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We analyze the quality of monitoring (QoM) of stochastic events by a periodic sensor which monitors
a point of interest (PoI) for q time every p time. We show how the amount of information captured
at a PoI is affected by the proportion q/p, the time interval p over which the proportion is achieved,
the event type in terms of its stochastic arrival dynamics and staying times and the utility function.
The periodic PoI sensor schedule happens in two broad contexts. In the case of static sensors, a
sensor monitoring a PoI may be periodically turned off to conserve energy, thereby extending the
lifetime of the monitoring until the sensor can be recharged or replaced. In the case of mobile
sensors, a sensor may move between the PoIs in a repeating visit schedule. In this case, the PoIs
may vary in importance, and the scheduling objective is to distribute the sensor’s coverage time in
proportion to the importance levels of the PoIs. Based on our QoM analysis, we optimize a class of
periodic mobile coverage schedules that can achieve such proportional sharing while maximizing
the QoM of the total system.
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1. INTRODUCTION

There is considerable interest in using sensors to protect populated areas
against physical hazards, such as chemical, biological, nuclear, radiational,
and explosive (CBNRE) leaks/attacks. Real-world sensors have limited ranges
of tens to hundreds of feet. If the area to be protected is large, it may be difficult
to install and deploy a sufficient number of sensors to cover the entire area.
This leads to strong interest in the use of mobile sensors to expand the area of
coverage, so that one sensor can cover multiple points of interest (PoIs) where
interesting events may dynamically appear and disappear.

Note that there are many real-world examples of mobility in monitoring
tasks. In traditional public safety work, policemen or security guards are on
patrol schedules around town or inside facilities to detect crimes. In national se-
curity, reconnaissance planes routinely fly over mission areas to collect surveil-
lance images, since the installation of (static) video cameras in the mission
areas may be out of the question (e.g., they are foreign or enemy territories). In
the case of sensor networks, certain sensors are expensive and complete area
coverage by static sensors would have prohibitive costs. For example, in the
Memphis Port deployment against water pollution/poisoning [Lee and Kulesz
2006], the engineers emphasize in the project report that with the high pro-
curement, installation, and management costs of the Smith APD2000 chemical
sensors, it was not possible to have complete area coverage. They then made the
difficult decision to (statically) place the sensors where the impact on people
protection is highest.

There are also situations in which, independent of costs, mobility is simply
required for the sensor network. For example, when (static) sensors are placed
at PoIs where long-range data communication is difficult (e.g., underwater [Bis-
nik et al. 2006], where the high wireless signal attenuation in water makes it
infeasible to transmit sensor data over long distances, or in an underground
system of ducts where complex pathways connect the PoIs so that the place-
ment of communication nodes to reliably get data out from underground is
extremely hard), a mobile node is necessary to move between the PoIs to collect
the sensor data and carry them to a data center for analysis. In this case, data
may be buffered at a sensor before they are read, but the buffer capacity is
limited so that unread data may be replaced by newer data and lost. Hence,
the data available for reading are similar to stochastic events that stay for a
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time duration after which they will disappear.1 The use of a mobile node for
data collection also has the advantage of reducing the sending energy of the
sensors [Chakraborty et al. 2006].

At the same time, it is recognized that different parts of the protected area
may vary in terms of their importance. For example, as in the Memphis Port
deployment, some parts are densely populated while other parts are sparsely
populated, so that an undetected hazard in the former will result in more
harm than in the latter. In such a scenario, simple area of coverage is no
longer sufficient. An arguably more suitable goal is to allocate sensing resources
to the different parts in proportion to their importance levels. Note that in
the case of static sensors, their placement to best protect people has been
considered in the Memphis Port deployment [Lee and Kulesz 2006]. There,
because the Smith APD2000 chemical sensors used to detect toxic chemical
leaks are expensive, they cannot cover the whole area. A search method is used
to best place the next sensor to maximize the marginal increase in the number
of people protected. Proportional sharing of resources is not a new concept. The
notion has been employed in the scheduling of CPU time, network bandwidth,
buffers, disk space, etc [Jeffay et al. 1998; Parekh and Gallager 1993], where the
performance impact on the rates of computation and communication has been
well studied. In CPU scheduling, for example, a scheduler may give one task
twice the CPU share as another task. In this case, the performance impact
is more or less clear: the first task gets twice as much computation done as
the other task over the same real-time interval, if both tasks run the same
application. In the case of sensor coverage, however, proportional sharing must
be evaluated in terms of its impact on the quality of monitoring (QoM), which
can be expressed as the number of interesting events captured, or the total
amount of information captured about these events. The problem is not well
understood.

In this article, we target the problem of information capture about stochastic
events (e.g., a chemical leak) that dynamically appear and disappear at a given
set of locations called points of interest (PoI). The events are detected by a
mobile sensor (e.g., a chemical detector carried by a robot) which allocates its
coverage time among the PoIs in proportion to their importance levels. In our
problem, we argue that the QoM of proportional-share sensor coverage may
not have a simple interpretation that γ times the resource allocation to a PoI
will result in γ times better performance for the PoI. Rather, the achieved QoM
is an interesting function of several important system parameters, including
the time scale of the proportional sharing, the event dynamics, and the type of
events. Our contributions are two fold, summarized as follows.

First, we provide extensive analysis to answer the following questions as a
function of the event dynamics and type of events: (1) What is the QoM of a
sensor that covers a PoI for q time every p time? Does a higher proportional

1The sensing range in Section 2 will then correspond to the communication range between the
sensor and the mobile node. The event utility function there might account for the time needed for
different useful fractions of the total data (about a physical world event) to be uploaded from the
sensor to the mobile node.
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share of q/p imply a linearly higher QoM? (2) For the same q/p, what is the
impact of the period p that controls the fairness granularity of the proportional
sharing? Under what situations is finer/coarser time-scale sharing preferred
over the other? (3) What is the scaling law of mobile coverage, that is, when a
mobile sensor is allocated among k out of n PoIs, how is the average QoM over
all the PoIs affected as k increases? Can mobility fundamentally improve the
sensing by increasing the achievable QoM?

Second, based on the QoM analysis, we will analyze the performance of
a class of periodic coverage algorithms considering the travel time overhead
between PoIs. We first optimize a linear periodic sensor schedule for maximum
total QoM that achieves given proportional shares of the coverage time. We then
discuss the optimization of general periodic schedules. We present a simulated
annealing algorithm for finding a solution close to the global optimal with high
probability and within a practical time budget.

We mention in passing that independent of mobility, the analysis of periodic
sensor schedules has obvious applications in energy-efficient sensing. In this
case, an energy-constrained static sensor may be deployed at each PoI, and
there is a need to periodically turn off the sensor to conserve energy, so that the
sensor will last long enough until it can be recharged or replaced. Our analysis
in Section 4 gives directly the QoM of such a periodic sensor. In particular, our
results show that for events that stay, the QoM of a sensor working for q/p of
the time may capture a fraction of information much higher than q/p. Hence,
such periodic scheduling of the sensors can be quite productive. Our results also
show where it is useful (and where it is not) to have finer granularity of the
periodic scheduling, in terms of a smaller p, to achieve a higher QoM. In this
case, however, it is clear that the benefits of extremely fine grained periodic
scheduling may be limited/offset by the latency and energy costs of turning
on/off a sensor. The development of the full details such as the energy models
is out of the scope of the present article. Also, for simplicity of exposition, we
will develop our problem from the point of view of mobile coverage only in the
rest of this article.

2. PROBLEM STATEMENT

We assume that events appear and disappear at given points of interest (PoIs)
and are to be monitored by a sensor whose sensing range is R and whose sens-
ing region is a circle of radius R. Although such a “perfect disk” sensing model
is widely applied, it can be a simplifying assumption as the coverage regions of
real-world signals have been found to be nonisotropic [He et al. 2003]. However,
while it is possible to obtain more accurate numerical solutions by considering
more elaborate sensing models (e.g., accounting for the exact geometry of the
sensing region or specifying the sensing range as a random variable of some
probability distribution), the simple model will allow us to obtain essential
results about how event monitoring is impacted by the event types and dynam-
ics, without being detracted by the more involved mathematics. The PoIs are
located on a 2D plane. A pair of PoIs, say i and j, are connected by a road,
given by Eij, of distance dij. If there is no road that directly connects i and j,
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Fig. 1. Event dynamics at PoI i, with the event staying and absent times Xi
k and Y i

k for k = 1, 2, . . ..

dij = ∞. Otherwise, the sensor traveling at speed v from i to j takes time dij/v

to complete the trip.
The next set of assumptions concerns the event dynamics. The events appear

at PoI i one after another. After appearing, each event stays for a duration of
time, which we call the event staying time, and then disappears. The next event
appears after another duration of time, which we call the event absent time.
Here and in the following, we will use superscript and subscript to denote the
PoI and event indices. We denote the sequential staying and absent times by
{Xi

k}k≥1 and {Y i
k}k≥1. The event inter-arrival time is then denoted by Zi

k = Xi
k+Y i

k.
We assume that (for each i) the vectors {(Xi

k, Y i
k)}k≥1 are i.i.d. random variables

drawn from a common distribution (Xi, Y i), even though for each k, the Xi
k and

Y i
k may be dependent. Lastly, the commonly known event arrival times can be

recovered by the formula: T i
0 = 0, T i

k = T i
k−1 + Zi

k for k, i ≥ 1 even though
the T i

k ’s will not be used in the analysis. These variables are illustrated in
Figure 1.

An important assumption behind the analysis of this article is that the event
dynamics at different PoIs are independent. This can be justified in two situ-
ations: (i) there are indeed no correlations between the PoIs because they are
physically isolated or are far apart relative to the spatial extents of the events
(e.g., monitoring two storage tanks of chemicals in two separate rooms for leak-
age); and (ii) regardless of the presence or absence of correlations between the
PoIs, the information acquired at different PoIs might not be aggregated but is
accounted for on a per-PoI basis (e.g., a manager at an operation facility X in
a factory is satisfied by her knowledge about X, regardless of whether similar
or the same information is also acquired by a manager at another facility Y).
Clearly, if information can be aggregated across PoIs to gain further global in-
formation about a target (e.g., movement of the target in a global surveillance
area), this assumption will have to be relaxed, but such aggregation is beyond
the scope of the current article.

We further classify the events as follows. When the staying time drawn from
Xi is an infinitesimally small amount of time ε, the corresponding events are
like “blips,” that is, they do not stay but disappear instantaneously after arrival.
Another type of events is that which stays, that is, there is an 0 < ε � 1 such
that P(X ≥ ε) = 1.

An event at a PoI is captured by the sensor provided that the PoI is within
range of the sensor during the event’s lifetime. We assume that events are
identifiable, that is, when the sensor sees an event at a PoI, leaves the PoI,
but comes back later to see the same event, it will know that it is the same
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Fig. 2. The utility functions.

event. It is important to note that many investigative actions in the real-world
assume the identifiability of events naturally, either by reasonable domain
knowledge (e.g., if the spread of an oil spill in the ocean is monitored by periodic
measurements of the oil concentrations at specific locations, it is reasonable to
assume that the same oil spill is being monitored unless the oil spill is known
to have been cleaned up) or because the target possesses easily identifiable
attributes (e.g., when a doctor orders diagnostic tests for a patient, clearly
the identity of the patient is assumed known, and the doctor accumulates
knowledge about possible diseases by a series of non-contiguous tests). On the
other hand, if events are not identifiable, then it is not possible to accumulate
knowledge across noncontiguous measurements and the information learned
for an event will be in principle the maximum obtained for that event among all
the individual measurements. However, in practice, the set of measurements
that should be used in taking the maximum is not clear without event identities.
The monitoring of such nonidentifiable events is beyond the scope of this article.
We assume that as the sensor observes an event, the information it accumulates
about the event is nondecreasing as the observation time increases. We quantify
the sensing quality as a utility function that increases monotonically from zero
to one as a function of the total observation time. Figure 2 illustrates the
following five examples of the utility function considered in this article:

(a) Step Function: UI(x) = 1 for x > 0. Full information about an event
is obtained instantaneously on detection. This function might approximate
the detection of events that have easily observable attributes, for example,
determining the colors (rather than more detailed properties) of cars pass-
ing by a checkpoint using a video feed. It is also widely adopted in the sen-
sor network literature, where events are assumed captured whenever they
fall within the sensing range of a sensor, no matter how brief the sensing
time is.

(b) Exponential Function: UE(x) = 1 − e−Ax. Much of the information about
an event is obtained at the beginning but the marginal gain decreases as the
observation time gets longer. This function models events about which the
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gain in confidence with further measurements follows the law of diminishing
marginal returns, such as the detection of radioactive sources [Sundaresan
et al. 2007].

(c) Linear Function: UL(x) = Mx for 0 ≤ x ≤ 1
M and UL(x) = 1 for x ≥ 1

M .
Information obtained increases linearly with the observation time until the full
information is achieved. A real-life example might be, in solving a crime case,
identifying the people who entered a room within a time window, where there
are no known correlations between who might enter or not. In this case, each
identification contributes incrementally to the overall understanding, and they
are equally important.

(d) S-Shaped Function: US(x). The initial observation gains little informa-
tion until a critical observation time is reached, at which point there is a large
marginal gain of information in a short time, and afterwards the marginal gain
drops sharply as the full information is approached. This function models gen-
eral learning trends which are combinations of positive and negative learning
curves [Cochran 1960]. Once a critical mass of basic knowledge is obtained,
the learning of a skill improves quickly with some more training, but once a
threshold is reached, perfection of the skill may take a very long time.

(e) Delayed Step Function: UD(x) = UI(x − D). No information is gained
until the total time of observation exceeds a threshold value D, after which
the full information is captured instantaneously. A real-life example might be
the examination of a product for certification, and certification is given only if
a required sequence of tests are all passed. The delayed step function is also
an approximation for the S-shaped function but is more amenable to analysis.
We view (a) and (e) as extreme cases. All of the above, except (d), are quite
amenable to analytical formulations.

When PoI i falls within the range of the sensor, we say that the sensor is
present at i. Otherwise, the sensor is absent from i. Since we are interested
in the resource competition between different PoIs, we make the following
assumption.

Assumption 1. The PoIs and the roads between them are separated such
that (1) no two PoIs fall within the range of the sensor at the same time; (2) for
the sensor traveling from PoI i to PoI j on Eij at speed v, i will be within range
of the sensor for R/v time before the sensor leaves i, and j will be within range
of the sensor for R/v time until the sensor reaches j, and (3) no PoI other than
i and j falls within the range of the sensor during the trip on Eij. In general,
however, the sensor can vary its speed while traveling on a road.

2.1 Definition of QoM

We now define the quantitative measurement of the QoM at a PoI or for the
whole protected area. In the course of a deployment, denote by ei

1, . . . , ei
li the

sequence of events appearing at PoI i over the duration [0, T ] of the deployment.
For the event ei

j , assume that it is within range of the sensor for a total (but
not necessarily contiguous) amount of time ti

j , where ti
j ≥ 0. The sensor will
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then gain a certain amount of information, U i
j(t

i
j), about ei

j , where U i
j(·) is the

utility function of ei
j . The total information gained by the sensor at i is defined

by Ei(T ) = ∑
1≤ j≤li U i

j(t
i
j), and the average information gained per event at i

during the whole deployment period is then Ei(T ) = Ei(T )/li. Similarly, the
total information gained by the sensor in the whole deployment is E∗(T ) =∑

1≤i≤n Ei(T ), where n is the number of PoIs in the protected area. The average
information gained per event in the whole deployment is then

E∗(T ) = 1∑
1≤i≤n li

⎛
⎝ ∑

1≤i≤n

li Ei(T )

⎞
⎠ .

By means of the strong law of large numbers and renewal theory, Ei(T ) and
E∗(T ) can be shown to converge to a deterministic number as T −→ ∞. Hence,
we define the QoM of PoI i and the whole covered area as:

Qi = lim
T →∞

Ei(T ), and Q∗ = lim
T →∞

E∗(T ). (1)

Furthermore, they are related by:

Q∗ = 1
μ∗

∑
1≤i≤n

μi Qi, (2)

where μi = 1
E(Z) is the mean event arrival rate at PoI i and μ∗ = ∑

1≤i≤n μi.

Remark. Note that in defining the QoM, we should in principle divide not
only by the number of events l, but also by the maximum possible utility
achievable for an event:

∫ ∞
0 U (x) f (x) dx, where f (x) is the pdf of the event

staying time distribution. The latter may be less than 1 if the events do not stay
infinitely long. However, the difference is only by a proportionality constant,
and hence will not affect our comparison results. Unless otherwise stated, we
will further assume that all the events at i have the same utility function, and
denote this function by U i(·).

3. RELATED WORK

Quality of monitoring metrics in a sensor network have been proposed, for ex-
ample, the rate of false positives in a detection problem [He and Hou 2005].
Area coverage in a sensor network has been well studied [Gupta et al. 2003;
Meguerdichian et al. 2001; Wang et al. 2003]. Protocols have been proposed
to task subsets of sensors in a dense network to provide maximum lifetime
area coverage [Zhang and Hou 2005]. Simple area coverage does not consider
the varying importance of different subregions. Our work addresses the het-
erogeneity of sub-regions by proportional-share coverage. Proportional-share
resource allocation has been proposed for CPU/OS scheduling [Jeffay et al.
1998; Waldspurger and Weihl 1994], and network scheduling for both band-
width and queue buffers [Parekh and Gallager 1993]. Mobile coverage has the
additional challenge that the sensor schedules can be severely constrained by
the adjacencies of and distances between the PoIs.

The importance of the sensing time in accurately assessing various physical
phenomena has been well documented [Lapp and Andrews 1948]. The need for
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nonnegligible sensing durations to obtain useful information is due to noises
in the measurement process and the probabilistic nature of the phenomena
under observation. The impact of the sensing time on the information gained
is captured by the event utility functions in our problem statement.

Mobility has been discussed in delay-tolerant networks, vehicular networks,
and sensor networks. It has been shown to improve the coverage of sensor net-
works when used either throughout a deployment [Liu et al. 2005] or in a more
limited form during the initial phases of deployments only [Howard et al. 2002;
Zou and Chakrabarty 2003; Wang et al. 2004; Poduri and Sukhatme 2004].
Passive mobility has been analyzed for its effects on providing communication
opportunities [Hull et al. 2006; Zhang et al. 2007], and carry-and-forward net-
work protocols have been proposed [Costa et al. 2006; Dai et al. 2007]. Mobility
control has been used to deploy ferries and data mules among a number of data
sources, to optimize communication of the source data to the data sink [Shah
et al. 2003; Zhao et al. 1994]. In a hybrid mobile/static sensor network, similar
data mules are useful for collecting and disseminating data reports from the
static sensors to a control center [Wang et al. 2005]. Route optimization of fer-
ries/mules is in general NP hard, and various heuristic algorithms have been
designed and shown to be effective.

Various problems of using mobile sensors for area monitoring have been
studied. Carlsson et al. [1993] study the problem of finding the shortest watch-
man route in an area which is a simple polygon. They aim to find a route inside
the polygon such that every point inside the polygon can be observed by a point
on the route. Carlsson et al. [1991] study a variation of the problem for multiple
watchmen in which each watchman picks its own shortest route. Efrat et al.
[2000] study the problem of event detection by deploying mobile “guards” to
sweep a region under the requirements that the guards follow the same route
and that consecutive guards along the chain are mutually visible. Guibas et al.
[1999] study the problem of using mobile pursuers to capture a mobile evader
by vision. Batalin and Sukhatme [2003] study the use of mobile sensors for area
patrol and exploration. The sensors need to patrol all given areas as frequently
as possible, but the monitoring time at each point is irrelevant. They propose
a distributed algorithm in which static beacons are deployed by the mobile
sensors for assistance. These problems are all different from ours in that our
PoIs are of different importance and the quality of information obtained in our
problem is affected by the temporal dimension of the sensing.

The dynamics of real-world events are frequently modeled as stochastic pro-
cesses. Poisson arrivals are generally accurate characterizations of a large
number of independent event occurrences, whose event inter-arrival times
are Exponentially distributed. Real-world network/computing workloads have
properties that are found to be long-range dependent and follow the Pareto
distribution, for example, the distribution of file sizes in a file system [Gribble
et al. 1998], or the distribution of traffic in a computer network [Crovella and
Bestavros 1996; Leland et al. 1993]. In a sensor network, the target events may
have similar dynamic behaviors. For example, radioactive particles arriving at
a Geiger-Müller counter follow a Poisson process [Lapp and Andrews 1948];
a chemical leak at a facility may occur with a probability, and the leak may
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persist for a random duration until the chemical has been dispersed; people
may arrive at a location and then leave. Our analysis applies to a wide range
of event inter-arrival and staying time distributions.

The monitoring of PoIs by mobile sensors has been studied in Cheng et al.
[2008], Gupta et al. [2006], and Bisnik et al. [2006]. The concept of sweep
coverage is introduced in Cheng et al. [2008] and contrasted with static full
coverage and barrier coverage problems in the literature. In sweep coverage,
the PoIs need to be visited once every given time interval, and centralized
and distributed algorithms are proposed to satisfy the requirement. Gupta
et al. [2006] study the problem of finding the minimum number of sensors to
estimate the state of processes present in a network with a bounded estimate
error covariance. They assume that the measurements made by the sensors
are coupled with zero mean white Gaussian noise. The consideration of explicit
stochastic events at PoIs in the mobile sensing has been studied in Bisnik
et al. [2006]. Our problem in this article is quite different from these earlier
papers. First, we consider differential coverage of PoIs by proportional sharing
whereas they do not. In particular, we analyze the QoM of periodic sensor
schedules, as a function of the proportional share q/p and the period p. Such
analysis has applications besides mobile coverage, for example, energy-efficient
sensing by periodically turning off a sensor. Second, we consider sensing tasks
with the temporal dimension as defined by the event utility function, whereas
they either do not consider the events explicitly or focus only on the number
of captured events (where an event is captured whenever it falls within the
sensing range of a sensor). Third, we define the concepts of linear and general
periodic schedules among the PoIs, and design optimal algorithms for both
kinds of schedule.

4. SINGLE-POI ANALYSIS OF QOM

This section forms the basis of the analysis of the impact on the QoM by the
coverage schedule of a sensor at a given PoI. The schedule specifies the time
intervals over which the sensor is present at or absent from the PoI. A given
schedule is achieved by how the sensor moves between the PoIs according
to some movement algorithm. The problem of the algorithm design and the
feasibility of a set of PoI schedules are the subject of Section 5.

We can already illustrate some interesting QoM properties of proportional-
share mobile coverage by considering only periodic schedules at individual PoIs.
Specifically, we assume that the sensor is alternately present and absent at a
PoI, say i, for qi and pi − qi time units, respectively. For example, let S1 be the
following the coverage schedule of i:

S1 = {P AAAP AAA. . .}
for qi = 1 and pi = 4. In the schedule, P denotes one time unit of the sen-
sor’s presence and A denotes one time unit of the sensor’s absence. Thus, the
proportional share equals qi/pi = 25% of the sensor’s total coverage time.

Clearly, a given proportional share for i can be achieved in many different
ways. For example, qi = 2 and pi = 8 give the following schedule S2 with the
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same 25% share for i:

S2 = {P P AAAAAAP P AAAAAA. . .}.
While S1 and S2 are equivalent from the proportional-share point of view, they
differ in terms of the time scale over which the proportional share is achieved.
Specifically, S1 achieves the 25% share over a time period of 4 time units,
whereas S2 achieves the same share over a period of 8 time units. We say that
S1 has a finer fairness granularity than S2, and will use pi to quantify this
fairness granularity. Notice that for a fixed proportional share, a smaller pi

implies a proportionately smaller qi.
The main purpose of this section is to analyze the dependence of the QoM on

the utility function and the fairness granularity. In this section, as we will focus
on a single PoI, the superscript i will be omitted where there is no confusion.

The problem as formulated in Section 2 fits perfectly well in the realm of
renewal theory (see Ross [1996, Chapter 3]). Recall that Tk refers to the kth
event arrival time. Then the function N([0, t]) = ∑∞

k=1 1[0,t](Tk) is the total
number of arrivals in the interval [0, t]. Its expectation m(t) = E(N([0, t]))
is called the renewal function. Many important quantities about the renewal
process {Tk}k≥1 can be expressed in terms of m(·). In the following, we use
μ = 1/E(Zk) to denote the event arrival rate. The main results from renewal
theory we will use are:

(1) limt→∞ N([0,t])
t = μ a.s.;

(2) limt→∞ m(t)
t = μ;

(3) limt→∞ m(t + a) − m(t) = μa, for any a > 0.

The last statement is true provided that the distribution of Z is not lattice. It
shows that regardless of the distribution of Z, in the long run, the “probability”
of an event arriving in an interval dt equals μ dt.

The following two types of event staying time distribution will be considered
in this article, where f (x) is the pdf of X.

—Exponential Distribution (λ > 0):

f (x) = λe−λx, x > 0, mean = 1
λ

.

—Pareto Distribution (α, β > 0):

f (x) = αβα

xα+1
, x > β, mean = αβ

α − 1
(for α > 1).

Furthermore, as a simplification for the simulations, the statistics of the event
absent times Y i

k’s is taken to be the same as that for the event staying times
Xi

k’s, even though this is by no means necessary.
We first explain the intuition in analyzing the QoM function. The main step

in computing the QoM at a PoI is to consider the overlapping periods during
which both the event and the sensor are present at the same PoI. A complication
is that the sensor can leave and come back multiple times to the same PoI and
observe the same event. Hence, the total observation period of a single event
will in general be a collection of disjoint time intervals. See Figure 3.
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Fig. 3. Event and sensor dynamics at a PoI. The Xk’s and Yk’s are the event present and absent
periods and the Pj ’s and Aj ’s are the sensor present and absent periods. The lengths of the Pj ’s
and Aj ’s equal q and p − q respectively. In the above example, the total observation period of the
event Xk is the sum of I1 and I2.

For the convenience of the presentation that follows, we denote the propor-
tional share q

p by γ . Furthermore, we use Pj = [( j − 1)p, ( j − 1)p + q] and
Aj = [( j − 1)p + q, jp] to refer to the jth sensor present and absent periods,
respectively. For many of the proofs, it is sufficient to consider just the case
j = 1, that is, P1 = [0, q] and A1 = [q, p]. This is illustrated in Figure 3.

As an example, to compute the utility acquired of the event Xi
k in Figure 3,

note that the total observation time of the event equals I1 + I2. Hence the utility
is given by U (I1 + I2). This is analytically computable as the statistics of Xk

is assumed to be known and the sensor movement is periodic. The machinery
of renewal theory is used to handle the statistics of the starting point of the
event.

We gradually establish our results and understanding by first considering
the step utility function with blip and staying events. Then we write down
formulas for general utility functions. Several analytic results are obtained for
events with Exponential and Pareto distributions. Now we proceed to present
our results.

4.1 Step Utility Function

We begin our discussion with events that have the step utility function UI(x)
(see Figure 2). In this case, since the utility reaches one instantaneously, the
QoM is equivalent to the fraction of events captured. The next result illustrates
the effect on the QoM by a periodic sensor schedule with parameters p and q
at a fixed PoI.

THEOREM 4.1. For independent arrivals of events that have the step utility
function and do not stay, that is, “blip events,” the QoM at any PoI is directly
proportional to its share of coverage time q/p. In particular, the achieved QoM
does not depend on the fairness granularity.

PROOF. The statement is a simple consequence of the fact that an event is
completely captured if and only if it arrives when the sensor is present. Hence,
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the QoM is simply the ratio between the expected number (per unit time) of
arrivals during the sensor present period q and the total period p, that is, q

p .

The above scenario shows that only the proportional sharing information
determines the QoM. On the other hand, for events that do stay, the QoM
depends on the relationship between the event staying time distribution and
the parameters p and q. Specifically, we have the following result.

THEOREM 4.2. For independent arrivals of events that stay and have the step
utility function, the QoM at a PoI is given by

Q = q
p

+ 1
p

∫ p−q

0
Pr(X ≥ t) dt. (3)

PROOF. As the utility function is a step function, the overall utility is given
by the total number of events captured when the sensor is present. Note that
an event will be captured if (i) it arrives during the sensor present period [0, q];
(ii) it arrives during the sensor absent period [q, p], but stays long enough to
be captured during the next sensor present period [p, p + q]. The contribution
of (i) to the QoM is given by q

p , while that of (ii) is given by 1
p

∫ p
q Pr(X+ t ≥ p) dt,

which is the second term of Eq. (3) after a simple change of variable.

Theorem 4.2 implies that the sensor that stays at a PoI for γ = q/p fraction
of the time may be able to capture a significantly larger fraction of events than
q/p. The following two corollaries give further statements about this extra
fraction of events.

COROLLARY 4.3. Under the setting of Theorem 4.2, with the fairness granu-
larity p kept constant, we have:

lim
γ→0

Q = 1
p

∫ p

0
Pr(X ≥ t) dt. (4)

PROOF. The proof is a direct consequence of Eq. (3), upon taking the limit
γ −→ 0. (Note that q = γ p −→ 0.)

This result clearly indicates that no matter how small the proportional share
is, there is always some definite, positive gain of information. This is due to the
fact that the events stay.

COROLLARY 4.4. Under the setting of Theorem 4.2, the QoM of a given fixed
proportional share γ is a monotonically decreasing function of the fairness
granularity, that is, Q decreases as p increases. Furthermore,

lim
p→0

Q(p) = 1, and lim
p→∞ Q(p) = q

p
. (5)

PROOF. The statement again is a simple consequence of Eq. (3), which is
rewritten in the following form:

Q = γ + (1 − γ )
1

(1 − γ )p

∫ (1−γ )p

0
Pr(X ≥ t) dt.
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Fig. 4. Step utility function. Illustration of sensor dynamics versus event dynamics.

Note that the second term in this equation is the average over the interval
[0, (1 − γ )p] of the monotonically decreasing function Pr(X ≥ t) of t. Further-
more, limt→0 Pr(X ≥ t) = 1 and limt→∞ Pr(X ≥ t) = 0. Hence,

lim
p→0

1
(1 − γ )p

∫ (1−γ )p

0
Pr(X ≥ t) dt = 1

and lim
p→∞

1
(1 − γ )p

∫ (1−γ )p

0
Pr(X ≥ t) dt = 0,

which leads to the stated result.

In contrast to Theorem 4.1, which applies for blip events, Corollary 4.4
implies that finer-grained fairness does generally improve the QoM for events
that stay and have the Step utility function. In particular, no matter how
small the proportional share is, an arbitrarily high QoM can be achieved by an
extremely fine fairness granularity. This makes intuitive sense for two reasons.
First, by leaving and coming back to a PoI infinitely often and fast, the sensor
can capture any event (which stays) while maintaining the desired proportional
sharing. Second, if the granularity is coarse, there is a definite amount of time
during which the sensor is absent. Thus, some events will be missed while
those events which are already observed will not lead to a higher QoM as the
maximum amount of utility is already achieved by the first moment the event
is observed. Hence, it is advantageous to leave the PoI and search for other new
events. The above reasoning is illustrated in Figure 4.

The following are some explicit examples to illustrate Theorem 4.2 and
Corollary 4.4.
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(1) Exponential Distribution.

Q = γ + 1
p

∫ (1−γ )p

0

∫ ∞

t
λe−λx dx dt = γ + 1 − e−λ(1−γ )p

λp
, (6)

which converges to 1 and γ as p −→ 0 and ∞.
(2) Pareto Distribution. When (1 − γ )p ≤ β, then Q = 1 because any event will

always be captured as its duration is at least β time units long. Hence,

Q = γ + 1
p

∫ (1−γ )p

0
Pr(X ≥ t) dt = 1. (7)

When (1 − γ )p > β, then Q is given by

Q = γ + 1
p

[∫ β

0
Pr(X ≥ t) dt +

∫ ∞

β

(1 − γ )pPr(X ≥ t) dt
]

,

which equals

γ + 1
p

[
β + βα

(α − 1)

(
1

βα−1
− 1

((1 − γ )p)α−1

)]
. (8)

The preceding expression also converges to γ as p −→ ∞.

We now consider a scaling result for mobile sensor coverage k out of n PoIs,
whose event arrival and departure processes are i.i.d., as k increases. Assume
that initially, the sensor performs periodic schedules among k of the n PoIs such
that qi = δ and pi = kδ, for 1 ≤ i ≤ k, where δ is a unit of time. The following
theorem holds.

THEOREM 4.5. The expected fraction of events captured is an increasing func-
tion of k, the number of PoIs covered.

PROOF. In accordance with (2), the overall QoM is given by:

Q∗ = 1
n

∑
1≤ j≤k

Qj = 1
n

∑
1≤ j≤k

[
1
k

+ 1
kδ

∫ (k−1)δ

0
P(X ≥ t) dt

]

= 1
n

[
1 + 1

δ

∫ (k−1)δ

0
P(X ≥ t) dt

]

which is clearly an increasing function of k.

Theorem 4.5 provides a formal justification for mobile coverage, namely that
the amount of information captured increases as the sensor moves among more
PoIs to search for interesting information. This is in addition to the obvious
advantage of fairly distributing the sensing resources among the PoIs.

4.2 General Utility Function

We now turn our attention to events that have a general utility function U (·).
In this case, we have the following QoM result.

THEOREM 4.6. For independent arrivals of events at a PoI that have the
utility function U (·) and whose event staying time pdf is given by f (x), the
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achieved QoM equals (ξi = iq − t, ηi = x + ip − t):

∫ q

0

[∫ q−t

0
U (x) f (x) dx +

∞∑
i=1

∫ q

0
U (ξi + x) f (ηi) dx

+
∞∑

i=1

U (ξi)
∫ 0

−(p−q)
f (ηi) dx

]
dt (9)

+
∫ p

q

[ ∞∑
i=1

∫ q

0
U (ξi − q) f (ηi) dx +

∞∑
i=1

U (ξi + t)
∫ p

q
f (ηi) dx

]
dt. (10)

PROOF. The above formula follows from the fact that the overall utility
available for any particular event depends on the total length of the intersecting
region (which might be discontinuous) during which both the event and sensor
are present. The various summands in integral (9) and (10) correspond to the
cases that the event arrives when the sensor is present or absent.

If an event arrives at t ∈ [0, q], that is, when the sensor is present, then the
total utility available from this event is given by (ξi = iq − t):

∫ q−t

0
U (x) f (x) dx

+
∞∑

i=1

∫ x+t=ip+q

x+t=ip
U (ξi + x + t − ip) f (x) dx

+
∞∑

i=1

∫ x+t=ip

x+t=ip−(p−q)
U (ξi) f (x) dx.

In the above, the different integrals correspond to the cases when the event
departure time t + x falls in [t, q], [ip, ip+ q], and [ip− (p− q), ip], respectively.
A change of variable gives (9).

Similarly, if an event arrives at t ∈ [q, p], that is, when the sensor is absent,
then the total utility available from this event is given by:

∞∑
i=1

∫ x+t=ip+q

x+t=ip
U ((i − 1)q + x + t − ip) f (x) dx

+
∞∑

i=1

∫ x+t=ip

x+t=ip−(p−q)
U ((i − 1)q) f (x) dx.

A change of variable formula then also gives the form of (10).

Formula (9) and (10) can have a complicated analytical form in general, but
they are certainly amenable to numerical computation. Nevertheless, we first
present two exact analytical results. (Recall γ = q

p .)
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(1) Exponential Utility Function UE(x) = 1 − e−Ax and Exponential Staying
Time: f (x) = λe−λx.

Q = Aγ

A+ λ
− 1 − e−λq

λp
+ λ(1 − e−(A+λ)q)

(A+ λ)2 p

+ (eλq − 1)2

λpeλq(eλp − 1)
− λ(e(A+λ)q − 1)2e−(A+λ)q

(A+ λ)2 p(e(Aq+λp) − 1)

+ 2(eλ(p−q) − 1)
p

×
[

eλq − 1
λ(eλp − 1)

− e(A+λ)q − 1
(A+ λ)(e(Aq+λp) − 1)

]

+ (eAq − 1)eλq(eλ(p−q) − 1)2

λp(eλp − 1)(e(Aq+λp) − 1)
. (11)

Note that this equation leads to

lim
p→0

Q = Aγ

Aγ + λ
, and lim

p→∞ Q = Aγ

A+ λ
. (12)

(2) Delayed Utility Function UD(x) = UI(x − D) and Exponential Staying
Time: f (x) = λe−λx.

When p is very small such that D is an integral multiple of q, that is, D = kq
for k = 1, 2, . . ., we have:

Q = e− λD
γ

[
γ + eλ(1−γ )p − 1

λp

]
. (13)

On the other hand, when p is very large, specifically, when q > D, then

Q = e−λD

[
γ +

(
1
λ

− D
)

1 − e−λ(p−q)

p

]
. (14)

It is also interesting to obtain Eq. (14) without using Theorem 4.1. In order for
the sensor to capture an event and gain enough information, the event staying
time and the sensor present period should overlap for at least an interval of
length D. Based on this, let t be the time that an event occurs and let x be its
staying time. Consider the first sensor present and absent periods [0, q] and
[q, p]. Then, the probability of gaining enough information for an event arriving
during these two periods is given by∫ q−D

0
Pr(X ≥ D) dt

+
∫ q

q−D
Pr(t + x − p + (q − t) ≥ D) dt

+
∫ p

q
Pr(t + x − p ≥ D) dt,

which gives the result (14) upon dividing by p.
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Combining Eq. (13) and (14), we have:

lim
p→0

Q = e−λ D
γ , and lim

p→∞ Q = γ e−λD. (15)

For the Pareto type events, even though analogous results can be derived, the
analytical formulas are quite complicated and hard to be put into closed form.
But they demonstrate similar qualitative behaviors as seen in the simulation
section.

These analytical results can be intuitively understood in many ways, which
are instructive to discuss.

4.3 Implications of Theoretical Results

The first three discussion points concern various limiting cases.

(i) Let the fairness granularity p and the proportional share γ be fixed. Then
as the event staying time goes to infinity, every event will always be cap-
tured and the maximum value 1 for the utility can be achieved. Therefore,
the QoM is an increasing function of the mean event staying time. Note
that this scenario corresponds to λ −→ 0 for the exponential staying time
distribution, and β −→ ∞ for the Pareto distribution.

(ii) In the limit of p −→ 0, every event which stays will always be captured.
However, the total observation time is only γ fraction of the event’s dura-
tion. Hence, the average utility achieved is:

Q0 =
∫ ∞

0
U (γ x) f (x) dx. (16)

This result is consistent with the explicit results (12) and (15).
The following give an explicit expression of the QoM for the Pareto event
staying time distribution.
—With the exponential utility function UE,

Q0 = 1 − αβα

∫ ∞

β

e−Aγ x

xα+1
dx = 1 − α

∫ ∞

1

e−Aγβx

xα+1
dx.

—With the Delayed utility function UD,

Q0 =
{

1 for D ≤ γβ,(
γβ

D

)α

for D > γβ.

(iii) In the limit of p −→ ∞, each event, if captured, will essentially be observed
for its whole duration. On the other hand, only γ fraction of the events
will be captured. Hence, the QoM is given by:

Q∞ = γ

∫ ∞

0
U (x) f (x) dx, (17)

which is also consistent with the explicit results (12) and (15).
Again, for Pareto event staying time distribution, we have:

—with the Exponential utility function:

Q∞ = γ

[
1 − αβα

∫ ∞

β

e−Ax

xα+1
dx

]
= γ

[
1 − α

∫ ∞

1

e−Aβx

xα+1
dx

]
.
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—with the Delayed utility function:

Q∞ =
{

γ for D ≤ β,

γ
(

β

D

)α

for D > β.

The next two discussion points concern the two most important qualitative
descriptions of the QoM function.

(iv) For the step and exponential utility functions, the QoMs are monotonically
decreasing functions of p. This is because both utility functions are concave
functions of the observation time, Hence, it is advantageous to capture as
many new events as possible rather than to gain further information for
the event which has already been observed. A finer fairness granularity
exactly achieves this. More precisely, a very fine granularity can basically
capture every single event (as the event stays), and each event captured
gives the best possible initial utility gain per unit time. On the other
hand, coarser granularity can miss some events while for those events
captured, the information captured per unit time is not maximized due to
the concavity of the utility function.
This function is certainly consistent with Theorem 4.2 for the step utility
function, which is qualitatively illustrated in Figure 4. Furthermore, This
is also explicitly demonstrated by the analytical formula (6), (7)–(8). It is
easy to see that their derivatives with respect to p is negative. For (11),
this behavior is graphically demonstrated in Figure 5.

(v) However, the key feature is that for certain utility functions, the maximum
QoM is only achieved at some intermediate fairness granularity. We spend
a moment to explain this important phenomenon.

This observation is easiest to explain for the delayed step utility UD. In
the limit of p −→ 0, any event can always be captured. This is essentially the
statement of Corollary 4.4. However, in order to gain enough information about
the event, it is necessary that the event staying time be at least D

γ
long. This

probability is given by Pr(X ≥ D
γ

). However, when p is positive (no matter how
small it is), this is not absolutely necessary. In fact, if the event arrives right
at the beginning of a sensor present period, then the event staying time just
needs to be at least D

γ
− (1 − γ )p long. It is this saving that increases the QoM.

Hence, initially, the QoM is an increasing function of p for small p. This can
also be seen analytically from Eq. (13) by which we have for 0 < p � 1:

QoM ≈ e− λD
γ

[
1 + (1 − γ )2λp

2
+ · · ·

]
which is an increasing function of p.

The behavior of QoM when p is large is also interesting and in fact quite
intricate. From Eq. (14), observe that the QoM is a decreasing, constant, or
increasing function of p for λ less than, equal to, or greater than 1

D , respectively.
This can be seen that for q � 1, we have:

dQoM
dp

≈ e−λD
[
γ −

(
1
λ

− D
)

1
p2

+ · · ·
]
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Fig. 5. The QoM for the exponential utility function and exponential staying time.

This equation is due to the competitive effect (for p large) of the loss of utility
for events arriving near the end of a sensor present period and the gain of
utility for events arriving before the sensor present period. Hence, for λ < 1

D ,
the QoM initially increases and then decreases as a function of p. Thus, it is
optimal at some intermediate p value.

All of the preceding implications are supported by the simulation results in
Section 6.

4.4 Discussions on Multiple Sensors

In the previous analysis, it is simplest to interpret that the periodic PoI visit
schedule is induced by a single periodic sensor. We now discuss an extended
scenario in which multiple mobile sensors, each on the same periodic schedule,
visit the PoI in sequence. We acknowledge that the general coordination be-
tween multiple sensors is a very important problem of practical and research
relevance. A full analysis of the scenario deserves another line of work and
is out of the scope of the current article. On the other hand, we will demon-
strate that the present QoM analysis can already lead to some interesting
consequences.
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Fig. 6. Geometry of schedule and sensor dynamics at a PoI using multiple sensors.

We assume that the PoIs {Li}i=1,2,...n’s are located along a circular circuit.
The mobile sensors {Pj} j=1,2,...m move along the circuit in an identical fashion.
The geometry of the sensor locations is such that they are clustered together
in the following sense (see Figure 6(a)).

dist(Pj, Pj+1) = A, for j = 1, 2, . . . m− 1

dist(Pm, P1) = B

The distance is measured in the clockwise sense. From each PoI’s point of view,
the pattern of the coverage time is illustrated in Figure 6(b). As each sensor is
associated with a sensing range R, the coverage time is finite, denoted by q. In
addition, due to the separations Aand B between the sensors, we let the sensor
absent times be a and b. We investigate the QoM for each PoI in relation to the
following quantities.

(1) p: the total period of the sensor movement
(2) m: the number of mobile sensors
(3) r = b

a : the “clustering ratio” of the sensors’ visit sequence
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Fig. 7. The relation between event dynamics and the multisensor coverage pattern. In this figure,
the number of sensors m equals 5.

Note the relation p = mq + (m − 1)a + b. In addition, r = 1 implies that the
sensors are equidistant from each other while for r = ∞, it is equivalent to
having a single mobile sensor with coverage time q′ = mq for each period p.
Furthermore, the information acquired by the sensors is aggregated for possibly
higher combined utilities.

First, we consider the case of the step utility function. In this case, any
event will be captured with the maximum utility value one if it occurs when
the sensor is present (see Figure 7, event A). On the other hand, if it occurs when
the sensor is absent, then the event must stay at least till the first moment
the sensor comes back in order to be captured (see Figure 7, events B and C).
Based on this argument, the QoM function is given by:

QoM = 1
p

[
m

∫ q

0
dt + (m− 1)

∫ a

0
P(T ≥ a − t) dt +

∫ b

0
P(T ≥ b − t) dt

]
(18)

where T is the event staying time. The prefactors before the integrals in this
expression come from the fact that there are m identical cases of the event type
A, m− 1 identical cases of type B, and one case of type C.

To give further explicit analysis, we assume that the event staying time
follows the exponential distribution with parameter λ. In this case Eq. (18) is
reduced to:

QoM = 1
p

[
mq + m− (m− 1)e−λa − e−λb

λ

]
. (19)

In addition, by means of p = mq + (m− 1)a + b and r = b
a , we get a = p−mq

m−1+r .
Hence, the above QoM function becomes:

QoM = 1
p

[
mq + m− (m− 1)e−λ( p−mq

m−1+r ) − e−λr( p−mq
m−1+r )

λ

]
. (20)

This QoM function is plotted in Figure 8.
The monotonically decreasing behavior is expected as explained previously.

It can also be seen by taking the derivative of the QoM with respect to the
clustering ratio r. The result is given by:
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Fig. 8. Plot of the QoM function (20) for the step utility function: p = 10, q = 0.1, and varying
number of mobile sensors m.

dQoM
dr

= (m− 1)(p − mq)
p(m− 1 + r)2

[
−e−λ( p−mq

m−1+r ) + e−λr( p−mq
m−1+r )

]
, (21)

which is clearly negative for r ≥ 1.
We now consider the second, more interesting case of the delayed step utility

function with delay D. The argument is similar to the previous case, except that
in order to gain the maximum utility value one, the event must now stay long
enough so that the total observation time is at least D.

To obtain a tractable mathematical formula, we assume that D = Nq for
some positive integer N. Then, based on the consideration of different event
types such as A, B, and C in Figure 7, the QoM function is given by:

QoM = 1
p

[
(m− N)

∫ q

0
P(T ≥(a + q)N) dt + (m− N)

∫ q

0
P(T ≥(a + q)N − t) dt

+ N
∫ q

0
P(T ≥(a+q)N−a+b)dt+(N−1)

∫ a

0
P(T ≥(a + q)N−a + b − t)dt

+
∫ b

0
P(T ≥ (a + q)N−a + b − t)dt

]
.
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As before, by assuming the exponential distribution for the event staying
time, we have

QoM = 1
p

{
(m− N)e−λ(a+q)N

[
q + eλa − 1

λ

]

+e−λ(a+q)N+b−a
[

Nq + (N − 1)
eλa − 1

λ
+ eλb − 1

λ

]}
(22)

Function (22) is plotted in Figure 9.
From the above, it appears that the behavior of the QoM is quite elaborate as

a function of the clustering ratio r and the number of mobile sensors m. In par-
ticular, it can be a monotonically increasing, nonmonotonic, or monotonically
decreasing function of m, depending on the competition between eliminating
redundancies in the information capture and avoiding the loss of events. See
also the explicit discussion in Section 4.3(v).

5. COVERAGE ALGORITHMS

The previous section discussed the QoM of periodic schedules at a specific
single PoI. We now address the problem of covering n PoIs by the sensor. This
is achieved by a visit schedule of the sensor to all the PoIs under a coverage
algorithm to be designed.

We will analyze the QoM of periodic coverage of n PoIs. By this we mean that
the schedule is realized by a periodic visit schedule of the sensor to the PoIs, in
which the visit schedule in the smallest period is denoted by

S = {(L1, C1), . . . , (Ll, Cl)}, (23)

where Lj denotes the jth PoI visited for a time of Cj in the sensor schedule,
Lj = L( j mod l)+1, and each of the n distinct PoIs appears at least once in S.
Recall from Assumption 2 on Page 7 that the sensor cannot be present at more
than one PoI at a time. If l = n, that is, each PoI appears in S exactly once, then
we call S a linear periodic schedule. However, it is clear that not all periodic
schedules are linear. For example, S = {(1, δ), (2, 3δ), (1, δ), (3, 2δ)}, where δ is
a unit of time, is not. In Definition (23), if l > n, we call the periodic schedule
nonlinear.

Next, we perform analysis of linear periodic schedules. The case of general
nonlinear schedule comes afterwards. Given a sensor schedule S, with pre-
scribed PoI coverage times Ci ’s, we define its maximum feasible utilization
as

U∗(S) = sup

⎧⎨
⎩ ∑

1≤i≤n

qi

pi

⎫⎬
⎭ ,

where the sup is taken over all possible sensor movements that realize S.
This utilization is affected by the travel time overhead between two adjacent
PoIs in S during which the sensor is not present at any PoI. Using d(i, j) as
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Fig. 9. Plot of the QoM function (22).

an equivalent notation to dij for the distance between i and j, we define for
j = 1, . . . , l:

aj = 1
vmax

[
d(Lj, L( j mod l)+1) − 2R

]
as the minimum travel time overhead from Lj to L( j mod l)+1 for the sen-
sor moving at maximum speed vmax. This geometric setting is illustrated in
Figure 10.

With this setting, we have the following statement.
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Fig. 10. Geometry of linear scheduling. The Lj ’s denote the PoIs. R is the range of the mobile
sensor. The C j ’s and aj ’s are the coverage times of the PoIs by the sensor and the overheads when
the sensor is out of range of any PoIs.

THEOREM 5.1 (LINEAR PERIODIC SCHEDULE). The maximum feasible utiliza-
tion of S is

U∗(S) = sup

[
1 −

∑
1≤ j≤l aj∑

1≤ j≤l(C j + aj)

]
,

where the sup is taken over all possible sensor movements realizing S.

PROOF. Note that completing one period of the sensor schedule requires
P∗ = ∑

1≤ j≤l(C j + aj) time units. As the schedule is linear, all the pi ’s equal P∗.

Hence, the proportional share for PoI i is given by C j

P∗
. The result thus follows

from:
∑

j
q j

pj = ∑
j

C j

P∗
= 1 − 1

P∗

∑
j aj .

Theorem 5.1 shows that 100% sensor utilization is feasible if and only if
each adjacent pair of PoIs in S are exactly 2R apart. In actual application, we
would like to maximize U∗(S). As its form is a decreasing function of the sum∑

i≤ j≤l aj , we would indeed want to minimize the travel overhead.

5.1 Optimization of Linear Periodic Schedule

Here we discuss the optimization of the QoM Q∗ (defined in Section 2) for the
overall system in the realm of linear periodic schedules. The solution must
satisfy a given proportional fairness objective, that is, for each pair of PoIs, say
i and j, we must achieve a given ratio γij for their shares of coverage time, that
is, for the periodic schedules induced by S, we must have qi/pi

q j/pj = γij for all i
and j’s.

A linear periodic schedule exists if there is a Hamiltonian circuit of the PoIs.
An optimization approach for linear periodic schedules works as follows. We
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first determine the visit order of the PoIs in S that will minimize
∑

1≤ j≤l aj .
The problem is the Traveling Salesman Problem and is NP hard, but practical
approaches exist that give solutions within a few percent of the optimal for
problem sizes of up to 100,000 [Kirkpatrick et al. 1983; Cerny 1985]. Once
the visit order is determined, aj , j = 1, . . . , l, is known, and it remains to
determine the Cj, j = 1, . . . , l. Notice that in a linear periodic schedule, l = n,
C j = q j , and p1 = · · · = pn = ∑

j(C j + aj) = P∗. We first select each Cj to
satisfy Cj = γ j1C1 so that all the coverage times can be expressed in terms
of C1 only. This greatly simplifies the problem as it becomes a purely one-
dimensional optimization problem. The choice of C1 that optimizes Q∗ depends
on the event utility function U . We illustrate the above approach by a simple
example.

First, consider first blip events and the step utility function UI . If
∑

j aj = 0,
then any choice of C1 is optimal as the QoM is simply the fraction of events
captured at the PoIs. More precisely,

Q∗ = 1
nP∗

∑
j

C j = 1
n

.

On the other hand, if
∑

j aj > 0, then the optimal Q∗ cannot be attained but it
can be approached as closely as possible by using a finite but sufficiently large
value of C1.

Second, for general event utility functions, we need to compute the corre-
sponding QoM Qi for each i using Theorem 4.6. Recall that Ci = γi1C1, and Q∗
is expressible as a weighted sum of the individual Qi ’s (from Eq. 2):

Q∗ = 1
μ∗

∑
j

μ j Qi

(
γ j1C1

P∗

)
.

Therefore Q∗ is a function of C1 only. The value of C1 that optimizes QoM Q∗
can be computed by solving

dQ∗
dC1

= 0, and
d2 Q∗
dC2

1

< 0.

Note that Q∗ can possibly have multiple local maxima as each Qi has its own
optimal Ci ’s. But the issue can be easily resolved by a numerical search since
the problem is one-dimensional.

5.2 General Nonlinear Periodic Coverage

The previous section discussed the optimization of linear periodic sensor sched-
ules. However, a linear periodic schedule does not exist if there is no Hamilto-
nian circuit of the PoIs. Even if it exists, a linear schedule is in general sub-
optimal as the QoM depends on the fairness granularity (Corollary 4.4). This
is illustrated by the following example. Consider three PoIs, located such that
d12 = d13 = d23 = 2R, and the proportional fairness objective of γ12 = l/(l − 1)
and γ13 = l. For events that stay and have the step utility function, the optimal
linear periodic sensor schedule is {(1, lδ), (2, (l − 1)δ), (3, δ)}, where δ = 2R/vmax
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is the minimum presence time of the sensor arriving at and then leaving a PoI—
recall Assumption 1. From Theorem 4.2, however, we know that the QoM at i
increases as the fairness granularity decreases. Hence, the following optimal
nonlinear periodic schedule:

{(1, δ), (2, δ), . . . , (1, δ), (2, δ),︸ ︷︷ ︸
l−1 times

(1, δ), (3, δ)}

increases the QoM at 1 and 2 without affecting either the travel overhead
or the QoM at 3. When l is large, the performance loss of the optimal linear
schedule can be significant for certain distributions of the event staying time,
for example, when the mean event staying time is on the order of δ.

The significant performance loss of linear periodic schedules argues for the
need to search for general periodic schedules with better performance. A be-
ginning observation is that a new and potentially better periodic schedule can
be obtained by rearranging the PoI order in an original schedule. Changing
the PoI order affects the fairness granularity as discussed above, but it also
affects the travel overhead between the adjacent PoIs visited. Since the travel
time overhead is known given a PoI visit order, the achieved Q∗ measure of the
new schedule can be computed by applying Theorem 4.6 with a modification
for nonlinear periodic schedules.

For the case of the step utility function UI , the QoM is in fact simply a
weighted sum of the QoMs for the linear periodic subschedules which consti-
tute the whole schedule (see the next theorem). For simplicity, we ignore the
travel overhead (which can be easily incorporated). To set up the notation, for
a general periodic schedule, let

{
pi

k − qi
k, qi

k

}
1≤k≤Ki

be the consecutive sensor ab-
sent and present times for PoI i. Note that P∗ = ∑

1≤k≤Ki
pi

k is the total period of
the schedule (which is the same for all i’s). Then we have the following result.

THEOREM 5.2 (STEP UTILITY FUNCTION). With the previous notation and the
assumption of zero travel overhead, the QoM of PoI i is given by

Qi =
Ki∑

k=1

pi
k

P∗

[
qi

k

pi
k

+ 1
pi

k

∫ pi
k−qi

k

0
Pr(X ≥ t) dt

]
.

In particular, the QoM is a linear combination of the QoM of each individual
sublinear periodic schedule which constitutes the overall nonlinear periodic
schedule.

PROOF. The proof follows the same line as Theorem 4.2. The key observation
that makes the proof go through is that if an event arriving during the absent
period pi

k−qi
k is ever captured, then it must be first captured in the next present

period qi
k.

5.3 Optimization of General Nonlinear Periodic Schedule: Simulated Annealing

We now illustrate how the above Theorem is used to optimize a general pe-
riodic schedule for Step utility. Starting with any initial periodic schedule of
length l, there are l! straightforward permutations of the schedule to obtain
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Fig. 11. Simulated annealing algorithm for optimal periodic schedule.

a general periodic schedule. An exhaustive search for an optimal schedule is
computationally infeasible for large l. To overcome the challenge, we use a sim-
ulated annealing algorithm to search for a general nonlinear periodic schedule
with its Q∗ value as close to the optimal as possible. To apply this technique in
our problem domain, care must be taken to consider the physical constraints
of mobility including the finite speed of the sensor and the adjacencies of the
PoIs.

The optimization algorithm is specified in Figure 11. We initialize the current
search candidate s to some initial periodic schedule, and keep track of the
current best schedule best seen so far. We then randomly select two elements
in s, say (Li, Ci) and (Lj, C j), and swap kiδ cover time from Ci with kjδ time
from Cj , to obtain a new schedule denoted by new, where δ = 2R/vmax, ki and
kj are randomly selected positive integers such that kiδ ≤ Ci and kjδ ≤ Cj . To
avoid a cover time of less than δ for any element, we have the additional rule
that any fractional δ time left by itself after a swap will be moved together with
the associated whole number multiple of δ time moved. If two adjacent PoIs in
new have distance ∞ between them, new is rejected as physically infeasible.
Otherwise, we evaluate the Q∗ of new. If new has a higher Q∗ than s, we select
new as shown. Otherwise, new is selected with a probability (random in Line
13 is a random number in [0,1]). The search terminates after a given time
budget.

For general utility functions, the closed analytical form of the QoM for a
general (nonlinear) periodic schedule can be quite complicated. In particular,
it will not be a weighted sum of the QoMs of the linear periodic subschedules.
Nevertheless, one can still write down an analytical formula for the QoM by
means of Theorem 5.3 and then resort to numerical integration to compute
its value. The results can then be used as input for the simulated annealing
algorithm.
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THEOREM 5.3 (GENERAL UTILITY FUNCTION). Let U i be the utility function of
the events at PoI i and f (x) be the pdf of the event staying time. Then

Qi = 1
p∗

∫ p∗

0

∫ ∞

0
[U ]i(t, x) f (x) dx dt,

where [U ]i(t, x) = U i
(∫ t+x

t pi(s) ds
)

and pi(s) is a function that takes the value
1 when the sensor is present at PoI i at time s, and 0 otherwise.

PROOF. The proof is the same as Theorem 4.6 with the following under-
standing. The variable t refers to the event arrival time, x refers to the event
staying time, and

∫ x+t
x pi(s) ds is the total time the event is observed by the

sensor.

Note that by increasing the period of the schedule for the optimization, the
algorithm will optimize over an increasingly larger set of the plausible sched-
ules. Hence, in principle, when the period is sufficiently large, the schedule
obtained will give close to the optimal performance.

Remarks about Simulated Annealing. By now, simulated annealing and its
extensions to stochastic combinatorial problems is a well-developed theory.
Kirkpatrick et al. [1983] gives an early but still illustrative survey on the
method. See also Cerny [1985] for an application to the Traveling Salesman
Problem and Geman and Geman [1984] for a minimization problem in image
processing. The main idea of this physically motivated approach is to employ
the stochasticity of the algorithm to explore the whole state space so as not to
get stuck in local minima. On the other hand, the “temperature” T (t) of the
algorithm is suitably reduced by some cooling schedule so that once the system
gets close to the global minimum, the stochasticity is reduced and the state will
stay close to the ultimate solution.

There are quite a few theoretical results for the convergence of the algo-
rithm [Hajek 1988; Gidas 1985; Holley and Stroock 1988]. In these results,
the temperature is cooled in accordance with a rate C

log(t) with the constant C
chosen in accordance with the depths of the local minima in the energy land-
scape. However, the convergence statements are mostly of theoretical interest.
Many practical logarithms often run faster (see the discussion of Brémaud
[1999, pp 311–316]). Our simulated results clearly indicate so as recorded in
Section 6.3.

Hence, we will refer to the body of theoretical work as a general benchmark
but rely on the actual working simulations to provide practical guidance.

6. SIMULATION RESULTS

6.1 Single-PoI QoM

We present simulation results to illustrate the analytical results in Section 4.
Recall the use of X and Y to denote the event staying and absent time variables,
respectively. We measure the QoM Qi achieved over 1,000,000 time units in a
simulation run, and report the average Qi of 10 different runs. The different
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Table I. Maximum Available Information for Capture, Averaged over All the
Simulated Events

Utility X ∼ Y ∼ Exp(λ) X ∼ Y ∼ Pareto(α = 2, β)
function λ = 0.25 0.5 1 2 β = 0.25 0.5 1 2

Step 1 1 1 1 1 1 1 1
Exponential 0.95 0.91 0.83 0.72 0.84 0.97 1 1

Linear 0.89 0.79 0.63 0.43 0.44 0.75 1 1
S-shaped 0.88 0.78 0.62 0.40 0.36 0.82 1 1

Delayed Step 0.88 0.78 0.61 0.37 0.50 1 1 1

Fig. 12. Achieved QoM for blip events.

runs produce results that have extremely small differences. Hence, we omit the
error bars in the reported results. Note that not all the events in a simulation
stay long enough to be captured at the full utility. The maximum information
available for capture is given by

∫ ∞
0 U (x) f (x) dx as explained in Section 2.1, and

the values obtained from the experiments are shown in Table I. Each reported
experiment uses the same distribution for both the event staying and absent
times, which is either Exponential with varying λ, or Pareto with varying β

(and α is kept to be 2).

6.1.1 Blip Events. Figure 12 shows the QoM achieved for events that do
not stay, for Exponential and Pareto event absent time distributions. For this
type of events, full information about an event is captured instantaneously.
Figure 12(a) shows that the QoM is directly proportional to the share q/p, and
Figure 12(b) shows that the achieved QoM does not depend on the fairness
granularity, as predicted by Theorem 4.1. The same results hold for different λ

and (α, β) parameters of the Exponential and Pareto distributions, respectively.

6.1.2 Step Utility. We now present results for the step utility function UI .
Figures 13(a) and 13(b) show the achieved QoM as a function of the proportional
share q/p for Exponential and Pareto event dynamics, respectively. The results
agree with Theorem 4.2 and its instantiations for the distributions. Note that
the fraction of events captured can be significantly higher than the propor-
tional share, for example, a QoM of close to 0.4 is achieved for Exp(λ = 0.25)
and Pareto(α = 2, β = 2) even when the share is only slightly positive (see
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Fig. 13. Achieved QoM for events that stay and have the step utility function UI .

Corollary 4.3). The observation time of the events increases as the events stay
longer, and so the QoM is higher when λ is smaller for Exponential event
dynamics and β is larger for Pareto event dynamics (see Section 4.3 (i)). In
general, the QoM is not linear in the proportional share.

Figures 13(c) and 13(d) show the QoM as a function of the fairness granu-
larity for Exponential and Pareto event dynamics, respectively. As predicted by
Corollary 4.4, the QoM is a monotonically decreasing function of q (and hence,
p, as we have qi/pi fixed), meaning that finer grained fairness will improve
performance. As explained before, the QoM increases as λ decreases for the
Exponential distribution and as β increases for the Pareto distribution. Fur-
thermore, the QoM converges to the maximum value one and the proportional
share γ = q/p as q (and hence, p) converges to 0 and ∞, respectively (see
Corollary 4.4).

6.1.3 Exponential Utility. We now present results for the exponential util-
ity function UE (with A = 5). Figures 14(a) and 14(b) show the achieved QoM as
a function of the proportional share for Exponential and Pareto event dynam-
ics, respectively. Unlike Step utility, the achieved QoM is close to zero when
the share is only slightly positive. This is due to the need to accumulate infor-
mation for Exponential utility. As the share increases initially, however, there
is a sharp gain in the QoM. This is because most information is gained during
the initial observation of an event for Exponential utility. Moreover, the initial
gain is higher when the events stay longer (i.e., smaller λ or larger β), because
longer staying events are more likely to be captured even if they arrive when
the sensor is not present. As the share further increases, the marginal gain in
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Fig. 14. Achieved QoM for events that stay and have the exponential utility function UE, A = 5.

the QoM becomes smaller, again mimicking the decreasing marginal gain of
information with longer observation time for the type of events. Note that for
the larger λ values (e.g., λ = 2) or smaller β values (e.g., β = 0.25), the QoM is
significantly smaller than one even for a large share. This is in part because at
those parameter values, the events do not stay long enough to be captured at
their full utility.

Figures 14(c) and 14(d) show the achieved QoM as a function of the fair-
ness granularity for Exponential and Pareto event dynamics, respectively. For
Exponential utility, the results agree with Eqs. (11) and (12). (See also Sec-
tion 4.3(iv).) In particular, Figure 14(c) shows that the QoM is monotonically
decreasing in q (and hence, p) and gives the correct QoM limits in Eq. (12) as
p → 0 and p → ∞. In addition, the QoM increases when λ decreases. The re-
sults in Figure 14(d) show that similar results hold for Pareto event dynamics.

6.1.4 Linear Utility. We now present results for the linear utility function
UL (with M = 1). Figures 15(a) and 15(b) show the achieved QoM as a function
of the proportional share for Exponential and Pareto event dynamics, respec-
tively. Figures 15(c) and 15(d) show the achieved QoM as a function of the
fairness granularity for the two types of event dynamics. The results are simi-
lar to Exponential utility. In particular, the QoM is a monotonically decreasing
function of p, although it is flat over an initial range of p values, showing that
there is no need for the sensor to move faster and achieve a smaller p after
some point.

6.1.5 Delayed Step Utility. We now present simulation results for the de-
layed step utility function UD (D = 0.5 time units). Figures 16(a) and 16(b)
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Fig. 15. Achieved QoM for events that stay and have the linear utility function UL, M = 1.

show the achieved QoM as a function of the proportional share for Exponential
and Pareto event dynamics, respectively. They show that the QoM is monoton-
ically increasing in the proportional share, and the QoM is higher when the
events stay longer (i.e., smaller λ or larger β).

Figures 16(c) and 16(d) show the achieved QoM as a function of the fair-
ness granularity. Note that in this case, the QoM is no longer monotonically
decreasing in p, but the optimal fairness occurs at an intermediate value. Note
also that for λ = 2 = 1

D , the QoM is a constant function of p for large p. These
properties are all discussed in Section 4.3(v).

6.1.6 S-Shaped Utility. Figure 17 presents the QoM results for the S-
shaped utility function US. Although we do not have corresponding analytical
results for S-shaped utility, note from Figure 17 that the results are similar
to Delayed Step utility. This is due to the resemblance between the two utility
functions.

6.2 Multiple Sensor Scenario

We now evaluate the multiple-sensor scenario discussed and analyzed in Sec-
tion 4.4. We first summarize the simulation results and their interpretation,
before presentation of the detailed results.

(1) The QoM is a monotonically increasing function of m. This is easily under-
stood as the effective coverage time is equal to mq which is proportional to
the number of sensors present.

(2) For concave utility functions, such as the step, exponential, and linear func-
tions, the QoM decreases with p and r. This is because a larger p effectively
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Fig. 16. Achieved QoM for events that stay and have the delayed step utility function UD, D = 0.5.

Fig. 17. Achieved QoM for events that stay and have the S-shaped utility function US.
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Fig. 18. Achieved deployment QoM Qi for staying events with step utility function UI . q/p = 0.01,
X ∼ Y ∼ Exp(λ = 1).

leads to a coarser fairness granularity. By the analysis in Section 4.4, for
concave utility functions, a finer granularity gives a higher QoM. Similarly,
a larger r means that the coverage times are more clustered together, that
is, a � b. This is equivalent to a coarser granularity leading to missed
events and also redundancy in observing the same events.

(3) For nonconcave utility functions such as the delayed step and S-shaped
ones, the QoM initially increases and then decreases with r. The explana-
tion is similar to the analysis in Section 4.4. In order to gain a significant
amount of information about a single event, enough observation time must
be achieved. This requires larger values of r. After the critical time is
passed, a higher degree of clustering leads to redundancy in collecting the
information.

We now proceed to discuss the detailed results. These results are all sup-
ported by the analysis in Section 4.4. As mentioned there, we will emphasize
the behavior of the QoM as a function of the parameters p, m, and r. We consider
the cases when there are 2, 4, 5, 10, 20, and 40 mobile sensors. We measure the
QoM Qi achieved over 1,000,000 time units in a simulation run, and report the
average Qi of 20 different runs. The event staying and absent times are both
Exponentially distributed with λ = 1, and the share q/p = 0.01.

6.2.1 Nondecreasing Concave Utility Functions. We present results for the
nondecreasing concave utility functions, namely, the step utility function UI ,
exponential utility function UE (with A = 5), and linear utility function UL

(with M = 1). Figures 18, 19, and 20 show the achieved QoM as a function
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Fig. 19. Achieved deployment QoM Qi for staying events with exponential utility function UE,
A = 5. q/p = 0.01, X ∼ Y ∼ Exp(λ = 1).

Fig. 20. Achieved deployment QoM Qi for staying events with linear utility function UL, M = 1.
q/p = 0.01, X ∼ Y ∼ Exp(λ = 1).

of the number of mobile sensors m and the clustering ratio r for the Step,
Exponential, and Linear utility functions, respectively. The figures show that
the achieved deployment QoM Qi is the highest when the visits are evenly
distributed, that is, r = 1. As the visits are more clustered together, that is,
r is larger, Qi is worsened when the interval of consecutive visits, if they are
evenly distributed, is comparable to the event staying time. It is because when
we have a concave utility function, it is generally more productive to monitor
more events than to observe the same event for longer. For Linear utility,
however, notice from Figure 20 that the separation of consecutive visits to a
PoI has insignificant effects on the achieved deployment QoM. This is due to
the nature of the linear utility function, that is, it is indifferent to Qi whether
the same event or different events are monitored.

The figure also shows that the achieved deployment QoM Qi may grow sub-
linearly with the number of sensors. It is because as the interval of consecutive
visits, if they are evenly distributed in one period, is comparable or smaller
than the event staying time, then it is more likely for the sensors to capture
the same event, which results in no improvement in Qi.

When the visit time of a sensor at the PoI is comparable to the event dynamics
as depicted in Figure 18(c), Qi can only be slightly worsened, if it is affected at
all, if the sensors are more clustered together. It is because in such a situation,
different visits to the PoI are likely to observe different events, and a more
clustered group of sensors only reduces the probability of capturing new events.
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Fig. 21. Achieved deployment QoM Qi for staying events with S-shaped utility function US.
q/p = 0.01, X ∼ Y ∼ Exp(λ = 1).

6.2.2 Utility Functions as a Combination of Convex and Then Concave
Parts. We now present results for the S-shaped utility function US and the
delayed step utility function UD (D = 0.5 time units). Each can be seen as a
combination of two different parts, a convex part followed by a concave part.
Figures 21 and 22 depict the achieved QoM as a function of the number of
mobile sensors m and the clustering ratio r for the S-shaped and delayed step
functions, respectively. The figures show that clustering sensors together can
improve the achieved deployment QoM as the separation of consecutive visits,
when they are evenly distributed, is comparable to the event present time. It
is because in such a scenario, clustering sensors together can help monitor the
same event for longer in the convex part of the utility function, so that it is
more likely to approach the information threshold for a better Qi. However,
Figures 21(d) and 22(d) show that when the sensor visits are too clustered
together, so that they collect information in the concave part of the utility func-
tion instead of capturing new events in the convex part of the function, the
overall Qi will suffer.

Figure 22 also shows that the achieved deployment QoM Qi may grow super-
linearly with the number of sensors. It is because as the interval of consecutive
visits, when they are evenly distributed in one period, is comparable or smaller
than the event staying time, then it is more likely for the sensors to monitor
the same event and aggregate information within the threshold for produc-
tive information gain, which results in a sharp increase in the utility and an
improvement in Qi.
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Fig. 22. Achieved deployment QoM Qi for staying events with delayed-step utility function UD,
D = 0.5 time units. q/p = 0.01, X ∼ Y ∼ Exp(λ = 1).

6.3 General Nonlinear Periodic Coverage Optimization: Simulated Annealing

We present two sets of simulation results to illustrate the performance of the
optimization algorithm in Section 5 for periodic schedules. In the first set of
simulations, we use n PoIs, denoted as 1, 2, . . . , and n, such that dij = 2R + O
for i = j, where R is the sensing range, and O is the travel overhead (i.e., the
distance in Eij where the sensor is not covering any PoI). We assume that the
maximum speed of the sensor is such that it takes the sensor one time unit to
cover a distance of 2R, so that the minimum staying time of the sensor at any
PoI in a coverage schedule is δ = 1 time unit. In the second set of simulations,
we use real city maps of dimensions 2000 m by 2000 m divided into cells of
dimensions 250 m by 250 m. Each cell is a PoI, and its threat level is set to be the
estimated population size in that cell. The distance dij is measured between the
center of cell i and that of cell j. We compare the achieved QoM by varying the
sensor speed and the minimum staying time of the sensor at the PoIs. Note that
we consider large-scale city maps with highly unstructured placements of the
PoIs because such a setting is most challenging for our problem. It is likely that
our solution can be more easily applied in other smaller and/or more structured,
but still realistic, deployments, for example, the monitoring of a given set of
rooms in the same building. For each experiment, we report the average of 20
runs of the algorithm. The differences between the measurements are small.
We will thus omit the error bars, although in the case of the deployment QoM,
we will also report the maximum Q∗ achieved in the 20 runs. Results of the
first set of simulations are discussed in Sections 6.3.1, 6.3.2, and 6.3.3. Those
of the second set of simulations are discussed in Section 6.3.4.
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Fig. 23. Achieved deployment QoM Q∗ for staying events with Step utility and proportional share
ratios of 50:49:1. X ∼ Y ∼ Exp(λ = 1).

6.3.1 Revisit of Example (Section 5.2). This example motivates the use
of optimized general periodic schedules. We have three PoIs, and the propor-
tional shares of 1, 2, and 3 are in ratios of 50:49:1. We do not consider travel
overhead in this set of experiments, that is, O = 0. We show the optimiza-
tions over schedules of period l, where l = 100, 200, and 400 time units. The
algorithm in Figure 11 is run with the initial schedule set to be the optimal
linear periodic schedule of the given length. Figures 23(a), 23(c), and 23(e) plot
the maximum and average deployment QoM Q∗ achieved by the simulated
annealing algorithm for small computation budgets of up to 1000 iterations.
The optimal deployment QoM is also shown as the horizontal green line in the
figure. Figures 23(b), 23(d), and 23(f) plot the corresponding results for larger
computation budgets of up to 100,000 iterations.
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Fig. 24. Execution time of simulated annealing algorithm for staying events with Step utility and
proportional share ratios of 50:49:1. X ∼ Y ∼ Exp(λ = 1).

From the smaller computation budget results, note that the optimal linear
periodic schedule is suboptimal in general but the simulated annealing can
produce schedules that rather quickly approach the optimal as the number
of iterations increases. From the larger computation budget results, note that
when the number of iterations is large enough, the simulated annealing can
find a solution extremely close to the optimal (within 2%). When l = 400
time units, the results are similar and a close-to-optimal solution is found
within 100,000 iterations. Initially, however, Q∗ increases more slowly with the
number of iterations than l = 100 time units. This is because in this particular
experiment, the globally optimal schedule can be found with a period length
of 100 time units. Increasing the optimization period to 400 time units will
not increase the potential to find a better solution, but will increase the search
space for the optimal solution.

We have measured the run time of the simulated annealing, written in C#,
on a Pentium-4 3.4-GHz PC with L1/L2 cache sizes of 8 KB/512 KB and 2 GB
of RAM. The results, shown in Figure 24, indicate that the run time is linear in
the number of iterations, and is about 3.5 s and 7.7 s for 100,000 iterations and
an optimization period of 100 and 400 time units, respectively. Figure 24 shows
the execution time of the simulated annealing algorithm for different lengths of
the periodic schedule being optimized. From the figure, note that the execution
time is roughly linear in the number of iterations. Also, the proportionality
constant increases when the length of the periodic schedule increases.

6.3.2 Other Numbers of PoIs and Proportional Share Ratios (No Travel
Overhead). We vary the number of PoIs and their proportional share ratios
in a number of experimental schedules listed in Table II, when there is no
travel overhead (i.e., O = 0). The results for 3, 5, and 10 uniform PoIs (i.e., the
PoIs get equal proportional shares, corresponding to experimental schedules
I, II, and IV) are shown in Figure 25. Small computation budget results are
shown on the left column; corresponding large computation budget results are
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Table II. Experimental Schedules

Schedule ID # PoIs Proportional share ratios
I 3 0.34:0.33:0.33
II 5 0.2:0.2:0.2:0.2:0.2

III-a 5 0.36:0.16:0.16:0.16:0.16
III-b 5 0.52:0.12:0.12:0.12:0.12
III-c 5 0.68:0.08:0.08:0.08:0.08
III-d 5 0.84:0.04:0.04:0.04:0.04
IV 10 0.1:0.1:0.1:0.1:0.1:0.1:0.1:0.1:0.1:0.1

Fig. 25. Achieved deployment QoM Q∗ for staying events with Step utility and different numbers
of PoIs of equal proportional shares. X ∼ Y ∼ Exp(λ = 1), period = 100 time units.

shown on the right column. Figure 26 shows the small computation budget
results for 5 PoIs, with one of the PoIs getting a larger proportional share
and the remaining 4 getting the same smaller proportional share. The fraction
of coverage time given to the higher-share PoI increases progressively from
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Fig. 26. Achieved deployment QoM Q∗ for staying events with Step utility. There are 1 higher-
share PoI and 4 lower-share PoIs, and the coverage-time bias towards the higher-share PoI in-
creases from (a) to (d). X ∼ Y ∼ Exp(λ = 1), period = 100 time units.

Figure 26(a) to Figure 26(d), corresponding to the experimental schedules III-a–
III-d in Table II. The results show that the optimization algorithm approaches
the optimal Q∗ quickly and a solution extremely close to the optimal is found
within a few thousand iterations. Figure 25 shows that when the number of
PoIs covered increases, the QoM drops generally, because each PoI is visited less
frequently. The figure shows also that the optimal schedule is reached earlier
when there are more PoIs. It is because when the number of PoIs increases,
the chance to break up a long and continuous stay at a PoI into a number of
shorter visits also increases, which results in finer grained sharing of coverage
time between the PoIs and therefore higher QoM. Figure 26 shows that when
the fraction of coverage time is more heavily biased towards the higher-share
PoI, the optimal solution can be obtained in a smaller number of iterations. It
is because when the bias increases, the optimal schedule in which visits to the
lower-share PoIs are the shortest possible can be discovered more easily. Note
that the total QoM drops as the bias increases. It is because all the lower-share
PoIs are visited less frequently although they present better opportunities for
information capture compared with the higher-share PoI.

Figure 27 shows the execution time of the simulated annealing algorithm
for different numbers of PoIs. Notice that as the number of PoI increases, the
running time of the algorithm increases.

6.3.3 Impact of Travel Overhead. We now study the effects of the travel
overhead O using the experimental schedule IV in Table II. We vary O to be
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Fig. 27. Execution time of simulated annealing algorithm for staying events with Step utility
and equal proportional shares of coverage time between the PoIs. X ∼ Y ∼ Exp(λ = 1), period =
100 time units.

Fig. 28. Achieved deployment QoM Q∗ for staying events with Step utility and experimental
schedule IV, as the travel overhead O varies. X ∼ Y ∼ Exp(λ = 1), period = 100 time units.
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Fig. 29. City maps with the associated threat profile.

Fig. 30. Execution time of simulated annealing algorithm for staying events with Step utility
using real city maps. X ∼ Exp(λ = 1 hour).

R, 1.5R, 2R, and 4R. The results are shown in Figure 28. From the figure, note
that when the overhead is 2R or larger, the optimal linear periodic schedule
(recall that we initialize the simulated annealing with the optimal linear peri-
odic schedule in each experiment) is globally optimal. It is because when the
travel overhead is high, the cost of moving frequently between different PoIs
outweighs the potential gain in QoM due to finer grained sharing between the
PoIs. Otherwise (i.e., O < 2R), the optimal schedule is one in which there is
maximum interleaving of visits to the different PoIs. This is because the in-
terleaving leads to shorter but more frequent visits to the same PoIs, and is
beneficial for information capture of staying events for the step utility.

6.3.4 Real City Maps. We now study the performance of the algorithm
using the real city maps shown in Figure 29. The color of a cell in the maps rep-
resents the estimated relative population residing in that cell, with a reddish
color denoting a larger population. We vary v to be 8 km/h and 16 km/h, δ to
be 1 min, 2 mins, 5 mins, and 15 mins, and the event staying time is Exponen-
tially distributed with the mean value α equal to one hour. The average runtime
of the algorithm is given in Figure 30, and the achieved QoMs are shown in
Figures 31 and 32 for San Francisco and San Jose, respectively. Figure 30 shows
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Fig. 31. Achieved deployment QoM Q∗ for staying events with Step utility using the city map of
San Francisco. X ∼ Exp(λ = 1 hour).

that a longer schedule length takes a longer time for the search algorithm to
run, and the runtime roughly grows linearly with the length. From Figures 31
and 32, we can observe that the algorithm is able to compute a much better
schedule than the linear periodic one using a relatively short time as depicted
in Figure 30. Figures 31 and 32 show that a faster speed improves the deploy-
ment QoM Q∗ as the period length is reduced. A better deployment QoM Q∗
can also be achieved more significantly by a shorter staying time at a PoI.

7. CONCLUSIONS

We have presented extensive analysis to understand the QoM properties of
proportional-share mobile sensor coverage. We show that: (1) A higher share
of the coverage time generally increases the QoM, but the relationship is not
linear except for blip events; (2) For staying events, the QoM can be much
higher than the proportional share, due to the observation of “extra” events
that arrive when the sensor is not present. This justifies mobile coverage from
an information-capture point of view, that is, the sensor gains by moving be-
tween places to search for new information; (3) The event utility function is
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Fig. 32. Achieved deployment QoM Q∗ for staying events with Step utility using the city map of
San Jose. X ∼ Exp(λ = 1 hour).

important in determining the optimal fairness granularity p. For concave util-
ity functions such as Step, Exponential, and Linear utilities, the QoM mono-
tonically decreases with p, whereas for Delayed Step and S-Shaped utilities,
the QoM generally peaks at an intermediate p. Our analysis for Exponen-
tial/Pareto event dynamics and different forms of the utility function is all
supported by the simulation results. We presented optimization algorithms for
both linear and general proportional-share periodic coverage. Implementation
results show that the simulated annealing algorithm can efficiently compute
a periodic schedule that practically maximizes the total QoM, even for huge
search spaces implied by long scheduling periods. We also illustrated the per-
formance and efficiency of the simulated annealing algorithm as a function of
the number of PoIs, the travel overhead, and the distribution of proportional
shares among the PoIs.
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