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ABSTRACT
Mobility traces of people and vehicles have been collected
and published to assist the design and evaluation of mo-
bile networks, such as large-scale urban sensing networks.
Although the published traces are often made anonymous
in that the true identities of nodes are replaced by random
identifiers, the privacy concern remains. This is because in
real life, nodes are open to observations in public spaces, or
they may voluntarily or inadvertently disclose partial knowl-
edge of their whereabouts. Thus, snapshots of nodes’ loca-
tion information can be learned by interested third parties,
e.g., directly through chance/engineered meetings between
the nodes and their observers, or indirectly through casual
conversations or other information sources about people. In
this paper, we investigate how an adversary, when equipped
with a small amount of the snapshot information termed as
side information, can infer an extended view of the where-
abouts of a victim node appearing in an anonymous trace.
Our results quantify the loss of victim nodes’ privacy as
a function of the nodal mobility (captured in both real and
synthetic traces), the inference strategies of adversaries, and
any noise that may appear in the trace or the side informa-
tion. Generally, our results indicate that the privacy concern
is significant in that a relatively small amount of side infor-
mation is sufficient for the adversary to infer the true iden-
tity (either uniquely or with high probability) of a victim in
a set of anonymous traces.
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1. INTRODUCTION
Mobility traces of people and vehicles have been collected

and published to assist the design and evaluation of mo-
bile networks. One example application of such networks is
urban sensing, where mobile nodes carried by ordinary city
residents or their vehicles are used to monitor various events
of interest in their city areas. Example activities include
traffic monitoring [17], road surface condition sensing [5],
chemical detection [19], and radiation detection [9]. This
type of large-coverage, everyday sensing is made possible by
advances in sensor technologies, which produce small form-
factor, low-power, low-cost, and multi-modal sensors that
can be readily embedded into widely adopted personal hand-
held devices including smart phones. Clearly, mobility pat-
terns of potential real-world participants in these networks,
including their correlations and interactions with each other,
will have profound effects on the network performance (e.g.,
coverage and connectivity of a collaborative sensing net-
work). Indeed, researchers have found that existing syn-
thetic movement models of mobile entities, such as pedes-
trians and different kinds of vehicles, though attractive for
their low cost and high repeatability, generally fail to cap-
ture essential behaviors of real users. Therefore, the use of
synthetic traces in network design can lead to wrong conclu-
sions about network performance (e.g., routing efficiency) in
reality [12]. Hence, there are increasing efforts to trace the
locations of real users leading to the public availabilities of
many such traces through either consolidated data portals
such as Crawdad [4] or websites set up by individual research
groups [21].

In order to protect the privacy of participants in real user
traces, the true identity of each participant is often replaced
by a consistent, unique, and random identifier (not corre-
lated in any way with the true user identity). Moreover,
the precision of the traces in the spatial and temporal do-
mains can be often reduced by cloaking techniques such as
reducing the resolution of the recorded data or introduc-
ing noise deliberately in the data. It is not clear, however, if
these “anonymization” and cloaking techniques are sufficient
to protect the privacy of the participants. This is because
movements or whereabouts of participants in public spaces
can be openly observed by others through chance/engineered



meeting opportunities. Similar location/movement informa-
tion can also be inferred indirectly from conversations, news
articles, online social networks, or web blogs, though the
inference could be noisy. By gathering one or a few such
(possibly rough) snapshots of a participant’s location over
time, which we term as side information, an adversary may
be able to identify (either uniquely or with high probabil-
ity) the participant’s trace from a set of anonymous traces.
Hence, the complete whereabouts of the participant (the vic-
tim) over an extended time duration will be revealed to the
adversary.

In this paper, we formulate the above privacy problem.
We develop analytically inference strategies that the adver-
sary may use to maximize its effectiveness in identifying one
or more victims under different system assumptions. We
show how the adversary can gainfully incorporate general
world knowledge – in the form of a movement model ac-
counting for global movement constraints and preferences –
in its inference strategies. We also quantify experimentally
the loss of victim nodes’ privacy (possibly as a process over
time) as a function of several important system parameters,
including the nodal mobility captured in both real and syn-
thetic traces, the inference strategies of the adversaries, and
any noise that may appear in the traces or side informa-
tion (due to either the application of cloaking techniques or
inherently imprecise observations). Our contributions are
two-fold.

(1) We provide extensive analysis both theoretically and
experimentally to demonstrate that with the current prac-
tice of capturing and publishing anonymous location traces
of real users, the concern exists that an adversary could
identify the traces of one or more victims in the published
data with high probability, by invoking a small amount of
side information about the participants. In particular, we
present comprehensive attack strategies available to the ad-
versary when it collects information about a victim’s move-
ment either through direct observations or indirect informa-
tion sources, and show that these attacks are effective in
breaching privacy. We also provide a mathematical frame-
work to show the optimality of specific attack strategies in
that they utilize all the available information in the most
effective way.

(2) We give comprehensive experimental analysis to show
the differences between synthetic and real traces from the
perspective of the privacy problem. Despite generated from
the same basic statistics (e.g., area of the network and av-
erage/maximum speeds of the mobile nodes) of the real
traces, the synthetic traces may behave quite differently
from the real traces. Their different characteristics will re-
sult in quite different performance under various privacy at-
tacks. For instance, mobile nodes in the synthetic traces
are more sparsely distributed in the network. This leads to
easier de-anonymization of synthetic traces when the adver-
sary attacks by collecting side information passively, but the
de-anonymization may take a longer time if the adversary
attacks by observing the participants directly.

2. RELATED WORK
Various privacy issues of published data sets have been

studied in the literature [1, 22, 2, 24, 15]. Sweeney [22]
proposes a protection model named k-anonymity and a set
of accompanying policies for privacy protection. When k-
anonymity is satisfied, each individual should be indistin-
guishable from k−1 other individuals. Bayardo and Agrawal [2]
propose a practical method to identify a provably optimal
k-anonymization of real census data, or a good anonymiza-

tion when the optimal one cannot be found in reasonable
time, because the general problem is NP-hard. Xiao and
Tao [24] propose a generalization principle of m-invariance
to effectively limit the risk of privacy disclosure in data re-
publications, given the many potential correlations among
various snapshots of each data entry in subsequent publi-
cations that can be used to derive sensitive information.
Martin et al. [15] quantify the impact of background knowl-
edge possessed by an attacker on privacy breach. They ex-
press the attacker’s background knowledge in a language,
and provide an algorithm to determine the amount of dis-
closed sensitive information in the worst case with respect
to the amount of the background knowledge. In the data
mining context, Agrawak and Srikant [1] propose a recon-
struction procedure to build a decision-tree classifier without
accessing the precise information in individual data records,
so that the distributions of the data values can be recon-
structed with sufficient accuracy. They also suggest the use
of value-class membership and value distortion to preserve
privacy.

Narayanan and Shmatikov [18] study the privacy impli-
cations of releasing anonymous and perturbed user ratings
of movies in the Netflix database for a research competi-
tion to better predict customers’ preferences for different
new movies.1 They propose an effective algorithm to de-
anonymize the data set, and verify its performance with the
published data. Their problem, in which an adversary is
given perturbed side information about a victim to identify
the victim’s record among all the database records, is one of
the attack scenarios we consider in this paper.

Privacy protection of mobile nodes in location-based ser-
vices has also been studied [8, 7, 10, 16]. One proposed ap-
proach is to reduce the spatial/temporal granularity of the
location information made available to the service provider
while achieving satisfactory service effectiveness [8, 7]. Hoh
et al. [10] devise a protection strategy to release user data
only when certain privacy constraints are met. Meyerowitz
and Choudhury [16] suggest sending fake requests with the
real ones to reduce the ability to trace a mobile node over
time.

Our problem differs from the previous work by its spe-
cific focus on privacy leaks of user location information con-
sidering the characteristics of anonymous mobility traces of
users, under the assumption that an attacker, assisted by
different amounts of side information that can be realisti-
cally obtained, employs various well grounded strategies to
infer the private information. As discussed in Section 1, we
are motivated by the emerging practice of collecting traces
of real users in a mobile network and publishing anonymized
and possibly cloaked versions of these traces through various
data portals, to assist in the design and evaluation of these
networks.

3. PROBLEM DEFINITION
We assume that a set of traces, each of which recording

intermittently the time and corresponding location of a mo-
bile node, are released to the public. We call a node that
is included in a trace set a participant in the trace set. The
samples can be collected using say a GPS-enabled device
carried by the participant, which reports the participant’s
location and the corresponding time periodically to a data
collector. The traces are anonymous in that the true identity
of a participant has been replaced by a random and unique

1Achievement of this goal is expected to have significant
impact on the profitability of Netflix.



identifier. The true node identity is not correlated in any
way to the random identifier, but the same true identity is
always mapped to the same identifier. The times at which
locations of a participant are recorded in a trace are called
the sampled times. We assume that the recorded participant
location at a sampled time, say t, is imprecise for anonymiza-
tion purpose as explained in Section 1. Specifically, instead
of recording the precise point in space p at which the node
is located at time t, the trace records a larger cell enclosing
p. For simplicity, we assume that the cell is a square of di-
mension x (in distance units). The imprecision is higher if
x is higher, and vice versa.

There is an adversary who tries to identify the complete
path histories of one or more participants (of known true
identities) from the anonymous traces. We call a node whose
whereabouts are being exposed a victim node. For the adver-
sary to achieve its purpose, we assume that it can collect cer-
tain side information about one or more participants. Each
piece of side information gives the location of a participant
at an associated time instant, although the information may
not be exact. In practice, the side information may be ob-
tained through a number of practical means. First, nodes
are open to observations in public spaces. Hence, the adver-
sary may obtain the side information directly through meet-
ing the victim by chance or engineered encounters. Direct
side information may be noisy due to imperfect vision or
memory of the adversary about the meeting. Second, nodes
may disclose information on their whereabouts either volun-
tarily or inadvertently. For example, a casual conversation
between Alice and Bob may make references to where Alice
was around 9 pm the night before, or it may make reference
to the whereabouts of another person Charlie. Clearly, such
location information might be released through many other
means, including published media such as news articles or
web blogs. Hence, the adversary may also obtain the side in-
formation indirectly, i.e., through a channel other than direct
encounter with the victim. Similarly, the indirect informa-
tion may be noisy due to imprecise observations, memories,
references, etc. In this paper, we will consider the following
two attack scenarios.

3.1 Problem A: Passive adversary
In this problem setting, the adversary is given the com-

plete (annonymized) traces. The adversary’s goal is, given
some pieces of side information about a pre-determined but
unknown victim, to identify in some optimal fashion the
complete path history of the chosen victim. The key as-
sumptions are: (i) the adversary is passive in the sense that
it does not actively go out to seek encounters with poten-
tial victims; (ii) the side information given to the adversary
contains noise. We will consider two cases. In the first
case (Problem A1), the side information references time
instants that coincide with sampled times in the trace only.
That is, if a piece of side information refers to a partici-
pant’s location at time t, then the set of traces must also
contain a sampled location of some participant at t. In the
second, more general case (Problem A2), the side infor-
mation may also reference time instants between two con-
secutive sampled times in the set of traces. We study the
worst case scenario in which all pieces of the side informa-
tion refer to times different from the sampled times in the
set of traces. In either cases, we assume that the adversary is
“sophisticated”and will attempt to incorporate all known in-
formation in its inference strategy, by employing some form
of Bayesian inferencing. We further assume that, in apply-
ing the Bayesian inferencing, the adversary can make use of

some general knowledge it has about the world, including
global constraints on nodal movements imposed by (pub-
licly known) geography of the deployment area, and general
movement preferences of all the nodes viewed as an aggre-
gate (but not the individual preferences of specific nodes).

3.2 Problem B: Active adversary
In this section, the adversary is active in the sense that

it obtains side information about participants by physically
encountering the participants. The complete trace history
is still revealed to the adversary, but now in a real time
and gradual fashion, i.e., as time progresses, the adversary
is provided with the trace information together with the in-
formation acquired up to the real time instants. The goal
here is to identify as many identity of the traces as possible.
Specifically, we will consider the following three forms of
the problem: (B1) The adversary is itself one of the mobile
nodes included in the set of traces (i.e., it is one of the par-
ticipants in the trace set); (B2) The adversary minimizes its
efforts by simply staying at one fixed location; (B3) The ad-
versary pre-determines a movement strategy to presumably
maximize the amount of useful side information it can ob-
tain, subject to the same physical movement constraints and
speed limits as the participant mobile nodes. However, we
will not consider the case in which the adversary may adapt
its movement strategy to prior information it has learned
about the potential victims. For example, after encounter-
ing a victim, the adversary will not attempt to henceforth
follow the victim. This is reasonable if the objective of the
adversary is to identify as many trace identities as possible.
In fact without further given information, it is not clear if
modifying the path can improve the performance.

The goal in all of the scenarios in the above two problems
is to identify the victim’s trace from the published set based
on all the available (noisy) information. The results will be
presented in the most quantitative manner possible.

3.3 Notations and model assumptions
We first define some notations and general assumptions

about the a priori knowledge.

Θ : The collection of all cell location IDs.

{Li}i=1,2,...N : The collection of all the traces of the par-
ticipants, each indexed by an anonymous index i. N is the
total number of traces. Precisely, for each i, Li is a function
of time Li : R+−→ Θ giving the ID of the cell visited by
participant i.

{sk}k=1,2,... : The sampled times at which the actual node
locations are published, i.e., Li(sk) is the published location
ID of the cell visited by mobile node i at time sk.

{tk}k=1,2,... : The time instants at which some noisy side
information about the victim’s locations are revealed.

R : The noisy side information of the victim. Specifically,
it is a map, R : {tk}k −→ Θ so that R(tk) is the (corrupted)
location ID of the cell visited by the victim at time tk as
revealed to the adversary.

In order to concentrate on the key issue of privacy breach,
we further make the following assumptions:

(1) The sampled times sk’s are equally spaced. In ad-
dition, for Problem A1, we have {tk : k = 1, 2, . . .} ⊂
{sk : k = 1, 2, . . .}; For Problem A2, we have {tk : k =
1, 2, . . .} 6⊂ {sk : k = 1, 2, . . .}; then we assume that for

each tk, there exists k̃ such that sk̃ < tk < sk̃+1 and tk =
1
2
(sk̃ + sk̃+1).



(2) The noise in the side information in each revelation
instant is assumed to be some iid random variable Zk’s of
some given distribution PrZ . Hence we have

R(tk) = Li∗(tk) + Zk, (1)

where i∗ is the victim’s trace ID (which is of course not
known to the adversary).

(3) All the mobile nodes follow the same movement model
which is assumed to be Markovian. Hence the statistics of
the whole collection of traces can be completely described
by some one-step transition matrix {Pij}i,j∈Θ. The time
interval for the transition matrix is denoted by T . For the
convenience of later presentation, we set T to be s2 − s1

for Problem A1 and 1
2
(s2 − s1) for Problem A2. This

matrix is either given or estimated by some general world
knowledge.

We take the time here to note that the last assumption
is clearly for simplification purposes. There are many well
known prediction, interpolation, and filtering algorithms for
(even non-Markovian) time series analysis (see for example
[6, Chapters 3, 8]). On the other hand, our simulation results
already produce robust results even for the non-Markovian
real traces. Hence we will not be side tracked by invoking
the more refined models. Instead, we will emphasize the
implications of general knowledge about nodal movements
towards the privacy issues.

4. STRATEGIES OF THE ADVERSARY
In this section, we give details of the possible strategies

used by the adversary for each of the attack scenarios listed
in Section 3.

4.1 Strategies for A1 and A2
As noted before, the side information often contains noise.

The adversary thus needs to perform Bayesian inference or
use the maximum likelihood estimator (MLE) to make the
best guess. The goal is that given R, find the Li that gives
the best match. The formulation of such a procedure is
described below. Given {R(tk)k=1,2,...}, compute

Pr(Li|{R(tk), k = 1, 2, . . .}) =
Pr(Li, R(tk), k = 1, 2, . . .)

Pr(R(tk), k = 1, 2, . . .)

=
Pr(R(tk), k = 1, 2, . . . |Li) Pr(Li)

PN
j=1 Pr(R(tk), k = 1, 2, . . . |Lj) Pr(Lj)

. (2)

The goal of the MLE is to find i which maximizes the ex-
pression (2). Note that the denominator is a constant. In
addition, without any knowledge about how the victim is
chosen, we set the a priori distribution of the victim to be
uniform: P (Li) = 1

N
for i = 1, 2, . . . N . Hence the solution

of the MLE is given by:

max
i=1,2,...N

Pr(R(tk), k = 1, 2, . . . |Li). (3)

With the assumption of the noise model given in (1), the
expression (3) can be given in the following form:

Case A1. Because the noise is iid, we have

Pr(R(tk), k = 1, 2, . . . |Li) = ΠkPrZ(R(tk) − Li(tk)), (4)

where the location difference is computed using the Carte-
sian distance between the two cells. Recall that R(tk) −
Li(tk) equals the noise random variable in the perturbation
process give by (1).

Case A2. By the Markovian assumption of the movement
model, (3) can be given by:

Pr(R(tk), k = 1, 2, . . . |Li)

= Pr(R(tk), k = 1, 2, . . . |Li(sk), i = 1, 2, . . .)

=
Πk

h

Pr(Li(sk̃+1)|R(tk)) × Pr(R(tk)|Li(sk̃))
i

Πk

h

Pr(Li(sk̃+1)|Li(sk̃))
i , (5)

which can be easily expressed in terms of the transition ma-
trix Pij . (Note that the numerator involves transitions be-
tween time intervals of length T and hence the matrix P ,
while the denominator involves intervals of length 2T and
hence the matrix P 2.)

The expression (4) can be greatly simplified if the noise
Zk’s takes on specific forms. For example,

(i) Gaussian random variables N(0, σ2):

Pr(R(tk), k = 1, 2, . . . |Li)

= C exp

(

−
1

2σ2

X

k

|R(tk) − Li(tk)|2
)

(6)

for some constant C. Hence the MLE is essentially the same
as the following minimum square approach:

min
i

X

k

˛

˛

˛
R(tk) − Li(tk)

˛

˛

˛

2

. (7)

(ii) Uniform Distribution with on the interval (− l
2
, l

2
):

Pr(R(tk), k = 1, 2, . . . |Li) = Πk
1

l
χ(− l

2
, l
2
)(R(tk) − Li(tk)),

(8)
where χA(x, y) = 1 or 0 depending on if x − y ∈ A or not.

The above provides a rigorous mathematical formulation
for the Bayesian inferencing equipped with the side infor-
mation. On the other hand, the above also leads to some
simplified heuristic approaches for tackling the victim iden-
tification problem. Qualitatively, they are all similar to the
minimum square approach but we find it a useful contri-
bution to record and compare their performances. In the
following we consider four strategies used by the adversary
to identify the victim’s trace from the published trace set.
We first describe them for case A1:

(1) MLE Approach (MLE). This is the same as for-
mulation (4), i.e., the similarity value of trace i is given by
ΠkPrZ(R(tk)−Li(tk)). The trace with the maximum simi-
larity value is declared to be the victim’s.

(2) Minimum Square Approach (MSQ). This is the
same as formulation (7), i.e., the similarity value of trace i

is given by −
P

k

˛

˛

˛R(tk)−Li(tk)
˛

˛

˛

2

. The trace with the least

negative similarity value is declared to be the victim’s.
(3) Basic Approach (BAS). In this approach, moti-

vated by the uniform noise distribution (8) but to allow more
flexibility, the adversary assumes that the noise is zero-mean
and has a specific standard deviation (σ), but makes no as-
sumption about its exact distribution. The adversary then
computes the similarity value of trace i with the collected
side information using the following equation:

M
X

k=1

I2σ (Li(tk), R(tk)) , (9)

where I2σ(x, y) = 1 if |x − y| ≤ 2σ and 0 otherwise. Hence,
the adversary accepts a trace as a potential candidate if it is
possible for the trace owner to appear in a radius of 2×σ of
the revealed location, which encloses all possible noise if it
is uniformly distributed, or 95.6% of noise if it is Gaussian.
The trace with the maximum similarity value is declared to
be the victim’s.



(4) Weighted Exponential Approach (EXP). In this
approach, which is proposed and analyzed in [18], we assume
that the adversary does not know the type of noise or its
magnitude. Similar to BAS, the adversary computes and
maximizes the similarity value of trace i using the following
equation,

M
X

k=1

1

Weight(R(tk))
exp



−
1

C
|Li(tk) − R(tk)|

ff

, (10)

where Weight(R(tk)) is some weight assigned to the revealed
cell R(tk) and C is a constant. In the simulations we assign
equal weights to all of the cells because with possible errors
in the revealed location, it is unclear how different weights
could be assigned.

The above formula can be easily modified for case A2.
For convenience, we first define for each trace i, the function
Pi : Θ × {tk : k = 1, 2, . . . M} −→ R+:

Pi(l, tk) =
Px,lPl,y

Px,y

,

where x = Li(sk̃), y = Li(sk̃+1), and sk̃ < tk < sk̃+1. Then
we have,

MLE2:

Πk

“

X

l∈Θ

Pi(l, tk)PrZ(R(tk) − l)
”

(42)

MSQ2:
X

k

0

@

X

l∈Θ

Pi(l, tk)
˛

˛

˛R(tk) − l

˛

˛

˛

2

1

A (72)

BAS2:
M
X

k=1

0

@

X

l∈Θ

Pi(l, tk) × I2σ(l, R(tk))

1

A (92)

EXP2:
M
X

k=1

0

@

X

l∈Θ

Pi(l, tk)

Weight(R(tk))
exp



−
1

C
|l − R(tk)|

ff

1

A (102)

Notice that the four approaches have the same computa-
tional complexity, which is linear in the number of pieces of
revealed side information and the number of nodes.

A remark in place is that our exposition assumes attack
strategies where the victim is assumed to be one of the par-
ticpants. However, the strategies apply or can be easily
extended to the case in which it is uncertain if the side in-
formation collected for a mobile node actually corresponds
to any participant. In particular, the MLE approach can be
used directly without modification, while a properly picked
threshold can be used for the other attack strategies to re-
move traces from consideration if their similarity to the vic-
tim’s trace is lower than the threshold. This can certainly
be formulated rigorously in terms of statistical hypothesis
testing.

4.2 Strategy for Problems B1–B3
In this scenario the adversary observes the participants

directly. Note that the information about the traces is only
revealed progressively in time, in a synchronized way with
respect to the information collected by the adversary. The
overall algorithm is specified in Figure 1. As there is no noise
when additional information is acquired, the adversary does
not need to use any inference strategy. The Attack program
takes as input the traces that are published progressively.
The algorithm first assumes that all the traces are candidate
traces for each participant. A trace is said to be a candidate
trace of a participant if it appears at the same set of times
and locations as when/where the adversary meets the par-
ticipant, and the trace has not yet been identified. As time

Cascade(candidate set, i)
let j = trace id where candidate seti = {j}
/* remove the identified trace from candidate set

of other victims */
For(m = 0; m < number of trace; m++)

If trace j in candidate setm and m 6= i
remove trace j from candidate setm

If candidate set sizem = 1
Cascade(candidate set, m)

Endif
Endif

Endfor

Attack({Li}i=1,2,...N )
/* initially all traces are possible candidates

to each victim */
For (m = 0; m < number of trace; m++)

add all traces to candidate setm

Endfor

While (sampling time not ended)
For each node i met at sampling time and

each trace j in candidate seti

/* check if a candidate trace appear at the
observed location */

If (met node i at location r at sampling time and
Lj(sampling time) != r)

remove trace j from candidate seti

If candidate set sizei = 1
Cascade(candidate set, i)

Endif
Endif

Endfor

report average k-anonymity
evolve sampling time

Endwhile

report all identified victims

Figure 1: Specification of Attack algorithm.

evolves, the adversary removes candidate traces which do
not agree with the observed information about each victim
from the set for that victim. The function Cascade takes
two input parameters, where candidate_set is the candi-
date set of all victim nodes and i is the victim ID identified.
The function is called when a victim’s trace is identified,
so as to remove that trace from the candidate set of other
victims. The candidate set size is the k-anonymity of the
victim, as every trace in the candidate set is possibly the
victim’s.

Notice that the adversary may not identify a participant
at times they meet each other, but the identification can
occur at a later time when all but one candidate traces are
identified and removed, as indicated by the recursive Cas-
cade function call in Figure 1. Hence, the adversary iden-
tifies a participant more efficiently when it tries to identify
as many participants as possible.

5. TRACE CHARACTERISTICS
In this section we begin by analyzing the differences in be-

haviors between the real traces and simple synthetic traces.
Their fundamental differences will be illustrated by six types
of mobility traces. They include two sets of real traces: (1)
cabs in the San Francisco area [20], and (2) buses in the
ShangHai Grid system [21]. Basic statistics about these two
sets of traces are listed in Table 1. We then make use of
statistics from the San Francisco cab trace to generate four
other synthetic traces using the random waypoint mobility
model (rway) and two of its variants which impose a maxi-
mum trip length of x (in km) (rway − x with x = 10, 20),



San Francisco ShangHai Grid
cabs buses

Min. latitude 37.05 30.7217
Max. latitude 38.00 31.5899
Min. longitude -122.86 121.0001
Max. longitude -122.00 121.9117

# cellsa 8170 8004
# active cellsb 3997 2108

# nodes 536 2348
Min. timestamp Sat May 17 Mon Feb 19

(local time) 03:00:04 2008 08:00:01 2007
Max. timestamp Tue June 10 Sat Feb 24

(local time) 02:25:34 2008 08:00:00 2007

Table 1: Basic statistics of the real traces.
awhen spatial granularity is 0.01◦.
bcells ever visited by any node.

and the random walk model (rwalk). In particular, we use
the number of cells visited by the cabs as the size of the
map of the synthetic traces (approximated by a square of
size 0.63◦ × 0.63◦), the average speed of the cabs (about
13.8 mph) as that of the synthetic mobile nodes, and the
average time the cabs are active (about 15 days) as the simu-
lation run time of the synthetic traces. We notice that other
mobility models [11, 14, 13] have been proposed to better
approximate the movement of real-world entities. However,
the main goal of the current paper is not to decide what
type of synthetic traces is best in realism in what situations,
but to provide a quantitative measurement of the mobility
characteristics and their impact on the privacy issue. Hence
we will only use the synthetic traces to establish the nec-
essary intuition in understanding the impact of information
collection with respect to privacy. To continue, we assume
that the published traces are snapshots taken every minute
with spatial granularity of 0.01◦ in latitude and longitude
for anonymization purpose as explained in Section 1 unless
stated otherwise. Characteristics of traces are studied using
the four metrics as described in Sections 5.1–5.4. Observa-
tions that can be explained using differences between move-
ment preferences of the mobile nodes are summarized at the
end of this section.

5.1 Correlation between traces
We use the Pearson product-moment correlation coeffi-

cient [23] to quantify the correlations between node pairs.
For any mobile node pair i and j, the quantity is defined as
follows.

C(i, j) = lim
M→∞

1

M

M
X

k=1

„

Li(sk) − ELi

σLi

«

 

Lj(sk) − ELj

σLj

!

,

where ELi and σLi
are respectively the average and stan-

dard deviation of node i’s locations:

ELi = lim
M→∞

1

N

M
X

k=1

Li(sk)

σLi
= lim

M→∞

v

u

u

t

1

M

M
X

k=1

(Li(sk) − ELi)2.

The distribution of the correlations between different node
pairs is depicted in Figure 2.

The figure shows that movements of different cabs have
little or no correlation, while those of the random walk nodes
have higher correlations. It is because cabs are unlikely to
follow each other for a long time. Random walk nodes show
the highest correlation since their movements are synchro-
nized and their choices of next movement are limited to the
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Figure 2: Distribution of correlations between traces
of the same set.

immediate neighboring cells. Although a low correlation be-
tween the traces indicates that they do not share common
paths over a long time, having a high correlation between the
traces does not imply otherwise. It is because the computed
correlation is the distance relative to the mean position of
each trace but not to a common location, and it does not
take into account the orientation of the nodes.

5.2 Autocorrelation of the same trace
The autocorrelation C(i, s) of trace i with time shifting of

s is defined as:

lim
M→∞

1

M

M
X

k=1

(Li(sk + s) − ELi)(Li(sk) − ELi).

Figure 3 depicts the autocorrelation as a function of the time
shift s.

The figure shows that for real traces, there are sharp rises
in autocorrelation individually and on average when the time
shift is one day. The bus traces also show repeatedly oscil-
lating autocorrelation values throughout a day because each
bus runs on a periodic schedule. Such oscillations are much
less obvious for the cabs as they move more randomly. The
more localized movement of the random walk nodes makes
their autocorrelation value only drops slowly as a function
of shifting.

5.3 Complexity of movement
In this section, we demonstrate the complexity of nodal

movements as quantified through the order-n model com-
plexity given by:

Hn

“

{Li}i=1,2,...N

”

=
X

Θn−1

p(l1, . . . , ln−1)×

(

X

Θ

p(ln|l1, . . . , ln−1) log p(ln|l1, . . . , ln−1)

)

. (11)

In the above, the functions p(· · · ) : Θn−1 −→ R+ and
p(·| · · · ) : Θ × Θn−1 −→ R+ are the joint probability and
conditional probability densities of the locations in the col-
lection of traces {Li}i=1,2,...N .

The above function, defined for general stochastic pro-
cesses, is well-known in the information theory community
(see for example [3, Chapter 3]). The value of Hn represents
the uncertainty of the order-n model. The smaller the value,
the less uncertainty there is in the model. Notice that H0 is
essentially the entropy of the stationary distribution.

The behavior of (11) as a function of n is depicted in
Figure 4. The result conforms to the theoretical result that
for any stationary process X, Hn(X) is a decreasing function
of n and the limit limn→∞ Hn(X) thus exists. The limiting
value is called the entropy rate of the process X.

Notice that because of the relatively slow movement of
the mobile nodes, the synthetic traces do not have enough
time to reach steady state if we limit the synthetic traces
to the same length as the real traces in quantifying their
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Figure 3: Autocorrelation of each trace for different sets of traces as a function of the time shift s.

characteristics. As a result, although one may expect the
random walk traces to have a constant entropy as the order
increases, we observe otherwise in the figure, and the entropy
of the synthetic traces also drops more significantly than the
real traces as the order increases.

5.4 Distance between traces
Figure 5(a) depicts the distribution of average distance

between trace pairs, which is defined as

DistAve(i, j) = lim
N→∞

1

N

N
X

k=1

|Li(k) − Lj(k)|,

for trace pair i and j, where i 6= j, and Figure 5(b) depicts
the distribution of minimum distance between trace pairs,
which is defined as

DistMin(i, j) = min
k

(|Li(sk) − Lj(sk)|) .

5.5 Implications of the trace characteristics
Many of the observed different characteristics of the mo-

bility traces can be summarized and explained using the
lack of preferred locations and random initial positions of
the synthetic traces. Specifically, real traces show natural
preferences for certain places visited by the mobile nodes,
such as the busy downtown area for the cabs and the as-

signed routes for the buses, whereas the synthetic traces do
not.

Since synthetic traces do not have a set of preferred loca-
tions to visit, and they are placed randomly in the network
initially, they exhibit much sparser spatial distributions in
the network than the real traces. Moreover, the shorter the
maximum trip length in the synthetic traces, the sparser
they are in the network. These observations are shown
through the higher order-0 entropy of the synthetic traces
than the real traces (Figure 4), the larger autocorrelation
values of the synthetic traces (Figure 3), the longer average
distances between synthetic node pairs (Figure 5(a)) (with
random walk having the largest average distance), and the
fact that not all the random walk nodes have met each other
during the simulation (Figure 5(b)). On the other hand, the
real traces have their preferred visiting places, resulting in a
smaller H0 than the synthetic traces, and the entropy drops
much more slowly when the order increases. This is also
reflected in the smaller average distances between cabs or
between buses, although the bus distances exhibit a broader
range because some of the bus routes are closer together
while some are farther apart. The result is that only 50%
of the buses have met each other as shown in Figure 5(b),
while almost 100% of the cabs have met each other.

When nodes are more sparsely distributed in the network
area, more efficient victim identification results when the ad-
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Figure 5: Distribution of average and minimum dis-
tances between pairs of traces.

versary collects the side information passively (Problems
A1 and A2). Hence, we would expect victims in the syn-
thetic traces to be more easily identified than in the real
traces. On the other hand, sparsity of nodes can both be
beneficial and detrimental to the performance of an adver-
sary who observes the participants directly (Problems B1
– B3). It is because when the mobile nodes are sparsely
distributed, it could take much longer time for the adver-
sary to meet them, thus harming the attack efficiency. On
the other hand, once the adversary meets a mobile node, it
could identify the trace of the node almost instantaneously
as no other mobile nodes (and hence, traces) are around
at the same time, thus helping the attack performance. We
will verify these expectations experimentally in the following
section.

6. SIMULATION RESULTS

6.1 Results for passive adversary
In this section, we study the attack scenario where the

adversary tries to identify the trace of one participant (the
victim) by gathering side information passively. In each sim-
ulation, the victim is randomly picked from all the partic-
ipants. Pairs of <time, location> of the victim are then
randomly sampled from the trace and noise is introduced in
the spatial domain. The noisy data are revealed to the ad-
versary as side information, which the adversary utilizes to
identify the complete movement history of the victim from
the published traces. Results reported are for simulation
experiments each repeated 100,000 times.

We quantify the performance of the strategies with the fol-
lowing metrics, (i) Fraction of correct conclusions. A conclu-
sion is correct if the victim is uniquely identified according
to the criterion of highest similarity metric; (ii) Fraction of
incorrect conclusions. A conclusion is incorrect when the
victim is not among the set of candidates having the highest
similarity metric.

6.1.1 Problem A1
We present the results based on the perception of the ad-

versary on the noise.

(1) Correct assumption about the noise distribution
We first consider the case when the revealed location of
the victim is perturbed with zero-mean Gaussian noise with
standard deviation σ, which matches the assumption made
by the adversary in MLE. Figure 6 shows the performance
of the attack strategies using the cab, bus, and random way-
point traces. Results of random walk traces are not shown
because they give similar trends as random waypoint.

When we compare the two attack strategies that assume
knowledge of the noise, namely MLE and BAS, MLE is
more aggressive as it excludes a trace from further consider-
ation as soon as it determines that the trace cannot be per-
turbed to the revealed locations of the victim given the type
and magnitude of the noise assumed. Hence, when the ad-
versary’s assumption is correct, this approach can give very
good results in the fraction of correct conclusions, although
it can also give a large fraction of incorrect conclusions ini-
tially, when the adversary has only a few pairs of the side
information because the traces with the highest similarity
for only a few pieces of noisy side information may not be
truly the victim’s. In comparison, BAS generally returns
lower fractions of both correct and incorrect conclusions as
it gives equal weights to traces that agree with the side in-
formation within the error bounds. This results in more
undecided conclusions, i.e., there is more than one trace,
including the correct one, which shares the same highest
similarity value, and the victim’s trace is undecided among
the set. Notice that because the error bounds are not large
enough to enclose all possible noise, the fraction of incorrect
conclusions increases initially for BAS when more pieces of
side information are available to the adversary.

We now look at the other two approaches that do not use
knowledge of the noise, namely MSQ and EXP. We can
see that although MSQ does not require the knowledge, its
performance is similar to the best-case performance of MLE
in terms of the fraction of correct conclusions. Meanwhile,
EXP performs the worst as it puts too much weight on
traces that give little deviations from some of the pieces of
side information.

(2) Incorrect assumptions about the noise distribu-
tion We now consider the case when the assumption of noise
distribution made by the adversary in MLE is incorrect.
Figures 7(a) and (d) show the performance of the strategy
when the actual and assumed noise is Gaussian and Uni-
form, respectively. Figures 7(b) and (e) show the results
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Figure 6: (Problem A1) Performance of various metrics as a function of the number of <location, time> pairs
revealed. (a), (d) San Francisco cab traces, (b), (e) ShangHai Grid bus traces, and (c), (f) random waypoint
traces. Zero-mean Gaussian noise with σ = 5.

when the actual and assumed noise is Uniform and Gaus-
sian, respectively. Figures 7(c) and (f) show the results when
the noise distribution is Uniform, and the adversary assumes
the same.

Notice that among the approaches that assume about the
noise, MLE is affected the most by the wrong assumptions.
In particular, the performance of MLE varies depending on
the types of actual and assumed noise. When the adver-
sary assumes the noise to be Uniform but it is Gaussian,
the performance is much worsened since the victim’s trace
can be mistakenly and permanently removed from consid-
eration due to occasional Gaussian noise that exceeds the
range of the assumed Uniform noise. On the other hand,
when Gaussian noise is assumed but it is actually Uniform,
MLE surprisingly gives a greater fraction of correct conclu-
sions than when the correct noise distribution is assumed,
albeit at the price of getting a greater fraction of incorrect
conclusions also. In contrast to MLE, the performance of
BAS is less sensitive to the type of noise.

6.1.2 Problem A2
Figure 8 depicts the performance of the attack approaches

for different sampling time intervals for the cab traces. Zero-
mean Gaussian noise with σ = 5 is introduced into the
spatial domain of the side information except for the line
labeled “no noise.” The figure shows that the sparser the
samples in the traces, the less effective the attacks are in
general. This is expected since when samples are sparser,
inference of nodal movements between the sampling points
becomes less reliable. Figure 9 depicts the results for the
bus traces and the synthetic random waypoint traces. The
figure shows that without noise in the side information, even
with a sampling temporal granularity of an hour and spa-
tial granularity of 0.01◦, the adversary is able to identify
the victim’s trace by fewer than 25 pairs of side information
with high probability. When noise is introduced, however,
the results depend heavily on the traces. For instance, the
effect of noisy side information on the attack strategies is in-
significant for the synthetic traces, but it is more noticeable
for the bus traces.

When we compare the performance of the attack approaches
in this case with the special case in the previous subsection,
in which no inference using a general movement model is
necessary, the performance here does not degrade signifi-

cantly for MLE2 and MSQ2. Interestingly, BAS2 gives
a much larger fraction of incorrect conclusions and slightly
larger fraction of correct conclusions initially when move-
ment has to be inferred, while EXP2 performs about the
same in both cases.

6.1.3 Summary on passive adversary strategies
The results show that approaches relying on the assump-

tion of noise could have very poor performance when the
assumption is wrong, as illustrated by the MLE results.
On the other hand, an approach not having knowledge of
the noise may still perform well. In particular, MSQ per-
forms equally well as MLE even when the latter has the
correct noise assumption. Since MSQ also performs better
than the heuristic approaches of BAS and EXP, it appears
to be the preferred adversary strategy overall.

The results also verify our claim in Section 5 that vic-
tim identification is much easier for the synthetic than real
traces, due to higher nodal sparsity in the former.

6.2 Results for active adversary
In this section, we examine the performance of the ac-

tive adversary who gains side information by direct meet-
ings with the participants. Recall that this adversary can
identify a victim by elimination, and the process is most ef-
ficient if the adversary meets the participants as quickly as
possible. We assume that the adversary operates to achieve
this goal. We further assume that the adversary’s side in-
formation is gained only at times coinciding with sampled
times of the traces. As discussed in Section 5, we expect the
active adversary needs a longer time to identify all the syn-
thetic traces than the cab traces, because the former have
sparser node distributions. Further, we expect random walk
to require the longest time among the synthetic traces, and
the bus trace to require the longer time between the real
traces.

6.2.1 Problem B1
Figure 10 depicts the average k-anonymity of the victims

as observed by the adversary as a function of the attack
time for different sets of the traces, when the adversary is
one of the mobile nodes. The figure shows that the most
reduction in k-anonymity for each participant results from
observations made in the first day in the real traces. The
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Figure 7: (Problem A1) Performance of various metrics as a function of number of <location, time> pairs
revealed. (a), (d) Uniform noise assumed, Gaussian actual; (b), (e) Gaussian noise assumed, Uniform actual;
(c), (f) Uniform noise both assumed and actual. San Francisco cab traces. Noise with σ = 5.
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Figure 8: (Problem A2) Performance of various metrics for attacks requiring different degrees of movement
inference for each trace as a function of number of <time, location> pairs revealed. San Francisco cab traces,
zero-mean Gaussian noise with σ = 5. (a), (d) S = ten minutes; T = five minutes; (b), (e) S = thirty minutes;
T = fifteen minutes; (c), (f) S = one hour; T = half an hour. (S is the trace sampling time and T is the
interval for computing the transition matrix.)
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Figure 10: (Problem B1) Average k-anonymity as a
function of attack time when the adversary is one of
the mobile nodes.

figure also shows that as time increases, the k-anonymity
always drops to close to one on average, except for random
walk traces and the bus traces as expected. Notice also from
the figure that there are flat regions in the bus trace results
corresponding to night times of the days. The cab traces
exhibit a similar behaviour, but it is much less obvious due
to the cabs’ own mobility characteristics. Synthetic traces

have no concept of day and night, and they do not show
such behaviour.

6.2.2 Problem B2
Figures 11(a)-(d) depict the k-anonymity of the victims

as observed by the adversary as a function of attack time,
when the adversary stays at one of the cells. Each line in
the figure represents the results for a particular staying cell,
and the line label shows the relative coordinates of that cell
in the network area. We plot the results of the six most
popular cells in each figure, and the popularity of a cell is
ranked according to the total number of visits made by the
mobile nodes over the entire trace.

The figures indicate that for the real traces, staying at
a cell for a day is sufficient to reduce the k-anonymity for
each participant significantly. The improvement by staying
longer at each cell is minimal. The k-anonymity of the ran-
dom walk and bus traces drops more slowly than the other
traces as expected.
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Figure 9: (Problem A2) Performance of various metrics for attacks requiring different degrees of movement
inference for each trace as a function of number of <time, location> pairs revealed. Traces are sampled every
half an hour and the transition matrix is generated using sampling information every fifteen minutes.

6.2.3 Problem B3
Figures 11(e)-(h) depict the k-anonymity of the victim

as observed by the adversary as a function of attack time,
when the adversary moves actively inside the network area.
The label of each line in the figure indicates the number
of popular cells visited by the adversary. Notice that as
the adversary travels between the popular cells, it may visit
other cells during the journeys.

The figures show that travels made by the adversary gen-
erally improve the attack efficiency in identifying the traces.
For instance, for the bus traces, traveling helps the adversary
reduce the size of the candidate set for each participant from
more than 2000 to only a few in about one day, while staying
at a cell can only reduce the size by half. It is because by
traveling, the adversary is able to meet more participants,
especially when their spatial distribution is sparser, such
as the random walk and bus traces. However, traveling to
too many places may hurt the performance because the ad-
versary may spend too much time traveling over unpopular
places.

6.2.4 Summary on active adversary strategies
The results show that for the real traces, the ability of the

active adversary to travel helps it identify many of the victim
traces within one day. For synthetic traces, however, the
attack efficiency is lower because their spatial distribution
is sparser, verifying our observation in Section 5. When
the adversary prefers to stay at a cell, the attack efficiency
depends on the type of traces and the staying location of the
adversary. In general, staying at a more popular location
helps, by allowing the adversary to identify more victims
more quickly.

7. CONCLUSION
In this paper, we studied the privacy vulnerability of pub-

lishing traces of mobile nodes even when the true node iden-
tities are made anonymous, and the recorded node positions
may be imprecise. We presented comprehensive strategies
for an adversary to well utilize side information about node
movements, collected either passively or actively, to achieve
different privacy attacks. We proved mathematically an op-
timal approach for the adversary to identify a victim’s trace
from the published data exploiting all the available informa-

tion. Our analysis is verified and complemented by simula-
tion results under comprehensive system parameters, such
as the nodal mobility, adversary strategy, noise in the trace
or the side information, and different degrees of movement
inference needed for the attack. In particular, we pointed
out some main differences between the synthetic and real
traces with respect to the privacy problem. In general, our
results showed that the adversary is able to identify victims
with high probability even when the available side informa-
tion is limited.
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