 q∗

−q∗

ρC
i (q, p(q, z)) ·

∂(q, p)
∂(q, z)

 dq = 2T (z(q, p))ρC
i (q, p) = ρΓ

i (z(q, p)), for i = 1,

 q∗

−q∗

ρC
i (q, p(q, z)) ·

∂(q, p)
∂(q, z)

 dq = T (z(q, p))ρC
i (q, p) = ρΓ

i (z(q, p)), for i = 2,

 q∗

−q∗

ρC
i (q, −p(q, z)) ·

∂(q, p)
∂(q, z)

 dq = T (z(q, p))ρC
i (q, −p) = ρΓ

i (z(q, p)), for i = 3.

(The first equality in each identity above is obtained by T (z) =
 q∗

−q∗

dq
√
2z+2 cos q =

 q∗

−q∗

 ∂(q,p)
∂(q,z)

 dq; the second equality holds sinceρΓ
i (z), the

density function over the Hamiltonian level z, is the same as the marginal distribution of the density function with independent variable
(q, z) on the configuration space C , integrating out the variable q.) Note that ρC

i (q, p) = ρC
i (q, −p) for i = 1 by the symmetry of the

trajectory of the unperturbed system (5.3) for z ∈ (−1, 1) (see Fig. 8). The above identities and (5.11)–(5.13) yields:

ρC
1 (q, p) =

2C
S(1)

e−β(z(q,p)−1), (5.25)

ρC
2 (q, p) =

2C
S(1)

e−β((z(q,p)−1)−F0g(z(q,p))), (5.26)

ρC
3 (q, p) =

2C
S(1)

e−β((z(q,p)−1)+F0g(z(q,p))), (5.27)

for q ∈ [−q∗, q∗
], and ρC

i (q, p) = 0 for q ∉ [−q∗, q∗
]. The constant C , for normalization purpose, is computed as follows:

1 =


∞

−∞

 q∗

−q∗

3
i=1

ρC
i (q, p) dq dp

=
2Ceβ

S(1)


2π
β

 π

−π

eβ cos q dq +
4Ceβ

S(1)


∞

1
T (z)e−βz (cosh(βF0g(z)) − 1) dz,

so that

C =
e−βS(1)

2
·


2π
β

 π

−π

eβ cos q dq + 2


∞

1
T (z)e−βz (cosh(βF0g(z)) − 1) dz

−1

.

By taking the expectation of the velocity variable p with respect to the invariant density ρC
i (q, p) on T × R:

VF =


∞

1

 q∗

−q∗

(ρC
2 − ρC

3 )p
∂(q, p)
∂(q, z)

 dq dz =
4Ceβ

S(1)


∞

1

 π

−π

e−βz sinh(βF0g(z)) dq dz.

In the above we make use of the fact that
 ∂(q,p)
∂(q,z)

 =
1

√
2z+2 cos q =

1
p .

We thus obtain using integration by parts that

VF =
4Ceβ

S(1)
· 2π


∞

1


−

e−βz

β

′

sinh(βF0g(z)) dz =
8πCeβ

S(1)
· 2π


∞

1

e−βz cosh(βF0g(z))
S(z)

dz · F0

=
2πC2

C0 + C1
F0 (5.28)

with C0, C1 and C2 given by (5.16)–(5.18).
Theorem 5.1 is a consequence of the following asymptotics for C0, C1 and C2.
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Lemma 5.3. As β → ∞, we have the following asymptotics:

C0 ∼ π · β−1eβ
; (5.29)

C1(F0) ∼


O

β−1e−β


, F0 <

S(1)
2π

,

π

F0S ′(ξ)

 1
2 · β−

1
2 eβ(F0g(ξ)−ξ), F0 >

S(1)
2π

;
(5.30)

C2(F0) ∼




π

S(1) − 2πF0
+

π

S(1) + 2πF0


· β−1e−β , F0 <

S(1)
2π

;

π(F0S ′(ξ))−
1
2 · β−

1
2 eβ(F0g(ξ)−ξ), F0 >

S(1)
2π

.
(5.31)

Proof of (5.29). Rewrite C0 as

C0 =

√
2π

2
√

β

 π

−π

eβh(q) dq, where h(q) = cos q.

Note that h(q) attains its maximum at 0. By Laplace’s method, we get as β → ∞

C0 =

√
2π

2
√

β


−2π

βh′′(0)

 1
2

eβh(0)
+ eβh(0) O


β−

3
2


=

π

β
· eβ

+

√
2π

2
√

β
eβ O


β−

3
2


∼ π · β−1eβ . �

Proof of (5.30). Let

C1(F0) =


∞

1
T (z)e−βz (cosh (βF0g(E)) − 1) dz = C1,0 + C1,1 + C1,2,

where

C1,0 =
1
2


∞

1
T (z)e−βzeβF0g(z) dz, C1,1 =

1
2


∞

1
T (z)e−βze−βF0g(z) dz, C1,2 = −


∞

1
T (z)e−βz dz.

By integration by parts and Laplace’s method (see [31, formula (2.37)]), we obtain as β → ∞,

C1,2 = S(1)e−β
− β


∞

1
e−βzS(z) dz

∼ S(1)e−β
− β


−

S(1)
β(−1)


e−β

+ e−β O

β−2

= O

β−1e−β


.

(Note that we have used the fact that S ′(z) = T (z).)
Similarly we get as β → ∞,

C1,1 = −
S(1)
2

e−β
+

β

2


∞

1
(S(z) + 2πF0)e−β(z−F0g(z)) dz

∼ −
S(1)
2

e−β
+

β

2

−
S(1) + 2πF0

β

−1 −

2πF0
S(1)


 e−β

+ e−β O

β−2 = O


β−1e−β


.

Observe that C1,0 is of the form 1
2


∞

1 G(z)eβH(z) dz, where G(z) = T (z) and H(z) = −z + F0g(z). Note also that H ′(z) =
2πF0
S(z) − 1 and

H ′(z) is monotonically decreasing as S(z) is monotonically increasing. There are the following two cases:

1. If F0 < S(1)
2π , then H ′(1) < 0 and H ′(z) < H ′(1) < 0 for z > 1. Thus H(z) reaches its maximum at 1. Then by integration by parts and

Laplace’s method again, we get as β → ∞,

C1,0 ∼ O

β−1e−β


.

2. If F0 > S(1)
2π , thenH ′(1) > 0 andH ′′(z) < 0 asH ′(z) ismonotonically decreasing. ThusH(z) achieves itsmaximumat ξ with 1 < ξ < ∞

and H ′(ξ) = 0. Hence ξ is the solution of S(ξ) = 2πF0. Then (see [31, formula 2.34]) we obtain as β → ∞,

C1,0(F0) ∼
S ′(ξ)

2
·

 −2π

β

−

2πF0S′(ξ)

S2(ξ)


 1

2

eβ(F0g(ξ)−ξ)
+

1
2
eβ(F0g(ξ)−ξ) O


β−

3
2


∼ π


F0S ′(ξ)

 1
2 · β−

1
2 eβ(F0g(ξ)−ξ).

The assertion then follows. �
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(a) G1 for the computation of Tf . (b) G2 for the computation of Tb .

Fig. 10. The domains G1 and G2 used in the definition of Tf and Tb .

Proof of (5.31). The computation is analogous to that of (5.30). �

Proof of Theorem 5.1. Formula (5.19) and (5.20) are simple consequences of the above asymptotics. We will only concentrate on the
latter. By (5.30) and (5.31), across F01 =

S(1)
2π , C1 and C2 have different asymptotic expansions. To determine F02, we assume F0 > F01. Note

that for F0 <
S(ξ∗)

2π , F0g(ξ) − ξ < 1 whilst for F0 >
S(ξ∗)

2π , F0g(ξ) − ξ > 1. Then in the former case the denominator in (5.28) is dominated

by C0 = O

β−1eβ


, while in the latter case the dominant term is C1 = O


β−

1
2 eβ(F0g(ξ)−ξ)


. This shows F02 =

S(ξ∗)

2π . �

5.4. Proof of Theorem 5.2

We first give a precise definition of Tf and Tb. They are defined as themean first exit time from appropriate domains of the Hamiltonian
graph Γ . Given G ⊂ Γ , we define:

τ G
:= inf{t : z(t) ∉ G} and vG

i (z0) := E(z0;i)τ
G

where z(·) is the diffusion process on Γ corresponding to the infinitesimal generator Li’s (5.8) with initial data (z0; i). In principle, we like
to define Tf as the time it takes the particle to diffuse from O1 = (−1; 1) (the most stable pinning state) to (ξ ; 2) (the most stable running
state) and vice versa for Tb. However, O1 is inaccessible with probability 1 [15]. Hence we will choose the point (1 − λ; 1) instead of O1
and then let λ → 0+.

Precisely, let G1 be the subset of Γ bounded by zG11 → −1, zG12 = ξ , and zG13 → ∞ on I1, I2 and I3 respectively (see Fig. 10(a)). Note that
both (−1; 1) and (∞; 3) are inaccessible with probability 1. Then we define Tf as:

Tf := lim
λ→0

lim
z
G1
1 →−1,z

G1
3 →∞

v
G1
1 (1 − λ). (5.32)

Similarly, let G2 be the subset of Γ bounded by zG21 = 1 − λ, zG22 → ∞ and zG23 → ∞ on I1, I2 and I3 respectively (see Fig. 10(b)). In this
case both (∞; 2) and (∞; 3) are inaccessible with probability 1. We define Tb as follows:

Tb := lim
λ→0

lim
z
G2
2 ,z

G2
3 →∞

v
G2
2 (ξ). (5.33)

See Fig. 10 for an illustration of G1 and G2. Even though the above definitions of Tf and Tb seems artificial, they are quite intuitive. The fact
that our result demonstrate the reversal of their order at exactly F02 demonstrates that they indeed capture the essential behavior.

With the above definition of G1 and G2 (below we let G = G1 or G = G2), the function vG
i (z) := E(z;i)τ

G is the solution of the boundary
value problem

Liv
G
i (z) = −1, (z; i) ∈ G \ {zG1 , zG2 , zG3 }, (5.34)

vG
i (z

G
i ) = 0, i = 1, 2, 3, (5.35)

vG
1 (1) = vG

2 (1) = vG
3 (1), (5.36)

2(vG
1 )

′(1) = (vG
2 )

′(1) + (vG
3 )

′(1), (gluing condition). (5.37)

This linear system can be solved as follows [15, pp. 625]:

vG
i (z) = cGi ∆sGi (z) + ṽG

i (z), i = 1, 2, 3, (z; i) ∈ G \ {O2}, (5.38)

where

cGi =
1

∆sGi (1)


3

j=1

αj

∆sGj (1)

−1 
3

j=1

αj ṽ
G
j (1)

∆sGj (1)
+ ρ(G)


−

ṽGi (1)

∆sGi (1)
, (5.39)
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and

ρ(G) =

3
i=1

αi


 zGi

1
dmi

 , (the invariant measure on G)

∆sGi (z) = 8


 zGi

z
S(y)−1e−Ki(y) dy

 , (difference of the scale function at z and zGi )

ṽG
i (z) = 8 ·

2
S(1)

 zGi

z

 z

y
S(x)−1e−Ki(x)T (y)eKi(y) dx dy, i = 1, 2, 3, (a solution of (5.34))

K1(z) = −β(z − 1), −1 < z < 1, (exponent of the invariant density on I1)

Ki(z) = −β

(z − 1) − (−1)iF0g(z)


, i = 2, 3, z > 1, (exponent of the invariant density on I2 and I3)

α1 = 2, α2 = α3 = 1, (gluing condition constants)

withmi( dz) being the speed measure of the limiting diffusion z(t) on Ii with densities:

m′

1(z) =
2T (z)
S(1)

e−β(z−1), (5.40)

m′

2(z) =
2T (z)
S(1)

e−β((z−1)−F0g(z)), (5.41)

m′

3(z) =
2T (z)
S(1)

e−β((z−1)+F0g(z)). (5.42)

Next we give the proofs of (5.21)–(5.23). In each proof, we suppress the notational dependence on the domain G1 or G2. Furthermore,
we let G = G1 in the proof of (5.21) and G = G2 in the proof of (5.22).

Proof of (5.21) — asymptotics of Tf . By definition we have
Tf = lim

λ→0
lim

z1→−1,z3→∞

v1(1 − λ)

= lim
λ→0

lim
z1→−1,z3→∞

(c1∆s1(1 − λ) + ṽ1(1 − λ))

= lim
λ→0

lim
z1→−1,z3→∞


2

∆s1(1)
+

1
∆s2(1)

+
1

∆s3(1)

−1

·


2ṽ1(1)
∆s1(1)

+
ṽ2(1)
∆s2(1)

+
ṽ3(1)
∆s3(1)

+ ρ(G)


×

∆s1(1 − λ)

∆s1(1)
− ṽ1(1) ·

∆s1(1 − λ)

∆s1(1)
+ ṽ1(1 − λ)


= lim

λ→0
lim

z1→−1,z3→∞

(ṽ2(1) + ρ(G)∆s2(1) − ṽ1(1) + ṽ1(1 − λ))

= ṽ2(1) + ∆s2(1) lim
z1→−1,z3→∞

ρ(G). (5.43)

In the above computation we have used the following limits

lim
z1→−1

∆s1(1) = ∞, lim
z3→∞

∆s3(1) = ∞, lim
z1→−1

∆s1(1 − λ)

∆s1(1)
= 1, lim

λ→0
ṽ1(1 − λ) = ṽ1(1).

We then obtain the following expression for Tf :

Tf = 8 ·
2

S(1)

 ξ

1

 1

y
S(x)−1e−K2(x)T (y)eK2(y) dx dy

+ 8 ·

 ξ

1
S(y)−1e−K2(y) dy

 · 2  −1

1
m′

1(z) dz
+  ξ

1
m′

2(z) dz
+  ∞

1
m′

3(z) dz
 . (5.44)

Let

I1(β) =

 ξ

1

 y

1

T (y)
S(x)

eβ((x−y)+F0g(y)−F0g(x)) dx dy,

I2(β) =

 ξ

1

eβ((y−1)−F0g(y))

S(y)
dy,

C3(β) =
2

S(1)

 1

−1
T (z)e−β(z−1) dz,

C4(β) =
2

S(1)

 ξ

1
T (z)e−β((z−1)−F0g(z)) dz,

C5(β) =
2

S(1)


∞

1
T (z)e−β((z−1)+F0g(z)) dz.
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Then Tf is given by (the fact that S(1) = 8 is used to simply the expression)

Tf = −2I1 + 8I2(2C3 + C4 + C5).

The asymptotics of Tf is a consequence of the following result.

Lemma 5.4. As β → ∞, we have

I1(β) ∼
1
2

·
S(ξ)T (ξ)

1
2

(2πF0 − S(1))F
1
2
0

· β−
3
2 eβ(1−ξ+F0g(ξ)), (5.45)

I2(β) ∼
1

2πF0 − S(1)
· β−1

+ O

β−2 , (5.46)

C3(β) ∼ 2e2β + e2β O

β−1 , (5.47)

C4(β) ∼
1

S(1)
S(ξ)T (ξ)

1
2 β−

1
2 F

−
1
2

0 eβ(1−ξ+F0g(ξ))
+

2
S(1)

eβ(1−ξ+F0g(ξ)) O

β−1 , (5.48)

C5(β) ∼ O

β−1 . (5.49)

Proof of (5.45). Rewrite I1 as

I1(β) =


D
k(x, y)e−βf (x,y) dx dy,

where

f (x, y) = y − x + F0g(x) − F0g(y), k(x, y) =
T (y)
S(x)

, D = {(x, y)|y ∈ [1, ξ ], x ∈ [1, y]}.

Direct computation gives

fx(x, y) = −1 + F0 ·
2π
S(x)

, fy(x, y) = 1 − F0 ·
2π
S(y)

,

fxx(x, y) = −
2πF0T (x)
(S(x))2

, fxy(x, y) = fyx(x, y) = 0, fyy(x, y) =
2πF0T (y)
(S(y))2

,

H(f )(x, y) :=

fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

 = −
4π2F 2

0 T (x)T (y)
(S(x)S(y))2

.

Then (ξ , ξ) is the unique critical point of f (x, y), which is a saddle point since

H(f )(x, y)

(ξ ,ξ)

= −
4π2F 2

0 (T (ξ))2

(S(ξ))4
< 0.

We next check all corner points of D. Observe that f (1, 1) = f (ξ , ξ) = 0. And for 1 ≤ z ≤ ξ , S(z) ≤ 2πF0 by monotonicity of S(·) and
S(ξ) = 2πF0. Thus

f (1, ξ) = ξ − 1 − F0(g(ξ) − g(1)) = ξ − 1 − F0

 ξ

1

2π
S(z)

dz < ξ − 1 −

 ξ

1
dz = 0.

So f (x, y) attains its minimum at (1, ξ) on D. Moreover, by

fx(1, ξ) = −1 +
2πF0
S(1)

> 0, fy(1, ξ) = 1 −
2πF0
S(ξ)

= 0, fyy(1, ξ) =
2πF0T (ξ)

(S(ξ))2
> 0,

the level curve f (x, y) = C is tangent to the boundary of D at (1, ξ). We next follow the method presented in [32, Sec. VIII.7] to derive the
asymptotics of I1(β).

We write

f (x, y) − f (1, ξ) = fx(1, ξ)(x − 1)[1 + P(x − 1, y − ξ)] +
fyy(1, ξ)

2
(y − ξ)2[1 + Q (x − 1, y − ξ)],

where P(x, y) and Q (x, y) are power series in x and y satisfying P(0, 0) = Q (0, 0) = 0. Let

u = (x − 1)[1 + P(x − 1, y − ξ)], v = (y − ξ)[1 + Q (x − 1, y − ξ)]
1
2 ,

then  ∂(x, y)
∂(u, v)


(1,ξ)

= 1, f (x, y) − f (1, ξ) = fx(1, ξ)u +
fyy(1, ξ)

2
v2

= F(u, v).
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Let K(u, v) = k(x(u, v), y(u, v))|∂(x, y)/∂(u, v)| and D′ be the image of D under this transformation. We consider the Taylor expansion
of K at (0, 0): K(u, v) =


i,j=0 Kijuivj, where Kij denote the Taylor series coefficients. We have the coefficient of the leading term

K00 = k(1, ξ) =
T (ξ)

S(1) . Then

I1(β) = e−βf (1,ξ)


D′

K(u, v)e−βF(u,v) du dv.

By the method of resolution of multiple integrals, the double integral I1(β) can be written as

I1(β) = e−βf (1,ξ)
 M
0 h(t)e−βt dt, (5.50)

whereM denotes the maximum of F in D′ (the minimum of F is zero clearly), and

h(t) =


F(u,v)=t

K(u, v)
F 2
u + F 2

v

dσ ,

with σ being the arc length of the curve F(u, v) = t .
In order to compute h(t), we then transform (x, y) to (ζ , η) by

u =
ζ

fx(1, ξ)
cos2 η, v =


2ζ

fyy(1, ξ)

 1
2

sin η.

Thus F(u, v) = ζ . By direct computation,

 ∂(u, v)

∂(ζ , η)

 =


∂u
∂ζ

∂u
∂η

∂v

∂ζ

∂v

∂η

 =
1

fx(1, ξ)


2ζ

fyy(1, ξ)

 1
2

cos η.

Let Φ(ζ , η) = K(u, v)

 ∂(u,v)

∂(ζ ,η)

. Then
Φ(ζ , η) =


i,j

Kijuivj 1
fx(1, ξ)


2ζ

fyy(1, ξ)

 1
2

cos η =


i,j

Φijζ
i+ (j+1)

2 (cos η)2i+1 (sin η)j ,

with Φij =
Kij

fx(1,ξ)i+1
 fyy(1,ξ)

2

 j+1
2

. And h(t) =
 0
−

π
2

Φ(t, η) dη (note that v ≤ 0 in D′, thus η ∈ [−π/2, 0]). Hence

h(t) =


i,j

Φijt i+
j+1
2

 0

−
π
2

(cos η)2i+1(sin η)j dη =
1
2


i,j

Φijt i+
j+1
2 (−1)jB


i + 1,

j + 1
2



=
1
2


i,j

(−1)jΦijt i+
j+1
2 ·

Γ (i + 1)Γ (
j+1
2 )

Γ (i + j+3
2 )

=
1
2


i,j

(−1)jΦijt i+
j+1
2 ·

i!Γ (
j+1
2 )

Γ (i + j+3
2 )

. (5.51)

Plugging (5.51) into (5.50), we get as β → ∞

I1(β) ∼ e−βf (1,ξ) 1
2
Φ00

Γ
 1
2


Γ
 3
2

  M

0
t
1
2 e−βt dt ∼

1
2
√

πΦ00e−βf (1,ξ)β−
3
2

∼
1
2
√

π
T (ξ)

S(1)fx(1, ξ)


fyy(1,ξ)

2

 1
2
e−βf (1,ξ)β−

3
2 ∼

1
2

·
S(ξ)T (ξ)

1
2

(2πF0 − S(1))F
1
2
0

· e−βf (1,ξ)β−
3
2 ,

by Watson’s Lemma [31, Sec. 2.1,pp. 24]. �

Proof of (5.46). Write

I2(β) =

 ξ

1

1
S(y)

eβh(y) dy,

where h(y) = y − 1 − F0g(y). Note that h′(y) = 1 −
2πF0
S(y) ≤ 0 for y ∈ [1, ξ ]. This is a direct result of the monotonicity property of h′(y):

h′′(y) =
2πF0T (y)
(S(y))2

> 0, and the fact that h′(ξ) = 1 −
2πF0
S(ξ)

= 0 by definition of ξ . So h(y) attains its maximum at 1. By [31, pp. 35, (2.38)],
as β → ∞

I2(β) ∼


−

1
S(1)

βh′(1)


eβh(1)

+ eβh(1) O

β−2

∼
1

2πF0 − S(1)
· β−1

+ O

β−2 . �
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Proof of (5.47). By integration by parts and Laplace’s method, we get as β → ∞

C3(β) =
2

S(1)


S(z)e−β(z−1)

1
−1

−

 1

−1
S(z)(−β)eβ(1−z) dz


=

2
S(1)


S(1) + β

 1

−1
S(z)eβ(1−z) dz


∼

2
S(1)


S(1) + β


−S(1)
β(−1)

e2β + e2β O

β−2

∼ 2e2β + e2β O

β−1 . �

Proof of (5.48). Write

C4(β) =
2

S(1)
eβ

 ξ

1
T (z)eβh(z) dz,

where h(z) = −z + F0g(z). Observe that h′(z) =
2πF0
S(z) − 1, h′(1) > 0 when F0 > S(1)

2π , as well as h′(ξ) = 0 and h′′(z) = −
2πF0T (z)
(S(z))2

< 0.
Hence h(z) attains its maximum at ξ . By [31, pp. 33, (2.31)], we obtain as β → ∞ ξ

1
T (z)eβ(−z+F0g(z)) dz ∼ T (ξ)


−π

2β ·
−2πF0T (ξ)

(S(ξ))2

 1
2

eβ(−ξ+F0g(ξ))
+ eβ(−ξ+F0g(ξ)) O


β−1

∼
1
2
S(ξ)T (ξ)

1
2 F

−
1
2

0 β−
1
2 eβ(−ξ+F0g(ξ))

+ eβ(−ξ+F0g(ξ)) O

β−1 .

The conclusion follows then. �

Proof of (5.49). Let h(z) = −z − F0g(z). Write

C5(β) =
2

S(1)
eβ


∞

1
T (z)eβh(z) dz =

2
S(1)

eβ


S(z)eβh(z)

∞
1

−


∞

1
S(z)βh′(z)eβh(z) dz


=

2
S(1)

eβ


−S(1)e−β

−


∞

1
S(z)βh′(z)eβh(z) dz


.

By h′(z) = −1 −
2πF0
S(z) < 0, h(z) attains its maximum at 1. By [31, pp. 38, (2.38)], we get as β → ∞

C5(β) ∼
2

S(1)
eβ


−S(1)e−β

− β


−S(1)h′(1)

βh′(1)


e−β

+ βe−β O

β−2

∼
2

S(1)
eβ O


e−ββ−1

∼ O

β−1 . �

The proof of (5.21) is now complete.
Proof of (5.22) — asymptotics of Tb. By definition we have

Tb = lim
λ→0

lim
z2,z3→∞

v2(ξ)

= lim
λ→0

lim
z2,z3→∞

(c2∆s2(ξ) + ṽ2(ξ))

= lim
λ→0

lim
z2,z3→∞


2

∆s1(1)
+

1
∆s2(1)

+
1

∆s3(1)

−1

·


2ṽ1(1)
∆s1(1)

+
ṽ2(1)
∆s2(1)

+
ṽ3(1)
∆s3(1)

+ ρ(G)


·
∆s2(ξ)

∆s2(1)

+ ṽ2(ξ) − ṽ2(1) ·
∆s2(ξ)

∆s2(1)


= lim

λ→0
lim

z2,z3→∞


ṽ1(1) +

ρ(G)∆s1(1)
2

+ ṽ2(ξ) − ṽ2(1)


.

We have used the following limits

lim
z2→∞

∆s2(1) = ∞, lim
z3→∞

∆s3(1) = ∞, lim
z2→∞

∆s2(ξ)

∆s2(1)
= 1.

Then by limλ→0 ṽ1(1) = 0, limz2→∞ |ṽ2(ξ) − ṽ2(1)| < ∞, and limλ→0 ∆s1(1) = 0, we get

Tb = lim
z2→∞

(ṽ2(ξ) − ṽ2(1)) .

By definition of ṽ2(z) the formula of Tb is given by:

Tb =
 ξ

1


∞

x S(x)−1e−K2(x)T (y)eK2(y) dy dx. (5.52)
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Note that Tb is in the form of


D′′ k(x, y)e−βf (x,y) dx dy, where D′′
= {(x, y)|x ∈ [1, ξ ], y ∈ [x, ∞)} and f (x, y), k(x, y) are the same as

defined in I1 in the proof of (5.45). Direct computation shows that the unique critical point (ξ , ξ) of f (x, y) is a saddle point. Thenwe check
the value of f (x, y) along the boundary of D′′. On the bottom boundary, we find that f (1, 1) = f (ξ , ξ) = 0. On the left and right boundary,
i.e. half lines x = 1 and x = ξ above y = 1, fy(x, y) hits zero at y = ξ . Note also that fyy(x, y) =

2πF0T (y)
(S(y))2

> 0. All above lead to that on
x = 1 and x = ξ , f (x, y) attains its local minimum at y = ξ . It is easy to verify that f (1, ξ) < f (ξ , ξ) = 0. Hence the asymptotics of
Tb is determined by the value of f (x, y) near (1, ξ), where the level curve f (x, y) = C is tangent to x = 1. The remaining computation is
analogous to that of (5.45). Note that the integration domain for η in the first equality of (5.51) in this case is [−

π
2 , π

2 ] (y can be greater
than ξ ). It follows that

Tb ∼ 2I1(β), as β → ∞.

The asymptotics for Tb follows then.

Proof of (5.23). By (5.21) and (5.22) the leading term of the asymptotics of Tb is O

β−

3
2 eβ(1−ξ+F0g(ξ))


, whilst the leading term of the

asymptotics of Tf is O

β−1e2β


. There are two cases: (i) for F01 < F0 < F02, 1 − ξ + F0g(ξ) < 2; (ii) for F0 > F02, 1 − ξ + F0g(ξ) > 2.

Consequently, the ratio Tf
Tb

> 1 for F01 < F0 < F02 as O

β−1e2β


≫ O


β−

3
2 eβ(1−ξ+F0g(ξ))


; whereas, Tf

Tb
< 1 for F0 > F02 since

O

β−1e2β


≪ O


β−

3
2 eβ(1−ξ+F0g(ξ))


.
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Appendix. Proof of (3.5)

At F = 1, f attains its global minimum at (π
2 , π

2 ). The asymptotics of J(β) as β → ∞ depends on the integral Iδ in (3.7). But since this
critical point of f is degenerate, we further split the integration region Dδ into three parts:

D1
δ =


(q′, q)

0 ≤ q ≤
π

2
− ϵ1, q − δ ≤ q′

≤ q


,

D2
δ =


(q′, q)

π
2

+ ϵ2 ≤ q ≤ 2π, q − δ ≤ q′
≤ q


,

D3
δ =


(q′, q)

π
2

− ϵ1 ≤ q ≤
π

2
+ ϵ2, q − δ ≤ q′

≤ q


where ϵ1 and ϵ2 are some arbitrarily chosen small numbers independent of β (see Fig. 6(a)). We define

I iδ(β) =


Di

δ

e−βf (q′,q) dq′ dq.

It is easy to get as β → ∞ that:

I1δ (β) ∼ β−1
 π

2 −ϵ1

0

1
1 − sin q

dq = β−1

cot

ϵ1

2


− 1


,

I2δ (β) ∼ β−1
 2π

π
2 +ϵ2

1
1 − sin q

dq = β−1

1 + cot

ϵ2

2


.

Thus I1δ (β) and I2δ (β) are of O

β−1


. To compute I3δ (β), note first that

f (q′, q) =
f30
6


q′

−
π

2

3
+

f03
6


q −

π

2

3
+ O

(q′, q) −

π

2
,
π

2

 4
where

f30 := fq′q′q′

π

2
,
π

2


= − sin

π

2


= −1, f03 := fqqq

π

2
,
π

2


= sin

π

2


= 1.

The above form also reflects the degeneracy of the minimum at (π
2 , π

2 ).
We next write

f (q′, q) =
f30
6


q′

−
π

2

3 
1 + P


q′

−
π

2
, q −

π

2


+

f03
6


q −

π

2

3 
1 + Q


q′

−
π

2
, q −

π

2


where P(q′, q) and Q (q′, q) are power series in q′ and q, with P(0, 0) = Q (0, 0) = 0. We will use the following variables

u =


q′

−
π

2

 
1 + P


q′

−
π

2
, q −

π

2

 1
3
, v =


q −

π

2

 
1 + Q


q′

−
π

2
, q −

π

2

 1
3
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Fig. 11. Level sets of F(u, v) = t and the region D3
δ .

as independent variables. For this, we introduce

F(u, v)

:= f (q′, q)


=

f30
6

u3
+

f03
6

v3 and G(u, v) =

∂(q′, q)
∂(u, v)

 .
Note that G(π

2 , π
2 ) = 1.

Now let m and M be the infimum and supremum of f (q′, q) in D3
δ . As easily seen, m = 0 and M > 0. Now we apply the method of

resolution of multiple integrals (see [32, V.13, Thm. 9, pp. 280] and [32, VIII.10, pp. 463]) to get

I3δ (β) =

 M

m
k(t)e−βt dt, k(t) =


F(u,v)=t

G(u, v)

|∇F |
dσ ,

σ being the arc length of the curve F(u, v) = t . We shall evaluate k(t) along the curves F(u, v) =
f30
6 u3

+
f03
6 v3

= t , which are bounded
between the vertical lines u = −d and u = d (see Fig. 11). Set

ξ =
f30
6

u3
+

f03
6

v3, η = u, Θ(ξ , η) = G(u, v)

 ∂(u, v)

∂(ξ, η)

 .
The line integral k(t) is reduced to k(t) =


ξ=t Θ(ξ , η) dη. By computation ∂(u, v)

∂(ξ, η)

 = −2f
−

1
3

03 (6ξ − f30η3)−
2
3 .

Assume G(u, v) has the Maclaurin series G(u, v) =


Gijuivj, with G00 = 1. We choose the positive value of
 ∂(u,v)

∂(ξ,η)

. Then
Θ(ξ , η) = −G(u, v)

 ∂(u, v)

∂(ξ, η)

 =


2Gij(f03)−

j+1
3 (6ξ − f30η3)

j−2
3 ηi

=


Θijη

i(6ξ − f30η3)
j−2
3

with Θij =
2Gij

f
j+1
3

03

. Thus, k(t) =


Θln
 d
−d ηl(6t − f30η3)

n−2
3 dη.

We only compute the dominating term which is the first expansion term with l = n = 0. Let t > 0 (this is always true since m = 0,
and we can disregard the case t = 0). Note that d is independent of t . Hence, we may write d

−d
(6t − f30η3)−

2
3 dη =

 0

−∞

(6t − f30η3)−
2
3 dη +


∞

0
(6t − f30η3)−

2
3 dη + ϕ(t),

where ϕ(t) is a C∞ function of t near t = 0 and, therefore, do not contribute to the asymptotic expansion of the Laplace integral I3δ . Now
let η = (−6t/f30)

1
3 (tanα)

2
3 , then
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∞

0
(6t − f30η3)−

2
3 dη =

 π
2

0

2
3
(6t)−

2
3 (secα)−

4
3


−6t
f30

 1
3

(tanα)−
1
3 sec2 α dα

= −
2
3
6−

1
3 t−

1
3 f

−
1
3

30

 π
2

0
(sinα)−

1
3 (cosα)−

1
3 dα

= −
1
3
6−

1
3 t−

1
3 f

−
1
3

30 B

1
3
,
1
3


where we have used the identity π

2

0
(sin x)µ−1(cos x)ν−1 dx =

1
2
B
µ

2
,
ν

2


, Re(µ) > 0, Re(ν) > 0

(see [27, pp. 369, 3.62(5)]). Next, let η = (6t/f30)
1
3 (sinα)

2
3 on (η∗, 0) with η∗

= (6t/f30)
1
3 . Then we obtain 0

η∗

(6t − f30η3)−
2
3 dη = −

2
3
6−

1
3 t−

1
3 f

−
1
3

30

 π
2

0
(sinα)−

1
3 (cosα)−

1
3 dα

= −
1
3
6−

1
3 t−

1
3 f

−
1
3

30 B

1
3
,
1
3


.

Let η = (6t/f30)
1
3 (secα)

2
3 on (−∞, η∗), then η∗

−∞

(6t − f30η3)−
2
3 dη = −

2
3
6−

1
3 t−

1
3 f

−
1
3

30

 π
2

0
(sinα)−

1
3 (cosα)−

1
3 dα

= −
1
3
6−

1
3 t−

1
3 f

−
1
3

30 B

1
3
,
1
3


.

Finally, we have as β → ∞ that

I3δ (β) =

 M

m
k(t)e−βt dt ∼

 M

m


Θ00

 d

−d
(6t − f30η3)−

2
3 dη


e−βt dt

∼

 M

m


Θ00


∞

−∞

(6t − f30η3)−
2
3 dη


e−βt dt

∼ −
Θ00

3
6−

1
3 f

−
1
3

30


3B

1
3
,
1
3

 M

m
t−

1
3 e−βt dt

∼ 2 · 6−
1
3 B

1
3
,
1
3


Γ


2
3


β−

2
3 ,

by Watson’s Lemma [31, Sec. 2.1, pp. 24]. Hence I3δ (β) ≫ I1δ (β), I2δ (β). The conclusion then follows. The constant C in (3.5) is given
explicitly as

C =
2π

2·6−
1
3 B

1
3 , 13


Γ


2
3

 . (A.1)
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