2.9 Efficient implementations in three dimensions

For simplicity, we only consider solving $-u_{xx} - u_{yy} - u_{zz} = f$ on a cube $\Omega = [0, 1]^3$ with homogeneous Dirichlet boundary conditions.

Consider a uniform Cartesian mesh in 3D with grid points (x_i, y_j, z_k) $(i = 1, \dots, N_x; j = 1, \dots, N_y; k = 1, \dots, N_z)$.

Following our choice of notation for 2D problems, for representing numerical solutions, let U be a 3D array of size $N_z \times N_y \times N_x$ with (k, j, i)-th entry U(k, j, i) denoting the point value at (x_i, y_j, z_k) .

For a 3D array U, we define a page as the matrix obtained by fixing the last index of U. Namely, U(:,:,i) for any fixed i is a page of U. For a matrix U(:,:,i) of size $N_z \times N_y$, recall that vec(U(:,:,i)) is a column vector of size N_zN_y . We define \hat{U} as the following matrix of size $N_zN_y \times N_x$ obtained by reshaping U:

$$\hat{U} = \left[vec(U(:,:,1)) \ vec(U(:,:,2)) \cdots vec(U(:,:,N_x)) \right].$$

Then we define vec(U) as the vector of size $N_z N_y N_x \times 1$ by reshaping \hat{U} in a column by column order.

With the notation above, it is straightforward to verify that

$$(A_1^{\top} \otimes A_2^{\top} \otimes A_3) vec(U) = vec((A_2^{\top} \otimes A_3) \hat{U} A_1). \tag{2.10}$$

Let Y be a 3D array of size $N_z \times N_y \times N_x$ defined by

$$vec(Y) = (A_1^{\top} \otimes A_2^{\top} \otimes A_3)vec(U). \tag{2.11}$$

With the simple property (2.10), among other choices, one simple and efficient implementation of multiplying the big matrix $A_1^{\top} \otimes A_2^{\top} \otimes A_3$ in (2.11) in MATLAB is to use two functions tensorprod and pagentimes:

```
1 % Computing a 3D array Y of the same size as U defined above
2 Y = tensorprod(U,A1,3,1);
3 Y = pagemtimes(Y,A2);
4 Y = squeeze(tensorprod(A3,Y,2,1));
```

Let F be a 3D array with $F(k, j, i) = f(x_i, y_j, z_k)$, then the second order finite difference scheme can be written as

$$(K_x \otimes I_y \otimes I_z + I_x \otimes K_y \otimes I_z + I_x \otimes I_y \otimes K_z) vec(U) = vec(F).$$

With the eigenvalue decomposition $K = S\Lambda S^{-1}$, similar to the derivation 2D problems, the scheme is equivalent to

 $(S_x \otimes S_y \otimes S_z) (\Lambda_x \otimes I_y \otimes I_z + I_x \otimes \Lambda_y \otimes I_z + I_x \otimes I_y \otimes \Lambda_z) (S_x^{-1} \otimes S_y^{-1} \otimes S_z^{-1}) vec(U) = vec(F).$ Define a 3D array Λ with its (k,j,i)-th entry being equal to $\Lambda_x(i,i) + \Lambda_y(j,j) + \Lambda_z(k,k)$, then it can be implemented efficiently as the follows in MATLAB:

36

```
1 % InvS denotes the inverse matrix of S
2 U = tensorprod(F,InvSx',3,1);
3 U = pagemtimes(U,InvSy');
4 U = squeeze(tensorprod(InvSz,U,2,1));
5 U = U./Lambda;
6 U = tensorprod(U,Sx',3,1);
7 U = pagemtimes(U,Sy');
8 U = squeeze(tensorprod(Sz,U,2,1));
```

Recall that $S^{-1} = S$ if we use orthonormal eigenvectors, as pointed out in Remark 2.9. In *Python*, with package Jax, it can be similarly implemented uisng the function jax.numpy.einsum:

```
1     U = jnp.einsum('ijk,kl->ijl',F,invSx.transpose())
2     U = jnp.einsum('ijk,jl->ilk',U,invSy.transpose())
3     U = jnp.einsum('li,ijk->ljk',invSz,U)
4     U = U/Lambda
5     U = jnp.einsum('ijk,kl->ijl',U,Sx.transpose())
6     U = jnp.einsum('ijk,jl->ilk',U,Sy.transpose())
7     U = jnp.einsum('li,ijk->ljk',Sz,U)
```

Remark 2.10. See [Liu et al. (2024b)] for how to use the MATLAB and Python scripts above on a GPU device. In particular, on one Nividia A100 80G GPU card, it costs around 0.8 seconds for inverting one 3D discrete Laplacian of size 1000³.

Problem 2.20. Derive the exact number of operations (only counting the number of multiplication/division) needed for the method in this section inverting $K \otimes I \otimes I + I \otimes K \otimes I + I \otimes I \otimes K$ where K and I are matrices of size $N \times N$.

Problem 2.21. Write a MATLAB code for solving $-u_{xx} - u_{yy} - u_{zz} = 14\pi^2 \sin(\pi x)\sin(2\pi y)\sin(3\pi z)$ with homogeneous Dirichlet b.c. on the domain $[0,1]^3$. Test your code for the exact solution $u(x,y,z) = \sin(\pi x)\sin(2\pi y)\sin(3\pi z)$. Test the convergence rate on several different grids. On a modern desktop computer, the implementation in this section should be quite efficient for a grid of size 200^3 or even 300^3 . If your computer has large enough memory, try to push the grid size to as large as it allows.

Problem 2.22. If you have access to computers on which you can run MATLAB with GPU, follow the script Poisson3D.m in [Liu et al. (2024b),