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Abstract—Mobility traces of people and vehicles have been col-
lected and published to assist the design and evaluation of mobile
networks, such as large-scale urban sensing networks. Although
the published traces are often made anonymous in that the true
identities of nodes are replaced by random identifiers, the privacy
concern remains. This is because in real life, nodes are open to
observations in public spaces, or they may voluntarily or inad-
vertently disclose partial knowledge of their whereabouts. Thus,
snapshots of nodes’ location information can be learned by inter-
ested third parties, e.g., directly through chance/engineered meet-
ings between the nodes and their observers, or indirectly through
casual conversations or other information sources about people. In
this paper, we investigate how an adversary, when equipped with a
small amount of the snapshot information termed as side informa-
tion, can infer an extended view of the whereabouts of a victim node
appearing in an anonymous trace. Our results quantify the loss of
victim nodes’ privacy as a function of the nodal mobility, the infer-
ence strategies of adversaries, and any noise that may appear in the
trace or the side information. Generally, our results indicate that
the privacy concern is significant in that a relatively small amount
of side information is sufficient for the adversary to infer the true
identity (either uniquely or with high probability) of a victim in a
set of anonymous traces. For instance, an adversary is able to iden-
tify the trace of 30%–50% of the victims when she has collected 10
pieces of side information about a victim.

Index Terms—Mobility traces, privacy, security and protection.

I. INTRODUCTION

M OBILITY traces of people and vehicles have been col-
lected and published to assist the design and evaluation

of mobile networks. One example application of such networks
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is urban sensing, where mobile nodes carried by ordinary
city residents or their vehicles are used to monitor various
events of interest in their city areas. Example activities include
traffic monitoring [25], road surface condition sensing [10],
chemical detection [28], and radiation detection [17]. This
type of large-coverage, everyday sensing is made possible
by advances in sensor technologies, which produce small
form-factor, low-power, low-cost, and multimodal sensors
that can be readily embedded into widely adopted personal
handheld devices including smartphones. Clearly, mobility
patterns of potential real-world participants in these networks,
including their correlations and interactions with each other,
will have profound effects on the network performance (e.g.,
coverage and connectivity of a collaborative sensing net-
work). Indeed, researchers have found that existing synthetic
movement models of mobile entities, such as pedestrians and
different kinds of vehicles, though attractive for their low
cost and high repeatability, generally fail to capture essential
behaviors of real users. Therefore, the use of synthetic traces in
network design can lead to wrong conclusions about network
performance (e.g., routing efficiency) in reality [19]. Hence,
there are increasing efforts to trace the locations of real users
leading to the public availabilities of many such traces through
either consolidated data portals such as Crawdad [7] or Web
sites set up by individual research groups [34].
In order to protect the privacy of participants in real user

traces, the true identity of each participant is often replaced
by a consistent, unique, and random identifier (not correlated
in any way with the true user identity). Moreover, the preci-
sion of the traces in the spatial and temporal domains can be
often reduced by cloaking techniques such as reducing the res-
olution of the recorded data or introducing noise deliberately
in the data. It is not clear, however, if these “anonymization”
and cloaking techniques are sufficient to protect the privacy of
the participants. This is because movements or whereabouts of
participants in public spaces can be openly observed by others
through chance/engineered meeting opportunities. Similar loca-
tion/movement information can also be inferred indirectly from
conversations, news articles, online social networks, or Web
blogs, though the inference could be noisy. By gathering one
or a few such (possibly rough) snapshots of a participant’s loca-
tion over time, which we term as side information, an adversary
may be able to identify (either uniquely or with high probability)
the participant’s trace from a set of anonymous traces. Hence,
the complete whereabouts of the participant (the victim) over an
extended time duration will be revealed to the adversary.
In this paper, we formulate the above privacy problem. We

analytically develop inference strategies that the adversary
may use to maximize its effectiveness in identifying one or
more victims under different system assumptions. We show
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how the adversary can gainfully incorporate general world
knowledge—in the form of a movement model accounting for
global movement constraints and preferences—in its inference
strategies. We also quantify experimentally the loss of victim
nodes’ privacy (possibly as a process over time) as a function
of several important system parameters, including the nodal
mobility, the inference strategies of the adversaries, and any
noise that may appear in the traces or side information (due
to either the application of cloaking techniques or inherently
imprecise observations). Our contributions are twofold.
1) We provide extensive analysis both theoretically and

experimentally to demonstrate that with the current practice
of capturing and publishing anonymous location traces of real
users, the concern exists that an adversary could identify the
traces of one or more victims in the published data with high
probability by invoking a small amount of side information
about the participants. In particular, we present comprehensive
attack strategies available to the adversary when it collects
information about a victim’s movement either through di-
rect observations or indirect information sources and show
that these attacks are effective in breaching privacy. We also
provide a mathematical framework to show the optimality of
specific attack strategies in that they utilize all the available
information in the most effective way.
2) We give comprehensive experimental analysis to show the

differences between different real traces from the perspective of
the privacy problem. Their different characteristics will result in
quite different performance under various privacy attacks.

II. RELATED WORK

Privacy of published data sets has received much atten-
tion [2], [3], [23], [37], [41]. Sweeney [37] proposes a privacy
measure of k-anonymity. When -anonymity is satisfied, each
individual is indistinguishable from at least other indi-
viduals. Bayardo and Agrawal [3] propose a practical method
to identify a provably optimal -anonymization of real census
data, or a “good” anonymization for general data, since the
general problem is NP-hard. The concept of -anonymization
does not capture the diversity of the anonymity set. To solve
the issue, Machanavajjhala et al. [21] propose an -diversity
measure to ensure diversity in the published data. Li and
Li [20] propose a -closeness metric, which ensures that the
distance of a sensitive attribute’s distribution in one class is
no more than a threshold from that of the whole table. Xiao
and Tao [41] propose m-invariance to limit the risk of privacy
disclosure in data republications since potential correlations
among snapshots of data in the different publication instances
can be used to derive sensitive information.
Identification of users, or their attributes, who access loca-

tion-based services has been studied [4], [11], [13]–[15], [18],
[24], [35], [36]. Golle and Partridge [14] quantify the likelihood
of identifying an individual using her home and working loca-
tions and show that revealing at census block level is able to
identify most of the USworking population. Freudiger et al. [11]
quantify the probability of identifying the home or office loca-
tion of a user based on the number of queries issued to a server.
One basic technique to improve location privacy is to reduce

the spatial/temporal granularity of the location information
given to the service provider while still supporting satisfactory

service quality [13], [15]. Hoh et al. [18] devise a protection
method that releases user data only when certain privacy
constraints are met. Meyerowitz and Choudhury [24] propose
to send fake requests with real ones in order to reduce one’s
ability to trace a mobile node over time. Shokri et al. [35], [36]
propose an evaluation framework for location-privacy protec-
tion, assuming that the adversary knows the spatial distribution
or transition probabilities of each user between locations.
Chow et al. [4] use granularity reduction to provide privacy in
peer-to-peer systems that support location-based services.
Approaches to improve the privacy of geo-located data sets

include data perturbation, data swapping, data generalization or
granularity reduction, and data withholding. Abul et al. [1] pro-
pose the use of space translations to achieve -anonymity
for databases of moving objects, where is the radius of a
cylindrical volume representing the allowed trajectory impreci-
sion. Terrovitis and Mamoulis [39] use the suppression of loca-
tion information to achieve an acceptable probability of privacy
breach. Nergiz et al. [29] use a notion of -anonymity that is
specific to trajectories and propose a generalization method to
enhance the privacy of published trajectories.
Martin et al. [23] quantify how background knowledge

possessed by an attacker may impact privacy breach. They
express the background knowledge in a language and provide
an algorithm to determine the amount of disclosed sensitive
information in the worst case as a function of the background
knowledge. In a data mining context, Agrawak and Srikant [2]
propose a reconstruction method to build a decision-tree
classifier without accessing precise information in individual
data records, so that the data value distributions can be recon-
structed with sufficient accuracy. They also propose value-class
memberships and value distortions as privacy preservation
techniques.
The literature above assumes that an attacker has limited

knowledge and power and analyzes privacy and its protection in
application-specific situations. We take a similar approach. Our
specific focus is on the privacy of anonymous mobility traces
as they are published in various public data portals [7], [34].
Our analysis assumes basic spatial and temporal cloaking
techniques since the basic protection can more easily ensure
the applicability of the data sets for diverse application sce-
narios, which befits the intention of the data portals. Please see
Section VII for a discussion.
Currently, differential privacy (DP) is an extremely active re-

search area. It is important because it adopts a strong notion of
privacy that does not limit the power of the attacker and mea-
sures privacy loss by basic information metrics. Dwork et al. [8]
consider howmuch noise is needed to perturb true answers from
a statistical database in order to preserve privacy. They show
that the extent of noise needed is proportional to the sensitivity
of the query function. Ho and Ruan [16] propose to provide DP
by dynamic sizing of grid cells and addition of noise to data sets.
Machanavajjhala et al. [22] use a modified form of DP to have
the published statistics matchmore closely with the actual statis-
tics, without breaching privacy. Rastogi and Nath [32] propose
an algorithm to ensure DP using transformation and encryption,
such that users can compute the amount of noise needed to per-
turb the published data in a distributed manner, while keeping
the noise in the statistics obtained by the aggregator small. They
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mitigate the problem that for time-series data, such as our mo-
bility traces, the amount of noise needed for standard DP ap-
proaches will in the worst case grow linearly with the number
of queries. Despite its importance, DP’s assumptions about the
use of the data sets are fundamentally incompatible with our
problem context. Please see Section VII for a discussion.

III. PROBLEM DEFINITION

We assume that a set of traces, each of which is recording
intermittently the time and corresponding location of a mobile
node, are released to the public. We call a node that is included
in a trace set a participant in the trace set. The samples can be
collected using, say, a GPS-enabled device carried by the par-
ticipant, which reports the participant’s location and the corre-
sponding time periodically to a data collector. The traces are
anonymous in that the true identity of a participant has been
replaced by a random and unique identifier. The true node iden-
tity is not correlated in any way to the random identifier, but the
same true identity is always mapped to the same random iden-
tifier. The times at which locations of a participant are recorded
in a trace are called the sampled times. We assume that the
recorded participant location at a sampled time, say , is im-
precise for anonymization purpose as explained in Section I.
Specifically, instead of recording the precise point in space at
which the node is located at time , the trace records a larger cell
enclosing . For simplicity, we assume that the cell is a square
of dimension (in distance units). The imprecision is higher if
is higher, and vice versa.
There is an adversary who tries to identify the complete path

histories of one or more participants (of known true identities)
from the anonymous traces. We call a node whose whereabouts
are being exposed a victim node. For the adversary to achieve
its purpose, we assume that it can collect certain side informa-
tion about one or more participants by chance or effort through
noisy real-world channels. Each piece of side information
gives the location of a participant at an associated time instant,
although the information may not be exact. In practice, the side
information may be obtained through a number of practical
means. First, nodes are open to observations in public spaces.
Hence, the adversary may obtain the side information directly
through meeting the victim by chance or engineered encoun-
ters. Direct side information may be noisy due to imperfect
vision or memory of the adversary about the meeting. Second,
nodes may disclose information on their whereabouts either
voluntarily or inadvertently. For example, a casual conversation
between Alice and Bob may make references to where Alice
was around 9 p.m. the night before, or it may make reference to
the whereabouts of another person Charlie. Clearly, such loca-
tion information might be released through many other means,
including published media such as news articles or Web blogs.
Hence, the adversary may also obtain the side information indi-
rectly, i.e., through a channel other than direct encounter with
the victim. Similarly, the indirect information may be noisy due
to imprecise observations, memories, references, etc. In this
paper, we will consider the following two attack scenarios.

A. Problem A: Passive Adversary

In this problem setting, the adversary is given the complete
(anonymized) traces. The adversary’s goal is, given some pieces
of side information about a predetermined but unknown victim,

to identify in some optimal fashion the complete path history of
the chosen victim. The key assumptions are: 1) the adversary
is passive in the sense that it does not actively go out to seek
encounters with potential victims; 2) the side information given
to the adversary contains noise. We will consider two cases. In
the first case (Problem A1), the side information references time
instants that coincide with sampled times in the trace only. That
is, if a piece of side information refers to a participant’s loca-
tion at time , then the set of traces must also contain a sam-
pled location of some participant at . In the second, more gen-
eral case (Problem A2), the side information may also reference
time instants between two consecutive sampled times in the set
of traces. We study the worst-case scenario in which all pieces
of the side information refer to times different from the sam-
pled times in the set of traces. In either cases, we assume that
the adversary is “sophisticated” and will attempt to incorporate
all known information in its inference strategy by employing
some form of Bayesian inferencing. We further assume that, in
applying the Bayesian inferencing, the adversary can make use
of some general knowledge it has about the world, including
global constraints on nodal movements imposed by (publicly
known) geography of the deployment area, and general move-
ment preferences of all the nodes viewed as an aggregate (but
not the individual preferences of specific nodes).

B. Problem B: Active Adversary

In this section, the adversary is active in the sense that it
obtains side information about participants by physically en-
countering the participants. The complete trace history is still
revealed to the adversary, but now in a real time and gradual
fashion, i.e., as time progresses, the adversary is provided with
the trace information together with the information acquired up
to the real time instants. The goal here is to identify as many
identities of the traces as possible. Specifically, we will con-
sider the following three forms of the problem: B1) The adver-
sary is itself one of the mobile nodes included in the set of traces
(i.e., it is one of the participants in the trace set); B2) The adver-
sary minimizes its efforts by simply staying at one fixed loca-
tion; B3) The adversary predetermines a movement strategy to
presumably maximize the amount of useful side information it
can obtain, subject to the same physical movement constraints
and speed limits as the participant mobile nodes. However, we
will not consider the case in which the adversary may adapt its
movement strategy to prior information it has learned about the
potential victims. For example, after encountering a victim, the
adversary will not attempt to henceforth follow the victim. This
is reasonable if the objective of the adversary is to identify as
many trace identities as possible. In fact without further given
information, it is not clear if modifying the path can improve
the performance.
The goal in all of the scenarios in the above two problems is

to identify the victim’s trace from the published set based on all
the available (noisy) information. The results will be presented
in the most quantitative manner possible.

C. Notations and Model Assumptions

We first define some notations and general assumptions about
the a priori knowledge.

The collection of all cell location IDs.
The collection of all the traces of the par-

ticipants, each indexed by an anonymous index . is the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

total number of traces. Precisely, for each is a function
of time giving the ID of the cell visited by
participant .

The sampled times at which the actual node
locations are published, i.e., is the published location ID
of the cell visited by mobile node at time .

The time instants at which some noisy side
information about the victim’s locations are revealed.

The noisy side information of the victim. Specifically,
it is a map, so that is the (corrupted)
location ID of the cell visited by the victim at time as revealed
to the adversary.
In order to concentrate on the key issue of privacy breach, we

further make the following assumptions.
1) The sampled times ’s are equally spaced. In addition,

for Problem A1, we have
; For Problem A2, we have

; then we assume that for each , there exists
such that and .
2) The noise in the side information in each revelation instant

is assumed to be some i.i.d. random variable ’s of some given
distribution . Hence, we have

(1)

where is the victim’s trace ID (which is of course not known
to the adversary).
3) All the mobile nodes follow the same movement model

that is assumed to be Markovian. Hence, the statistics of the
whole collection of traces can be completely described by some
one-step transition matrix . The time interval for the
transition matrix is denoted by . For the convenience of later
presentation, we set to be for Problem A1 and

for Problem A2. This matrix is either given or estimated by
some general world knowledge.
We take the time here to note that the last assumption is

clearly for simplification purposes. There are many well-known
prediction, interpolation, and filtering algorithms for (even
non-Markovian) time series analysis (see, for example,
[12, Ch. 3 and 8]). On the other hand, our simulation results
already produce robust results even for the non-Markovian real
traces. Hence, we will not be sidetracked by invoking the more
refined models. Instead, we will emphasize the implications of
general knowledge about nodal movements toward the privacy
issues.

IV. STRATEGIES OF THE ADVERSARY

In this section, we give details of the possible strategies
used by the adversary for each of the attack scenarios listed in
Section III.

A. Strategies for A1 and A2

As noted before, the side information often contains noise.
The adversary thus needs to perform Bayesian inference or use
the maximum likelihood estimator (MLE) to make the best
guess. The goal is that given , find the that gives the best
match. The formulation of such a procedure is described in the
following. Given , compute

(2)

The goal of theMLE is to find whichmaximizes the expression
(2). Note that the denominator does not depend on . In addition,
without any knowledge about how the victim is chosen, we set
the a priori distribution of the victim to be uniform:
for . Hence, the solution of the MLE is given by

(3)

With the assumption of the noise model given in (1), the ex-
pression (3) can be given in the following form.
Case A1: Because the noise is i.i.d., we have

(4)

where the location difference is computed using the Cartesian
distance between the two cells. Recall that equals
the noise random variable in the perturbation process give by
(1).
Case A2: By the Markovian assumption of the movement

model, (3) can be given by

(5)

Recall that there exists a such that and
. Hence, (5) can be easily expressed in terms

of the transition matrix : The numerator involves transitions
between time intervals of length and hence the matrix ,
while the denominator involves intervals of length and hence
the matrix .
The expression (4) can be greatly simplified if the noise

takes on specific forms. For example, we have the following.
1) Gaussian random variables :

(6)

for some constant . Hence, the MLE is essentially the same as
the following minimum square approach:

(7)

2) Uniform Distribution with on the interval :

(8)
where or 0 depending on if or not.
Upon taking the log of the above equation, we have

(9)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MA et al.: PRIVACY VULNERABILITY OF PUBLISHED ANONYMOUS MOBILITY TRACES 5

Optimizing the above expression is equivalent to identifying the
trace that has the largest number of sampled times such that
the trace location falls within a fixed range of the noisy side
information.
The above provides a rigorous mathematical formulation for

the Bayesian inferencing equipped with the side information.
On the other hand, the above also leads to some simplified
heuristic approaches for tackling the victim identification
problem. Qualitatively, they are all similar to the minimum
square approach, but we find it a useful contribution to record
and compare their performances. In the following, we consider
four strategies used by the adversary to identify the victim’s
trace from the published trace set. We first describe them for
case A1.
1)MLEApproach (MLE):This is the same as formulation (4),

i.e., the similarity value of trace is given by
. The trace with the maximum similarity value is de-

clared to be the victim’s.
2)Minimum Square Approach (MSQ): This is essentially for-

mulation (7), i.e., the similarity value of trace is given by
. The trace with the least negative sim-

ilarity value is declared to be the victim’s.
3) Basic Approach (BAS): In this approach, motivated by the

uniform noise distribution (8) and (9), but to allow more flex-
ibility, the adversary assumes that the noise is zero-mean and
has a specific standard deviation , but makes no assumption
about its exact distribution. The adversary then computes the
similarity value of trace with the collected side information
using the following equation:

(10)

where if , and 0 otherwise. Hence,
the adversary accepts a trace as a potential candidate if it is
possible for the trace owner to appear in a radius of of
the revealed location, which encloses all possible noise if it is
uniformly distributed, or 95.6% of noise if it is Gaussian. The
trace with the maximum similarity value is declared to be the
victim’s.
4) Weighted Exponential Approach (EXP): In this approach,

which is proposed and analyzed in [26], we assume that the ad-
versary does not know the type of noise or its magnitude. Similar
to BAS, the adversary computes and maximizes the similarity
value of trace using the following equation:

(11)

where is some weight assigned to the revealed
cell and is a constant. This formulation describes a
similar concept as in the BAS approach, but one that is not as
drastic. The exponential function assigns a higher weight when
the trace location is closer to the side information, but the weight
decays to zero more slowly than the abrupt vanishing property
of the characteristic function in the BAS formula. In the simu-
lations, we let the weights in the denominator be equal because,
with possible errors in the revealed location, it is unclear how
different weights could be assigned.

The above formula can be easily modified for case A2. For
convenience, we first define for each trace , the function

where , , and . Then,
we have the following:
MLE :

MSQ :

BAS :

EXP :

Notice that the four approaches have the same computational
complexity, which is linear in the number of pieces of revealed
side information and the number of nodes.
A remark in place is that our exposition assumes attack strate-

gies where the victim is assumed to be one of the participants.
However, the strategies apply or can be easily extended to the
case in which it is uncertain if the side information collected for
a mobile node actually corresponds to any participant. In par-
ticular, the MLE approach can be used directly without modi-
fication, while a properly picked threshold can be used for the
other attack strategies to remove traces from consideration if
their similarity to the victim’s trace is lower than the threshold.
This can certainly be formulated rigorously in terms of statis-
tical hypothesis testing.

B. Strategy for Problems B1–B3

In this scenario the adversary observes the participants di-
rectly. Note that the information about the traces is only revealed
progressively in time, in a synchronized way with respect to the
information collected by the adversary. The overall algorithm is
specified in Fig. 1. As there is no noise when additional infor-
mation is acquired, the adversary does not need to use any infer-
ence strategy. The Attack program takes as input the traces that
are published progressively. The algorithm first assumes that
all the traces are candidate traces for each participant. A trace
is said to be a candidate trace of a participant if it appears at the
same set of times and locations as when/where the adversary
meets the participant, and the trace has not yet been identified.
As time evolves, the adversary removes candidate traces that do
not agree with the observed information about each victim from
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Fig. 1. Specification of Attack algorithm.

the set for that victim. The function Cascade takes two input pa-
rameters, where candidate_set is the candidate set of all
victim nodes and is the victim ID identified. The function is
called when a victim’s trace is identified, so as to remove that
trace from the candidate set of other victims. The candidate set
size is the -anonymity of the victim, as every trace in the can-
didate set is possibly the victim’s.
Notice that the adversary may not identify a participant at

times they meet each other, but the identification can occur at
a later time when all but one candidate traces are identified and
removed, as indicated by the recursive Cascade function call in
Fig. 1. Hence, the adversary identifies a participant more effi-
ciently when it tries to identify as many participants as possible.

V. TRACE CHARACTERISTICS

In this section, we begin by analyzing the differences in be-
haviors between the real traces. Their differences will be illus-
trated by three types of real mobility traces: 1) cabs in San Fran-
cisco (cab) [31]; 2) buses in a Shanghai grid system (bus) [34];
and 3) cabs in the Shanghai area (shcab) [34]. Basic statistics of
these three sets of traces are listed in Table I. We assume that the
published traces are snapshots taken every minute with spatial
granularity of 0.01 in latitude and longitude for anonymiza-
tion purpose as explained in Section I unless stated otherwise.
Characteristics of traces are studied using the four metrics as
described in Sections V-A–V-D. Observations that can be ex-
plained using differences between movement preferences of the
mobile nodes are summarized at the end of this section.

A. Distribution of Correlation Between Traces

Here, we study the correlation between different traces.
We use the Pearson product-moment correlation coefficient to

Fig. 2. Distribution of correlations between traces of the same set.

TABLE I
BASIC STATISTICS OF THE REAL TRACES

quantify the correlations between node pairs, which is used in
the study in the relationship between taxonomy of texts [38,
Appendix]. It is also related to the cross-correlation function
between stochastic processes [30, Ch. 10]. For any mobile node
pair and , the quantity is defined as follows:

where and are respectively the average and standard
deviation of node ’s locations

(12)

(13)

The distribution of the correlations between different node pairs
is depicted in Fig. 2.
The figure shows that movements of different San Francisco

cabs have little or no correlation. It is because cabs are unlikely
to follow each other for a long time. Moreover, the Shanghai
cabs have higher correlation than the San Francisco cabs. Inves-
tigation reveals that some of the Shanghai cabs did not move at
all over the trace collection period, and their positions are in-
differentiable from each other under the spatial granularity of
the cloaking. This is possibly because they are parked close to
each other, and their identical cloaked locations lead to the high
correlation.
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Fig. 3. Autocorrelation of each trace for different sets of traces as a function of the time shift . (a) Samples for cab traces. (b) Samples for bus traces. (c) Samples
for SH cab traces. (d) Average for cab traces. (e) Average for bus traces. (f) Average for SH cab traces.

B. Autocorrelation of the Same Trace

The autocorrelation of trace with time shifting of
is defined as

In the case of a (stationary)Markov chain with
transitionmatrix , the above value can be explicitly computed
as

where is the th-step transition matrix and is the sta-
tionary distribution of the Markov chain.
The (individual and average) results for the various traces are

shown in Fig. 3 as a function of the time shift . The figure
shows that for the real traces, there are sharp rises in autocorrela-
tion individually and on average when the time shift is one day.
The bus traces also show repeatedly oscillating autocorrelation
values throughout a day because each bus runs on a periodic
schedule. Such oscillations are much less obvious for the cabs
as they move more randomly.

C. Complexity of Movement

In this section, we demonstrate the complexity of nodal
movements as quantified through the order- model com-
plexity given by

(14)

Fig. 4. Order- complexity of different sets of traces as a function of order. (a)
Zoomed. (b) Log scale.

In (14), denotes a general outcome of ’s and the func-
tions and

are the joint probability and conditional probability den-
sities, respectively, of the locations in the collection of traces

.
The above function is defined for general stochastic processes

(see for example [6, Ch. 3]). The value of represents the
uncertainty of the order- model. The smaller the value, the less
uncertainty there is in the model. Notice that is essentially
the entropy of the stationary distribution.
The behavior of (14) as a function of is shown in Fig. 4. The

result conforms to the theoretical result that for any stationary
process is a decreasing function of , and the limit

thus exists. The limiting value is called the
entropy rate of the process , usually denoted by .
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Fig. 5. Distribution of (a) average and (b) minimum distances between pairs
of traces.

Again, in the case of a Markov chain ,
can be explicitly given by

D. Distribution of Distances Between Traces

Fig. 5(a) shows the distribution of average distance between
trace pairs, which is defined as

for trace pair and , where , and Fig. 5(b) depicts the
distribution of minimum distance between trace pairs, which is
defined as

E. Implications of the Trace Characteristics

Many of the observed different characteristics of the mobility
traces can be summarized and explained using the natural pref-
erences for certain places visited by the mobile nodes as shown
in the real traces, such as the busy downtown area for the cabs
and the assigned routes for the buses.
For instance, the real traces have their preferred visiting

places, resulting in a small , and the entropy drops slowly
when the order increases. This is also reflected in the small av-
erage distances between cabs or between buses. Moreover, the
cab and bus traces collected from Shanghai exhibit a broader
spatial range than the cab traces from San Francisco, which is
likely because the size of Shanghai is larger than that of San
Francisco. At the same time, the popular places in Shanghai
are distributed more sparsely than those in San Francisco, such
that the Shanghai cabs have a larger average distance from
each other than the San Francisco cabs. Because some of the
bus routes are closer together while some are farther apart, the

result is that only 50% of the buses have met each other as
shown in Fig. 5(b), while almost 100% of the San Francisco
cabs and 70% of the Shanghai cabs have met each other.
When nodes are more sparsely distributed in the network

area, more efficient victim identification results when the adver-
sary collects the side information passively (Problems A1 and
A2). On the other hand, sparsity of nodes can both be benefi-
cial and detrimental to the performance of an adversary who ob-
serves the participants directly (Problems B1–B3). It is because
when the mobile nodes are sparsely distributed, it could take
much longer time for the adversary to meet them, thus harming
the attack efficiency. Meanwhile, once the adversary meets a
mobile node, it could identify the trace of the node almost in-
stantaneously as no other mobile nodes (and hence traces) are
around at the same time, thus helping the attack performance.
We will verify these expectations experimentally in Section VI.

VI. SIMULATION RESULTS

A. Results for Passive Adversary

In this section, we study the attack scenario where the ad-
versary tries to identify the trace of one participant (the victim)
by gathering side information passively. In each simulation, the
victim is randomly picked from all the participants. Pairs of

of the victim are then randomly sampled from
the trace, and noise is introduced in the spatial domain. The
noisy data are revealed to the adversary as side information,
which the adversary utilizes to identify the complete movement
history of the victim from the published traces. We assume that
the published traces are snapshots taken every minute with spa-
tial granularity of 0.01 in latitude and longitude for anonymiza-
tion purpose unless stated otherwise. Results reported are for
simulation experiments each repeated 100 000 times.
We quantify the performance of the strategies with the fol-

lowing metrics.
1) Fraction of correct conclusions: A conclusion is correct if
the victim is uniquely identified according to the criterion
of highest similarity metric, or the victim is among the set
of candidates with the highest similarity metric and all the
candidates are indifferentiable from each other.

2) Fraction of incorrect conclusions: A conclusion is incor-
rect when the victim is not among the set of candidates
having the highest similarity metric.

3) Fraction of undecided conclusions: A conclusion is un-
decided when the victim is among the set of candidates
having the highest similarity metric and the candidates are
not indifferentiable from each other.

1) Problem A1: We present the results based on the percep-
tion of the passive adversary on the noise when the side informa-
tion references time instants that coincides with sampled times
in the traces.
1) Correct assumption about the noise distribution: We first

consider the case when the revealed location of the victim is
perturbed with zero-mean Gaussian noise with standard devia-
tion , which matches the assumption made by the adversary
in MLE. Fig. 6 shows the performance of the attack strategies
using the cab, bus, and shcab traces.
When we compare the two attack strategies that assume

knowledge of the noise, namely MLE and BAS, MLE is more
aggressive as it excludes a trace from further consideration as
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Fig. 6. (Problem A1) Performance of various metrics as a function of the number of pairs revealed. (a)–(c) San Francisco cab traces,
(d)–(f) Shanghai Grid bus traces, and (g)–(i) Shanghai cab traces. Zero-mean Gaussian noise with . (a) Correct conclusions, cabs. (b) Incorrect conclusions,
cabs. (c) Undecided conclusions, cabs. (d) Correct conclusions, buses. (e) Incorrect conclusions, buses. (f) Undecided conclusions, buses. (g) Correct conclusions,
Shanghai cabs. (h) Incorrect conclusions, Shanghai cabs. (i) Undecided conclusions, Shanghai cabs.

Fig. 7. (Problem A1) Performance of various metrics as a function of the spatial granularity of the trace set, for different numbers of pairs
of side information. San Francisco cab traces. MLE attack strategy. Zero-mean Gaussian noise with . (a) Correct conclusions. (b) Incorrect conclusions.
(c) Undecided conclusions.

soon as it determines that the trace cannot be perturbed to the
revealed locations of the victim given the type and magnitude
of the noise assumed. Hence, when the adversary’s assumption
is correct, this approach can give very good results in the
fraction of correct conclusions, although it can also give a large
fraction of incorrect conclusions initially, when the adversary
has only a few pairs of the side information because the traces
with the highest similarity for only a few pieces of noisy side
information may not be truly the victim’s. In comparison, BAS
generally returns lower fractions of both correct and incorrect
conclusions as it gives equal weights to traces that agree with
the side information within the error bounds. This results
in more undecided conclusions, i.e., there is more than one
trace, including the correct one, which shares the same highest
similarity value, and the victim’s trace is undecided among
the set. Notice that because the error bounds are not large
enough to enclose all possible noise, the fraction of incorrect

conclusions increases initially for BAS when more pieces of
side information are available to the adversary.
We now look at the other two approaches that do not use

knowledge of the noise, namely MSQ and EXP. We can see that
although MSQ does not require the knowledge, its performance
is similar to the best-case performance of MLE in terms of the
fraction of correct conclusions. Meanwhile, EXP performs the
worst as it puts too much weight on traces that give little devi-
ations from some of the pieces of side information.
Next, we evaluate the impact of the granularity of spatial

cloaking. Results of the MLE attack on San Francisco cab traces
are shown in Fig. 7. In the experiments, the adversary’s side in-
formation is inaccurate or noisy. We fix the amount of noise in
the side information and vary the spatial granularity of the pub-
lished trace set.
If the adversary’s side information is accurate, we expect

that a finer spatial granularity of the traces will increase the
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Fig. 8. (Problem A1) Performance of various metrics as a function of the number of nodes in the published trace set, for different numbers of
pairs of side information. San Francisco cab traces. MLE attack strategy. Zero-mean Gaussian noise with . (a) Correct conclusions. (b) Incorrect conclusions.
(c) Undecided conclusions.

Fig. 9. (Problem A1) Performance of various metrics as a function of number of pairs revealed. (a), (d) Uniform noise assumed, Gaussian actual.
(b), (e) Gaussian noise assumed, Uniform actual. (c), (f) Uniform noise both assumed and actual. San Francisco cab traces. Noise with . (a)–(c) Correct
conclusions. (d)–(f) Incorrect conclusions.

effectiveness of the attack. This is because, when the grid cell
is larger, more traces are likely to share a common cell, which
makes it harder for the adversary to differentiate between the
traces.
When the side information is inaccurate, however, the results

in Fig. 7 show that interestingly, a coarser spatial granularity is
not always bad for the adversary. This is because when the side
information has mistakes, these mistakes may in fact be miti-
gated, or sometimes even masked, by a coarser cell structure.
There is hence a competitive effect between the higher discrim-
inative power of finer cells on the one hand, and possible error
mitigating effects of coarser cells on the other. The result is that,
as shown in Fig. 7, the adversary generally has the best perfor-
mance at an intermediate cell size.
We now evaluate the impact of the number of nodes in the

trace set. In this set of experiments, we always include the victim
node in the trace set, but vary the number of other nodes that co-
exist with the victim. Fig. 8 shows the performance of the adver-
sary using MLE as a function of the total number of nodes in the
trace set. The results show that, as expected, the adversary has a
higher ability of identifying the victim when the size of the trace
set gets smaller. Furthermore, the adversary derives more ben-
efit from a smaller number of nodes when she possesses fewer
pieces of the side information.
2) Incorrect assumptions about the noise distribution: We

now consider the case when the assumption of noise distribution

made by the adversary in MLE is incorrect. Fig. 9(a) and (d)
shows the performance of the strategy when the actual and as-
sumed noise is Gaussian and Uniform, respectively. Fig. 9(b)
and (e) shows the results when the actual and assumed noise is
Uniform and Gaussian, respectively. Fig. 9(c) and (f) shows the
results when the noise distribution is Uniform, and the adver-
sary assumes the same.
Notice that among the approaches that assume about the

noise, MLE is affected the most by the wrong assumptions. In
particular, the performance of MLE varies depending on the
types of actual and assumed noise. When the adversary assumes
the noise to be Uniform but it is Gaussian, the performance is
much worsened since the victim’s trace can be mistakenly and
permanently removed from consideration due to occasional
Gaussian noise that exceeds the range of the assumed Uniform
noise. On the other hand, when Gaussian noise is assumed
but it is actually Uniform, MLE surprisingly gives a greater
fraction of correct conclusions than when the correct noise
distribution is assumed, albeit at the price of getting a greater
fraction of incorrect conclusions also. In contrast to MLE, the
performance of BAS is less sensitive to the type of noise.
2) Problem A2: Fig. 10 shows the performance of the at-

tack approaches for different sampling time intervals for the cab
traces when the side information references time instants that
does not coincide with sampled times in the traces. Zero-mean
Gaussian noise with is introduced into the spatial domain
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Fig. 10. (Problem A2) Performance of various metrics for attacks requiring different degrees of movement inference for each trace as a function of number of
pairs revealed. San Francisco cab traces, zero-mean Gaussian noise with . (a), (d) min; min; (b), (e) min;

min; (c), (f) h; half an hour. ( is the trace sampling time, and is the interval for computing the transition matrix.) (a) Correct conclusions,
10-min sampling, (b) Correct conclusions, 30-min sampling, (c) Correct conclusions, 60-min sampling, (d) Incorrect conclusions, 10-min sampling, (e) Incorrect
conclusions, 30-min sampling, (f) Incorrect conclusions, 60-min sampling.

Fig. 11. (Problem A2) Performance of various metrics for attacks requiring different degrees of movement inference for each trace as a function of number of
pairs revealed. Traces are sampled every half an hour, and the transition matrix is generated using sampling information every 15min. (a) Correct

conclusions, buses. (b) Incorrect conclusions, buses. (c) Correct conclusions, Shanghai cabs. (d) Incorrect conclusions, Shanghai cabs.

of the side information except for the line labeled “no noise.”
The figure shows that the sparser the samples in the traces, the
less effective the attacks are in general. This is expected since
when samples are sparser, inference of nodal movements be-
tween the sampling points becomes less reliable. Fig. 11 shows
the results for the bus traces and the Shanghai cab traces. The
figure shows that without noise in the side information, even
with a sampling temporal granularity of an hour and spatial
granularity of 0.01 , the adversary is able to identify the victim’s
trace by fewer than 25 pairs of side information with high prob-
ability. When noise is introduced, however, the results depend
heavily on the traces. For instance, the effect of noisy side infor-
mation on the attack strategies is more noticeable for both the
Shanghai bus and cab traces.
When we compare the performance of the attack approaches

in this case with the special case in Section VI-A.1, in which
no inference using a general movement model is necessary,
the performance here does not degrade significantly for

and . Interestingly, gives a much larger fraction
of incorrect conclusions and slightly larger fraction of correct
conclusions initially when movement has to be inferred, while

performs about the same in both cases.
3) Summary on Passive Adversary Strategies: The results

show that approaches relying on the assumption of noise could
have very poor performance when the assumption is wrong, as
illustrated by the MLE results. On the other hand, an approach
not having knowledge of the noise may still perform well. In
particular, MSQ performs equally well as MLE even when the
latter has the correct noise assumption. Since MSQ also per-
forms better than the heuristic approaches of BAS and EXP, it
appears to be the preferred adversary strategy overall.

B. Results for Active Adversary

In this section, we examine the performance of the active ad-
versary who gains side information by direct meetings with the
participants. Recall that this adversary can identify a victim by
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Fig. 12. -anonymity of the victim as observed by the adversary as a function of attack time, when the adversary is (a)–(c) one of the mobile nodes (Problem B1),
(d)–(f) static (Problem B2), and (g)–(i) mobile within a predetermined path (Problem B3). (a) One of mobile nodes (cab). (b) One of mobile nodes (bus). (c) One
of mobile nodes (SH cab). (d) Static attacker (cab). (e) Static attacker (bus). (f) Static attacker (SH cab). (g) Mobile attacker (cab). (h) Mobile attacker (bus).
(i) Mobile attacker (SH cab).

elimination, and the process is most efficient if the adversary
meets the participants as quickly as possible. We assume that
the adversary operates to achieve this goal. We further assume
that the adversary’s side information is gained only at times co-
inciding with sampled times of the traces.
1) Problem B1: Fig. 12(a)–(c) shows the average
-anonymity of the victims as observed by the adversary
as a function of the attack time for different sets of the traces,
when the adversary is one of the mobile nodes. The figures
show that the most reduction in -anonymity for each partici-
pant results from observations made in the first day in the real
traces. Notice also from the figures that there are flat regions in
the bus trace results corresponding to night times of the days.
The cab traces exhibit a similar behavior, but it is much less
obvious due to the cabs’ own mobility characteristics.
2) Problem B2: Fig. 12(d)–(f) shows the -anonymity of the

victims as observed by the adversary as a function of attack
time, when the adversary stays at one of the cells. Each line in
the figure represents the results for a particular staying cell, and
the line label shows the relative coordinates of that cell in the
network area. We plot the results of the six most popular cells
in each figure, and the popularity of a cell is ranked according
to the total number of visits made by the mobile nodes over the
entire trace.
The figures indicate that for the real traces, staying at a cell for

a day is sufficient to reduce the -anonymity for each participant
significantly. The improvement by staying longer at each cell is
minimal.

3) Problem B3: Fig. 12(g)–(i) shows the -anonymity of the
victim as observed by the adversary as a function of attack time,
when the adversary moves actively inside the network area. The
label of each line in the figure indicates the number of popular
cells visited by the adversary. The adversary uses a greedy algo-
rithm to compute the shortest route that connects all the popular
cells to be visited and follows this heuristic route throughout the
simulation period. Notice that as the adversary travels between
the popular cells, it may visit other cells during the journeys.
The figures show that travels made by the adversary gener-

ally improve the attack efficiency in identifying the traces. For
instance, for the bus traces, traveling helps the adversary reduce
the size of the candidate set for each participant from more than
2000 to only a few in about one day, while staying at a cell can
only reduce the size by half. It is because by traveling, the ad-
versary is able to meet more participants, especially when their
spatial distribution is sparser, such as the bus and cab traces from
Shanghai. However, traveling to too many places may hurt the
performance because the adversary may spend too much time
traveling over unpopular places.
4) Summary on Active Adversary Strategies: In this sec-

tion, we studied different strategies for an active adversary to
collect snapshots of the victims. The results show that for the
real traces, the ability of the active adversary to travel helps it
identify many of the victim traces in a realistic amount of time.
When the adversary prefers to stay at a cell, the attack efficiency
depends on the type of traces and the staying location of the ad-
versary. In general, staying at a more popular location helps by
allowing the adversary to identify more victims more quickly.
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VII. DISCUSSION

Our analysis in this paper is motivated by the existing
practice of releasing mobility traces in various public data
portals [7], [34]. This practice is well intended. For example,
the traces can be used to provide realistic input for trace-driven
simulations, which can better ensure the relevance of the
simulation results than synthetic traces. For these intended
purposes, preservation of information at the granularity of
individual traces is crucial. Furthermore, in order not to impose
unnecessary constraints on using the traces for diverse types of
investigations, these portals release entire trace sets of data to
the user and leave it up to the user to exploit the available data.
It is natural for us to inquire the privacy implications of such
comprehensive release of information, and our analysis is a
contribution to this investigation, beyond a general realization
of the potential problem. Specifically, we provide a systematic
study of the privacy problem in order to quantify its severity
when exploited by an intelligent adversary, whose power is
however limited by the amount of side information available to
her.
Our analysis assumes techniques of spatial and temporal

data cloaking that are admittedly basic. A main advantage of
more basic cloaking techniques is, however, their ability to
better guarantee the relevance of the cloaked data to diverse
applications, including those that cannot be characterized
a priori. Our chosen approach should not be taken as ruling out
the use of more sophisticated cloaking techniques, however.
These techniques are certainly possible, and many examples are
known [1], [16], [29], [32], [39]. However, they all come at the
price of requiring more severe transformations of the original
data that will render the data applicable for specific applications
only, i.e., types of applications for which the transformations
are carefully designed.
In particular, differential privacy (DP) [8], [9] is a widely

studied approach for ensuring the privacy of a data set in the
face of a powerful adversary. In spite of its importance, how-
ever, DP makes assumptions about the use of a data set that
are fundamentally incompatible with our problem context. For
example, in order to provide strong privacy, DP does not give
users unlimited access to the data set. Rather, the user must issue
queries to learn about the data, and the types, as well as numbers,
of allowable queries are carefully restricted, e.g., only aggre-
gate-sum queries may be allowed [32]. Based on these restric-
tions, DP may calculate the amount of noise needed to ensure
that no private information can be learned from adjacent data
sets [9]. In particular, for time-series data such as our mobility
traces, the amount of noise needed may in the worst case grow
linearly with the number of queries [32]. Moreover, by nature of
its design, DP is able to provide summary or statistical answers
about a data set only, but it does not allow to preserve informa-
tion at the granularity of the individual traces. As we remarked,
the loss of per-trace information makes the data unsuitable for
certain purposes including trace-driven simulations.

VIII. CONCLUSION

In this paper, we studied the privacy vulnerability of pub-
lished mobility traces even when the true node identities are
made anonymous and the recorded node positions may be im-
precise. We presented comprehensive strategies for an adver-
sary to well utilize side information about node movements, col-

lected either passively or actively, to achieve different privacy
attacks. We proved mathematically an optimal approach for the
adversary to identify a victim’s trace from the published data
exploiting all the available information.
Our analysis is verified and complemented by simulation re-

sults under comprehensive system parameters, such as the nodal
mobility, adversary strategy, noise in the trace or the side in-
formation, and different extents of movement inference needed
for the attack. In general, our results showed that the adversary
is able to identify victims with high probability even when the
available side information is limited. Furthermore, for the pas-
sive adversary, attacks that make detailed noise assumptions,
such as MLE, could have poor performance when the assump-
tions are wrong. On the other hand, MSQ does not rely on these
assumptions, and its performance is robust. It performs as well
as MLE even when the latter has the correct noise assumption.
It also performs better than the heuristic approaches of BAS and
EXP. Overall, MSQ appears to be the preferred passive adver-
sary strategy. For the active adversary, we show that its ability
to travel can help it to identify many of the victim traces in a
realistic amount of time.
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