Bridge to Research Seminar: Applications of Singular Perturbations in Calculus of Variations

Aaron N. K. Yip
Department of Mathematics
Purdue University

Outline of Talks

- Examples of interfaces and defects in physical system and concept of singular perturbation
- A simple one-dimensional example illustrating selection principle, microstructure, and multiple length scales
- Connection with minimal surfaces
- Connection to point vortices

Research Interests: Applied Mathematics, Partial Differential Equations, Calculus of Variations, Probability Theory, Geometric Evolutions, Modeling

in Materials Science, Stochastic Optimizations

http://www.math.purdue.edu/~yip

Examples of Interfaces and Defects

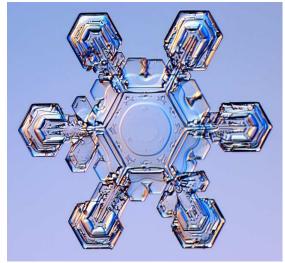
Interface: surface separating two regions

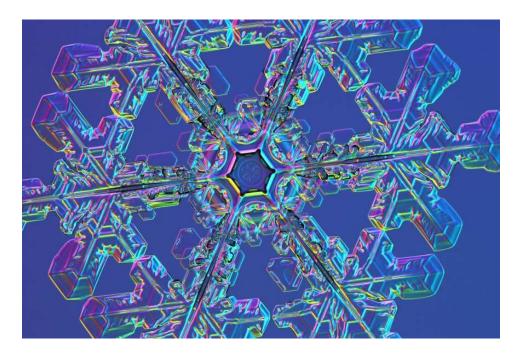
Defect: localized deviations in structure from the background environment

- phase boundaries between ice and water in crystal growth
- interfaces between two immiscible fluids
- grain boundaries
- triple junctions
- soap films and soap bubbles
- dislocation lines in materials
- vortices in superconductivity

Example of Interfaces: Crystal Growth

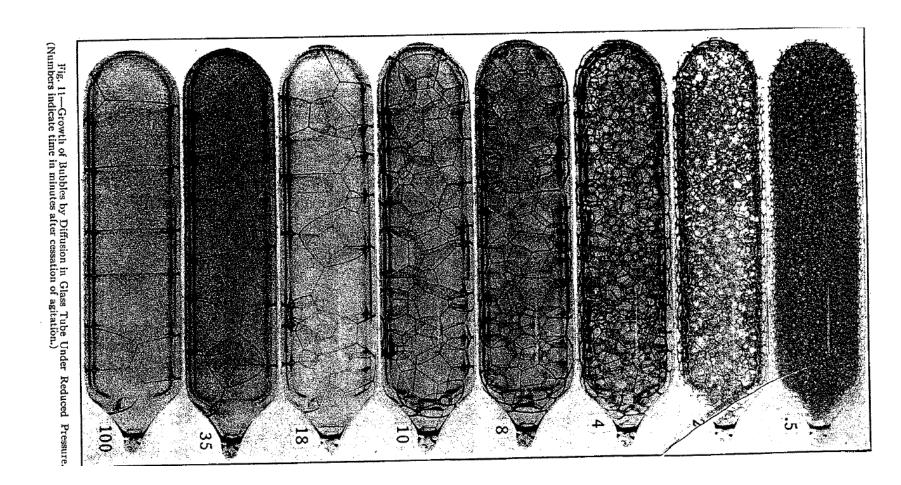






Example of Interfaces: Bubble Growth

Motion of Defects



Example of Interfaces: Bubble Growth-2

Motion of Defects

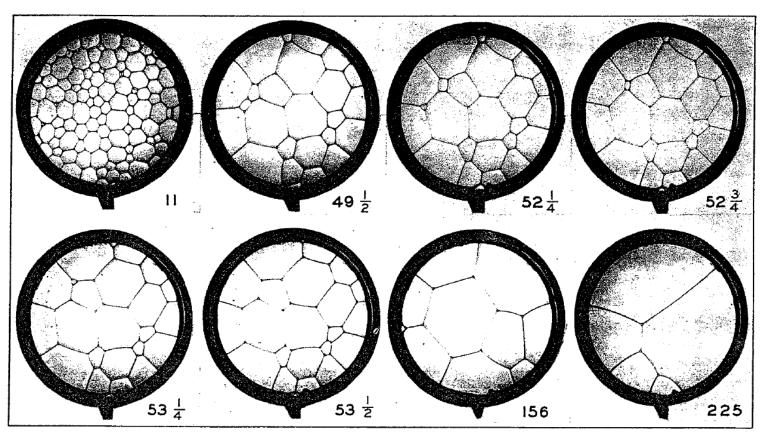


Fig. 12-Growth and Disappearance of Bubbles in a Flat Cell

Examples of Interfaces: Grain Growth

Motion of Defects

trained Creins, Which Are Being Absorbed, Move in a Direction Tow.

C. X 50. (Lacombe and Berphezan.)

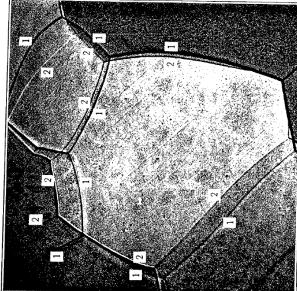
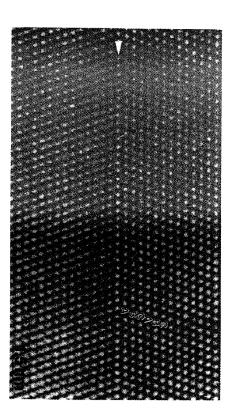
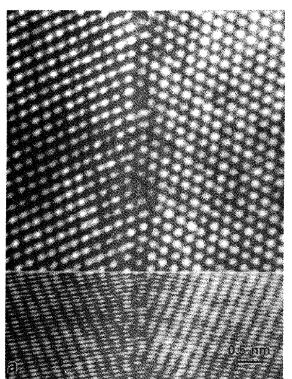


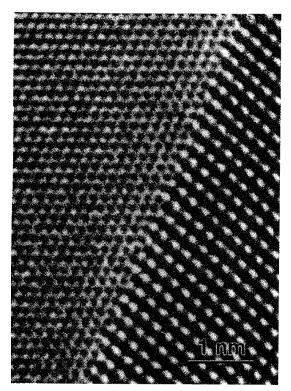
Fig. 2—In Grain Growth, Grain Boundaries Migrate Toward Their Centers of Curvente. Boundaries in high purity attnitions, attendance at 600 °C, (1), and after an additional anneal of 50 seconds at 600 °C, (2). Anotic film and sensitive that illumination, X 75. (Reference 20,)

Examples of Interfaces: Grain Growth-2

Structure of Defects

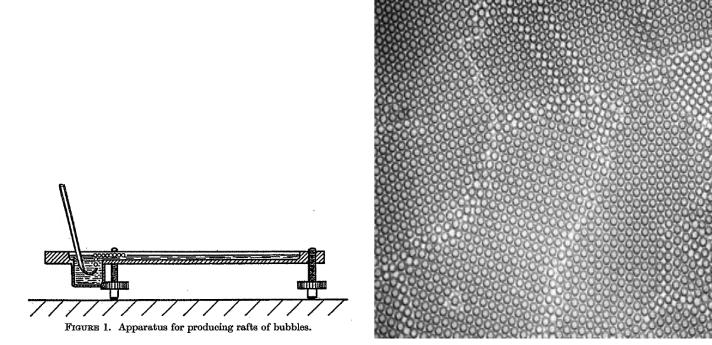






Examples of Interfaces: Grain Growth-3

Seeing the Structure and Motion of Defects with your Naked Eyes:



Example of Interfaces – Images

Image De-Noising

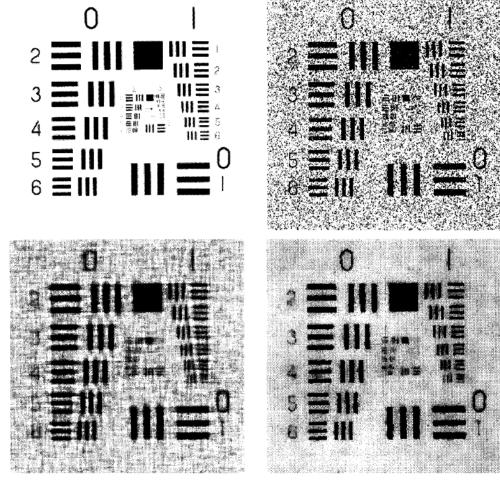


Fig. 3. (a) "Resolution Chart". (b) Noisy "Resolution Chart", SNR = 1.0. (c) Wiener filter reconstruction from (b). (d) TV reconstruction from (b).

Singular Perturbations

Higher Order Perturbations

How are the solutions of

$$F(u) = 0$$

in particular, the structures and locations of their singularities, if any, related to those of

$$F(u) + \epsilon G(u, \nabla u, \nabla^2 u) = 0$$

for $\epsilon \ll 1$?

The ϵ can be some physical parameter or even numerical discretization length scales. The key is to understand the **limiting behavior as** $\epsilon \longrightarrow 0$.

Some Well Known Examples of Singular Perturbation Method of Vanishing Viscosity and Selection Principle

Entropy Solution for Conservation Law

$$U_t + F(U)_x = \epsilon^2 U_{xx}$$

converges, as $\epsilon \longrightarrow 0$ to the entropy solution of

$$U_t + F(U)_x = 0$$

Viscosity Solution for Hamilton-Jacobi Equation

$$u_t + H(\nabla u) = \epsilon^2 \triangle u$$

converges, as $\epsilon \longrightarrow 0$ to the viscosity solution of

$$u_t + H(\nabla u) = 0$$

A Common Example in Calculus of Variations

$$\mathcal{F}(u) = \int \epsilon^2 |\nabla u|^2 + W(u)$$

or

$$\mathcal{F}(u) = \int \epsilon^2 \left| \nabla^2 u \right|^2 + W(\nabla u)$$

where

- W is some function which is **positive** and **vanishes on some finite set or manifold**;
- u can be a scalar or vector-valued function.

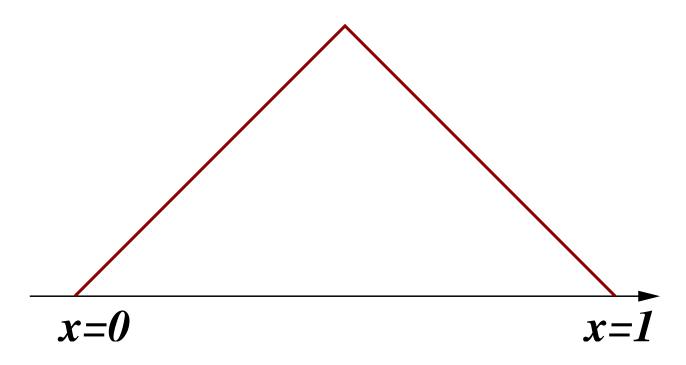
The main goal is to **minimize** \mathcal{F} subject to some boundary conditions for u.

Consider the following minimization problem:

$$\min \left\{ \int_0^1 (1 - u_x^2)^2 \, dx, \quad u(0) = 0, \ u(1) = 0 \right\}$$

Consider the following minimization problem:

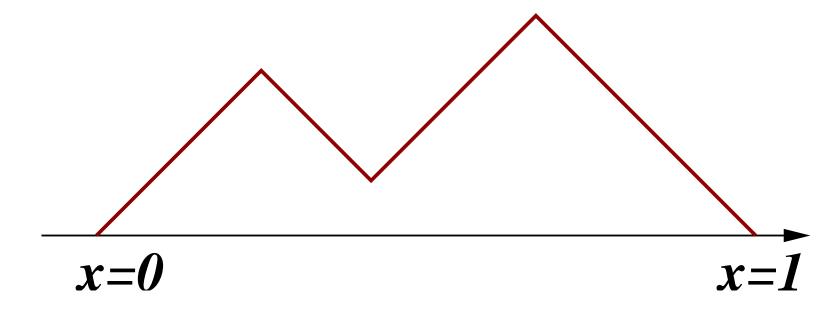
$$\min \left\{ \int_0^1 (1 - u_x^2)^2 \, dx, \quad u(0) = 0, \ u(1) = 0 \right\}$$



The functional attains the minimum value zero.

Consider the following minimization problem:

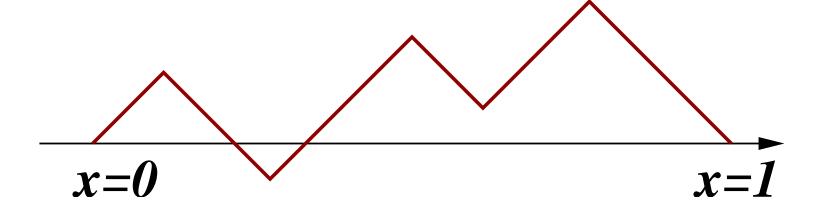
$$\min \left\{ \int_0^1 (1 - u_x^2)^2 \, dx, \quad u(0) = 0, \ u(1) = 0 \right\}$$



Another example of global minimizer.

Consider the following minimization problem:

$$\min \left\{ \int_0^1 (1 - u_x^2)^2 \, dx, \quad u(0) = 0, \ u(1) = 0 \right\}$$



Yet another example of a minimizer.

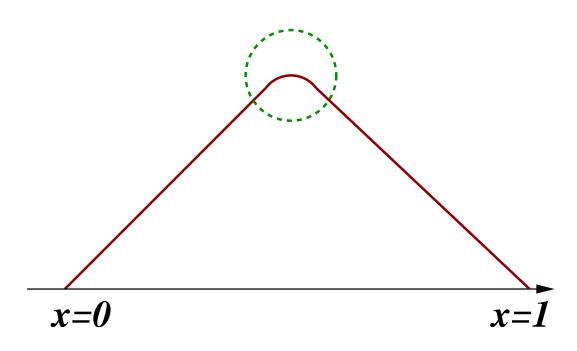
Hence there are *lots of examples of global minimizers*, i.e. the solutions are highly non-unique!

Consider the following singularly perturbed version:

$$\min \left\{ \int_0^1 \frac{\epsilon^2 u_{xx}^2}{1 + (1 - u_x^2)^2} \, dx, \quad u(0) = 0, \quad u(1) = 0 \right\}$$

Consider the following singularly perturbed version:

$$\min \left\{ \int_0^1 \frac{\epsilon^2 u_{xx}^2}{1 + (1 - u_x^2)^2} \, dx, \quad u(0) = 0, \quad u(1) = 0 \right\}$$



The minimizer have **smoothed out** corners.

Consider the following singularly perturbed version:

$$\min \left\{ \int_0^1 \frac{\epsilon^2 u_{xx}^2}{1 + (1 - u_x^2)^2} \, dx, \quad u(0) = 0, \quad u(1) = 0 \right\}$$

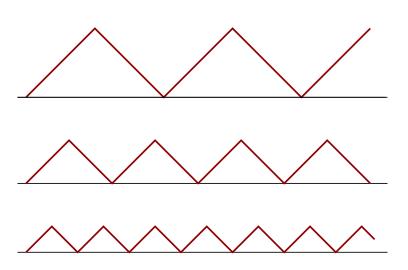
- 1. each corner gives rise to a **delta function in the second derivative** which leads to **infinite** functional value;
- 2. the singular functional thus smoothes out the corner;
- 3. the amount of smoothing depends on the parameter ϵ ;
- 4. still, each smoothed corner contributes to some energy;
- 5. hence **global minimizer** likes to have **as few corners** as possible.
- 6. thus the one with only **one corner** is the **global minimizer**.

Consider the minimization problem:

$$\min \left\{ \int_0^1 (1 - u_x^2)^2 + \mathbf{u}^2 \, dx, \quad u(0) = 0, \quad u(1) = 0 \right\}$$

Consider the minimization problem:

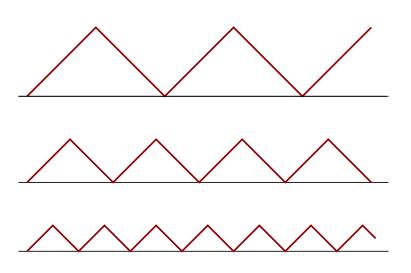
$$\min \left\{ \int_0^1 (1 - u_x^2)^2 + u^2 \, dx, \quad u(0) = 0, \quad u(1) = 0 \right\}$$



increasing number of oscillations: the sequence of functions converge to the ZERO function which is NOT the minimizer.

Consider the minimization problem:

$$\min \left\{ \int_0^1 (1 - u_x^2)^2 + u^2 \, dx, \quad u(0) = 0, \quad u(1) = 0 \right\}$$



increasing number of oscillations: the sequence of functions converge to the ZERO function which is NOT the minimizer.

There is a **minimizing sequence but no minimizer!** This is an example of a functional which is **not lower-semi-continuous**.

Consider the following singularly perturbed version:

$$\min \left\{ \int_0^1 \frac{\epsilon^2 u_{xx}^2}{\epsilon^2 u_{xx}^2} + (1 - u_x^2)^2 + \frac{u^2}{2} dx, \quad u(0) = 0, \quad u(1) = 0 \right\}$$

Consider the following singularly perturbed version:

$$\min \left\{ \int_0^1 \frac{\epsilon^2 u_{xx}^2}{\epsilon^2 u_{xx}^2} + (1 - u_x^2)^2 + \frac{u^2}{2} dx, \quad u(0) = 0, \quad u(1) = 0 \right\}$$

small number of smoothed corners but large contribution from u

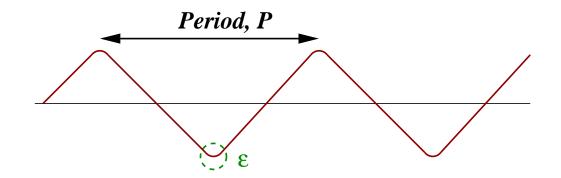
large number of smoothed corners but small contribution from u

There is a **balance** or **competition** between the terms $\int \epsilon^2 u_{xx}^2$

and
$$\int u^2$$
.

Structure of Global Minimizer

S. Müller: the global minimizer exists and is **unique** and **periodic** with period $P = O(\epsilon^{\frac{1}{3}})$.



Note the existence of multiple (three) length scales:

- scale of the smoothed corners, **defects** ϵ ;
- scale of the **pattern** $P = O(\epsilon^{\frac{1}{3}})$;
- scale of the **domain** O(1).

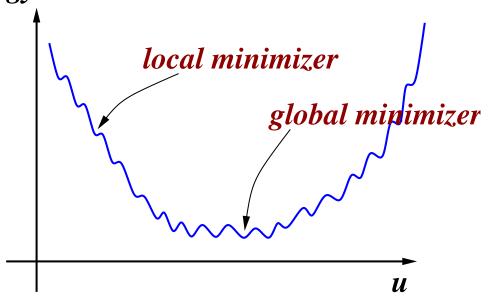
$$\epsilon \ll \epsilon^{\frac{1}{3}} \ll O(1)$$

Structure of Local Minimizer

Y.: At **low energy level**, all the **local minimizers** are **periodic**. As the **period decreases**, periodic critical points become

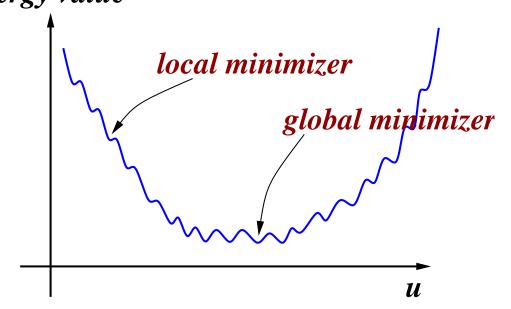
unstable. The length scale at which this happens is also

characterized. Energy value



Structure of Local Minimizer

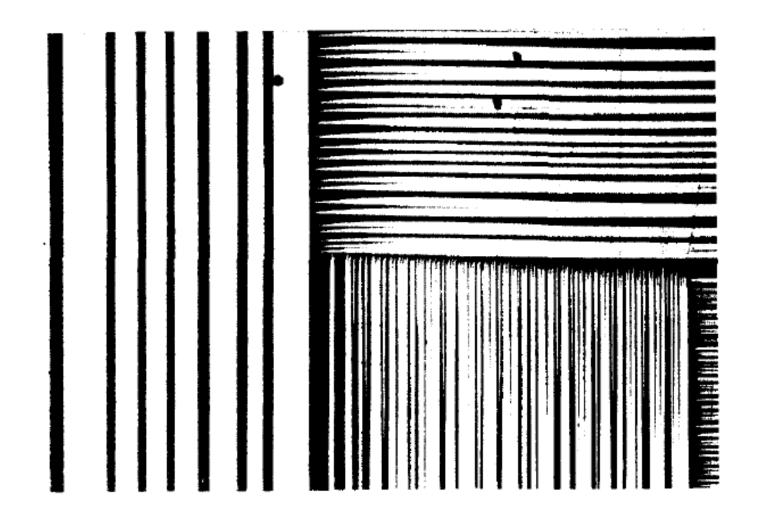
Y.: At **low energy level**, all the **local minimizers** are **periodic**. As the **period decreases**, periodic critical points become **unstable**. The length scale at which this happens is also characterized. *Energy value*



The **dynamics** on the energy landscape is in fact controlled by **local minimizers**, **saddle points**, or more generally **metastable** states!

An Actual Example of Microstructure

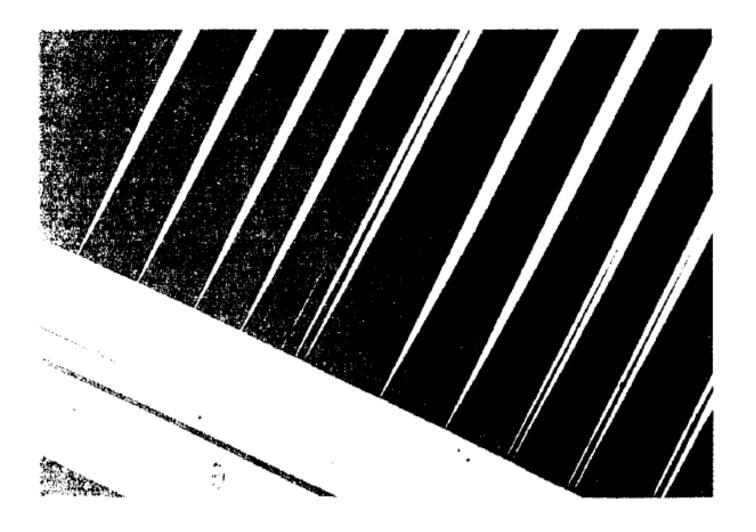
Martensitic Transformation



Martensitic Transformation

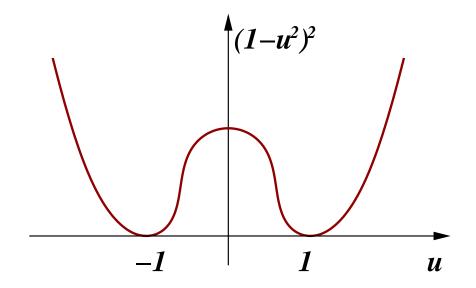
An Actual Example of Microstructure

Martensitic Transformation



Consider the following minimization problem:

$$\min \left\{ \mathcal{F}(u) = \int_{\Omega} (1 - u^2)^2 dx, \quad \int_{\Omega} u = m \right\}$$



(In the above, u is a **scalar-valued** function. It is an example of a more general **Ginzburg-Landau** functional in which u can be **vector-valued**.)

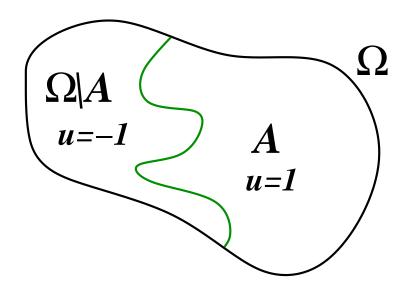
Consider the following minimization problem:

$$\min \left\{ \mathcal{F}(u) = \int_{\Omega} (1 - u^2)^2 dx, \quad \int_{\Omega} u = m \right\}$$

The minimzer is represented any subset $A \subset \Omega$ such that

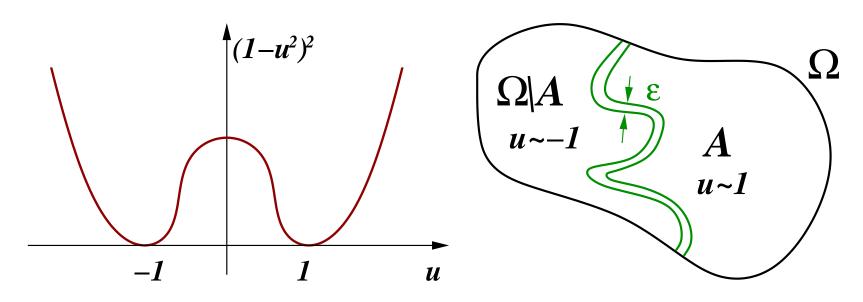
$$Area(A) = \frac{m + Area(\Omega)}{2}$$
: $u = 1$ on A and $u = -1$ on $\Omega \setminus A$.

and hence there are **infinitely** many solutions. The boundary of A acts as an **interface** separating the regions $\{u = 1\}$ and $\{u = -1\}$.



Consider the following singular perturbation of \mathcal{F} (often called the Allen-Cahn Functional):

$$\mathcal{F}_{\epsilon}(u) = \int_{\Omega} \epsilon^2 |\nabla u|^2 + (1 - u^2)^2, \quad \int_{\Omega} u = m$$



The term
$$\int_{\Omega} |\nabla u|^2$$
 penalizes rapid changes of u .

The minimizer can be represented by a subset $A \subset \Omega$ such that

$$Area(A) = \frac{m + Area(\Omega)}{2}$$

but with minimum boundary length (or area)

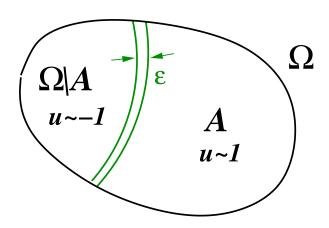
so as to minimize the contribution from
$$\int |\nabla u|^2$$
.

The minimizer can be represented by a subset $A \subset \Omega$ such that

$$Area(A) = \frac{m + Area(\Omega)}{2}$$

but with minimum boundary length (or area)

In dimension two: the boundary will be a circular arc: curve with constant curvature which minimizes length with prescribed volume;



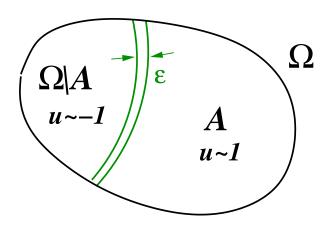
An Example from Higher Dimension

The minimizer can be represented by a subset $A \subset \Omega$ such that

$$Area(A) = \frac{m + Area(\Omega)}{2}$$

but with minimum boundary length (or area)

In dimension three: the boundary will be a surface with constant mean curvature which minimizes area with prescribed volume.



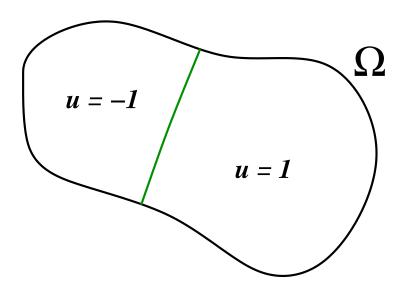
Limit of the Allen-Cahn Functional

Modica-Mortola; Sternberg. $\frac{1}{\epsilon}\mathcal{F}_{\epsilon} \longrightarrow (\text{``}\Gamma\text{''}) \mathcal{F}_{*}$ where

$$\mathcal{F}_*: L^1(\Omega) \longrightarrow \bar{R}_+, \quad \mathcal{F}_*(u) = \int_{\Omega} |\nabla u|$$

for $u:\Omega\longrightarrow \{-1,1\}$ and $\int_\Omega u=m.$ ($\mathcal{F}_*(u)=\infty$ otherwise.)

Note: $\mathcal{F}_*(u) = \mathcal{H}^{n-1} \left(\partial \left\{ u = 1 \right\} \right) =$ length or area of $\partial \left\{ u = 1 \right\}$.

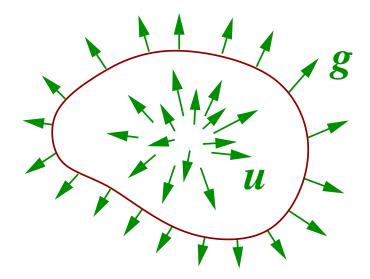


Modeling of Point Defects – Vortices

Given $g: \partial \Omega \longrightarrow S^1$, |g| = 1, $\deg(g, \partial \Omega) = 1$, $\Omega \subset \mathbb{R}^2$. Consider the minimization problem:

$$\min \int_{\Omega} \frac{1}{2} |\nabla u|^2, \quad u : \Omega \longrightarrow S^1, \quad u_{\partial\Omega} = g$$

A singularity – point defect must occur somewhere inside Ω :



Energy of a Point Defect

Point Defect (Vortex) has infinite energy:

Near the singularity,

$$u \sim e^{i\theta}$$
 so that $|\nabla u|^2 = |\nabla \theta|^2 \sim \frac{1}{r^2}$

hence
$$\int_0^1 \int_0^{2\pi} \frac{1}{r^2} r dr d\theta = 2\pi \int_0^1 \frac{1}{r} dr = \infty$$

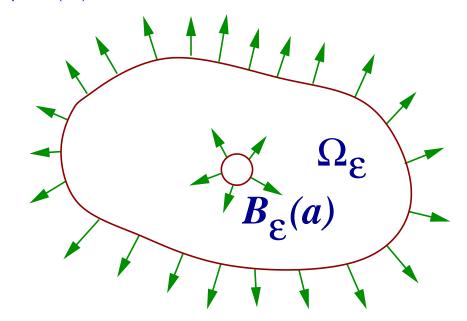
To remedy this, need to exclude the point singularity.

Modeling of Point Defects

Given $g: \partial \Omega \longrightarrow S^1$, |g| = 1, $\deg(g, \partial \Omega) = 1$, consider the minimization problem:

$$\min \int_{\Omega_{\epsilon}} \frac{1}{2} |\nabla u|^2, \quad u : \Omega_{\epsilon} \longrightarrow S^1, \quad u_{\partial \Omega} = g, \quad \deg(u, \partial B_{\epsilon}(a)) = 1$$

where $\Omega_{\epsilon} = \Omega \backslash B_{\epsilon}(a)$.



Modeling of Point Defects – Canonical Harmonic Ma

Now the energy of u in Ω_{ϵ} is finite:

$$\int_{\epsilon}^{1} \int_{0}^{2\pi} \frac{1}{r^{2}} r dr d\theta = 2\pi \int_{\epsilon}^{1} \frac{1}{r} dr = \pi \ln \frac{1}{\epsilon}$$

The limit of the minimizer, u^{ϵ} , as $\epsilon \longrightarrow 0$ is called the canonical harmonic map (as u will be a harmonic function) on $\Omega \setminus \{a\}$.

(Note that the energy of u will still go to ∞ as $\epsilon \longrightarrow 0$.)

Modeling of Point Defects – Renormalized Energy

Depending on the number of defects and the degree of u around each defect, the energy of u^{ϵ} can be shown to be:

$$\int_{\Omega_{\epsilon}} \frac{1}{2} |\nabla u|^2 = \pi \left(\sum_{i=1}^{N} d_i^2 \right) \ln \frac{1}{\epsilon} + O(1)$$

In order to further investigate the **location of the defects**, consider the next term in the expansion:

$$\int_{\Omega_{\epsilon}} \frac{1}{2} |\nabla u|^2 = \pi \left(\sum_{i=1}^{N} d_i^2 \right) \ln \frac{1}{\epsilon} + W(a_1, a_2, \dots, a_N) + o(1)$$

The function W can be shown to exist and is called the renormalized energy which is a function of the defect locations, a_i 's.

Modeling of Point Defects – Ginzburg-Landau Energ

Another Example of Singular Perturbation

Let $u: \Omega \longrightarrow \mathbb{C} (\equiv \mathbb{R}^2)$.

$$\mathcal{F}_{\epsilon}(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 + \frac{1}{\epsilon^2} (1 - |u|^2)^2, \quad u_{\partial\Omega} = g$$

Upon minimization of u, subject to appropriate Dirichlet boundary condition, it can be shown that the energy of a minimizer u_{ϵ} satisfies:

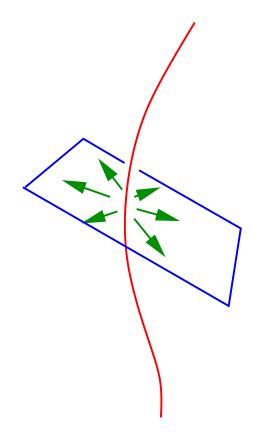
$$\mathcal{F}_{\epsilon}(u_{\epsilon}) \approx N\pi \ln \frac{1}{\epsilon} + W(a_1^*, a_2^*, \dots, a_N^*) + N\gamma$$

where $N=\deg(g,\partial\Omega)$ and γ is some universal constant. The location of the vortices a_i^* 's minimizes the renormalized energy W.

Modeling of Curves (Filaments) in \mathbb{R}^3

Let
$$u: \Omega \subset \mathbb{R}^3 \longrightarrow \mathbb{C}(\equiv \mathbb{R}^2)$$
.

$$\mathcal{E}(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 + \frac{1}{\epsilon^2} (1 - |u|^2)^2$$



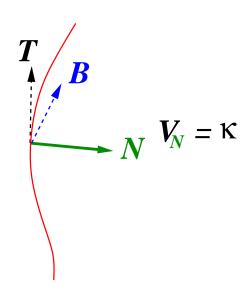
Dynamics of Curves (Filaments) in \mathbb{R}^3

Heat Flow (Negative Gradient Flow):

$$u_t = \Delta u + \frac{1}{\epsilon^2} u (1 - |u|^2)$$

converges to Motion by Mean Curvatrue:

 $V_N = \kappa$ (N is the normal direction).



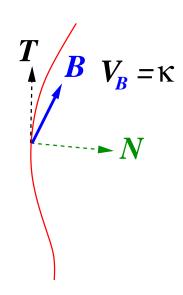
Dynamics of Curves (Filaments) in \mathbb{R}^3

Schrödinger Flow:

$$\frac{1}{i}u_t = \Delta u + \frac{1}{\epsilon^2}u(1 - |u|^2)$$

converges to bi-normal Mean Curvature Motion:

$$V_B = \kappa$$
 (B = T × N is the bi-normal direction).



Thank you for your attention.