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ABSTRACT

Optimization and sampling over the manifold of fixed-rank positive semidefinite (PSD)

matrices arise in a wide range of scientific and engineering applications, including signal

processing, machine learning, quantum information, and statistical inference. This thesis

develops a comprehensive geometric framework for addressing such problems using Rieman-

nian optimization and Riemannian Langevin Monte Carlo techniques.

We begin by studying the manifold of Hermitian PSD matrices of fixed rank through

both embedded and quotient manifold perspectives. A unified framework is proposed to

encompass three commonly used geometriesembedded geometry, quotient geometry with the

Bures–Wasserstein metric, and quotient geometry with alternative metrics that clarify their

relationships and computational trade-offs.

Building on this framework, we design and analyze several Riemannian optimization al-

gorithms, including the Riemannian conjugate gradient method. We prove their equivalence

to classical Burer–Monteiro type algorithms and provide new insights into their convergence

behavior, especially in the presence of rank-deficiency. A detailed condition number analysis

reveals that certain Riemannian metrics lead to ill-conditioning near the boundary of the

manifold, impacting algorithm performance.

Extending beyond optimization, we develop Riemannian Langevin Monte Carlo schemes

for sampling from distributions defined over fixed-rank PSD manifolds. Two discretiza-

tionsbased on embedded and quotient geometriesare proposed, analyzed, and validated

through numerical experiments.

Comprehensive numerical results on eigenvalue computation, matrix completion, phase

retrieval, and interferometric recovery demonstrate the effectiveness of the proposed algo-

rithms and validate the theoretical findings. This thesis thus offers both theoretical founda-

tions and practical tools for manifold-based optimization and sampling over low-rank PSD

matrix constraints.
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1. INTRODUCTION

1.1 Optimization over PSD Constraints

Optimization over positive semidefinite (PSD) matrices is a central theme in numerous

areas such as covariance estimation [  1 ], kernel learning [  2 ], semidefinite programming [  3 ], etc.

In many modern applications, large-scale semidefinite programs and matrix approximation

problems demand not only low-rank structure but also efficient numerical schemes that

exploit manifold geometry. See [  4 ] and [ 5 ] for some of these applications. In mathematical

notations, the optimization problem over PSD matrices can be written formally as

minimize
X∈Cn×n

f(X)

subject to X < 0
. (1.1)

A particularly compelling structure arises when one restricts attention to the manifold of

PSD matrices with fixed rank, which possesses both rich geometric properties and significant

practical relevance. For example, real symmetric PSD fixed-rank matrices were used in [  6 ,

 7 ]. When the solution to (  1.1 ) exhibits low-rank structure, we can significantly reduce

computational complexity by working directly with the manifold of fixed-rank matrices:

minimize
X

f(X)

subject to X ∈ Hn,p
+

, (1.2)

whereHn,p
+ denotes the set of n-by-n Hermitian PSD matrices of fixed rank p� n. Optimiza-

tion over PSD matrices of fixed rank can also be used for solving non-symmetric problems.

Suppose the set of non-symmetric matrices of fixed-rank is {X = LRT : rank(X) = p}.

Then define the symmetric lifting: {X̃ := [L, R][LR]T}, which again becomes a PSD fixed

rank constraint. However, the nature of nonconvex optimization problems also makes (  1.2 )

challenging to solve.

Since the elements in the constraint set Hn,p
+ have a low-rank structure, they can be

represented in a low-rank compact form on the order of O(np2), which is smaller than the

O(n2) storage when directly using X ∈ Cn×n. In many applications, the cost function in

13



( 1.1 ) takes the form f(X) = 1
2‖A(X)− b‖2

F where A is a linear operator and the norm is the

Frobenius norm, and f(X) can be evaluated efficiently by O(pn log n) flops for X ∈ Hn,p
+ ,

e.g., the PhaseLift problem [  8 ,  9 ] and the interferometry recovery problem [  10 ,  11 ]. For

these kinds of problems, solving (  1.2 ) with an iterative algorithm that works with low-rank

representations for X ∈ Hn,p
+ can lead to a good approximate solution to (  1.1 ) with compact

storage and computational cost.

1.2 Sampling over PSD Constraints

Beyond optimization, we can also explore the stochastic counterpart of such problems–

namely, Riemannian sampling over fixed-rank PSD manifolds, thus extending the scope of

manifold-based computation beyond optimization.

There is an extensive literature on Langevin dynamics in statistics and related areas, with

interest in nonconvex optimization [  12 ,  13 ], as well as machine learning such as generative

models [  14 ].

In recent years, there has been interest in studying Langevin diffusion and Monte Carlo

Markov Chain (MCMC) schemes on manifolds [  15 – 24 ]. In this thesis, we focus on the

Riemannian Langevin Monte Carlo schemes on Sn,p
+ that samples from the Gibbs distribution

on the manifold of fixed rank PSD matrices:

sample from ρ(X) ∝ e−βf(X), subject to X ∈ Sn,p
+ , (1.3)

based on the Riemannian Langevin equation (RLE) on the manifold that generalizes the

Langevin dynamics in the Euclidean space.

Gibbs distributions originate in statistical physics, while the sampling problem may also

be seen as a stochastic variant of the optimization problem in the sense that the sampling

problem is related to the optimization problem since in the limit β →∞ the Gibbs distribu-

tion concentrates at the global minima of f(X). In general, a Langevin scheme can be used

for either optimization [  24 ,  25 ], or Monte Carlo type numerical integration, which is com-

mon in Bayesian statistics. For optimization, stochastic optimization by Langevin dynamics
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with simulated annealing is an established approach [  26 ]. For sampling, Metropolis-adjusted

Langevin algorithm [  17 ] is often used.

1.3 Contributions of This Thesis

This thesis contributes to the field of manifold optimization and sampling in several key

ways:

1. Unified Riemannian Optimization Framework: We present and analyze three method-

ologies for optimization on the manifold of Hermitian PSD matrices of fixed rank,

including Burer–Monteiro factorization, embedded geometry, and quotient geometry

using the Bures–Wasserstein metric. We show theoretical equivalence between these

formulations under appropriate settings and validate them numerically.

2. Condition Number Analysis: We investigate the impact of rank-deficiency on the con-

ditioning of Riemannian Hessians, deriving bounds and demonstrating how they inform

the performance of Riemannian optimization algorithms.

3. Convergence Analysis of Orthogonalization-Free Algorithms: We analyze the conver-

gence of orthogonalization-free Riemannian conjugate gradient methods. This con-

tributes to understanding the global behavior of such methods in the Burer–Monteiro

setting.

4. Riemannian Langevin Monte Carlo on Fixed-Rank PSD Manifolds: We introduce two

numerical schemes for sampling from Gibbs distributions defined on the manifold of

fixed-rank PSD matrices using Riemannian Langevin dynamics. These are built upon

the same geometric structures used in optimization, allowing a principled transition

between deterministic and stochastic methods.

5. Comprehensive Numerical Validation: Each of the proposed frameworks is validated on

a range of problems, including eigenvalue computation, matrix completion, PhaseLift,

and interferometric inversion. Our experiments demonstrate the practical viability of

the theoretical framework developed throughout the thesis.
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1.4 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 provides the mathematical preliminaries and geometric foundations of fixed-

rank PSD manifolds, including both embedded and quotient geometries.

Chapter 3 presents a unified view of optimization over fixed-rank Hermitian PSD ma-

trices, contrasting three algorithmic approaches and exploring their theoretical connections.

Chapter 4 conducts a condition number analysis of Riemannian Hessians in the presence

of rank-deficiency and discusses its implications through illustrative applications.

Chapter 5 studies the convergence properties of orthogonalization-free Riemannian con-

jugate gradient methods, providing both theoretical guarantees and numerical evidence.

Chapter 6 transitions to Riemannian sampling and introduces Langevin Monte Carlo

schemes designed for the fixed-rank PSD manifold, complete with empirical validation against

known distributions.

Appendices contain detailed derivations, supplemental mathematical results, and im-

plementation notes that support the main text.
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2. PRELIMINARIES AND THE MANIFOLD OF

FIXED-RANK PSD MATRICES

In this chapter, we first review some preliminaries and introduce the geometric structure of

the manifold of the fixed-rank PSD matrices. We only consider the case of Hermitian PSD

matrices since the results of the real symmetric PSD matrices will simply follow.

2.1 Embedded Manifold Geometry of Fixed-rank PSD Matrices

We first show that Hn,p
+ is a smooth embedded submanifold of Cn×n.

Theorem 2.1.1. Regard Cn×n as a real vector space over R of dimension 2n2. Then Hn,p
+ is

a smooth embedded submanifold of Cn×n of dimension 2np− p2.

Proof. Let

E =

 Ip×p 0p×(n−p)

0(n−p)×p 0(n−p)×(n−p)


and consider the smooth Lie group action

Φ : GL(n,C)× Cn×n → Cn×n

(g, N) 7→ gNg∗

where

gNg∗ = (Re(g) Re(N)− Im(g) Im(N)) Re(g)T + (Im(g) Re(N) + Re(g) Im(N)) Im(g)T

+i
(
(Im(g) Re(N) + Re(g) Im(N)) Re(g)T − (Re(g) Re(N)− Im(g) Im(N)) Im(g)T

)
.

From the above expression of gNg∗, we see that Φ is a rational mapping. Since GL(n,C) is

a semialgebraic set by Lemma ( B.0.1 ) in the Appendix, we have that GL(n,C)×Cn×n is also

a semialgebraic set [  27 , section 2.1.1]. It follows from (B1) in [ 28 ] that Φ is a semialgebraic

mapping. Observe that Hn,p
+ is the orbit of E through Φ. It therefore follows from (B4) in

[ 28 ] that Hn,p
+ is a smooth submanifold of Cn×n.
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Next, we compute the dimension of Hn,p
+ . Consider the smooth surjective mapping

η : GL(n,C)→ Hn,p
+ γ 7→ γEγ∗.

The differential of η at γ ∈ GL(n,C) is the linear mapping Dη(γ) : TγGL(n,C) =

Cn×n → TXHn,p
+ , where X = η(γ) = γEγ∗, by Dη(γ)[∆] = ∆Eγ∗ + γE∆∗. Observe

that the differential at arbitrary γ is related to the differential at In by a full-rank linear

transformation:

Dη(γ)[∆] = γDη(In)[γ−1∆]γ∗. (2.1)

Recall that the rank of a differentiable mapping f between two differentiable manifolds is

the dimension of the image of the differential of f . So, from equation (  2.1 ) we see that the

rank of η is constant. It follows from Theorem 4.14 in [ 29 ] that η is a smooth submersion.

As a consequence Dη(γ) maps TγGL(n,C) = Cn×n surjectively onto TXHn,p
+ and we obtain

TXHn,p
+ =

{
∆X + X∆∗ : ∆ ∈ Cn×n

}
. (2.2)

Let ∆ =

∆11 ∆12

∆21 ∆22

 be partitioned according to the partition of E = diag(Ip×p) =
Ip×p 0

0 0

. Then it can be easily verified that ∆ ∈ KerDη(I) if and only if

∆11 = −∆∗
11, ∆21 = 0.

This implies that ∆11 is a skew-Hermitian matrix, hence its diagonal entries are purely

imaginary and its off diagonal entries satisfy aij = −aji. This gives us p+2×(1+2+· · ·+(p−1))

degrees of freedom. For ∆12 and ∆22 there are 2n(n−p) degrees of freedom. So, the dimension

of Ker(Dη(I)) is 2n(n− p) + p + 2p(p− 1)/2 = 2n2 − 2np + p2 and by rank-nullity we get

dim D η(I) = 2n2 − dim ker D η(I) = 2np− p2.
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Since η is of constant rank, the dimension of TXHn,p
+ is therefore 2np− p2. Remember that

the dimension of the tangent space at every point of a connected manifold is the same as that

of the manifold itself. Let GL+(n,C) denote the connected subset of GL(n,C) with positive

determinant, then Hn,p
+ is the image of the connected set GL+(n,C) under a continuous

mapping η, so Hn,p
+ is connected. We conclude that the dimension of Hn,p

+ is 2np− p2.

The next result characterizes the tangent space.

Theorem 2.1.2. Let X = UΣU∗ ∈ Hn,p
+ . Then the tangent space of Hn,p

+ at X is given by

TXHn,p
+ =


[
U U⊥

] H K∗

K 0


U∗

U∗
⊥




where H = H∗ ∈ Cp×p, K ∈ C(n−p)×p.

Proof. Let t 7→ U(t) be any smooth curve in St (p, n) through U at t = 0 such that U(t) ∈

Cn×p, U(0) = U and U(t)∗U(t) = Ip for all t. Let t 7→ Σ(t) be any smooth curve in Diag(p, p)

through Σ at t = 0. Then X(t) := U(t)Σ(t)U(t)∗ defines a smooth curve in Hn,p
+ through X.

It follows by differentiating X(t) := U(t)Σ(t)U(t)∗ that

X ′(t) = U ′(t)Σ(t)U(t)∗ + U(t)Σ′(t)U(t)∗ + U(t)Σ(t)U ′(t)∗.

Without loss of generality, since U ′(t) is an element of Cn×p and U(t) has full rank, we can

set

U ′(t) = U(t)A(t) + U⊥(t)B(t).

Hence, we have

X ′(t) =
[
U(t) U⊥(t)

] A(t)Σ(t) + Σ′(t) + Σ(t)A(t)∗ Σ(t)B(t)∗

B(t)Σ(t) 0


 U(t)∗

U⊥(t)∗

 .
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Thus we consider the tangent vectors in the form of
[
U U⊥

] H K∗

K 0


U∗

U∗
⊥

 with H = H∗.

For any H = H∗ ∈ Cp×p and K ∈ C(n−p)×p, taking ∆ = (UH/2 + U⊥K)Σ−1(U∗U)−1U∗ in

( 2.2 ), we see that 
[
U U⊥

] H K∗

K 0


U∗

U∗
⊥


 ⊆ TXHn,p

+ . (2.3)

Now counting the real dimension we see that H has p + 2× p(p−1)
2 = p2 number of freedom

and K has 2× p(n− p) number of freedom. So the LHS of the inclusion ( 2.3 ) has freedom

2np − p2, which is equal to the dimension of TXHn,p
+ . Hence, the inclusion in ( 2.3 ) is an

equality.

The Riemannian metric of the embedded manifold at X ∈ Hn,p
+ is induced from the

Euclidean inner product on Cn×n,

gX(ζ1, ζ2) = 〈ζ1, ζ2〉Cn×n = Re(tr(ζ∗
1 ζ2)), ζ1, ζ2 ∈ TXHn,p

+ . (2.4)

With the Riemannian metric, the angle is defined on a manifold and we can then define

the normal space, which is the orthogonal space to the tangent space.

Lemma 2.1.3. The normal space NXHn,p
+ at X = UΣU∗ ∈ Hn,p

+ is given by

NXHn,p
+ =


[
U U⊥

] Ω −L∗

L M


U∗

U∗
⊥


 , (2.5)

where Ω = −Ω∗ ∈ Cp×p, M ∈ C(n−p)×(n−p) and L ∈ C(n−p)×p.

Proof. First we show that every vector in ( 2.5 ) is orthogonal to TXHn,p
+ . Since U is orthonor-

mal, we only need to show that
〈H K∗

K 0

 ,

Ω −L∗

L M

〉
Cn×n

= 0 for all H, K, Ω, L and M

defined in Theorem  2.1.2 and Lemma  2.1.3 . Indeed we have

〈H K∗

K 0

 ,

Ω −L∗

L M

〉
Cn×n

= 〈Ω, H〉Cn×n − 〈L∗, K∗〉Cn×n + 〈L, K〉Cn×n
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= 〈Ω, H〉Cn×n = 0.

Next, we count the real dimension of NXHn,p
+ . Remember that a skew-Hermitian matrix has

purely imaginary numbers on its diagonal entries, and ωij = −ωji on its off diagonal entries.

So the number of degree of freedoms in Ω is p + 2 × p(p−1)
2 = p2. The number of degree of

freedoms in L is 2 × p(n − p), and the number of degree of freedoms in M is 2 × (n − p)2.

So, the dimension of NXHn,p
+ is 2n2 + p2 − 2np. This gives us the desired dimension since

the sum of the dimension of the tangent space and its normal space should be 2n2.

The orthogonal projection from Cn×n onto TXHn,p
+ can also be calculated based on the

Riemannian metric, which is given in the following theorem.

Theorem 2.1.4. Let X = Y Y ∗ = UΣU∗ be the compact SVD for X ∈ Hn,p
+ with Y ∈ Cn×p

∗ .

Let Z ∈ Cn×n. Then the operator P t
X defined below is the orthogonal projection onto

TXHn,p
+ :

P t
X(Z) = 1

2
(
PY (Z + Z∗)PY + P ⊥

Y (Z + Z∗)PY + PY (Z + Z∗)P ⊥
Y

)
= 1

2
(
PU(Z + Z∗)PU + P ⊥

U (Z + Z∗)PU + PU(Z + Z∗)P ⊥
U

)
(2.6)

=
[
U U⊥

] U∗ (Z+Z∗)
2 U U∗ (Z+Z∗)

2 U⊥

U∗
⊥

(Z+Z∗)
2 U 0


U∗

U∗
⊥

 ,

where PY = Y (Y ∗Y )−1Y ∗, P ⊥
Y = I − PY = PY⊥ , PU = UU∗ and P ⊥

U = I − PU = PU⊥ .

Proof. First, observe that

P t
X(Z) =

[
PY PY⊥

] Z+Z∗

2
Z+Z∗

2
Z+Z∗

2 0


PY

PY⊥



=
[
U U⊥

] U∗ (Z+Z∗)
2 U U∗ (Z+Z∗)

2 U⊥

U∗
⊥

(Z+Z∗)
2 U 0


U∗

U∗
⊥


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is a tangent vector at X. So it suffices to show that Z − P t
X(Z) is a normal vector. Write

Z as Z = PY ZPY + PY ZPY⊥ + PY⊥ZPY + PY⊥ZPY⊥ =
[
PY PY⊥

] Z Z

Z Z


PY

PY⊥

 . Then we

have

Z − P t
X(Z) =

[
PY PY⊥

] Z−Z∗

2
Z−Z∗

2
Z−Z∗

2 Z


PY

PY⊥



=
[
U U⊥

] U∗ (Z−Z∗)
2 U U∗ (Z−Z∗)

2 U⊥

U∗
⊥

(Z−Z∗)
2 U U∗

⊥ZU⊥


U∗

U∗
⊥


Hence, Z − P t

X(Z) is a normal vector, which completes the proof.

Remark 2.1.5. We can write P t
X = P s

X + P p
X by introducing the two operators

P s
X : Z 7→ PU

Z + Z∗

2 PU (2.7a)

P p
X : Z 7→ PU⊥

Z + Z∗

2 PU + PU
Z + Z∗

2 PU⊥ (2.7b)

2.2 Quotient Manifold Geometry of Fixed-rank PSD Matrices

Besides being regarded as an embedded manifold in Cn×n, Hn,p
+ can also be viewed as a

quotient set Cn×p
∗ /Op, where Op = {O ∈ Cp×p : U∗U = I} denotes the unitary group, since

any X ∈ Hn,p
+ can be written as X = Y Y ∗ with Y ∈ Cn×p

∗ . But there is an ambiguity in Y

because such an Y is not uniquely determined by X. We define an equivalence relation on

Cn×p
∗ through the smooth Lie group action of Op on the manifold Cn×p

∗ :

Cn×p
∗ ×Op → Cn×p

∗

(Y, O) 7→ Y O.

This action defines an equivalence relation on Cn×p
∗ by setting Y1 ∼ Y2 if there exists an

O ∈ Op such that Y1 = Y2O. Hence we have constructed a quotient space Cn×p
∗ /Op that

removes this ambiguity. The set Cn×p
∗ is called the total space of Cn×p

∗ /Op.
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Denote the natural projection as

π : Cn×p
∗ → Cn×p

∗ /Op.

For any Y ∈ Cn×p
∗ , π(Y ) is an element in Cn×p

∗ /Op. We denote the equivalence class con-

taining Y as

[Y ] = π−1(π(Y )) = {Y O|O ∈ Op} .

Define
β : Cn×p

∗ → Hn,p
+

Y 7→ Y Y ∗.

Then β is invariant under the equivalence relation ∼ and induces a unique function β̃ on

Cn×p
∗ /Op, called the projection of β, such that β = β̃ ◦ π [ 30 , section 3.4.2]. One can easily

check that β̃ is a bijection. This is summarized in the diagram below:

Cn×p
∗

Cn×p
∗ /Op Hn,p

+

β:=β̃◦π
π

β̃

The next theorem shows that Cn×p
∗ /Op is a smooth manifold.

Theorem 2.2.1. The quotient space Cn×p
∗ /Op is a quotient manifold over R of dimension

2np− p2 and has a unique smooth structure such that the natural projection π is a smooth

submersion.

Proof. The proof follows from Corollary 21.6 and Theorem 21.10 of [ 29 ].

The next theorem shows that Hn,p
+ and Cn×p

∗ /Op are essentially the same in the sense

that there is a diffeomorphism between them. The proof uses the same technique in [ 4 ,

Prop. A.7]

Theorem 2.2.2. The quotient manifold Cn×p
∗ /Op is diffeomorphic to Hn,p

+ under β̃.
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Proof. Recall from Theorem  2.1.2 , any tangent vector in Tβ(Y )Hn,p
+ can be written as

ζβ(Y ) = Y HY ∗ + Y⊥KY ∗ + Y K∗Y ∗
⊥,

where Y⊥ has orthonormal columns. Let V = Y H/2 + Y⊥K, then Dβ(Y )[V ] = ζβ(Y ). This

implies that β is a submersion.

Now notice that π = β̃−1 ◦ β and β = β̃ ◦ π. By [ 31 , Prop. 6.1.2], we conclude that β̃−1

and β̃ are both differentiable. So β̃ is a diffeomorphism between Cn×p
∗ /Op and Hn,p

+ .

The equivalence class [Y ] is an embedded submanifold of Cn×p
∗ ([ 30 , Prop. 3.4.4]). The

tangent space of [Y ] at Y is therefore a subspace of TY Cn×p
∗ called the vertical space at Y

and is denoted by VY . The following proposition characterizes VY .

Proposition 2.2.3. The vertical space at Y ∈ [Y ] = {Y O|O ∈ Op}, which is the tangent

space of [Y ] at Y is

VY =
{
Y Ω|Ω∗ = −Ω, Ω ∈ Cp×p

}
.

Proof. The tangent space of Op at Ip is TIpOp = {Ω : Ω∗ = −Ω, Ω ∈ Cp×p}, which is

also the set {γ′(0) : γ is a curve in Op, γ(0) = Ip}. Hence TY {Y O|O ∈ Op} = {Y γ′(0) :

γ is a curve in Op, γ(0) = Ip} = {Y Ω|Ω∗ = −Ω, Ω ∈ Cp×p}.

2.2.1 Choices of Riemannian Metric and Horizontal Space

A Riemannian metric can be defined on the total space Cn×p
∗ . That is, gY (·, ·) is an inner

product on TY Cn×p
∗ . Once we choose a Riemannian metric g for Cn×p

∗ , we can obtain the

orthogonal complement in TY Cn×p
∗ of VY with respect to the metric since VY is an embedded

submanifold of the total space. In other words, we choose the horizontal distribution as

orthogonal complement w.r.t. Riemannian metric, see [  30 , Section 3.5.8]. This orthogonal

complement to VY is called horizontal space at Y and is denoted by HY . We thus have

TY Cn×p
∗ = HY ⊕ VY . (2.8)
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Once we have the horizontal space, there exists a unique vector ξ̄Y ∈ HY that satisfies

D π(Y )[ξ̄Y ] = ξπ(Y ) for each ξπ(Y ) ∈ Tπ(Y )Cn×p
∗ /Op. This ξ̄Y is called the horizontal lift of

ξπ(Y ) at Y .

There exist more than one choice of Riemannian metric on Cn×p
∗ . Different Riemannian

metrics do not affect the vertical space, but generally result in different horizontal spaces.

Now, we will introduce several metric choices for the total space Cn×p
∗ . Then, we will

show that these metrics also induce Riemannian metrics for the quotient manifold, such that

the quotient manifold becomes a Riemannian manifold.

The Bures-Wasserstein Metric

The most straightforward choice of a Riemannian metric on Cn×p
∗ is the canonical Eu-

clidean inner product on Cn×p defined by

g1
Y (A, B) := 〈A, B〉Cn×p = Re(tr(A∗B)), ∀A, B ∈ TY Cn×p

∗ = Cn×p.

The metric g1 is also called the Bures-Wasserstein metric [  32 ] for the quotient manifold

Cn×p
∗ /Op. On the other hand, the following metric for Hermitian positive-definite matrices

Hn,n
+ [ 33 – 35 ] is also called the Bures-Wasserstein metric.

Definition 2.2.1 (The Bures-Wasserstein metric for Hn,n
+ ). Let X ∈ Hn,n

+ and A, B ∈ TXHn,n
+ .

Then

gBW
X (A, B) := 1

2 〈LX(A), B〉 ,

where LX(A) = M solves the following Lyapunov equation

XM + MX = A (2.9)

which has a unique solution provided X is Hermitian positive-definite.

Notice that it is not clear whether Definition  2.2.1 can also apply to a low-rank matrix

X ∈ Hn,p
+ . In this subsection, we show how the metric g1 can be used to generalize Defi-

nition  2.2.1 to Definition  2.2.2 , which defines the Bures-Wasserstein metric in the low-rank
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case Hn,p
+ . This non-trivial generalization is presented as Theorem  2.2.6 . It is of interest to

see how g1 connects the Bures-Wasserstein metric on the quotient manifold to its counterpart

on the embedded manifold.

Definition 2.2.2 (The Bures-Wasserstein metric on Hn,p
+ ). Let A, B ∈ TY Y ∗Hn,p

+ , then by

the 1-to-1 correspondence between TY Y ∗Hn,p
+ and the horizontal space H1

Y , there exist unique

ξY , ηY ∈ H1
Y such that A = Y ξ∗

Y + ξY Y ∗ and B = Y η∗
Y + ηY Y ∗. We define the Bures-

Wasserstein metric at the low-rank X = Y Y ∗ as

gBW
Y Y ∗ (A, B) := g1

Y (ξY , ηY ).

Lemma 2.2.4. For any A, B ∈ TXHn,p
+ with X = Y Y ∗, there is a unique solution M ∈ TXHn,p

+

satisfying both

Y ∗XMY + Y ∗MXY = Y ∗AY (2.10)

and

gBW
Y Y ∗ (A, B) = 1

2 〈M, B〉Cn×n . (2.11)

Proof. Let ξY = Y (Y ∗Y )−1S +Y⊥K ∈ H1
Y with S∗ = S be the unique horizontal vector such

that A = Y ξ∗
Y + ξY Y ∗. Let Y = UR where U has size n-by-p with orthonormal columns and

R is an p-by-p invertible matrix. Thus ( 2.10 ) is equivalent to

RR∗(U∗MU) + (U∗MU)RR∗ = RSR−1 + (R∗)−1SR∗. (2.12)

Since RR∗ is positive definite, (  2.12 ) has a unique solution in U∗MU ; see Remark  2.2.5 

below, which can be written explicitly:

U∗MU = (R∗)−1SR−1. (2.13)
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Thus M =
[
U Y⊥

] (R∗)−1SR−1 K∗
M

KM 0


U∗

Y ∗
⊥

, where KM is to be determined by the

additional equation (  2.11 ). With B = Y η∗
Y + ηY Y ∗ we have,

1
2 〈M, B〉Cn×n = 1

2 〈M, Y η∗
Y 〉Cn×n + 1

2 〈M, ηY Y ∗〉Cn×n = 〈MY, ηY 〉Cn×p .

Thus in order for ( 2.11 ) to hold, M needs to satisfy MY = ξY . Recall that ξY = Y (Y ∗Y )−1S+

Y⊥K = U(R∗)−1S+Y⊥K. Thus KM needs to satisfy Y⊥KMR = Y⊥K, which gives the unique

KM = KR−1.

Remark 2.2.5. The solution X to the Lyapunov equation XE + EX = Z for a Hermitian

E is unique if E is Hermitian positive-definite [  4 , Section 2.2]. Let E = UΛU∗ be the SVD,

then the Lyapunov equation XE + EX = Z becomes

(U∗XU)Λ + Λ(U∗XU) = U∗ZU,

which gives the solution

(U∗XU)i,j = (U∗ZU)i,j/(Λi,i + Λj,j).

Now we can show that Definition  2.2.1 generalizes the Definition  2.2.2 and defines the

Bures-Wasserstein metric in the low-rank case Hn,p
+ in the following theorem.

Theorem 2.2.6 (Equivalence of the two Bures-Wasserstein metrics). If p = n, then the Def-

inition  2.2.2 reduces to the Definition  2.2.1 .

Proof. For the case p = n, Y is invertible, thus (  2.10 ) is equivalent to the Lyapunov equation

( 2.9 ). Therefore, the Definition  2.2.2 indeed reduces to the Definition  2.2.1 when p = n.

The next proposition characterizes the horizontal space for metric g1.

Proposition 2.2.7. Under metric g1, the horizontal space at Y satisfies

H1
Y =

{
Z ∈ Cn×p : Y ∗Z = Z∗Y

}
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=
{
Y (Y ∗Y )−1S + Y⊥K|S∗ = S, S ∈ Cp×p, K ∈ C(n−p)×p

}
,

where Y⊥ has orthonormal columns.

Proof. The result of real case can be found in [ 32 ] but the proof was omitted. For complete-

ness, we outline the proof here. Z ∈ Cn×p belongs to H1
Y if and only if Z is orthogonal to VY

under the metric g1
Y , i.e., g1

Y (Z, Y Ω) = 〈Z, Y Ω〉Cn×p = 〈Y ∗Z, Ω〉Cn×p = 0,∀Ω = −Ω∗. This is

equivalent to Y ∗Z = Z∗Y . The second equality can be obtained by writing any Z ∈ H1
Y as

Z = Y (Y ∗Y )−1S + Y⊥K as Y (Y ∗Y )−1 and Y⊥ forms a basis for the column space of Cn×p,

and verify that S = S∗

Proposition 2.2.8. If we use g1 as our Riemannian metric on Cn×p
∗ , then the orthogonal

projections of any A ∈ Cn×p to VY and H1
Y are

P V
Y (A) = Y Ω, P H1

Y (A) = A− Y Ω,

where Ω is the skew-symmetric matrix that solves the Lyapunov equation

ΩY ∗Y + Y ∗Y Ω = Y ∗A− A∗Y.

The Second Quotient Metric

Another Riemannian metric used in [  36 ,  37 ] is

g2
Y (A, B) := 〈AY ∗, BY ∗〉Cn×n = Re(tr((Y ∗Y )A∗B)), ∀A, B ∈ TY Cn×p

∗ = Cn×p.

Proposition 2.2.9. Under the metric g2, the horizontal space at Y is characterized by

H2
Y =

{
Z ∈ Cn×p : (Y ∗Y )−1Y ∗Z = Z∗Y (Y ∗Y )−1

}
=

{
Y S + Y⊥K|S∗ = S, S ∈ Cp×p, K ∈ C(n−p)×p

}
.

Proof. The proof follows the same idea used in proving Proposition  2.2.7 .
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Proposition 2.2.10. If we use g2 as our Riemannian metric on Cn×p
∗ , then the orthogonal

projection of any A ∈ Cn×p to vertical space VY satisfies

P V
Y (A) = Y

(
(Y ∗Y )−1Y ∗A− A∗Y (Y ∗Y )−1

2

)
= Y Skew

(
(Y ∗Y )−1Y ∗A

)
,

and the orthogonal projection of any A ∈ Cn×p to the horizontal space H2
Y is

P H2

Y (A) = A− P V
Y (A)

= Y

(
(Y ∗Y )−1Y ∗A + A∗Y (Y ∗Y )−1

2

)
+ Y⊥Y ∗

⊥A

= Y Herm
(
(Y ∗Y )−1Y ∗A

)
+ Y⊥Y ∗

⊥A.

The Third Quotient Metric

The third Riemannian metric for Cn×p
∗ is motivated by the Riemannian metric of Hn,p

+

and the diffeomorphism between Cn×p
∗ /Op and Hn,p

+ . We know that β is a submersion. Every

tangent vector of Hn,p
+ corresponds to a tangent vector of Cn×p

∗ . We can use the Riemannian

metric of Hn,p
+ and the correspondence of tangent vectors between Hn,p

+ and Cn×p
∗ to define

a Riemannian metric for Cn×p
∗ . A natural first attempt would be to use

gY (A, B) := 〈D β(Y )[A], D β(Y )[B]〉Cn×n = 〈Y A∗ + AY ∗, Y B∗ + BY ∗〉Cn×n ,

which is however not a Riemannian metric because it is not positive-definite. To see this,

notice that ker(D β(Y )[·]) = VY . Consider C 6= 0 ∈ VY , then g3
Y (C, C) = 0. To modify this

definition for g3, we can use the Riemannian metric g2 and the decomposition TY Cn×p
∗ =

H2
Y ⊕ VY , by which A ∈ TY Cn×p

∗ can be uniquely decomposed as

A = AV + AH2
,

where AV ∈ VY and AH2 ∈ H2
Y . Now define g3 as

g3
Y (A, B) :=

〈
D β(Y )[AH2 ], D β(Y )[BH2 ]

〉
Cn×n

+ g2
Y

(
AV , BV

)
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= 〈D β(Y )[A], D β(Y )[B]〉Cn×n +
〈
P V

Y (A)Y ∗, P V
Y (B)Y ∗

〉
Cn×n

,

= 〈Y A∗ + AY ∗, Y B∗ + BY ∗〉Cn×n +
〈
P V

Y (A)Y ∗, P V
Y (B)Y ∗

〉
Cn×n

where P V
Y is the projection of any tangent vector of Cn×p

∗ to the vertical space VY . It

is straightforward to verify that g3 defined above is now a Riemannian metric. With the

definition ( 2.17 ), the properties tr(UV ) = tr(V U) for two matrices U, V and Re(tr(C+C∗)) =

2 Re(tr(C)), we have

∀A, B ∈ H2
Y , g3

Y (A, B) = 〈Y A∗ + AY ∗, Y B∗ + BY ∗〉Cn×n = 2 〈AY ∗Y + Y A∗Y, B〉Cn×p .

(2.14)

Proposition 2.2.11. Under metric g3, the horizontal space at Y is the same set as H2
Y . That

is,

H3
Y =

{
Z ∈ Cn×p : (Y ∗Y )−1Y ∗Z = Z∗Y (Y ∗Y )−1

}
=

{
Y S + Y⊥K|S∗ = S, S ∈ Cp×p, K ∈ C(n−p)×p

}
.

Proof. Z ∈ H3
Y if and only if g3

Y (Z, Y Ω) = 0 for all Ω = Ω∗. That is, ∀Ω = Ω∗,

〈Y Z∗ + ZY ∗, 2Y ΩY ∗〉Cn×n +
〈
P V

Y (Z)Y ∗, Y ΩY ∗
〉
Cn×n

= 0.

Hence we must have

〈Y Z∗ + ZY ∗, 2Y ΩY ∗〉Cn×n = 0 (2.15a)

and 〈
P V

Y (Z)Y ∗, Y ΩY ∗
〉
Cn×n

= 0. (2.15b)

( 2.15a ) is equivalent to

〈Y ZY ∗Y, Ω〉Cn×n = 0 ∀Ω = Ω∗.

Hence Y ZY ∗Y must be Hermitian since Ω is an arbitrary skew Hermitian matrix. Therefore

Z is in H2
Y as well and hence ( 2.15b ) is satisfied.
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Thus we have shown that

H3
Y = H2

Y =
{
Z ∈ Cn×p : (Y ∗Y )−1Y ∗Z = Z∗Y (Y ∗Y )−1

}
.

Proposition 2.2.12. If we use g3 as our Riemannian metric on Cn×p
∗ , then the orthogonal

projection of any A ∈ Cn×p to vertical space VY satisfies

P V
Y (A) = Y

(
(Y ∗Y )−1Y ∗A− A∗Y (Y ∗Y )−1

2

)
= Y skew((Y ∗Y )−1Y ∗A),

and the orthogonal projection of any A ∈ Cn×p to the horizontal space H3
Y is

P H3

Y (A) = A− P V
Y (A)

= Y

(
(Y ∗Y )−1Y ∗A + A∗Y (Y ∗Y )−1

2

)
+ Y⊥Y ∗

⊥A

= Y Herm
(
(Y ∗Y )−1Y ∗A

)
+ Y⊥Y ∗

⊥A.

2.2.2 The Riemannian Quotient Manifold

Now, we will show that the quotient manifold becomes a Riemannian quotient manifold

with the Riemannian metrics induced from the total space.

First we show in the following lemma the relationship between the horizontal lifts of the

quotient tangent vector ξπ(Y ) lifted at different representatives in [Y ].

Lemma 2.2.13. Let η be a vector field on Cn×p
∗ /Op, and let η̄ be the horizontal lift of η.

Then for each Y ∈ Cn×p
∗ , we have

η̄Y O = η̄Y O

for all O ∈ Op.

Proof. [ 4 , Prop. A.8] gives a proof based on metric g1 for the real case, and [ 36 , Lemma 5.1]

proves the result for metric g2. For completeness, we will provide a proof applying to all

three metrics gi.
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By the definition of horizontal lift, we have

ηπ(Y ) = ηπ(Y O) = D π(Y O)[ηY O].

On the other hand, notice that π(Y ) = π(Y O). Taking the differential w.r.t. Y we have

D π(Y )[A] = D π(Y O)[AO] ∀A ∈ Cn×p.

In particular, let A = ηY ∈ HY we have

ηπ(Y ) = D π(Y )[ηY ] = D π(Y O)[ηY O].

Thus, we have

D π(Y O)[ηY O] = D π(Y O)[ηY O]

So

ηY O − ηY O ∈ ker(D π(Y O)[·]) = VY O.

Now, one can verify that for each gi and Y OΩ ∈ VY O, gi
Y O(ηY O, Y OΩ) = 0. So ηY O is

orthogonal to VY and hence ηY O ∈ Hi
Y O. So we have

ηY O − ηY O ∈ Hi
Y O.

Therefore ηY O − ηY O ∈ VY O ∩Hi
Y O = {0} and we complete the proof.

Recall from [ 30 , Section 3.6.2] that if the expression gY (ξ̄Y , ζ̄Y ) does not depend on the

choice of Y ∈ [Y ] for every π(Y ) ∈ Cn×p
∗ /Op and every ξπ(Y ), ζπ(Y ) ∈ Tπ(Y )Cn×p

∗ /Op, then

gπ(Y )(ξπ(Y ), ζπ(Y )) := gY (ξ̄Y , ζ̄Y ) (2.16)

defines a Riemannian metric on the quotient manifold Cn×p
∗ /Op. By Lemma  2.2.13 , it is

straightforward to verify that each Riemannian metric gi on Cn×p
∗ induces a Riemannian

metric on Cn×p
∗ /Op. The quotient manifold Cn×p

∗ /Op endowed with a Riemannian metric
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defined in ( 2.16 ) is called a Riemannian quotient manifold. By abuse of notation, we use gi

for denoting Riemannian metrics on both total space Cn×p
∗ and quotient space Cn×p

∗ /Op.

2.3 Riemannian Gradients

In this section, we tackle functions defined on the manifold of PSD fixed-rank matrices

and their gradients. First, let us define the Fréchet gradient of a real-valued function f .

2.3.1 The Fréchet Gradient of a Real-valued Function

A real-valued function f(X) defined on complex matrices is not holomorphic, thus f(X)

does not have a complex derivative with respect to X ∈ Cn×n.

For any real vector space E , the inner product on E is denoted by 〈·, ·〉E . For real matrices

A, B ∈ Rm×n, the HilbertSchmidt inner product is 〈A, B〉Rm×n = tr(AT B).

The linear spaces of complex matrices can be regarded as vector spaces over R. Let Re(A)

and Im(B) represent the real and imaginary parts of a complex matrix A. For A, B ∈ Cm×n,

the real inner product for the real vector space Cm×n then equals

〈A, B〉Cm×n := Re(tr(A∗B)), (2.17)

where ∗ is the conjugate transpose. We emphasize that (  2.17 ) is a real inner product, rather

than the complex Hilbert-Schmidt inner product. It is straightforward to verify that (  2.17 )

can be written as

〈A, B〉Cm×n = tr(Re(A)T Re(B))+tr(Im(A)T Im(B)) = 〈Re(A), Re(B)〉Rm×n+〈Im(A), Im(B)〉Rm×n .

With the real inner product ( 2.17 ) for the real vector space Cm×n, a Fréchet derivative for

any real valued function f(X) can be defined as

∇f(X) = ∂f(X)
∂ Re(X) + i

∂f(X)
∂ Im(X) ∈ Cm×n. (2.18)
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In particular, for f(X) = 1
2‖A(X) − b‖2

F with a linear operator A, the Fréchet derivative

( 2.18 ) becomes

∇f(X) = A∗(A(X)− b)

where A∗ is the adjoint operator of A.

2.3.2 Riemannian Gradient of the Embedded Manifold

The Riemannian gradient of f at X ∈ Hn,p
+ , denoted by grad f(X), is the projection of

∇f(X) onto TXHn,p
+ ( [  30 , Sect. 3.6.1]):

grad f(X) = P t
X(∇f(X)),

where P t
X denotes the orthogonal projection onto TXHn,p

+ .

2.3.3 Riemannian Gradient of the Riemannian Quotient Manifold

For any real-valued function f defined on Hn,p
+ , there is a real-valued function F defined

on Cn×p
∗ that induces f : for any X = Y Y ∗ ∈ Hn,p

+ , F (Y ) := f ◦β(Y ) = f(Y Y ∗). Recall that

Cn×p
∗ /Op is diffeomorphic to Hn,p

+ under β̃. Given a smooth real-valued function f on Hn,p
+ ,

the corresponding cost function h on Cn×p
∗ /Op is defined as

h : Cn×p
∗ /Op → R

π(Y ) 7→ f(β̃(π(Y ))) = f(β(Y )) = f(Y Y ∗).
(2.19)

The Riemannian gradient of h at π(Y ) is a tangent vector in Tπ(Y )Cn×p
∗ /Op . The next

theorem shows that the horizontal lift of grad h(π(Y )) can be obtained from the Riemannian

gradient of F defined on Cn×p
∗ .

Theorem 2.3.1. The horizontal lift of the gradient of h at π(Y ) is the Riemannian gradient

of F at Y . That is,

grad h(π(Y ))Y = grad F (Y ).

Therefore, grad F (Y ) is automatically in HY .
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Proof. See [  30 , Section 3.6.2].

The next proposition summarizes the expression of grad F (Y ) under different metrics.

Proposition 2.3.2. Let f be a smooth real-valued function defined onHn,p
+ and let F : Cn×p

∗ →

R : Y 7→ f(Y Y ∗). Assume Y Y ∗ = X. Then the Riemannian gradient of F is given by

grad F (Y ) =



2∇f(Y Y ∗)Y, if using metric g1

2∇f(Y Y ∗)Y (Y ∗Y )−1, if using metric g2(
I − 1

2PY

)
∇f(Y Y ∗)Y (Y ∗Y )−1 if using metric g3

where ∇f denotes Fréchet gradient (  2.18 ) and PY = Y (Y ∗Y )−1Y ∗.

Proof. Let A ∈ TY Cn×p
∗ = Cn×p. By the chain rule, we have

D F (Y )[A] = D f(Y Y ∗)[Y A∗ + AY ∗].

This yields to

gi
Y (grad F (Y ), A) = gX (grad f(Y Y ∗), Y A∗ + AY ∗) ,

where gX is the metric ( 2.4 ). Since Y A∗ + AY ∗ ∈ TY Y ∗Hn,p
+ , we have

gX (grad f(Y Y ∗), Y A∗ + AY ∗) =
〈
P t

Y Y ∗(∇f(Y Y ∗)), Y A∗ + Y A∗
〉
Cn×n

= 〈∇f(Y Y ∗), Y A∗ + AY ∗〉Cn×n .

It is straightforward to verify that

〈∇f(Y Y ∗), Y A∗ + AY ∗〉Cn×n = g1
Y (2∇f(Y Y ∗)Y, A)

= g2
Y

(
2∇f(Y Y ∗)Y (Y ∗Y )−1, A

)
,

which yields the expression of grad F (Y ) under g1 and g2.
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The Riemannian gradient for g3 is due to

〈
P t

Y Y ∗(∇f(Y Y ∗)), Y A∗ + Y A∗
〉
Cn×n

= g3
Y

((
I − 1

2PY

)
P t

X(∇f(Y Y ∗))Y (Y ∗Y )−1, A
)

= g3
Y

((
I − 1

2PY

)
∇f(Y Y ∗)Y (Y ∗Y )−1, A

)
.

2.4 Riemannian Hessians

Definition 2.4.1 ([ 30 , definition 5.5.1]). Given a real-valued function f on a Riemannian

manifoldM, the Riemannian Hessian of f at a point x inM is the linear mapping Hess f(x)

of TxM into itself defined by

Hess f(x)[ξx] = ∇ξxgrad f

for all ξx in TxM, where ∇ is the Riemannian connection on M.

2.4.1 Riemannian Hessian of the Embedded Manifold

For a real-valued function f(X) defined on the Euclidean space Cn×n, the Fréchet Hessian

∇2f(X) is defined in the sense of the Fréchet derivative; see Appendix  A.0.2 for the definition

of the Fréchet Hessian. The Riemannian Hessian of f at X, denoted by Hess f(X) is related

to, but different from its Fréchet Hessian.

The following proposition gives the Riemannian Hessian of f . The proof follows similar

ideas as in [ 7 , Prop. 5.10] and [  38 , Prop. 2.3] where a second-order retraction based on a

simple power expansion is constructed. We will leave the outline of the proof in Appendix

 B.0.1 .

Proposition 2.4.1. Let f(X) be a real-valued function defined on Hn,p
+ . Let X ∈ Hn,p

+ and

ξX ∈ TXHn,p
+ . Then the Riemannian Hessian operator of f at X is given by

Hess f(X)[ξX ] = P t
X(∇2f(X)[ξX ]) + P p

X

(
∇f(X)(X†ξp

X)∗ + (ξp
XX†)∗∇f(X)

)

where ξs
X = P s

X(ξX) and ξp
X = P p

X(ξX) and P t
X and P p

X are defined in (  2.7 ).
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2.4.2 Riemannian Hessian of the Quotient Manifold

Recall that the cost function h on Cn×p
∗ /Op is defined in ( 2.19 ). In this section, we

summarize the Riemannian Hessian of h under the three different metrics gi. The proofs are

tedious calculations and given in Appendix  C.0.1 .

Proposition 2.4.2. 1. Using g1, the Riemannian Hessian of h is given by

(
Hess h(π(Y ))[ξπ(Y )]

)
Y

= P H1

Y

(
2∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y ∗]Y + 2∇f(Y Y ∗)ξY

)
.

2. Using g2, the Riemannian Hessian of h is given by

(
Hess h(π(Y ))[ξπ(Y )]

)
Y

= P H2

Y

{
2∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y ∗]Y (Y ∗Y )−1

+∇f(Y Y ∗)P ⊥
Y ξY (Y ∗Y )−1 + P ⊥

Y ∇f(Y Y ∗)ξY (Y ∗Y )−1

+2skew(ξY Y ∗)∇f(Y Y ∗)Y (Y ∗Y )−2

+ 2skew{ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)}Y (Y ∗Y )−1
}

.

3. Using g3, the Riemannian Hessian of h is given by

(
Hess h(π(Y ))[ξπ(Y )]

)
Y

=
(

I − 1
2PY

)
∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y ∗]Y (Y ∗Y )−1

+(I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1.

2.5 Computational Tools

In this section, we introduce some computational tools that will be used later.

2.5.1 Retraction

A retraction is essentially a first-order approximation to the exponential map; see [ 30 ,

Def. 4.1.1].
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Definition 2.5.1 ([ 30 , Def. 4.1.1]). A retraction on a manifold M is a smooth mapping R

from the tangent bundle TM onto M with the following properties. Let Rx denote the

restriction of R to TxM.

1. Rx(0x) = x, where 0x denotes the zero element of TxM.

2. With the canonical identification T0xTxM≡ TxM, Rx satisfies

D Rx(0x) = idTxM,

where idTxM denotes the identity mapping on TxM.

SupposeM is an embedded submanifold of a Euclidean space E , then by [ 39 , Props. 3.2

and 3.3], the mapping R from the tangent bundle TM to the manifold M defined by

R :


TM→M

(x, u) 7→ PM(x + u)
(2.20)

is a retraction, where PM is the orthogonal projection onto the manifold M with respect

to the Euclidean distance, that is, the closest point. In our case M = Hn,p
+ and E = Cn×n.

Hence, a retraction on Hn,p
+ is defined by the truncated SVD:

RX(Z) := PHn,p
+

(X + Z) =
p∑

i=1
σi(X + Z)viv

∗
i ,

where vi is the singular vector of X + Z corresponding to the ith largest singular value

σi(X + Z).

The retraction on the quotient manifold Cn×p
∗ /Op can be defined using the retraction on

the total space Cn×p
∗ . For any A ∈ TY Cn×p

∗ and a step size τ > 0,

RY (τA) := Y + τA,
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is a retraction on Cn×p
∗ if Y +τA remains full rank, which is ensured for small enough τ . Then

Lemma  2.2.13 indicates that R satisfies the conditions of [ 30 , Prop. 4.1.3], which implies that

Rπ(Y )(τηπ(Y )) := π(RY (τηY )) = π(Y + τηY ) (2.21)

defines a retraction on the quotient manifold Cn×p
∗ /Op for a small enough step size τ > 0.

2.5.2 Vector Transport

The vector transport is a mapping that transports a tangent vector from one tangent

space to another tangent space.

Definition 2.5.2 ([ 30 , definition 8.1.1]). A vector transport on a manifold M is a smooth

mapping

TM⊕ TM→ TM : (ηx, ξx) 7→ Tηx(ξx) ∈ TM

satisfying the following properties for all x ∈M:

1. (Associated retraction) There exists a retraction R, called the retraction associated

with T , such that the following diagram commutes

(ηx, ξx) Tηx(ξx)

ηx Π(Tηx(ξx))

T

Π

R

where Π(Tηx(ξx)) denotes the foot of the tangent vector Tηx(ξx).

2. (Consistency) T0xξx = ξx for all ξx ∈ TxM;

3. (Linearity) Tηx(aξx + bζx) = aTηx(ξx) + bTηx(ζx).

Let ξX , ηX ∈ TXHn,p
+ and let R be a retraction on Hn,p

+ . By [ 30 , section 8.1.3], the projection

of one tangent vector onto another tangent space is a vector transport,

TηX
ξX := P t

RX(ηX)ξX , (2.22)
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where P t
Z is the projection operator onto TZHn,p

+ . Namely, we first apply retraction to X +ηX

to arrive at a new point on the manifold, then we project the old tangent vector ξX onto the

tangent space at that new point.

A vector transport on Cn×p
∗ /Op introduced in [ 30 , Section 8.1.4] is projection to horizontal

space. (
Tηπ(Y )ξπ(Y )

)
Y +ηY

:= P H
Y +ηY

(ξY ). (2.23)

It can be shown that this vector transport is actually the differential of the retraction R

defined in (  2.21 ) (see [  30 , Section 8.1.2]) since

D Rπ(Y )(ηπ(Y ))[ξπ(Y )] = D π
(
RY (ηY )

) [
D RY (ηY )[ξY ]

]
= D π(Y + ηY )

[
ξY

]
= D π(Y + ηY )

[
P H

Y +ηY
(ξY )

]
.

Based on the projection formulae in Section  2.2.1 , we can obtain formulae of vector

transports using different Riemannian metrics. Denote Y2 = Y1 + ηY1 . If we use metric g1,

then (
Tηπ(Y1)ξπ(Y1)

)
Y1+ηY1

= ξY1 − Y2Ω,

where Ω solves the Lyapunov equation

Y ∗
2 Y2Ω + ΩY ∗

2 Y2 = Y ∗
2 ξY1 − ξ

∗
Y1Y2.

If we use metric g2 or g3, then

(
Tηπ(Y1)ξπ(Y1)

)
Y1+ηY1

= ξY1 − P V
Y2(ξY1)

= ξY1 − Skew
(
(Y ∗

2 Y2)−1Y ∗
2 ξY1

)
= Y2

(
(Y ∗

2 Y2)−1Y ∗
2 ξY1 + ξ

∗
Y1Y2(Y ∗

2 Y2)−1

2

)
+ Y2⊥Y2

∗
⊥ξY1 .
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3. A UNIFIED FRAMEWORK FOR RIEMANNIAN

OPTIMIZATION ON FIXED-RANK HERMITIAN PSD

MATRICES VIA QUOTIENT GEOMETRY

3.1 Introduction

In this chapter, we will consider three straightforward ideas and methodologies for solving

( 1.2 ).

3.2 Three Different Methodologies

3.2.1 The Burer–Monteiro Method

The Burer–Monteiro method [  40 ], is to solve the unconstrained problem

min
Y ∈Cn×p

F (Y ) := f(Y Y ∗). (3.1)

As proven in Appendix  A , the chain rule of Fréchet derivatives gives

∇F (Y ) = 2∇f(Y Y ∗)Y ∈ Cn×p.

The gradient descent method simply takes the form of

Yn+1 = Yn − τ∇F (Yn) = Yn − τ2∇f(YnY ∗
n )Yn,

which is one of the simplest low-rank algorithms. The nonlinear conjugate gradient and

quasi-Newton type methods, like L-BFGS, can also be easily used for (  3.1 ). On the other

hand, F (Y ) = F (Y O) for any unitary matrix O ∈ Op×p, where

Op = {O ∈ Cp×p : O∗O = OO∗ = I}.

Even though this ambiguity of unitary matrices is never explicitly addressed in the Burer–

Monteiro method, in this section, we will prove that the gradient descent and nonlinear
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conjugate gradient methods for solving (  3.1 ) are exactly equivalent to the Riemannian gra-

dient descent and Riemannian conjugate gradient methods on a quotient manifold with a

Euclidean metric, which is also referred to as the Bures-Wasserstein metric [  4 ,  32 ]. Thus

the convergence of the Burer–Monteiro method can be understood within the context of

Riemannian optimization on a quotient manifold.

3.2.2 Riemannian Optimization with the Embedded Geometry of Hn,p
+

Another natural approach is to regard Hn,p
+ as an embedded manifold in the Euclidean

space Cn×n. For instance, Riemannian optimization algorithms on the embedded manifold

of low-rank matrices and tensors are quite efficient and popular [  41 ,  42 ]. Even though it

is possible to study Hn,p
+ ⊂ Cn×n as a complex manifold, we will regard Cn×n as a 2n2-

dimensional real vector space and Hn,p
+ ⊂ Cn×n as a manifold over R since f(X) is real-

valued. In particular, the embedded geometry of Sn,p
+ , representing the set of real symmetric

PSD low-rank matrices, was studied in [  43 ].

3.2.3 Riemannian Optimization by Using Quotient Geometry

The third approach is to consider the quotient manifold Cn×p
∗ /Op. Since there is a one-

to-one correspondence between X = Y Y ∗ ∈ Hn,p
+ and π(Y ) ∈ Cn×p

∗ /Op, the optimization

problem ( 1.2 ) is equivalent to

minimize
π(Y )

h(π(Y ))

subject to π(Y ) ∈ Cn×p
∗ /Op

, (3.2)

where the cost function h is defined as h(π(Y )) = F (Y ) = f(Y Y ∗).

For the quotient manifold Cn×p
∗ /Op, one can first choose a metric for its total space Cn×p

∗ ,

which induces a Riemannian metric on the quotient manifold under suitable conditions. In

particular, a special metric was used in [  36 ] to construct efficient Riemannian optimization
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algorithms for the problem ( 3.1 ). The horizontal lift of the Riemannian gradient for h(π(Y ))

under this particular metric satisfies

(grad h(π(Y )))Y = ∇F (Y )(Y ∗Y )−1 = 2∇f(Y Y ∗)Y (Y ∗Y )−1. (3.3)

From the representation of the Riemannian gradient (  3.3 ), we see that this approach gener-

ates different algorithms from the simpler Burer–Monteiro approach.

3.3 The Riemannian Conjugate Gradient Method

In this section, we introduce the Riemannian conjugate gradient (RCG) method described

as Algorithm 1 in [ 41 ] with the geometric variant of PolakRibiére (PR+) for computing the

conjugate direction. It is possible to explore other methods such as the limited-memory

version of the Riemannian BFGS method (LRBFGS) as in [  44 ]. However, RCG performs

very well on a wide variety of problems and is easier to implement for our numerical examples.

We first summarize two Riemannian CG algorithms in Algorithm  1 and Algorithm  2 

below. Algorithm  1 is the RCG on the embedded manifold for solving (  1.2 ) and Algorithm

 2 is the RCG on the quotient manifold (Cn×p
∗ /Op, gi) for solving (  3.2 ). We remark that the

explicit constants 0.0001 and 0.5 in the Armijo backtracking are chosen for convenience.

3.4 Equivalence Between Burer–Monteiro CG and RCG on the Riemannian
Quotient Manifold with the Bures-Wasserstein Metric (Cn×p

∗ /Op, g1)

In this section, we focus on establishing two equivalences in algorithms.First, we show

that the Burer–Monteiro CG method, which is simply applying the CG method for the

unconstrained problem (  3.1 ), is equivalent to RCG on the Riemannian quotient manifold

(Cn×p
∗ /Op, g1) with our retraction and vector transport defined in the previous sections.

Theorem 3.4.1. Using retraction ( 2.21 ), vector transport (  2.23 ) and metric g1, Algorithm  2 

is equivalent to the conjugate gradient method solving ( 3.1 ) in the sense that they produce

exactly the same iterates if started from the same initial point.
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Algorithm 1 Riemannian Conjugate Gradient on the embedded manifold Hn,p
+

Require: initial iterate X0 ∈ Hn,p
+ , initial gradient ξ0 = grad f(X0), initial conjugate direc-

tion η0 = −grad f(X0), tolerance ε > 0
1: for k = 1, 2, . . . do
2: Compute an initial step tk. For special cost functions, it is possible to compute:

tk = arg mint f(Xk−1 + tηk−1)
3: Perform Armijo backtracking to find the smallest integer m ≥ 0 such that

f(Xk−1)− f(RXk−1(0.5mtkηk−1)) ≥ −0.0001× 0.5mtkgXk−1(ξk−1, ηk−1)

ζk := 0.5mtkηk−1

4: Obtain the new iterate by retraction
Xk = RXk−1(ζk) . See Algorithm  6 

5: Compute gradient
ξk := grad f(Xk) . See Algorithm  3 

6: Check convergence
if ‖ξk‖ :=

√
gXk

(ξk, ξk) < ε or f(Xk) < ε, then break
7: Compute a conjugate direction by PR+ and vector transport

ηk = −ξk + βkTζk
(ηk−1), . See Algorithm  4 ,  5 

with βk := gXk
(ξk, ξk − Tζk

(ξk−1))
gXk−1 (ξk−1, ξk−1)

.

8: end for
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Algorithm 2 Riemannian Conjugate Gradient on the quotient manifold Cn×p
∗ /Op with

metric gi

Require: initial iterate Y0 ∈ π−1(π(Y0)), initial horizontal lift of gradient ξ0 = grad F (Y0),
initial conjugate direction η0 = −ξ0, tolerance ε > 0

1: for k = 1, 2, . . . do
2: Compute an initial step tk. For special cost functions, it is possible to compute:

tk = arg mint F (Yk−1 + tηk−1)
3: Perform Armijo backtracking to find the smallest integer m ≥ 0 such that

F (Yk−1)− F (RYk−1(0.5mtkηk−1)) ≥ −0.0001× 0.5mtkgi
Yk−1

(ξk−1, ηk−1)

ζk := 0.5mtkηk

4: Obtain the new iterate by retraction
Yk = RYk−1(ζk)

5: Compute the horizontal lift of gradient
ξk := (grad h(π(Yk)))Yk

= grad F (Yk) . See Algorithm  7 

6: Check convergence
if
∥∥∥ξk

∥∥∥ :=
√

gi
Yk

(ξk, ξk) < ε or F (Yk) < ε, then break
7: Compute a conjugate direction by PR+ and vector transport

ηk = −ξk + βk(Tζk
ηk−1)Yk

, . See Algorithm  8 

with βk :=
gi

Yk

(
grad F (Yk), grad F (Yk)− (Tζk

ξk−1)Yk

)
gi

Yk−1
(grad F (Yk−1), grad F (Yk−1))

.

8: end for
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Proof. First of all, for g1, the Riemannian gradient of F at Y is grad F (Y ) = 2∇f(Y Y ∗)Y ,

which is equal to the Fréchet gradient of F (Y ) = f(Y Y ∗) at Y . Since vector transport is the

orthogonal projection to the horizontal space, the PR+ βk used in Riemannian CG becomes

βk =
g1

Yk

(
grad F (Yk), grad F (Yk)− P H1

Yk
(grad F (Yk−1))

)
g1

Yk−1
(grad F (Yk−1), grad F (Yk−1))

. (3.4)

Now observe that

P H1

Yk
(grad F (Yk−1)) = grad F (Yk−1)− P V

Yk
(grad F (Yk−1))

and g1 is equivalent to the classical inner product for Cn×p. Hence βk computed by (  3.4 ) is

equal to PR+ βk in conjugate gradient for ( 3.1 ).

The first conjugate direction is η1 = −grad F (Y1) = −∇F (Y1), so Burer–Monteiro CG

coincides with Riemannian CG for the first iteration. It remains to show that ηk generated

in Riemannian CG by

ηk = −ξk + βkP H1

Yk
(ηk−1)

is equal to ηk generated in Burer–Monteiro CG for each k ≥ 2. It suffices to show that

P H1

Yk
(ηk−1) = ηk−1, ∀k ≥ 2.

Equivalently we need to show that for all k ≥ 2, the Lyapunov equation

(Y ∗
k Yk)Ω + Ω(Y ∗

k Yk) = Y ∗
k ηk−1 − η∗

k−1Yk (3.5)

only has trivial solution Ω = 0. By invertibility of the equation, this means that we only

need to show the right hand side is zero. We prove it by induction.

For k = 2, ηk−1 = η1 = −ξ1 = −grad F (Y1). The following computations show that the

RHS of (  3.5 ) satisfies

Y ∗
2 η1 − η∗

1Y2 = −Y ∗
2 ξ1 + ξ∗

1Y2
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= −(Y1 − cξ1)∗ξ1 + ξ∗
1(Y1 − cξ1)

= ξ∗
1Y1 − Y ∗

1 ξ1

= Y ∗
1 (2∇f(Y1Y

∗
1 ))Y1 − Y ∗

1 (2∇f(Y1Y
∗

1 ))Y1

= 0.

Hence Ω = 0 and P H1
Yk

(ηk−1) = ηk−1 for k = 2.

Now suppose for k ≥ 2, the RHS of (  3.5 ) is 0 and hence P H1
Yk

(ηk−1) = ηk−1 holds. Then

the RHS of the Lyapunov equation of step k + 1 is

Y ∗
k+1ηk − η∗

kYk+1 = (Yk + cηk)∗ηk − η∗
k(Yk + cηk)

= Y ∗
k ηk − η∗

kYk

= Y ∗
k

(
−ξk + βkP H1

Yk
(ηk−1)

)
−
(
−ξk + βkP H1

Yk
(ηk−1)

)∗
Yk

= Y ∗
k (−ξk + βkηk−1)− (−ξk + βkηk−1)∗Yk

= −Y ∗
k ξk + ξ∗

kYk

= −Y ∗
k (2∇f(YkY ∗

k ))Yk + Y ∗
k (2∇f(YkY ∗

k ))Yk

= 0.

Hence P H1
Yk+1

(ηk) = ηk also holds. We have thus proven that Riemannian CG is equivalent to

Burer–Monteiro CG.

Since the gradient descent corresponds to βk ≡ 0, the same discussion also implies the

following

Corollary 3.4.2. Using retraction (  2.21 ) and metric g1, the Riemannian gradient descent on

the quotient manifold is equivalent to the Burer–Monteiro gradient descent method with a

suitable step size ( 3.2.1 ) in the sense that they produce exactly the same iterates.
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3.5 Equivalence Between RCG on Embedded Manifold and RCG on the Quo-
tient Manifold (Cn×p

∗ /Op, g3)

In this subsection we show that Algorithm  1 is equivalent to Algorithm  2 with Riemannian

metric g3, a specific initial line-search in step 5, a specific retraction and a specific vector

transport. The idea is to take advantage of the diffeomorphism β̃ between Cn×p
∗ /Op and

Hn,p
+ , as well as the fact that the metric g3 of Cn×p

∗ /Op is induced from the metric of Hn,p
+ .

The Lemma below shows that there is a one-to-one correspondence between grad f and

grad h.

Lemma 3.5.1. If we use g3 as the Riemannian metric for Cn×p
∗ /Op, then the Riemannian

gradient of f and h is related by the diffeomorphism β̃ in the following way:

(D β̃)(π(Y ))[grad h(π(Y ))] = grad f(Y Y ∗).

Proof. Recall that β = β̃ ◦ π and we have Theorem  2.3.1 . By chain rule and the definition

of horizontal lift we have

LHS = (D β̃)(π(Y ))[grad h(π(Y ))] = (D β̃)(π(Y ))
[
D π(Y )

[
grad h(π(Y ))Y

]]
= D β(Y )

[
grad h(π(Y ))Y

]
= D β(Y ) [grad F (Y )] ,

where the second equality follows from the inverse direction of chain rule.

Now recall that F = f ◦ β. Let A ∈ Cn×p then

D F (Y )[A] = D f(Y Y ∗)[Y A∗ + Y A∗].

Let X = Y Y ∗. Then we have

g3
Y (grad F (Y ), A) = gX(grad f(Y Y ∗), Y A∗ + AY ∗).
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Applying the definition of g3, we have

gX (D β(Y )[grad F (Y )], Y A∗ + AY ∗) = gX (grad f(Y Y ∗), Y A∗ + AY ∗) ,

or

gX (LHS, Y A∗ + AY ∗) = gX (RHS, Y A∗ + AY ∗) .

Now notice that A is arbitrary and Y A∗ + AY ∗ can be any tangent vector in TXHn,p
+ . Hence

we must have LHS = RHS

Since β̃ is a diffeomorphism bewteen Cn×p
∗ /Op and Hn,p

+ , Dβ̃(π(Y ))[·] defines an isomor-

phism between the tangent space Tπ(Y )Cn×p
∗ /Op and TY Y ∗Hn,p

+ . We denote this isomorphism

by Lπ(Y ). When the tangent space is clear from the context, π(Y ) is omitted and we only

use the notation L for simplicity. The previous lemma then simply reads as

Lπ(Y )(grad h(π(Y ))) = grad f(β̃(π(Y ))).

In Algorithm  1 , we have a retraction RE and a vector transport T E on the embedded

manifold Hn,p
+ , (with the superscript E for Embedded), such that RE is the retraction associ-

ated with T E. Then we claim that there is a retraction RQ and a vector transport T Q, (with

the superscript Q denoting Quotient), on the Riemannian quotient manifold (Cn×p
∗ /Op, g3),

such that Algorithm  2 is equivalent to Algorithm  1 . The idea is again to use the diffeo-

morphism β̃ and the isomorphism Lπ(Y ). We give the desired expression of RQ and T Q as

follows.

RQ
π(Y )(ξπ(Y )) := β̃−1

(
RE

β̃(π(Y ))

(
L(ξπ(Y ))

))
. (3.6)

T Q
ηπ(Y )

(ξπ(Y )) := L−1
π(Y2)

(
T E

L(ηπ(Y ))

(
L(ξπ(Y ))

))
, (3.7)

where π(Y2) is in Cn×p
∗ /Op such that β̃(π(Y2)) denotes the foot of the tangent vector T E

L(ηπ(Y ))

(
L(ξπ(Y ))

)
.

Now it remains to show that RQ defined in ( 3.6 ) is indeed a retraction and T Q defined

in (  3.7 ) is indeed a vector transport.
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Lemma 3.5.2. RQ defined in (  3.6 ) is a retraction.

Proof. First it is easy to see that RQ
π(Y )(0π(Y )) = π(Y ). Then we also have for all vπ(Y ) ∈

Tπ(Y )Cn×p
∗ /Op

D RQ
π(Y )(0π(Y ))[vπ(Y )] = (D β̃−1)(β̃(π(Y ))

[
D RE

β̃(π(Y ))(0)
[
D L(0)

[
vπ(Y )

]]]
= (D β̃−1)(β̃(π(Y ))

[
D RE

β̃(π(Y ))(0)
[
L(vπ(Y ))

]]
= (D β̃−1)(β̃(π(Y ))

[
L(vπ(Y ))

]
=

(
D β̃(π(Y ))

)−1
[L(vπ(Y ))]

= L−1(L(vπ(Y )))

= vπ(Y )

Hence D RQ
π(Y )(0π(Y ))[·] is an identity map.

Lemma 3.5.3. T E defined in (  3.7 ) is a vector transport and RQ is the retraction associated

with T E.

Proof. Consistency and linearity are straightforward. It thus suffices to verify that the foot

of T Q
ηπ(Y )

(ξπ(Y )) is equal to RQ
π(Y )(ηπ(Y )). Since RE is the associated retraction with T E, the

foot of T E
L(ηπ(Y ))(L(ξπ(Y ))) is equal to RE

β̃(π(Y ))

(
L(ηπ(Y ))

)
, which we denote by β̃(π(Y2)) for

some π(Y2). Hence RQ
π(Y )(ηπ(Y )) = β̃−1

(
RE

β̃(π(Y ))

(
L(ηπ(Y ))

))
= π(Y2).

Furthermore, we have that T Q
ηπ(Y )

(ξπ(Y )) = L−1
π(Y2)

(
T E

L(ηπ(Y ))

(
L(ξπ(Y ))

))
is a tangent vector

in Tπ(Y2)Cn×p
∗ /Op. Hence, the foot of T Q

ηπ(Y )
(ξπ(Y )) is also π(Y2).

Finally, in order to reach an equivalence, we also need the initial step size to match the

one in step 5 of Algorithm  2 . We simply replace the original initial step size tk by

tk = arg min
t

f(YkY ∗
k + t(Ykη∗

k + ηkY ∗
k )).

This value of tk now is equivalent to the initial step size in step 5 of Algorithm  1 . This gives

us the following result:
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Theorem 3.5.4. With the newly constructed initial step size, retraction and vector transport

in this subsection, Algorithm  2 for solving ( 3.2 ) is equivalent to Algorithm  1 solving ( 1.2 ) in

the sense that they produce exactly the same iterates.

3.6 Implementation details

The algorithms in this section can be applied for minimizing any smooth function f(X)

in ( 1.2 ). For problems with large n, however, it is advisable to avoid constructing and

storing the Fréchet derivative ∇f(X) ∈ Cn×n explicitly. Instead, one directly computes

the matrix-vector multiplications ∇f(X)U . In the PhaseLift problem [  8 ], for example, these

matrix-vector multiplications can be implemented via the FFT at a cost of O(pn log n) when

U ∈ Cn×p; see [  36 ].

Below, we detail the calculations needed in Algorithms  1 and  2 . When giving flop counts,

we assume that ∇f(X)U ∈ Cn×p can be computed in spn log n flops with s small. For g2 and

g3 in Algorithms  7 and  8 , we use forward slash "/" and backslash "\" in Matlab command to

compute the inverse of Y ∗Y .

3.6.1 Embedded manifold

Algorithm 3 Calculate the Riemannian gradient grad f(X)
Require: X = UΣU∗ ∈ Hn,p

+

Ensure: grad f(X) = UHU∗ + UpU∗ + UU∗
p ∈ TXHn,p

+

T ← ∇f(X)U . # spn log n flops

H ← U∗T . # p2(2n− 1) flops

Up ← T − UH . # np + np(2p− 1) flops

In implementation, we observe a vector transport that has better numerical performance

if we only keep the first term in the above sum of H2 and the second term of U2p in Algorithm

 4 , which is outlined in Algorithm  5 .

51



Algorithm 4 Calculate the vector transport by projection to tangent space P t
X2(ν)

Require: X1 = U1Σ1U
∗
1 , X2 = U2Σ2U

∗
2 and tangent vector ν = U1H1U

∗
1 + Up1U

∗
1 + U1Up

∗
1 ∈

TX1H
n,p
+ .

Ensure: P t
X2(ν) = U2H2U

∗
2 + Up2U

∗
2 + U2Up

∗
2

A← U∗
1 U2 . # p2(2n− 1) flops

H
(1)
2 ← A∗H1A, U (1)

p ← U1(H1A) . # 3p2(2p− 1) + np(2p− 1) flops
H

(2)
2 ← U∗

2 Up1A, U (2)
p ← Up1A . # p2(2n− 1) + 2np(2p− 1) flops

H
(3)
2 ← H

(2)
2

∗
, U (3)

p ← U1(U1
∗
pU2) . # np(2p− 1) + p2(2n− 1) flops

H2 ← H
(1)
2 + H

(2)
2 + H

(3)
2 . # 2p2 flops

Up2 ← U (1)
p + U (2)

p + U (3)
p , Up2 ← Up2 − U2(U∗

2 Up2) . #
3np + np(2p− 1) + p2(2n− 1) flops

Algorithm 5 Calculate the simpler form of vector transport used in implementation that
has a better performance P t

X2(ν)
Require: X1 = U1Σ1U

∗
1 , X2 = U2Σ2U

∗
2 and tangent vector ν = U1H1U

∗
1 + Up1U

∗
1 + U1Up

∗
1 ∈

TX1H
n,p
+ .

Ensure: P t
X2(ν) = U2H2U

∗
2 + Up2U

∗
2 + U2Up

∗
2

A← U∗
1 U2 . # p2(2n− 1) flops

H2 ← A∗H1A . # 2p2(2p− 1) flops
Up ← Up1A . # np(2p− 1) flops
Up2 ← Up − U2(U∗

2 Up) . # np + p2(2n− 1) + np(2p− 1) flops

Algorithm 6 Calculate the retraction RX(Z) = PHn,p
+

(X + Z)

Require: X = UΣU∗ ∈ Hn,p
+ , tangent vector Z = UHU∗ + UpU∗ + UU∗

p .

Ensure: PHn,p
+

(X + Z) = U+Σ+U∗
+.

(Q, R)← qr(Up, 0) M ←

Σ + H R∗

R 0

 . # 20np2 flops

[V, S]← eig(M) . O(p3) flops

Σ+← S(1 : p, 1 : p), U+ ←
[
U Q

]
V (:, 1 : p) . # np(4p− 1) flops
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3.6.2 Quotient manifold

Algorithm 7 Calculate the Riemannian gradient grad F (Y )
Require: Y ∈ Cn×p

∗

Ensure: T = grad F (Y )

1: if metric is g1 then

T ← 2∇f(Y Y ∗)Y . . # 2spn log n flops

2: else if metric is g2 then

Z ← Y (Y ∗Y )−1 . # np(2p− 1) + p2(2n− 1) + O(p3) flops

T ← 2∇f(Y Y ∗)Z . # 2spn log n flops

3: else if metric is g3 then

Z ← Y (Y ∗Y )−1 . # np(2p− 1) + p2(2n− 1) + O(p3) flops

T ← 2∇f(Y Y ∗)Z . # 2spn log n flops

M ← Y ∗T , T ← T − 1
2ZM . # p2(2n− 1) + np + 2np2 flops

4: end if

53



Algorithm 8 Calculate the quotient vector transport P H
Y2(h1)

Require: Y1 ∈ Cn×p
∗ , Y2 ∈ Cn×p

∗ and horizontal vector h1 ∈ HY1 .

Ensure: h2 = P H
Y2(h1) ∈ HY2 .

1: if metric is g1 then

E ← Y ∗
2 Y2 . # p2(2n− 1) flops

(Q, S)← eig(E), d← diag(S) . # O(p3) flops

λ← d
[
1, 1, · · · , 1

]
+
[
1, 1, · · · , 1

]T

dT . # 2p2 flops

A← Q∗(Y ∗
2 h1 − h∗

1Y2)Q . # p2(2n− 1) + np + 2p2(2p− 1) flops

Ω← Q(A./λ)Q∗ . # p2 + 2p2(2p− 1) flops

h2 ← h1 − Y2Ω . # np + np(2p− 1) flops

2: else if metric is g2 or g3 then

Ω̃← (Y ∗Y )−1(Y ∗
2 h1) . # 2p2(2p− 1) + p2(2n− 1) + O(p3) flops

Ω← 1
2(Ω̃− Ω̃∗) . # 2p2 flops

h2 ← h1 − Y2Ω . # np + np(2p− 1) flops

3: end if

3.6.3 Initial guess for the line search

The initial guess for the line search generally depends on the expression of the cost

function f(X). For the important case of f(X) = 1
2‖A(X)− b‖2

F whereA is a linear operator

and b is a matrix, the initial guess for embedded CG requires solving a linear equation and

for quotient CG it requires solving a cubic equation. Below this calculation is detailed for

b of size mn for some m and assuming that A(X),A(T ) and A(Y η∗) can be evaluated in

spαn log n flops for X ∈ Hn,p
+ , T ∈ TXHn,p

+ and Y, η ∈ Cn×p
∗ .

Algorithm 9 Calculate the initial guess t∗ = arg mint f(X + tT )
Require: X ∈ Hn,p

+ and a descend direction T ∈ TXHn,p
+

Ensure: t∗ = arg mint f(X + tT ) = arg mint
1
2‖A(X + tT )− b‖2

F

R← A(X)− b . # spαn log n + mn flops

S ← A(T ) . # spαn log n flops

t∗ ← − 〈R,S〉
〈S,S〉 . # 4mn− 1 flops

54



Algorithm 10 Calculate the initial guess t∗ = arg mint F (Y + tη)
Require: Y ∈ Cn×p

∗ , a descend direction η ∈ HY ,

Ensure: t∗ = arg mint F (Y + tη) = arg mint
1
2‖A((Y + tη)(Y + tη)∗)− b‖2

F

c0 ← A(Y Y ∗)− b . # spαn log n + mn flops

c
(1)
1 ← A(Y η∗), c

(2)
1 ← A(ηY ∗), c1 ← c

(1)
1 + c

(2)
1 . # 2spαn log n + mn flops

c2 ← A(ηη∗) . # spαn log n flops

d4 ← 〈c2, c2〉, d3 ← 2 〈c2, c1〉 . # 4mn− 1 flops

d2 ← 2 〈c2, c0〉+ 〈c1, c1〉, d1 ← 2 〈c1, c0〉 . # 6mn− 1 flops

C ←
[
4d4 3d3 2d2 d1

]
S ← roots(C), t∗ ← the smallest real positive root in S

3.7 Concluding Remarks

In this chapter, we have shown that the nonlinear conjugate gradient method on the un-

constrained Burer–Monteiro formulation for Hermitian PSD fixed-rank constraints is equiv-

alent to a Riemannian conjugate gradient method on a quotient manifold Cn×p
∗ /Op with the

Bures-Wasserstein metric g1, retraction, and vector transport. We have also shown that the

Riemannian conjugate gradient method on the embedded geometry of Hn,p
+ is equivalent to

a Riemannian conjugate gradient method on a quotient manifold Cn×p
∗ /Op with a metric

g3, a special retraction, and a special vector transport. With these equivalences, we are

able to unify three different methodologies within the same framework via optimizations

on the quotient Riemannian manifold and conduct a fair comparison of the performance of

algorithms.

55



4. CONDITION NUMBER ANALYSIS OF RIEMANNIAN

HESSIANS AND RANK-DEFICIENCY EFFECTS

4.1 Introduction

In many applications, (  1.2 ) or (  3.2 ) is often used for solving (  1.1 ). In [ 45 ], it was proven

that first-order and second-order optimality conditions for the nonconvex Burer–Monteiro

approach are sufficient to find the global minimizer of certain convex semi-definite programs

under certain assumptions. In practice, even if the global minimizer of ( 1.1 ) has a known

rank r, one might consider solving (  1.2 ) or (  3.2 ) for Hermitian PSD matrices with fixed rank

p > r. For instance, in PhaseLift [  8 ] and interferometry recovery [  11 ], the minimizer to ( 1.1 )

is rank one, but in practice optimization over the set of PSD Hermitian matrices of rank p

with p ≥ 2 is often used because of a larger basin of attraction [  11 ,  36 ]. If p > r, then an

algorithm that solves (  1.2 ) or (  3.2 ) can generate a sequence that goes to the boundary of

the manifold. Numerically, the smallest p− r singular values of the iterates Xk will become

very small as k →∞.

In this chapter, we analyze the eigenvalues of the Riemannian Hessian near the global

minimizer. More specifically, we will obtain upper and lower bounds of the Rayleigh quotient

at the point X = Y Y ∗ (or π(Y )) that is close to the global minimizer X̂ = Ŷ Ŷ ∗ (or π(Ŷ )).

We first define the Rayleigh quotient and the condition number of the Riemannian Hes-

sian.

Definition 4.1.1 (Rayleigh quotient of Riemannian Hessian). The Rayleigh quotient of the

Riemannian Hessian of (Hn,p
+ , g) is defined by

ρE(X, ζX) = gX(Hess f(X)[ζX ], ζX)
gX(ζX , ζX)

for ζX ∈ TXHn,p
+ .

The Rayleigh quotient of the Riemannian Hessian of (Cn×p
∗ /Op, gi) is defined by

ρi(π(Y ), ξπ(Y )) =
gi
π(Y )(Hess h(π(Y ))[ξπ(Y )], ξπ(Y ))

gi
π(Y )(ξπ(Y ), ξπ(Y ))
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for ξπ(Y ) ∈ Tπ(Y )Cn×p
∗ /Op. If the Rayleigh quotient has lower bound a and upper bound b,

then we define b
a

as the upper bound on the condition number of the Riemannian Hessian.

4.2 The Rayleigh Quotient Estimates

We assume that the Fréchet Hessian ∇2f is well conditioned when restricted to the

tangent space. Formally, our bounds will be stated in terms of the constants A, B defined

in the following assumption:

Assumption 4.2.1. For a fixed ε > 0, there exist constants A > 0 and B > 0 such that for

all X with
∥∥∥X − X̂

∥∥∥
F

< ε, the following inequality holds for all ζX ∈ TXHn,p
+ .

A‖ζX‖2
F ≤

〈
∇2f(X)[ζX ], ζX

〉
Cn×n

≤ B‖ζX‖2
F .

Observe that this assumption is always satisfied for sufficiently small ε when f is smooth.

However, the condition number B/A might be large in general. An important case for which

this assumption holds everywhere is f(X) = 1
2‖X −H‖2

F with H a given Hermitian PSD

matrix. In this case, ∇2f(X) is the identity operator thus A = B = 1.

The main result in this chapter is given in the following theorem.

Theorem 4.2.1. Let X̂ = Ŷ Ŷ ∗ be the global minimizer of (  1.1 ) with rank r ≤ p. For

X = Y Y ∗ near X̂ where Y ∈ Cn×p
∗ , let ζX ∈ TXHn,p

+ be any tangent vector at X, ξπ(Y ) ∈

Tπ(Y )Cn×p
∗ /Op be any tangent vector at π(Y ), and ξY ∈ Hi

Y be its horizontal lift at Y w.r.t.

the metric gi. Let X = UΣU∗ denote the compact SVD of X and denote the ith diagonal

entry of Σ to be σi with σ1 ≥ · · · ≥ σp > 0. Under the Assumption  4.2.1 , for any arbitrary

tangent vectors ζX and ξπ(Y ), the following bounds hold:

1. For the embedded manifold,

A− 2
σp

‖∇f(X)‖ ≤ ρE(X, ζX) ≤ B + 2
σp

‖∇f(X)‖.
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2. For the quotient manifold metric gi,

2Aσp − 2‖∇f(Y Y ∗)‖ ≤ ρ1(π(Y ), ξπ(Y )) ≤ B ·D1
π(Y ) + 2‖∇f(Y Y ∗)‖,

2A−
4(√p + 1)

σp

‖∇f(Y Y ∗)‖ ≤ ρ2(π(Y ), ξπ(Y )) ≤ 4B +
4(√p + 1)

σp

‖∇f(Y Y ∗)‖,

A− 1
σp

‖∇f(Y Y ∗)‖ ≤ ρ3(π(Y ), ξπ(Y )) ≤ B + 1
σp

‖∇f(Y Y ∗)‖,

where D1
π(Y ) satisfies 2σ1 ≤ D1

π(Y ) ≤ 2
(

σ2
1

σp
+ σ1

)
.

In particular, if X̂ = Ŷ Ŷ ∗ has rank p, e.g., X̂ has singular values σ̂1 ≥ · · · ≥ σ̂p > 0,

then under the Assumption  4.2.1 , we have the following limits, where the limits X → X̂ and

π(Y )→ π(Ŷ ) are taken in the sense of
∥∥∥X − X̂

∥∥∥
F
→ 0 and

∥∥∥Y Y ∗ − Ŷ Ŷ ∗
∥∥∥

F
→ 0:

1. For the embedded manifold

A− 2
σ̂p

∥∥∥∇f(X̂)
∥∥∥ ≤ lim

X→X̂
ρE(X, ξX) ≤ B + 2

σ̂p

∥∥∥∇f(X̂)
∥∥∥.

2. For the quotient manifold metric gi,

2Aσ̂p − 2
∥∥∥∇f(X̂)

∥∥∥ ≤ lim
π(Y )→π(Ŷ )

ρ1(π(Y ), ξπ(Y )) ≤ B ·D1
π(Ŷ ) + 2

∥∥∥∇f(X̂)
∥∥∥,

2A−
4(√p + 1)

σ̂p

∥∥∥∇f(X̂)
∥∥∥ ≤ lim

π(Y )→π(Ŷ )
ρ2(π(Y ), ξπ(Y )) ≤ 4B +

4(√p + 1)
σ̂p

∥∥∥∇f(X̂)
∥∥∥,

A− 1
σ̂p

∥∥∥∇f(X̂)
∥∥∥ ≤ lim

π(Y )→π(Ŷ )
ρ3(π(Y ), ξπ(Y )) ≤ B + 1

σ̂p

∥∥∥∇f(X̂)
∥∥∥,

where D1
π(Ŷ ) satisfies 2σ̂1 ≤ D1

π(Ŷ ) ≤ 2
(

σ̂2
1

σ̂p
+ σ̂1

)
.

Remark 4.2.2. If we further assume that ∇f(X̂) = 0, then the limits above can be further

simplified. Such an assumption ∇f(X̂) = 0 may not be true in general, but it holds, e.g.,

for all cost functions that take the form f(X) = 1
2‖A(X)− b‖2

F for some matrix-valued

linear operator A, and the minimizer X̂ for constrained minimization ( 1.2 ) or (  1.1 ) satisfies
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f(X̂) = 0. Thus X̂ is also the global minimizer for minimizing f(X) over all X ∈ C, which

implies ∇f(X̂) = 0.

Remark 4.2.3. We can define the ratio of the upper and lower bounds of the Rayleigh quo-

tient as the upper bound on the condition number of the Riemannian Hessian. Then under

the assumption ∇f(X̂) = 0, the limit of the condition number of the Riemannian Hessian

for the Bures-Wasserstein metric g1 depends on the condition number of the minimizer X̂.

This reflects a significant difference between g1 and the other two metrics.

Remark 4.2.4. For the case ∇f(X̂) 6= 0, if ‖∇f(X̂)‖ is sufficiently small in the sense that

‖∇f(X̂)‖ < a, (4.1)

where a is equal to σ̂pA/4, σ̂pA/8/(√p+1), and σ̂pA/2 for the embedded metric, the condition

numbers of the embedded metric, quotient metric g2 and g3 are on the order of B/A. The

quotient manifold with g1 is still different from the other metrics since the condition number

of its Riemannian Hessian additionally depends on the ratio σ̂1/σ̂p.

The rest of this subsection is the proof of Theorem  4.2.1 . By the expressions of Rieman-

nian Hessian, we have

ρE(X, ζX) = 〈∇
2f(X)[ζX ], ζX〉Cn×n

gX(ζX , ζX) +
gX

(
P p

X

(
∇f(X)(X†ζp

X)∗ + (ζp
XX†)∗∇f(X)

)
, ζX

)
gX(ζX , ζX) .

ρ1(π(Y ), ξπ(Y )) =

〈
∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y ∗], Y ξ

∗
Y + ξY Y ∗

〉
Cn×n

g1
Y (ξY , ξY )

+ g1
Y (2∇f(Y Y ∗)ξY , ξY )

g1
Y (ξY , ξY )

.

ρ2(π(Y ), ξπ(Y )) =

〈
∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y ∗], Y ξ

∗
Y + ξY Y ∗

〉
Cn×n

g2
Y (ξY , ξY )

+

〈
∇f(Y Y ∗)P ⊥

Y ξY , ξY

〉
Cn×p

g2
Y (ξY , ξY )

+

〈
P ⊥

Y ∇f(Y Y ∗)ξY , ξY

〉
Cn×p

g2
Y (ξY , ξY )

+

〈
Y ξ

∗
Y ξY , 2∇f(Y Y ∗)Y (Y ∗Y )−1

〉
Cn×p

g2
Y (ξY , ξY )
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−

〈
ξY Y ∗ξY , 2∇f(Y Y ∗)Y (Y ∗Y )−1

〉
Cn×p

g2
Y (ξY , ξY )

.

ρ3(π(Y ), ξπ(Y )) =

〈
∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y ∗], Y ξ

∗
Y + ξY Y ∗

〉
Cn×n

g3
Y (ξY , ξY )

+g3
Y ((I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1, ξY )

g3
Y (ξY , ξY )

.

Observe that the leading terms in the above Rayleigh quotients take similar form: the

numerator involves the Fréchet Hessian ∇2f , and the denominator is the induced norm of

tangent vector from the respective Riemannian metric. We call the leading term second

order term (SOT) as it involves Fréchet Hessian of f as the second order information of f

and we call the other terms that follow the leading term first order terms (FOTs) as they

only contain the first order Fréchet gradient.

Under the Assumption  4.2.1 , we get bounds of the SOT in ρE(X, ζX) as:

A = A
‖ζX‖2

F

gX(ζX , ζX) ≤
〈∇2f(X)[ζX ], ζX〉Cn×n

gX(ζX , ζX) ≤ B
‖ζX‖2

F

gX(ζX , ζX) = B.

For the quotient manifold, observe that Y ξ
∗
Y + ξY Y ∗ ∈ TY Y ∗Hn,p

+ . Hence Assumption

 4.2.1 also applies and we get

A

∥∥∥Y ξ
∗
Y + ξY Y ∗

∥∥∥2

F

gi
Y

(
ξY , ξY

) ≤

〈
∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y ∗], Y ξ

∗
Y + ξY Y ∗

〉
Cn×n

gi
Y (ξY , ξY )

≤ B

∥∥∥Y ξ
∗
Y + ξY Y ∗

∥∥∥2

F

gi
Y

(
ξY , ξY

) .

Hence the analysis of SOT for the quotient manifold now turns to analyzing
∥∥Y ξ

∗
Y +ξY Y ∗

∥∥2
F

gi
Y

(
ξY ,ξY

) .

We denote its infimum and supremum by

C i
π(Y ) := inf

ξπ(Y )∈Tπ(Y )C
n×p
∗ /Op

∥∥∥Y ξ
∗
Y + ξY Y ∗

∥∥∥2

F

gi
Y (ξY , ξY )

,

Di
π(Y ) := sup

ξπ(Y )∈Tπ(Y )C
n×p
∗ /Op

∥∥∥Y ξ
∗
Y + ξY Y ∗

∥∥∥2

F

gi
Y (ξY , ξY )

.
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The subscript is used to emphasize that the infimum and supremum are dependent on π(Y ).

The next lemma characterizes these infimum and supremum.

Lemma 4.2.5. For any Y ∈ π−1(π(Y )), let Y Y ∗ = UΣU∗ denote the compact SVD of Y Y ∗

and denote the ith diagonal entry of Σ by σi with σ1 ≥ · · · ≥ σp > 0. Then the following

estimates for the infimum C i
π(Y ) and the supremum Di

π(Y ) of
∥∥Y ξ

∗
Y +ξY Y ∗

∥∥2
F

gi
Y

(
ξY ,ξY

) hold:

C1
π(Y ) = 2σp, 2σ1 ≤ D1

π(Y ) ≤ 2
(

σ2
1

σp

+ σ1

)
.

C2
π(Y ) = 2, D2

π(Y ) = 4.

C3
π(Y ) = D3

π(Y ) = 1.

Next we estimate the FOTs in the Rayleigh quotient. The result is given in the next

lemma.

Lemma 4.2.6. Let X = Y Y ∗ for any Y ∈ π−1(π(Y )) with X ∈ Hn,p
+ and π(Y ) ∈ Cn×p

∗ /Op.

Let UΣU∗ be the compact SVD of X and denote the ith diagonal entry of Σ with σ1 ≥ · · · ≥

σp > 0. Then we have the following bounds for the FOTs in the Rayleigh quotient of the

Riemannian Hessian.

1. For the embedded manifold we have

|FOT| ≤ 2
σp

‖∇f(X)‖.

2. For the quotient manifold with metric g1 we have

|FOT| ≤ 2‖∇f(Y Y ∗)‖.

3. For the quotient manifold with g2 we have

|FOTs| ≤
4(√p + 1)

σp

‖∇f(Y Y ∗)‖.
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4. For the quotient manifold with g3 we have

|FOTs| ≤ 1
σp

‖∇f(Y Y ∗)‖.

The proofs for Lemma  4.2.6 and Lemma  4.2.5 are given in Section  4.4 . With Lemma

 4.2.6 and Lemma  4.2.5 , the proof of Theorem  4.2.1 is concluded.

4.3 The Limit of the Rayleigh Quotient for a Rank-deficient Minimizer X̂

Next, we consider the rank deficient case p > r where r is the rank of the minimizer X̂,

i.e., the minimizer X̂ lies on the boundary of the constraint manifold. Under the Assumption

∇f(X̂) = 0, any convergent algorithm that solves ( 1.2 ) or (  3.2 ) will generate a sequence such

that both σr+1, · · · , σp and ∇f(X) will vanish as X → X̂. We make one more assumption

for a simpler quantification of the lower and upper bounds of the Rayleigh quotient near the

minimizer.

Assumption 4.3.1. For a sequence {Xk} with Xk ∈ Hn,p
+ (or π(Yk) ∈ Cn×p

∗ /Op ) that con-

verges to the minimizer X̂ (or π(Ŷ )), let (σp)k be the smallest nonzero singular value of

Xk = YkY ∗
k , assume the following limits hold.

1. For the embedded manifold,

lim
k→∞

2
(σp)k

‖∇f(Xk)‖ ≤ A

2 .

2. For the quotient manifold with metric g1,

lim
k→∞

1
(σp)k

‖∇f(YkY ∗
k )‖ ≤ A

2 .

3. For the quotient manifold with metric g2,

lim
k→∞

4(√p + 1)
(σp)k

‖∇f(YkY ∗
k )‖ ≤ A.
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4. For the quotient manifold with metric g3,

lim
k→∞

1
(σp)k

‖∇f(YkY ∗
k )‖ ≤ A

2 .

We remark that Assumption  4.3.1 may not always hold. In the next section, we will give

some numerical evaluation of this assumption for four examples listed in Figure  4.3 (eigen-

value problem), Figure  4.5 (matrix completion), Figure  4.7 (phase retrieval), and Figure  4.9 

(interferometry recovery). Assumption  4.3.1 holds numerically in most of these tests.

Remark 4.3.1. In general, there exists a sequence such that the FOT in ρ3(π(Y ), ξπ(Y )) may

blow up. Consider the following simple example of eigenvalue problem.

minimize
X

f(X) = 1
2

∥∥∥X − X̂
∥∥∥2

F

subject to X ∈ H3,2
+

,

where X̂ =


1 0 0

0 0 0

0 0 0

 is a rank-1 minimizer. Suppose X takes the simple diagonal form

X =


σ1 0 0

0 σ2 0

0 0 0

. Then we have

∇f(X) =


σ1 − 1 0 0

0 σ2 0

0 0 0

 .

Since ∇f(X)→ 0 as X → X̂, we have σ1 → 1 and σ2 → 0.

Recall that the FOT in ρ3(π(Y ), ξπ(Y )) is

g3
Y ((I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1, ξY )

g3
Y (ξY , ξY )

= 〈∇f(Y Y ∗)Y⊥K, Y⊥K〉Cn×p

2‖Y SY ∗‖2
F + ‖Y⊥KY ∗‖2

F

.
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Hence if we choose S = 0 and Y⊥K =


0 1

0 0

0 0

, we have

〈∇f(Y Y ∗)Y⊥K, Y⊥K〉Cn×p

2‖Y SY ∗‖2
F + ‖Y⊥KY ∗‖2

F

= σ1 − 1
σ2

,

whose limit is dependent on the path that the tuple (σ1, σ2) goes to (1, 0) and hence may

blow up.

If X̂ has rank r < p and {Xk} is a sequence that satisfies Assumption  4.3.1 , then Theorem

 4.2.1 implies

1. For the embedded manifold we have

A

2 ≤ lim
k→∞

ρE(Xk, ξXk
) ≤ B + A

2 .

2. For the quotient manifold with metric gi we have

A ≤ lim
k→∞

ρ1(π(Yk), ξπ(Yk))
(σp)k

≤ B lim
k→∞

D1
π(Yk)

(σp)k

+ 2A,

A ≤ lim
k→∞

ρ2(π(Yk), ξπ(Yk)) ≤ 4B + A,

A

2 ≤ lim
k→∞

ρ3(π(Yk), ξπ(Yk)) ≤ B + A

2 ,

where lim
k→∞

D1
π(Yk)

(σp)k
≥ lim

k→∞
2(σ1)k

(σp)k
= +∞ since σp → σ̂p = 0.

Notice that the condition number in the Bures–Wassertein metric g1 is fundamentally dif-

ferent from the other ones since it is the only metric that blows up.

4.4 Proof of Lemmas in This Chapter

4.4.1 Proof of Lemma  4.2.5 

Proof. It is straightforward to see C3
π(Y ) = D3

π(Y ) = 1 by the definition of g3.
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For metric 2, write ξY = Y S + Y⊥K for some S = S∗ ∈ Cp×p and K ∈ Cn×p. We have

∥∥∥Y ξ
∗
Y + ξY Y ∗

∥∥∥2

F

g2
Y (ξY , ξY )

= 2 + 2‖Y SY ∗‖2
F

‖Y SY ∗‖2
F + ‖KY ∗‖2

F

.

Hence it is easy to see C2
π(Y ) = 2 when S is zero matrix and D2

π(Y ) = 4 when Y SY ∗ is nonzero

and K is zero matrix.

For metric 1, by its horizontal space, we can write ξY = Y (Y ∗Y )−1S + Y⊥K for some

S = S∗ ∈ Cp×p and K ∈ Cn×p. Notice that the SVD of Y can be given as Y = UΣ 1
2 V ∗

where V is unitary. Let S̄ = V ∗SV and K̄ = KV , and K̄i be the ith column of K̄, then

∥∥∥Y ξ
∗
Y + ξY Y ∗

∥∥∥2

F

g1
Y (ξY , ξY )

= ‖Y ((Y ∗Y )−1S + S(Y ∗Y )−1)Y ∗‖2
F + 2‖KY ∗‖2

F

‖Y (Y ∗Y )−1S‖2
F + ‖K‖2

F

=

∥∥∥Σ− 1
2 S̄Σ 1

2 + Σ 1
2 S̄Σ− 1

2

∥∥∥2

F
+ 2

∥∥∥K̄Σ 1
2

∥∥∥2

F∥∥∥Σ− 1
2 S̄
∥∥∥2

F
+
∥∥∥K̄∥∥∥2

F

=

p∑
i,j=1

(
σi
σj

+ σj
σi

+ 2
) ∣∣∣S̄ij

∣∣∣2 + 2
p∑

i=1
σi

∥∥∥K̄i

∥∥∥2

F

p∑
i,j=1

∣∣S̄ij
∣∣2

σi
+

p∑
i=1

∥∥∥K̄i

∥∥∥2

F

=
2

p∑
i,j=1

σj
σi

∣∣∣S̄ij

∣∣∣2 + 2
p∑

i,j=1

∣∣∣S̄ij

∣∣∣2 + 2
p∑

i=1
σi‖Ki‖2

F

p∑
i,j=1

∣∣S̄ij
∣∣2

σi
+

p∑
i=1

∥∥∥K̄i

∥∥∥2

F

, (4.2)

where symmetry S̄∗ = S̄ is used in the last step. The lower bound is given by

2
p∑

i,j=1

σj
σi

∣∣∣S̄ij

∣∣∣2 + 2
p∑

i,j=1

∣∣∣S̄ij

∣∣∣2 + 2
p∑

i=1
σi

∥∥∥K̄i

∥∥∥2

F

p∑
i,j=1

∣∣S̄ij
∣∣2

σi
+

p∑
i=1

∥∥∥K̄i

∥∥∥2

F

≥
2
(

σp

σ1
+ 1

) p∑
i,j=1

∣∣∣S̄ij

∣∣∣2 + 2σp

p∑
i=1

∥∥∥K̄i

∥∥∥2

F

1
σp

p∑
i,j=1

∣∣∣S̄ij

∣∣∣2 +
p∑

i=1

∥∥∥K̄i

∥∥∥2

F

=
2
(

σ2
p

σ1
+ σp

) p∑
i,j=1

∣∣∣S̄ij

∣∣∣2 + 2σ2
p

p∑
i=1

∥∥∥K̄i

∥∥∥2

F

p∑
i,j=1

∣∣∣S̄ij

∣∣∣2 + σp

p∑
i=1

∥∥∥K̄i

∥∥∥2

F

≥ 2σp.
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This lower bound is sharp as one can choose S = 0 and K with
∥∥∥K̄p

∥∥∥
F

= 1 and
∥∥∥K̄i

∥∥∥
F

= 0

for i < p.

We have the upper bound as follows.

2
p∑

i,j=1

σj
σi

∣∣∣S̄ij

∣∣∣2 + 2
p∑

i,j=1

∣∣∣S̄ij

∣∣∣2 + 2
p∑

i=1
σi

∥∥∥K̄i

∥∥∥2

F

p∑
i,j=1

∣∣S̄ij
∣∣2

σi
+

p∑
i=1

∥∥∥K̄i

∥∥∥2

F

≤
2
(

σ1
σp

+ 1
) p∑

i,j=1

∣∣∣S̄ij

∣∣∣2 + 2σ1
p∑

i=1

∥∥∥K̄i

∥∥∥2

F

1
σ1

p∑
i,j=1

∣∣∣S̄ij

∣∣∣2 +
p∑

i=1

∥∥∥K̄i

∥∥∥2

F

=
2
(

σ2
1

σp
+ σ1

) p∑
i,j=1

∣∣∣S̄ij

∣∣∣2 + 2σ2
1

p∑
i=1

∥∥∥K̄i

∥∥∥2

F

p∑
i,j=1

∣∣∣S̄ij

∣∣∣2 + σ1
p∑

i=1

∥∥∥K̄i

∥∥∥2

F

≤ 2
(

σ2
1

σp

+ σ1

)
,

where the last inequality is obtained by investigating the range of the rational function

f(x, y) = ax+by
x+dy

with a = 2
(

σ2
1

σp
+ σ1

)
, b = 2σ2

1 and d = σ1 on {(x, y)|x ≥ 0, y ≥ 0, xy 6= 0}.

This upper bound 2
(

σ2
1

σp
+ σ1

)
may not be the supremum as the inequalities are not sharp.

However, we can show that D1
π(Y ) ≥ 2σ1. To see this, choose S̄ = 0 and K with

∥∥∥K̄1

∥∥∥
F

= 1

and
∥∥∥K̄i

∥∥∥
F

= 0 for i > 1. Then (  4.2 ) reaches the value 2σ1. Hence the supremum must be

at least 2σ1. So we have

2σ1 ≤ D1
π(Y ) ≤ 2

(
σ2

1
σp

+ σ1

)
. (4.3)

4.4.2 Proof of Lemma  4.2.6 

Proof. We will use the inequality ‖B∗A∗‖F = ‖AB‖F ≤ ‖A‖‖B‖F ≤ ‖A‖F‖B‖F for two

matrices where ‖A‖ is the spectral norm. In particular, if X is Hermitian, then we also have

‖AX‖F = ‖XA∗‖F ≤ ‖X‖‖A∗‖F = ‖X‖‖A‖F .

For the embedded manifold, recall that ξs
X = P s

X(ξX) and ξp
X = P p

X(ξX) and P t
X and P p

X

are defined in (  2.7 ), and the bound for the FOT is given by

∣∣∣gX

(
P p

X

(
∇f(X)(X†ζp

X)∗ + (ζp
XX†)∗∇f(X)

)
, ζX

)∣∣∣
gX(ζX , ζX)

=

∣∣∣〈P p
X

(
∇f(X)ζp

XX† + X†ζp
X∇f(X)

)
, ζX

〉
Cn×n

∣∣∣
〈ζX , ζX〉Cn×n
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≤

∣∣∣〈P p
X

(
∇f(X)ζp

XX†
)

, ζX

〉
Cn×n

∣∣∣
〈ζX , ζX〉Cn×n

+

∣∣∣〈P p
X

(
X†ζp

X∇f(X)
)

, ζX

〉
Cn×n

∣∣∣
〈ζX , ζX〉Cn×n

≤ 2‖∇f(X)ζp
XX†‖F‖ζX‖F

〈ζX , ζX〉Cn×n

≤ 2‖∇f(X)‖‖ζp
XX†‖F‖ζX‖F

〈ζX , ζX〉Cn×n

≤ 2‖∇f(X)‖‖X†‖‖ζp
X‖F‖ζX‖F

〈ζX , ζX〉Cn×n

≤
2‖∇f(X)‖

∥∥∥X†
∥∥∥‖ζX‖2

F

〈ζX , ζX〉Cn×n

= 2‖∇f(X)‖
∥∥∥X†

∥∥∥ = 2
σp

‖∇f(X)‖.

For the quotient manifold with g1, the FOT is bounded by

∣∣∣g1
Y (2∇f(Y Y ∗)ξY , ξY )

∣∣∣
g1

Y (ξY , ξY )
=

∣∣∣〈2∇f(Y Y ∗)ξY , ξY

〉
Cn×p

∣∣∣〈
ξY , ξY

〉
Cn×p

≤
2
∥∥∥∇f(Y Y ∗)ξY

∥∥∥
F

∥∥∥ξY

∥∥∥
F〈

ξY , ξY

〉
Cn×p

≤
2‖∇f(Y Y ∗)‖

∥∥∥ξY

∥∥∥2

F〈
ξY , ξY

〉
Cn×p

= 2‖∇f(Y Y ∗)‖.

For the quotient manifold with g2, the FOTs are

FOTs =

〈
∇f(Y Y ∗)P ⊥

Y ξY , ξY

〉
Cn×p

g2
Y (ξY , ξY )

+

〈
P ⊥

Y ∇f(Y Y ∗)ξY , ξY

〉
Cn×p

g2
Y (ξY , ξY )

(4.4)

+

〈
Y ξ

∗
Y ξY , 2∇f(Y Y ∗)Y (Y ∗Y )−1

〉
Cn×p

g2
Y (ξY , ξY )

(4.5)

−

〈
ξY Y ∗ξY , 2∇f(Y Y ∗)Y (Y ∗Y )−1

〉
Cn×p

g2
Y (ξY , ξY )

. (4.6)

We can estimate each term separately. Notice that the SVD of Y can be given as Y = UΣ 1
2 V ∗

where V is unitary. Let S̄ = V ∗SV and K̄ = KV , and K̄i be the ith column of K̄. For the

first summand we have
∣∣∣〈∇f(Y Y ∗)P ⊥

Y ξY , ξY

〉
Cn×p

∣∣∣
g2

Y (ξY , ξY )
=

∣∣∣〈∇f(Y Y ∗)P ⊥
Y ξY , ξY

〉
Cn×p

∣∣∣〈
ξY Y ∗, ξY Y ∗

〉
Cn×n

≤
‖∇f(Y Y ∗)‖

∥∥∥ξY

∥∥∥2

F〈
ξY Y ∗, ξY Y ∗

〉
Cn×n

.

= ‖Y S‖2
F + ‖K‖2

F

‖Y SY ∗‖2
F + ‖KY ∗‖2

F

‖∇f(Y Y ∗)‖
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≤
(
‖Y S‖2

F

‖Y SY ∗‖2
F

+ ‖K‖2
F

‖KY ∗‖2
F

)
‖∇f(Y Y ∗)‖

=


∥∥∥√ΣS̄

∥∥∥2

F∥∥∥√ΣS̄
√

Σ
∥∥∥2

F

+

∥∥∥K̄∥∥∥2

F∥∥∥K̄√Σ
∥∥∥2

F

 ‖∇f(Y Y ∗)‖

≤ 2
σp

‖∇f(Y Y ∗)‖.

Similarly we have the bounds for the second term:

∣∣∣〈P ⊥
Y ∇f(Y Y ∗)ξY , ξY

〉
Cn×p

∣∣∣
g2

Y (ξY , ξY )
≤ 2

σp

‖∇f(Y Y ∗)‖.

For the third term, with the fact ‖A∗A‖F = ‖A‖2
F , we have

∣∣∣〈Y ξ
∗
Y ξY , 2∇f(Y Y ∗)Y (Y ∗Y )−1

〉
Cn×p

∣∣∣
g2

Y (ξY , ξY )
=

∣∣∣〈Y ξ
∗
Y ξY Y ∗, 2∇f(Y Y ∗)Y (Y ∗Y )−2Y ∗

〉
Cn×n

∣∣∣
g2

Y (ξY , ξY )

≤

∥∥∥Y ξ
∗
Y ξY Y ∗

∥∥∥
F
‖2∇f(Y Y ∗)Y (Y ∗Y )−2Y ∗‖F

g2
Y (ξY , ξY )

≤

∥∥∥ξY Y ∗
∥∥∥2

F
‖2∇f(Y Y ∗)‖‖Y (Y ∗Y )−2Y ∗‖F

g2
Y (ξY , ξY )

= 2
∥∥∥Y (Y ∗Y )−2Y ∗

∥∥∥
F
‖∇f(Y Y ∗)‖

≤
2√p

σp

‖∇f(Y Y ∗)‖.

Similarly we can bound the fourth term:

∣∣∣〈ξY Y ∗ξY , 2∇f(Y Y ∗)Y (Y ∗Y )−1
〉∣∣∣

Cn×p

g2
Y (ξY , ξY )

≤
2√p

σp

‖∇f(Y Y ∗)‖.

Thus, for the quotient manifold with g2 we have

|FOTs| ≤
4(√p + 1)

σp

‖∇f(Y Y ∗)‖.
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For the quotient manifold with g3, recall that P ⊥
Y = I − PY = I − Y (Y ∗Y )−1Y ∗, with

the property (  2.14 ) and the fact (I − PY )∗Y = 0, the FOT can be bounded as follows:

|FOT| =

∣∣∣g3
Y ((I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1, ξY )

∣∣∣
g3

Y (ξY , ξY )

=
2
∣∣∣〈P ⊥

Y ∇f(Y Y ∗)P ⊥
Y ξY , ξY

〉
Cn×p

∣∣∣
g3

Y (ξY , ξY )

= 2|〈∇f(Y Y ∗)Y⊥K, Y⊥K〉Cn×p |
g3

Y (ξY , ξY )

= 2|〈∇f(Y Y ∗)Y⊥K, Y⊥K〉Cn×p |∥∥∥Y ξ
∗
Y + ξY Y ∗

∥∥∥2

F

= 2|〈∇f(Y Y ∗)Y⊥K, Y⊥K〉Cn×p|
‖2Y SY ∗ + Y⊥KY ∗ + Y K∗Y ∗

⊥‖
2
F

= 2|〈∇f(Y Y ∗)Y⊥K, Y⊥K〉Cn×p |
‖2Y SY ∗‖2

F + ‖Y⊥KY ∗‖2
F + ‖Y K∗Y ∗

⊥‖
2
F

= |〈∇f(Y Y ∗)Y⊥K, Y⊥K〉Cn×p |
2‖Y SY ∗‖2

F + ‖Y⊥KY ∗‖2
F

≤ |〈∇f(Y Y ∗)Y⊥K, Y⊥K〉Cn×p |
‖Y⊥KY ∗‖2

F

≤ ‖Y⊥K‖2
F

‖Y⊥KY ∗‖2
F

‖∇f(Y Y ∗)‖

≤ 1
σp

‖∇f(Y Y ∗)‖.

4.5 Numerical Experiments and Interpretations

In this section, we report on the numerical performance of the conjugate gradient methods

on three kinds of cost functions of f(X): eigenvalue problem, matrix completion, phase-

retrieval, and interferometry. In particular, we implement and compare the following four

algorithms:

1. Riemannian CG on the quotient manifold (Cn×p
∗ /Op, g1), i.e., Algorithm  2 with metric

g1. This algorithm is equivalent to Burer–Monteiro CG, that is, CG applied directly

to (  3.1 ).
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2. Riemannian CG on the quotient manifold (Cn×p
∗ /Op, g2), i.e., Algorithm  2 with metric

g2. The same metric g2 was used in [  36 ].

3. Riemannian CG on the quotient manifold (Cn×p
∗ /Op, g3), i.e., Algorithm  2 with metric

g3, and also a specific retraction, vector transport and initial step as described in

Section  3.5 . This special implementation is equivalent to Riemannian CG on embedded

manifold, i.e., Algorithm  1 .

4. Burer–Monteiro L-BFGS method, that is, using the L-BFGS method directly applied

to (  3.1 ). This method was used in [ 11 ].

4.5.1 Eigenvalue Problem

For any n-by-n Hermitian PSD matrix A, its top p eigenvalues and associated eigenvectors

can be found by solving the following minimization problem:

minimize
X

f(X) := 1
2‖X − A‖2

F

subject to X ∈ Hn,p
+

,

or equivalently
minimize
π(Y )

h(π(Y )) := 1
2‖Y Y ∗ − A‖2

F

subject to π(Y ) ∈ Cn×p
∗ /Op

.

It is easy to verify that

∇f(X) = X − A, ∇2f(X)[ζX ] = ζX , ζX ∈ Cn×n.

In practice we only need A as an operator A : v 7→ Av. We consider a numerical test

for a random Hermitian PSD matrix A of size 50 000-by-50 000 with rank 10. We solve the

minimization problem above with p = 15. Obviously, the minimizer is rank-10 thus rank

deficient for Cn×p
∗ /Op with p = 15. This corresponds to a scenario of finding the eigenvalue

decomposition of a low rank Hermitian PSD matrix A with estimated rank at most 15. The

results are shown in Figure  4.1 . The initial guess is the same random initial matrix for all
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four algorithms. We see that the simpler Burer–Monteiro approach, including the L-BFGS

method and the CG method with metric g1, is significantly slower.

In the second test of Figure  4.2 , the minimizer has rank r = 15, and the fixed rank

for the manifold is also set to p = 15; i.e., there is no rank deficiency. But the condition

number of the minimizer A causes a difference in the asymptotic convergence rate for the

CG method with metric g1. In  4.2a , the condition number of A is large and we observe a

slower asymptotic convergence rate for the CG method with metric g1; while in  4.2b , the

condition number of A is smaller and the asymptotic convergence rate becomes much faster.

This is consistent with Theorem  4.2.1 . In the third test of Figure  4.3 , we show the ratio term∥∥∇f(YkY ∗
k )
∥∥

(σp)k
in Assumption  4.3.1 versus the iteration number k. This ratio does not blow up

as π(Yk) converges to π(Ŷ ).
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Figure 4.1. Eigenvalue problem of a random 50 000-by-50 000 PSD matrix
of rank 10 solved on the rank 15 manifold: a comparison of normalized cost
function value

∥∥YkY ∗
k −A

∥∥
F

‖A‖F
decrease versus iteration number k when using L-

BFGS approach and CG method with metric gi, i = 1, 2, 3.
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(b) σ̂1
σ̂p

= 103

Figure 4.2. Numerical justification of Theorem  4.2.1 for the eigenvalue prob-
lem of a random 50 000-by-50 000 PSD matrix of rank 15 on the rank 15
manifold. Effect of condition number of A on the convergence speed of nor-
malized cost function value ‖YkY ∗

k −A‖F

‖A‖F
versus iteration number k. (a): when

the condition number of A is large, CG with metric g1 is slower; (b): when its
smaller, CG with metric g1 becomes faster.
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Figure 4.3. Numerical justification of Assumption  4.3.1 for the eigenvalue
problem of a random 50 000-by-50 000 PSD matrix of rank 10 on the rank 15
manifold, same setup as the numerical test shown in Fig  4.1 . Plots show the
ratio term

∥∥∇f(YkY ∗
k )
∥∥

(σp)k
in Assumption  4.3.1 versus the iteration number k for

L-BFGS approach and CG method with metric gi, i = 1, 2, 3.
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4.5.2 Matrix Completion Problem

Let Ω be a subset of the complete set {1, · · · , n} × {1, · · · , n}. Then the projection

operator onto Ω is a sampling operator defined as

PΩ : Cn×n → Cn×n : Xi,j 7→


Xi,j if (i, j) ∈ Ω,

0 if (i, j) /∈ Ω.

The original matrix completion problem has no symmetry or Hermitian constraint. Here,

we just consider an artificial Hermitian matrix completion problem for a given A ∈ Hn,p
+ :

minimize
X

f(X) := 1
2‖PΩ(X − A)‖2

F

subject to X ∈ Hn,p
+

,

or equivalently
minimize
π(Y )

h(π(Y )) := 1
2‖PΩ(Y Y ∗ − A)‖2

F

subject to π(Y ) ∈ Cn×p
∗ /Op

.

Straightforward calculation shows

∇f(X) = PΩ(X − A), ∇2f(X)[ζX ] = PΩ(ζX), ζX ∈ Cn×n.

We consider a Hermitian PSD matrix A ∈ Cn×n with n = 10 000 and PΩ a random 90%

sampling operator. In the first test of Figure  4.4a , the minimizer has rank r = 25, and the

fixed rank for the manifold is set to p = 30. In the second test of Figure  4.4b , the minimizer

has rank r = 25, and the fixed rank for the manifold is set to p = 25. The initial guess

is the same random matrix for all four algorithms. For both cases, we see that the simpler

Burer–Monteiro approach, including the L-BFGS method and the CG method with metric

g1, is significantly slower.

In the third test of Figure  4.5 , we show that the ratio term
∥∥∇f(YkY ∗

k )
∥∥

(σp)k
in Assumption

 4.3.1 versus the iteration number k does not blow up as π(Yk) converges to π(Ŷ ).
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(a) The algorithms are solved on the rank
30 manifold
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(b) The algorithms are solved on the rank 25
manifold

Figure 4.4. Matrix completion of a random 10 000-by-10 000 PSD matrix
of rank 25 observed at random 90% entries. A comparison of decrease in
normalized cost function value

∥∥PΩ(YkY ∗
k −A)

∥∥
F

‖PΩ(A)‖F
versus iteration number k when

using L-BFGS approach and CG method with metric gi, i = 1, 2, 3. When
the minimizer is rank deficient (the case in (a)), L-BFGS approach and CG
method with metric g1 is significantly slower.
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Figure 4.5. Numerical justification of Assumption  4.3.1 for the matrix com-
pletion problem of a random 10 000-by-10 000 PSD matrix of rank 25 observed
at random 90% entries solved on the rank 30 manifold (same setup as the
numerical test shown in Fig  4.4a ). Plots show the ratio term

∥∥∇f(YkY ∗
k )
∥∥

(σp)k
in the

Assumption  4.3.1 versus the iteration number k for L-BFGS approach and CG
method with metric gi, i = 1, 2, 3.
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4.5.3 The PhaseLift Problem

We now solve the phase retrieval problem as described in [ 8 ]: Take an image x ∈ CN2×1

and a collection of masks denoted by {Mi}m
i=1 where N2 = n is the size of the flattened image.

Each Mi is of the same size as x and the elements in each Mi are real or complex numbers

with both real and imaginary parts between 0 and 1. We can choose Mi to be random

numbers or i.i.d. Gaussian. We have m number of observations for each mask i = 1, · · · , m:

di = N (x) := |(DFT(Diag(Mi) ∗ x)|2, (4.7)

where N denotes the nonlinear operator. The squared power is taken element-wisely.

Diag(Mi) denotes the diagonal matrix whose diagonal is Mi. DFT denotes the n×n discrete

Fourier transform matrix. Therefore, di is a vector of size n× 1.

Now we lift x so that N can be treated as a linear operator. Let di
j denote the jth

component of di. Let zi∗ denote DFT·Diag(Mi) and zi
j
∗ denote the jth row of DFT·Diag(Mi).

Then equation (  4.7 ) can be written as

∣∣∣〈zi
j, x〉

∣∣∣2 = zi
j
∗
xx∗zi

j = di
j, j = 1, . . . n, i = 1, . . . , m.

Denoting X := xx∗, the nonlinear operator N can be rewritten as the linear operator

A : Cn×n → Rmn×1, X 7→ [tr(z1
1z1

1
∗
X), · · · , tr(z1

nz1
n

∗
X), · · · , tr(zm

1 zm
1

∗X), · · · , tr(zm
n zm

n
∗X)]T .

Let Z i := DFT ·Diag(Mi) =


−zi

1
∗−

· · ·

−zi
n

∗−

, then we have alternatively

A : Cn×n → Rmn×1, X 7→ [diag(Z1XZ1∗), · · · , diag(ZmXZm∗)]T .

Denote b = [d1, · · · , dm]T . Then the cost function can be written as

f(X) = 1
2‖A(X)− b‖2
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The conjugate of operator A, denoted by A∗ is given by

A∗(b) =



m∑
i=1

n∑
j=1

bi
jz

i
jz

i
j
∗ =

m∑
i=1

Z i∗ Diag(bi)Z i, if domain of A is Cn×n

Re
 m∑

i=1

n∑
j=1

bi
jz

i
jz

i
j
∗
 = Re

(
m∑

i=1
Z i∗ Diag(bi)Z i

)
, if domain of A is Rn×n.

Straightforward calculation shows

∇f(X) = A∗(A(X)− b), ∇2f(X)[ζX ] = A∗(A(ζX)) for all ζX ∈ Cn×n.

For the numerical experiments, we take the phase retrieval problem for a complex gold

ball image of size 256 × 256 as in [ 36 ]. Thus n = 2562 = 65, 536 in (  1.1 ) or ( 1.2 ). We

consider the operator A that corresponds to 6 Gaussian random masks. Hence, the size of b

is 6n = 393, 216. Remark that problem is easier to solve with more masks.

We first test the algorithms on the rank 3 manifold, and then on the rank 1 manifolds.

The results are visible in Figure  4.6 . The initial guess is randomly generated. First, we

observe that solving the PhaseLift problem on the rank p manifold with p > 1 can accelerate

the convergence, compared to solving it on the rank 1 manifold. Second, when p = r = 1,

the asymptotic convergence rates of all algorithms are essentially the same, though the

algorithms differ in the length of their convergence "plateaus". When p = 3 > r = 1, we can

see that the Burer–Monteiro approach has slower asymptotic convergence rates.

In the second test of Figure  4.7 , we show that the ratio term
∥∥∇f(YkY ∗

k )
∥∥

(σp)k
in Assumption

 4.3.1 versus the iteration number k does not blow up as π(Yk) converges to π(Ŷ ).
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(a) The algorithms are solved on the rank
3 manifold
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(b) The algorithms are solved on the
rank 1 manifold

Figure 4.6. Phase retrieval of a 256-by-256 image with 6 Gaussian masks. A
comparison of normalized cost function value

∥∥A(YkY ∗
k )−b

∥∥
‖b‖ versus iteration num-

ber k when using L-BFGS approach and CG method with metric gi, i = 1, 2, 3.
When the minimizer is rank deficient (the case in  4.6a ), L-BFGS approach and
CG method with metric g1 is significantly slower.
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Figure 4.7. Numerical justification of Assumption  4.3.1 for the phase retrieval
problem of a 256-by-256 image with 6 Gaussian masks solved on the rank 3
manifold (same setup as the numerical test shown in Fig  4.6a ). Plots show the
ratio term

∥∥∇f(YkY ∗
k )
∥∥

(σp)k
in the Assumption  4.3.1 versus the iteration number k

for L-BFGS approach and CG method with metric gi, i = 1, 2, 3.
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4.5.4 Interferometry Recovery Problem

As last example, we consider solving the interferometry recovery problem described in

[ 11 ]. Consider solving the linear system Fx = d where F ∈ Cm×n
∗ with m > n and x ∈ Cn×1.

For the sake of robustness, the interferometry recovery [ 11 ] requires solving the lifted problem

minimize
X

f(X) = 1
2‖PΩ(FXF ∗ − dd∗)‖2

F

subject to X ∈ Hn,p
+

,

where Ω is a sparse and symmetric sampling index that includes all of the diagonal.

Straightforward calculation again shows

∇f(X) = F ∗PΩ(FXF ∗ − dd∗)F, ∇2f(X)[ζX ] = F ∗PΩ(FζXF ∗)F for all ζX ∈ Cn×n.

We solve an interferometry problem with a randomly generated F ∈ C10 000×1000. Hence

n = 1000 in (  1.1 ) or ( 1.2 ). The sampling operator Ω is also randomly generated, with 1%

density. In Figure 4.8a , p = 3 and r = 1 and we can see that the Burer–Monteiro approach

has slower asymptotic convergence rates. In Figure  4.8b , p = r = 1 and we can see now that

all algorithms have more or less the same asymptotic convergence rates.

In the second test of Figure  4.9 , we show that the ratio term
∥∥∇f(YkY ∗

k )
∥∥

(σp)k
in Assumption

 4.3.1 versus the iteration number k does not blow up as π(Yk) converges to π(Ŷ ).
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(a) The algorithms are solved on the rank
3 manifold
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(b) The algorithms are solved on the rank 1
manifold

Figure 4.8. Interferometry recovery of a random 10 000-by-1000 F with 1%
sampling. A comparison of normalized cost function value

∥∥PΩ(F YkY ∗
k F ∗−dd∗)

∥∥
F

‖PΩ(dd∗)‖F

versus iteration number k when using L-BFGS approach and CG method with
metric gi, i = 1, 2, 3. When the minimizer is rank deficient (the case in (a)),
L-BFGS approach and CG method with metric g1 is significantly slower.
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Figure 4.9. Numerical justification of Assumption  4.3.1 for the interferometry
recovery problem of a random 10 000-by-1000 F with 1% sampling solved on a
rank 3 manifold. (same setup as the numerical test shown in Fig  4.8a ). Plots
show the ratio term

∥∥∇f(YkY ∗
k )
∥∥

(σp)k
in the Assumption  4.3.1 versus the iteration

number k for L-BFGS approach and CG method with metric gi, i = 1, 2, 3.

4.6 Concluding Remarks

In this chapter, We have analyzed the condition numbers of the Riemannian Hessians

on (Cn×p
∗ /Op, gi) for these metrics g1, g3 and another metric g2 used in the literature. As

a noteworthy result, we have shown that when the rank p of the optimization manifold is

larger than the rank of the minimizer to the original PSD constrained minimization, the

condition number of the Riemannian Hessian on (Cn×p
∗ /Op, g1) can be unbounded, which
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is consistent with the observation that the Burer–Monteiro approach often has a slower

asymptotic convergence rate in numerical tests.
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5. CONVERGENCE OF ORTHOGONALIZATION-FREE RCG

VIA RIEMANNIAN INTERPRETATION

5.1 Introduction

In many applications, it is desired to obtain extreme eigenvalues and eigenvectors of large

Hermitian matrices by efficient and compact algorithms. In particular, orthogonalization-free

methods are preferred for large-scale problems for finding eigenspaces of extreme eigenvalues

without explicitly computing orthogonal vectors in each iteration. For the top p eigenvalues,

the simplest orthogonalization-free method is to find the best rank-p approximation to a pos-

itive semi-definite Hermitian matrix by algorithms solving the unconstrained Burer-Monteiro

formulation. In this chapter, we show that the nonlinear conjugate gradient method for the

unconstrained Burer-Monteiro formulation is equivalent to a Riemannian conjugate gradient

method on a quotient manifold with the Bures-Wasserstein metric, thus its global conver-

gence to a stationary point can be proven. Numerical tests suggest that it is efficient for

computing the largest k eigenvalues for large-scale matrices if the largest k eigenvalues are

nearly distributed uniformly.

Given a Hermitian matrix B ∈ Cn×n, the goal is to find its largest p eigenvalues and the

corresponding eigenvectors.

For large enough µ > 0, A := B + µI ∈ Cn×n is a positive definite Hermitian matrix

with the same extreme eigenspaces. Thus we focus only on Hermitian positive definite or

semi-definite matrices.

Extreme eigenvalue problems for Hermitian matrices naturally arise in many applications

[ 46 – 52 ]. For example, many problems can be cast as a graph, for which the adjacency matrix

and the graph Laplacian are real symmetric thus Hermitian [  53 ]. The extreme eigenvalues

and eigenvectors of these matrices contain information about the graph and the point cloud

data such as diffusion maps [  54 ]. Notice that the discussion in this chapter also applies to

the smallest k eigenvalues for a positive definite Hermitian matrix B by considering either

A = µI − B with large enough µ or A = B−1 if an efficient implementation of the linear

system solver for Bx = b is available, i.e., the matrix-vector multiplication B−1b can be

efficiently implemented.
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In the literature, notable convergence results for orthogonalization-free methods include

global convergence of perturbed gradient descent for (  5.4 ) in [  55 ] and global convergence of

TriOFM in [ 56 ].

The same CG algorithm ( 5.5 ) was also considered in [  57 ] for real symmetric matrices.

Both our algorithm and convergence proof also apply to the Hermitian matrices. We also

verify the numerical performance of the discussed algorithms on large matrices of the size

millions by millions. In particular, our numerical tests for large matrices are consistent with

the observation in [  57 ] that the simple CG method (  5.5 ) is superior for nearly uniformly

distributed extreme eigenvalues.

This chapter mainly focuses on the convergence analysis of the simplest orthogonalization-

free method (  5.5 ) which is fully scalable in parallel computing. Developing distributed and

parallel numerical implementation will be left as future work. In the literature, most nu-

merical solvers for eigenvalue problems rely on orthogonalization to achieve high efficiency

in sequential computing. Well-developed algorithms with orthogonalization include [  58 – 61 ].

To achieve better parallel efficiency for a full eigendecomposition, spectrum slicing can be

applied to estimate different eigenpairs in different spectrum regions simultaneously [  62 – 67 ].

In the rest of this chapter, we will first review the equivalence of the conventional CG

method to the Riemannian CG method in Section  5.3 , as first shown in Section  3.4 . The

convergence proof of the Riemannian CG method is then shown in Section  5.4 . In Section

 5.5 , we show that the simple coordinate descent method of minimizing (  5.4 ) is also equivalent

to a coordinate Riemannian gradient descent method. Section  5.6 includes numerical tests.

Concluding remarks are given in Section  5.7 . This chapter is based on [  68 ]

5.2 Problem Formulation and the Riemannian Optimization Viewpoint

The extreme eigenvalue problem can be written as an optimization problem, with many

different cost functions to consider. The most well-known one is to minimize the multicolumn

Rayleigh quotient

minimize
Y ∈Cn×p

F (Y ) := tr ((Y ∗Y )−1Y ∗AY ) . (5.1)

86



If assuming the spectrum of Y ∗Y is bounded by one and taking the inverse of Y ∗Y as

the first order approximation of the Neumann series expansion, then as an approximation

to multicolumn Rayleigh quotient, a popular method known as the orbital minimization

method (OMM) is to minimize the cost function [  69 ]:

minimize
Y ∈Cn×p

F (Y ) := tr ((2I − Y ∗Y )Y ∗AY ) . (5.2)

Another simple formulation is to consider optimization over the noncompact Stiefel manifold

Cn×p
∗ = {Y ∈ Cn×p: rank(Y)=p}:

minimize
Y ∈Cn×p

∗

F (Y ) := 1
2‖Y Y ∗ − A‖2

F , (5.3)

where ‖ · ‖F is the matrix Frobenius norm. Various orthogonalization-free algorithms for

solving both (  5.2 ) and (  5.3 ) were considered and compared numerically in [  57 ].

Notice that Cn×p
∗ is an open set in the Euclidean space Cn×p, thus any line search method

xk+1 = xk + αkηk starting with the iterate xk ∈ Cn×p
∗ and a small enough step size αk will

give xk+1 ∈ Cn×p
∗ . Therefore, any such line search algorithm can be regarded as the same

algorithm solving an unconstrained problem with a non-degenerate xk ∈ Cn×p
∗ :

minimize
x∈Cn×p

f(x) := 1
2‖xx∗ − A‖2

F . (5.4)

In the literature, the formulation ( 5.4 ) is often called the Burer-Monteiro method for Her-

mitian positive semi-definite (PSD) fixed rank p constraint, i.e., for minimizing ‖X − A‖2
F

where X is a Hermitian PSD matrix of rank p.

The nonlinear conjugate gradient method for (  5.4 ) can be written as


xk+1 = xk + αkηk,

ηk+1 = −∇f(xk) + βkηk = −2(xx∗ − A)x + βkηk,

(5.5)

where αk is the step size, βk is a nonlinear coefficient computed by various formulae, and ηk

is the search direction in CG method. In this chapter, we only consider two variants for how
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to compute βk: one is the PolakRibiére CG method, and the other one is the Fletcher-Reeves

CG method for computing the conjugate direction [  70 ].

A third choice is LOBPCG method first introduced in [  58 ]. A critical step in the

LOBPCG method is a Rayleigh-Ritz procedure in which an orthonormal basis is computed

to simplify calculations and ensure numerical stability, and it is the only orthogonaliza-

tion step. LOBPCG without orthogonalization also gives an orthogonalization-free method,

which may still work well for many problems in practice, though it might suffer from some

instability when the number of eigenpairs to be computed becomes large. Careful base

selection strategies [  71 ] [  72 ] can improve its robustness.

The landscape of ( 5.4 ) has been well studied in [ 55 ,  57 ,  73 ,  74 ] and its local minimizers

must also be global minimizers. Theorem 2.1 in [  57 ] implies that, if Ŷ ∈ Cn×p
∗ satisfies

∇F (Ŷ ) = 0 for F (Y ) = 1
2‖Y Y ∗ − A‖2

F , then Ŷ = UO where O ∈ Cp×p is a unitary matrix,

and U ∈ Cn×p has orthogonal columns as some eigenvectors of A. Furthermore, any local

minimum is a global minimum, i.e., any local minimizer of ( 5.4 ) in Cn×p
∗ has the form

Ŷ = UO with columns of U being eigenvectors of a Hermitian PSD matrix A corresponding

to its top p eigenvectors.

However, the convergence of CG method (  5.5 ) for (  5.4 ) has never been rigorously justified.

Notice that there is an ambiguity up to unitary matrices in both formulations (  5.4 ) and

( 5.3 ), that is F (Y O) = F (Y ) for any O ∈ Op, where Op are all p × p unitary matrices. To

this end, mathematically it is proper to consider an equivalence class for each x ∈ Cn×p
∗ :

[Y ] = {Y O : ∀O ∈ Op},

and a quotient set

Cn×p
∗ /Op := {[Y ] : ∀Y ∈ Cn×p

∗ }.

The quotient set with a proper metric becomes a quotient manifold.
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Now, we abuse notation by letting x denote the equivalent class [x], and x denote one

representation of this equivalent class. So we can instead consider the optimization over the

quotient manifold:
minimize
x∈Cn×p

∗ /Op

h(x) := F (x) = 1
2‖xx∗ − A‖2

F . (5.6)

Following the recent progress in [  75 ] for Riemannian optimization over Hermitian PSD

fixed rank manifolds, we first show that the simple unconstrained Burer-Monteiro CG method

( 5.5 ) is equivalent to a Riemannian CG method solving (  5.6 ) over the quotient manifold

Cn×p
∗ /Op with the Bures-Wasserstein metric [ 32 ] and proper retraction and vector trans-

port operators. Then with existing Riemannian optimization convergence theory, we can

establish the global convergence of the simple algorithm (  5.5 ) to a stationary point of (  5.3 ).

We emphasize that the main result of this chapter is the global convergence proof for the

classical simple algorithm (  5.5 ), and we do not modify the algorithm ( 5.5 ) at all. The Rie-

mannian optimization is used only for proving convergence of (  5.5 ), and (  5.5 ) should not be

implemented via much more complicated Riemannian optimization over a quotient manifold.

5.3 The Conjugate Gradient Methods

We first recall the traditional conjugate gradient method for solving ( 5.4 ), which is sum-

marized as Algorithm  11 . We present the abstract Riemannian conjugate gradient method

for solving (  5.6 ) over the quotient manifold as Algorithm  12 , with Wolfe conditions

h(Rxk
(αkηk)) ≤ h(xk) + c1αkgxk

(grad h(xk), ηk), (5.7)

∣∣∣gRxk
(αkηk)(grad h(Rxk

(αkηk)), D Rxk
(αkηk)[ηk])

∣∣∣ ≤ c2|gxk
(grad h(xk), ηk)|, (5.8)

where 0 < c1 < c2 < 1; and the Riemannian metric on Cn×p
∗ is chosen as the Bures-

Wasserstein metric g1 introduced in Section  2.2.1 , which is also the canonical Euclidean

inner product on Cn×p,

gx(A, B) := 〈A, B〉Cn×p = Re(tr(A∗B)), ∀A, B ∈ TxCn×p
∗ = Cn×p. (5.9)
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The abstract Algorithm  12 can be implemented as Algorithm  13 , in which each tangent

vector is treated as horizontal lift and each iterate is a representative of its equivalence class,

and it is independent of the choice of the representative of the equivalent class.

Algorithm 11 (PolakRibiére or Fletcher-Reeves) Conjugate Gradient on Cn×p

Require: initial iterate Y0 ∈ Cn×p, tolerance ε > 0, initial descent direction as negative
gradient η0 = −∇F (Y0) = −2(Y0Y

∗
0 − A)Y0

1: for k = 0, 1, 2, . . . do
2: Use backtracking to compute the step size αk > 0 satisfying the strong Wolfe condi-

tions
3: Obtain the new iterate by

Yk+1 = Yk + αkηk

4: Compute the gradient
ξk+1 := ∇F (Yk+1)

5: Check for convergence
if ‖ξk+1‖F < ε, then break

6: Compute a conjugate direction by the PolakRibiére method or the Fletcher-Reeves
method

ηk+1 = −ξk+1 + βk+1ηk

where βk+1 =


max

(
0,
〈∇F (Yk+1),∇F (Yk+1)−∇F (Yk)〉

〈∇F (Yk),∇F (Yk)〉

)
if using PolakRibiére

〈∇F (Yk+1),∇F (Yk+1)〉
〈∇F (Yk),∇F (Yk)〉 if using Fletcher-Reeves.

7: end for
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Algorithm 12 Formal form of the (PolakRibiére or Fletcher-Reeves) Riemannian Conjugate
Gradient on the quotient manifold Cn×p

∗ /Op with metric g(c.f. Algorithm  2 )
Require: initial iterate x0 ∈ Cn×p

∗ /Op, tolerance ε > 0, tangent vector η0 = −grad h(x0)
1: for k = 0, 1, 2, . . . do
2: Compute the step size αk > 0 satisfying the strong Wolfe conditions ( 5.7 ) and (  5.8 )
3: Obtain the new iterate by retraction

xk+1 = Rxk
(αkηk)

4: Compute the gradient
ξk+1 := grad h(xk+1)

5: Check for convergence
if ‖ξk+1‖ :=

√
gxk+1(ξk+1, ξk+1) < ε, then break

6: Compute a conjugate direction by the PolakRibiére (PR+) method or the Fletcher-
Reeves (FR) method, and vector transport

ηk+1 = −ξk+1 + βk+1Tαkηk
(ηk)

where βk+1 =


max

(
0,

gxk+1 (grad h(xk+1), grad h(xk+1)− Tαkηk
(ξk))

gxk
(grad h(xk), grad h(xk))

)
PR+

gxk+1 (grad h(xk+1), grad h(xk+1))
gxk

(grad h(xk), grad h(xk)) FR

7: end for
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Algorithm 13 Implementation for Riemannian Conjugate Gradient on the quotient mani-
fold Cn×p

∗ /Op with metric g

Require: initial iterate x0 ∈ Cn×p
∗ , tolerance ε > 0, initial descent direction as η0 =

−grad F (x0) = −2(x0x
∗
0 − A)x0

1: for k = 0, 1, 2, . . . do

2: Compute the step size αk > 0 satisfying the strong Wolfe conditions

3: Obtain the new iterate by retraction

xk+1 = Rxk
(αkηk) = xk + αkηk

4: Compute the horizontal lift of gradient

ξk+1 := grad F (xk+1) = 2(xk+1x
∗
k+1 − A)xk+1

5: Check for convergence

if
∥∥∥ξk+1

∥∥∥ :=
√

gxk+1(ξk+1, ξk+1) < ε, then break

6: Compute a conjugate direction by PR+ or by FR and vector transport

ηk+1 = −ξk+1 + βk+1Tαkηk
(ηk)xk+1

where βk+1 =


max

0,
gxk+1

(
grad F (xk+1), grad F (xk+1)− Tαkηk

(ξk)xk+1

)
gxk

(grad F (xk), grad F (xk))

 PR+

gxk+1 (grad F (xk+1), grad F (xk+1))
gxk

(grad F (xk), grad F (xk)) FR

7: end for

The following results are already shown in Section  3.4 and we simply restate them here

without proof for completeness of this chapter.

Lemma 5.3.1. Let ηk be the descent direction generated by Algorithm  12 . Then we have

Tαkηk
(ηk)xk+1

= P H
xk+αkηk

(ηk) = ηk. (5.10)
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Theorem 5.3.2. Algorithm  13 is equivalent to Algorithm  11 , which is the conjugate gradient

method solving (  5.4 ), in the sense that they produce exactly the same iterates if started from

the same initial point.

5.4 The Convergence of the Fletcher-Reeves Riemannian Conjugate Gradient
Method

In this section, we will prove that the Fletcher-Reeves Riemannian Conjugate Gradient

method converges to a stationary point, thus Algorithm  11 also converges by Theorem  5.3.2 .

The discussion in this section follows the same arguments as in standard convergence

theory, e.g., [  76 ]. The cost function and vector transport considered in this chapter satisfy

the conditions for convergence analysis in [ 76 ]. Many results in this section are standard

convergence results for a line search method, see [  70 ]. For completeness, we include the full

proof.

Let ηk ∈ Txk
Cn×p

∗ /Op be a descent direction. Define the angle θk between −grad h(xk)

and ηk by

cos θk = − gxk
(grad h(xk), ηk)

‖grad h(xk)‖xk
‖ηk‖xk

. (5.11)

Let L := {x ∈ Cn×p
∗ /Op : 0 ≤ h(x) ≤ h(x0)} and π−1(L) = {x ∈ Cn×p

∗ : 0 ≤ F (x) ≤

F (x0)}. We can show that π−1(L) is bounded.

Lemma 5.4.1. There is a constant C such that ‖x̄‖F ≤ C, ∀x̄ ∈ π−1(L).

Proof. Assume it is not true, then ∀n ∈ N,∃x̄n ∈ π−1(L) such that ‖x̄n‖F ≥ n. Let yn =
x̄n

‖x̄n‖F
, then ‖yn‖F = 1 and x̄n = ‖x̄n‖F yn = anyn with an ≥ n. Thus F (x̄n) = 1

2‖a
2
nyny∗

n −

A‖2
F → ∞ since an → ∞ and ‖yn‖F = 1. On the other hand, x̄n ∈ π−1(L) implies that

F (x̄n) should be bounded, which is a contradiction.

Lemma 5.4.2. The Riemannian gradient of F , i.e., grad F (x) = 2(xx∗ − A)x is Lipschitz

continuous on π−1(L). That is, there exists a constant L > 0 such that

‖grad F (y)− grad F (x)‖F ≤ L‖y − x‖F , for all x, y ∈ π−1(L). (5.12)
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Proof. It suffices to show that q : x 7→ xx∗x is Lipschitz continuous on π−1(L). Let x, y ∈

π
−1(L). Then ‖x‖F ≤ C, ‖y‖F ≤ C by Lemma  5.4.2 .

‖q(x)− q(y)‖F = ‖xx∗x− yy∗y‖F = ‖xx∗x− xx∗y + xx∗y − yy∗y‖F

≤ ‖xx∗x− xx∗y‖F + ‖xx∗y − yy∗y‖F

= ‖xx∗x− xx∗y‖F + ‖xx∗y − yx∗y + yx∗y − yy∗y‖F

≤ ‖xx∗x− xx∗y‖F + ‖xx∗y − yx∗y‖F + ‖yx∗y − yy∗y‖F

≤ ‖xx∗‖‖x− y‖F + ‖x− y‖F‖x
∗‖F‖y‖F + ‖y‖F‖x

∗ − y∗‖F‖y‖F

≤ 3C2‖x− y‖F .

Theorem 5.4.3 (Zoutendijks theorem on manifold). Let ηk be a descent direction and let αk

satisfy the strong Wolfe conditions (  5.7 ) and (  5.8 ). Then for the cost function h defined in

 2.19 , the following series converges.

∞∑
k

cos2 θk‖grad h(xk)‖2
xk

<∞.

Proof. From the strong Wolfe condition ( 5.8 ) we have

(c2 − 1)gxk
(grad h(xk), ηk) ≤ gxk+1 ((grad h(Rxk

(αkηk), D Rxk
(αkηk)[ηk])− gxk

(grad h(xk), ηk)

= gxk+1

(
grad F (xk + αkηk), P H

xk+αkηk
(ηk)

)
− gxk

(grad F (xk), ηk)

= gxk+1 (grad F (xk + αkηk), ηk)− gxk
(grad F (xk), ηk) .

Notice that our Riemannian metric g is simply the inner product on the Euclidean space

Cn×p, hence

gxk+1 (grad F (xk + αkηk), ηk)− gxk
(grad F (xk), ηk) = 〈grad F (xk + αkηk)− grad F (xk), ηk〉 .

(5.13)

From Lemma  5.4.2 we know
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〈grad F (xk + αkηk)− grad F (xk), ηk〉 ≤ αkL‖ηk‖
2
F .

Hence for any k we have

αk ≥
(c2 − 1)gxk

(grad h(xk), ηk)
L‖ηk‖

2
F

. (5.14)

Now it follows from (  5.7 ) and (  5.14 ) that

0 ≤ h(xk+1) ≤ h(xk) + c1αkgxk
(grad h(xk), ηk)

≤ h(xk)− c1(1− c2)
L

cos2 θk‖grad h(xk)‖2
xk

≤ h(x0)−
c1(1− c2)

L

k∑
j=0

cos2 θj‖grad h(xj)‖2
xj

.

Hence
∞∑

k=0
cos2 θk‖grad h(xk)‖2

xk
≤ L

c1(1− c2)
h(x0) <∞. (5.15)

Lemma 5.4.4. If using Fletcher-Reeves method in Algorithm  12 , then for 0 < c1 < c2 < 1/2,

the search direction ηk is a descent direction satisfying

− 1
1− c2

≤ gxk
(grad h(xk), ηk)
‖grad h(xk)‖2

xk

≤ 2c2 − 1
1− c2

. (5.16)

Proof. We prove it by induction on k.

When k = 0, (  5.16 ) holds since

gx0(grad h(x0), η0)
‖grad h(x0)‖2

x0

= gx0(grad h(x0),−grad h(x0))
‖grad h(x0)‖2

x0

= −1.

Now suppose (  5.16 ) holds for some k ≥ 0.

Recall that we use differentiated retraction as our vector transport:

Tαkηk
(ηk) = D Rxk

(αkηk)[ηk].
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And the βk+1 in Fletcher-Reeves method is defined as

βk+1 =
gxk+1 (grad h(xk+1), grad h(xk+1))

gxk
(grad h(xk), grad h(xk)) .

Hence the middle term in (  5.16 ) for k + 1 is

gxk+1(grad h(xk+1), ηk+1)
‖grad h(xk+1)‖2

xk+1

=
gxk+1 (grad h(xk+1),−grad h(xk+1) + βk+1Tαkηk

(ηk))
‖grad h(xk+1)‖2

xk+1

=
gxk+1 (grad h(xk+1),−grad h(xk+1) + βk+1D Rxk

(αkηk)[ηk]))
‖grad h(xk+1)‖2

xk+1

= −1 +
gxk+1 (grad h(xk+1)), D Rxk

(αkηk)[ηk])
‖grad h(xk)‖2

xk

. (5.17)

From the strong Wolfe condition ( 5.8 ) we have

c2gxk
(grad h(xk), ηk) ≤ gxk+1(grad h(xk+1), D Rxk

(αkηk)[ηk]) ≤ −c2gxk
(grad h(xk), ηk).

(5.18)

Hence from (  5.17 ) and (  5.18 ) we have

−1 + c2
gxk

(grad h(xk), ηk)
‖grad h(xk)‖2

xk

≤
gxk+1(grad h(xk+1), ηk+1)
‖grad h(xk+1)‖2

xk+1

≤ −1− c2
gxk

(grad h(xk), ηk)
‖grad h(xk)‖2

xk

.

And the result ( 5.16 ) follows from the induction hypothesis.

Theorem 5.4.5. For cost function h in (  2.19 ), the Algorithm  12 with Fletcher-Reeves method

generates iterates xk such that

lim inf
k→∞

‖grad h(xk)‖xk
= 0. (5.19)

Proof. If grad h(xk) = 0 for some k = k0. Then grad h(xk) = 0 for all k ≥ k0.

So we consider grad h(xk) 6= 0 for all k. We shall prove (  5.19 ) by contradiction. Suppose

( 5.19 ) does not hold. Then there exists a constant c > 0 such that

‖grad h(xk)‖xk
≥ c > 0, ∀k ≥ 0. (5.20)

96



From (  5.11 ) and (  5.16 ) we have

cos θk ≥
1− 2c2

1− c2

‖grad h(xk)‖xk

‖ηk‖xk

. (5.21)

It follows by Theorem  5.4.3 that the following series converges.

∞∑
k=0

‖grad h(xk)‖4
xk

‖ηk‖2
xk

<∞. (5.22)

For k ≥ 1, the strong Wolfe condition (  5.8 ) and (  5.16 ) gives rise to

∣∣∣gxk

(
grad h(xk), Tαk−1ηk−1(ηk−1)

)∣∣∣ ≤ −c2gxk−1 (grad h(xk−1), ηk−1) ≤
c2

1− c2
‖grad h(xk−1)‖2

xk−1
.

Hence we have the following recurrence equation for ‖ηk‖2
xk

.

‖ηk‖2
xk

=
∥∥∥−grad h(xk) + βkTαk−1ηk−1(ηk−1)

∥∥∥2

xk

≤ ‖grad h(xk)‖2
xk

+ 2βk

∣∣∣gxk

(
grad h(xk), Tαk−1ηk−1(ηk−1)

)∣∣∣+ β2
k

∥∥∥Tαk−1ηk−1(ηk−1)
∥∥∥2

xk

≤ ‖grad h(xk)‖2
xk

+ 2c2

1− c2
βk‖grad h(xk−1)‖2

xk−1
+ β2

k

∥∥∥Tαk−1ηk−1(ηk−1)
∥∥∥2

xk

= ‖grad h(xk)‖2
xk

+ 2c2

1− c2
‖grad h(xk)‖2

xk
+ β2

k

∥∥∥Tαk−1ηk−1(ηk−1)
∥∥∥2

xk

= 1 + c2

1− c2
‖grad h(xk)‖2

xk
+ β2

k

∥∥∥Tαk−1ηk−1(ηk−1)
∥∥∥2

xk

. (5.23)

Recall that we use differentiated retraction as our vector transport:

Tαk−1ηk−1(ηk−1) = D Rxk−1(αk−1ηk−1)[ηk−1] = D π(xk−1 + αk−1ηk−1)
[
P H

xk−1+αk−1ηk−1
(ηk−1)

]
.

Hence

∥∥∥Tαk−1ηk−1(ηk−1)
∥∥∥2

xk

= gxk

(
Tαk−1ηk−1(ηk−1), Tαk−1ηk−1(ηk−1)

)
= gxk

(
Tαk−1ηk−1(ηk−1)xk

, Tαk−1ηk−1(ηk−1)xk

)
= gxk

(
P H

xk−1+αk−1ηk−1
(ηk−1), P H

xk−1+αk−1ηk−1
(ηk−1)

)
= gxk−1

(
ηk−1, ηk−1

)
= ‖ηk−1‖2

xk−1
.
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Hence ( 5.23 ) becomes the following recurrence formula for ‖ηk‖2
xk

.

‖ηk‖2
xk
≤ 1 + c2

1− c2
‖grad h(xk)‖2

xk
+ β2

k‖ηk−1‖2
xk−1

. (5.24)

By recursively using (  5.23 ) and recall the definition of βk in Fletcher-Reeves method we

obtain

‖ηk‖2
xk
≤ 1 + c2

1− c2

(
‖grad h(xk)‖2

xk
+ β2

k‖grad h(xk−1)‖2
xk−1

+ · · ·+ β2
kβ2

k−1 . . . β2
2‖grad h(x1)‖2

x1

)
+β2

kβ2
k−1 . . . β0

0‖η0‖2
x0

= 1 + c2

1− c2
‖grad h(xk)‖4

xk

(
‖grad h(xk)‖−2

xk
+ ‖grad h(xk)‖−2

xk−1
+ · · ·+ ‖grad h(xk)‖−2

x1

)
+‖grad h(xk)‖4

xk
‖grad h(x0)‖−2

x0

<
1 + c2

1− c2
‖grad h(xk)‖4

xk

k∑
j=0
‖grad h(xj)‖−2

xj
≤ 1 + c2

1− c2
‖grad h(xk)‖4

xk

k + 1
c2 ,

where we have used the contradiction assumption (  5.20 ) in the last inequality. ( 5.25 ) results

in the divergence of the following series.

∞∑
k=0

‖grad h(xk)‖4
xk

‖ηk‖2
xk

≥ c2 1− c2

1 + c2

∞∑
k=0

1
k + 1 =∞. (5.25)

This contradicts to (  5.22 ) and hence we have completed the proof.

In general, it is more difficult to prove the convergence of the Riemannian PR+ CG

method. It is possible to extend the convergence proof of PR+ CG method in [  77 ] to Rie-

mannian PR+ CG method, but it is beyond the scope of this chapter.

5.5 Coordinate Riemannian Gradient Descent (CRGD)

The orthogonalization-free methods are preferred for large scale problems. For much

larger problems, the coordinate descent method is favored, since the full gradient can be too

large to even store. For instance, the coordinate gradient descent method for finding leading

eigenvalue in [  74 ] is the coordinate descent method for minimizing ( 5.4 ) with rank p = 1. In

this section, following the same Riemannian manifold notation as in previous sections, we
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show that the a Riemmanian coordinate descent method is also equivalent to the coordinate

descent method for minimizing (  5.4 ) with any rank p > 0, which is the generalization of the

algorithm in [  74 ].

In [ 78 ], a method called the tangent subspace descent method was proposed: this method

generalized the block coordinate descent method to manifold settings. Instead of updating

the full gradient at each iteration, the tangent direction in each update is a projected vector

of the full Riemannian gradient to a subspace of the tangent space by some subspace selection

rule Pk. In the specific case of Cn×p
∗ /Op considered in this chapter, this method is written

as Algorithm  14 and we denote it as Coordinate Riemannian Gradient Descent (CRGD).

Since the horizontal lift of grad h(xk) is a n-by-p matrix, we can simply choose the

subspace selection rule by cyclically selecting the N -column block of the n-by-p matrix

grad F (xk). Let Mk denote the mask that evaluates the k-th N -column block of a n-by-p

matrix cyclically. That is, if Z is a n-by-p matrix, then

Mk(Z) = ZkN+1:(k+1)N,: (5.26)

where ZkN+1:(k+1)N,: denotes the N -by-p matrix that takes the (kN + 1)-th to (k + 1)N -th

columns of Z. And the index that exceeds the matrix range is understood as modulo by the

matrix size, namely, cyclically. Then our update to xk is written through the following

xk+1 = Rxk
(αMk(grad F (xk))), (5.27)

where α is a constant step size.

With the simple retraction as in Section  2.5.1 , (  5.27 ) simply reduces to

xk+1 = xk+1 − αMk(2(xkx∗
k − A)xk). (5.28)

Notice that (  5.28 ) with p = 1 and N = 1 reduces to the coordinate descent method for the

leading eigenvalue in [ 74 ]. In particular, if p = 1 and we set N = 1 and Pk in Algorithm

 14 to be Mk, defined in ( 5.26 ), then Algorithm  14 is equivalent to Algorithm 2 in [  74 ]. So
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the generalization of the method in [ 74 ] to top p eigenvalues can be equivalently written as

( 5.28 ) or (  5.27 ), which is a Riemannian coordinate descent method.

To take the advantage of CRGD to solve large-scaled problems, one should implement

it through compact implementation. That is, each update should only depend on the block

size N and should be independent of the problem size n. In the case of eigenvalue problem,

F (x) = 1
2‖xx∗ − A‖2

F . If we assume that A is a sparse matrix such that we can achieve

Mk(Av) in O(N), then we can indeed achieve a compact implementation of CRGD as in

Algorithm  15 .

Algorithm 14 Coordinate Riemannian gradient descent (CRGD) on the quotient manifold
Cn×p

∗ /Op with metric g

Require: initial iterate x0 ∈ Cn×p
∗ /Op, tolerance ε > 0, tangent vector ξ0 = −grad h(x0),

subspace selection rule Pk, δ0 := P0(ξ0), stepsize α > 0.
1: for k = 0, 1, 2, . . . do
2: Obtain the new iterate by retraction

xk+1 = Rxk
(αδk)

3: Compute the projection of ξk+1 := −grad h(xk+1) to a subspace of Txk+1Cn×p/Op

δk+1 := Pk+1(ξk+1)
4: Check for convergence

if ‖δk+1‖ :=
√

gxk+1(δk+1, δk+1) < ε, then break
5: end for

5.6 Numerical Experiments

The numerical performance of the simple CG methods ( 5.5 ) has been well studied in

the literature, e.g., see [  57 ] for a comparison with other orthogonalization-free methods. In

general, the performance of (  5.5 ) for solving (  5.4 ) depends on the spectrum of the matrix

A. For completeness, in this section we verify the numerical performance of the simple CG

methods (  5.5 ) on large matrices A.
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Algorithm 15 Compact implementation for cyclic coordinate Riemannian gradient descent
on the quotient manifold Cn×p

∗ /Op with metric g

Require: initial iterate x0 ∈ Cn×p
∗ , η0 = −grad F (x0) ∈ Cn×p, first N columns of η0:

δ0 =M0(η0), a0 = x∗
0x0, b0 = δ∗

0x0, c0 = δ∗
0δ0, stepsize α > 0, s0 = a0 + αb0 + αb∗

0 + α2c0,
tolerance ε > 0.

1: for k = 0, 1, 2, . . . do
2: Obtain the new iterate by retraction

xk+1 = Rxk
(αδk) = xk + αδk

3: Cyclically compute the next N columns of ηk+1 = −grad F (xk+1)
δk+1 := −2Mk+1(xksk)− 2αMk+1(δksk) + 2Mk+1(Axk) + 2αMk+1(Aδk)

4: Check for convergence
if
∥∥∥δk+1

∥∥∥ :=
√

gxk+1(δk+1, δk+1) < ε, then break
5: Compute and update ak+1, bk+1, ck+1

ak+1 = ak + αx∗
kδk + αδ

∗
kxk + α2δ

∗
kδk

bk+1 = δ
∗
k+1xk+1

ck+1 = δ
∗
k+1δk+1

6: Compute temporary variable sk+1 ∈ Cp×p

sk+1 = ak+1 + αbk+1 + αb∗
k+1 + α2ck+1

7: end for

5.6.1 Real Symmetric PSD Matrices

We consider two types of matrices A. The first type is a 2D Laplacian matrix, which has

a nearly uniform eigenvalue gap for a few top eigenvalues. Consider the discretization of a

2D Poisson equation with homogeneous Dirichlet boundary conditions on [0, 1]× [0, 1] using

m-by-m interior grid points. Then the matrix representing the Laplacian operator is a 2D

Laplacian matrix A of size m2-by-m2 given as

A = 1
∆x2 K ⊗ Im + Im ⊗

1
∆y2 K, (5.29)

101



where ∆x = ∆y = 1
m+1 , and K is a m-by-m tridiagonal matrix.

K =



2 −1

−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 2


(5.30)

The second type is constructed by eigenvalue decomposition A = V ΛV −1 where eigen-

vectors V are given by discrete cosine transform. We assign Λ so that the eigenvalues λi have

four types of distribution of eigenvalues, similar to the numerical experiments considered in

[ 57 ] but with a much larger matrix size:

1. (random) λi ∼ |N (0, 1)|, where N (0, 1) is standard normal distribution.

2. (uniform) λi = 1− i−1
n

, 1 ≤ i ≤ r.

3. (u-shape) λ1 = 14
16 , λ2 = 10

16 , λ3 = 8
16 , λ4 = 7

16 , λ5 = 5
16 , λi = 1

16 .

4. (logarithm) λi = 21+blog2 nc

n
1
2i , 1 ≤ i ≤ r.

We first compare the simple CG methods (  5.5 ) with the TriOFM method in [  56 ] for a

2D discrete Laplacian matrix, shown in Figure  5.1 .

Next, we compare TriOFM, CG and LOBPCG for different distributed eigenvalues. We

use Algorithm 1 in [ 72 ] as the orthogonalization-free LOBPCG method in numerical tests.

The comparison is shown for randomly distributed eigenvalues in Figure  5.2 , uniformly dis-

tributed eigenvalues in Figure  5.3 , U-shape distribution of eigenvalues in Figure  5.4 , and log

distribution of eigenvalues in Figure  5.5 . In all these comparisons, the orthogonalization-free

LOBPCG method is the most efficient one. Notice that the simple CG-PR method is much

less efficient than the TriOFM method for the log distribution of eigenvalues. However,

this slowness is due to the eigenvalue gap between σp and σp+1. In Figure  5.6 , the top p

eigenvalues with p = 5 have a log distribution but the gap between σp and σp+1 is enlarged
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by shifting the top p eigenvalues from the same matrix in Figure  5.5 , and we observe that

the simple CG-PR method is efficient in this scenario. In other words, the matrix in Fig-

ure  5.5 has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, and the matrix in Figure  5.6 has eigenvalues

λ1 + C ≥ λ2 + C ≥ · · · ≥ λp + C ≥ λp+1 ≥ · · · ≥ λn.
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Figure 5.1. Comparison for computing the top-10 eigenvalues of a 2D Lapla-
cian matrix of size 106 × 106.
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(b) Relative error vs CPU time

Figure 5.2. Comparison for computing the top-10-eigenvalue problem of a
104-by-104 matrix with randomly distributed eigenvalues.
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Figure 5.3. Comparison for computing the top-10-eigenvalue problem of a
104-by-104 matrix with uniformly distributed eigenvalues.
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Figure 5.4. Comparison for computing the top-10-eigenvalue problem of a
104-by-104 matrix with U-shape distributed eigenvalues.
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Figure 5.5. Comparison for computing the top-5-eigenvalue problem of a
104-by-104 matrix with logarithm distributed eigenvalues.
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Figure 5.6. Comparison for computing the top-5-eigenvalue problem of a
104-by-104 matrix with eigenvalues λ1 + C ≥ λ2 + C ≥ · · · ≥ λ5 + C ≥ λ5+1 ≥
· · · ≥ λn, where C = λ1 and λ1 ≥ λ2 ≥ · · · ≥ λn has a log distribution.

5.6.2 Hermitian PSD Matrices

It is shown in [ 75 ] that Algorithm  12 can be used for finding the top eigenvalues of a

Hermitian PSD matrix. We test Algorithm  12 on  5.4 for a matrix A with eigenvectors defined

by 2D Fast Fourier Transform. Namely, the linear operator of applying A to a 2D array u is

defined by

Au = ifft2(Σ. ∗ fft2(u)),
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where .∗ denotes the entrywise product and Σ is a 2D array consisting of nonnegative eigen-

values of A.

The performance of the CG-PR method is shown in Figure  5.7 for four kinds of eigenvalue

distributions in such a Hermitian PSD matrix.
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Figure 5.7. The CG-PR method for the top-10-eigenvalue problem with rank-
1000 Hermitian matrices of 106-by-106 with different distributions of eigenval-
ues.

5.6.3 Smallest Eigenvalues

Inverse 2D Laplacian Matrix

One technique to find the smallest eigenvalues of a given invertible matrix A is through

the shift-and-inverse method. That is, to find the largest eigenvalues of (A + µI)−1, where

µ > 0 is a shift constant such that A + µI becomes positive definite. We use this method to

find the smallest eigenvalues of the 2D Laplacian matrix A as in (  5.29 ).

Notice that the top eigenvalues of A−1 almost follow a logarithm distribution. Based on

our observation, we can choose µ appropriately to make the top eigenvalues of (A + µI)−1

have a uniform distribution to accelerate the convergence of the CG method. Since we know

the true eigenvalues of A, we shift it by choosing µ to be the smallest desired eigenvalue.

That is, suppose the smallest r eigenvalues of A are σ1 ≤ σ2 ≤ · · · ≤ σr. Then we choose

µ = σ1. As a result, the top eigenvalues of (A + µI)−1 would be 1
σ1+σ1

≥ 1
σ2+σ1

≥ · · · ≥ 1
σr+σ1

that almost follow a uniform distribution. A fast matrix inversion is implemented by using
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the eigendecomposition of the matrix. The performance is shown in Figure  5.8 and Figure

 5.9 .
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Figure 5.8. The shift-and-inverse method on the smallest-10-eigenvalue prob-
lem of a 106-by-106 2D-Laplacian matrix.
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Figure 5.9. The shift-and-inverse method on the smallest-3-eigenvalue prob-
lem of a 106-by-106 2D-Laplacian matrix.

Negative 2D Laplacian Matrix

Another way to find the smallest eigenvalues of a given matrix A is through the negative-

shift method. That is, to consider finding the largest eigenvalues of µI − A, where µ > 0 is
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a shift constant such that µI − A is positive semi-definite. We use this method to find the

smallest eigenvalues of the 2D Laplacian matrix defined in (  5.29 ).

Notice we need to shift at least the largest eigenvalue of A to ensure that µI−A is PSD.

And once we find the top eigenvalues of µI−A we need to shift back and extract the smallest

eigenvalues of A by computing µ−(µ−σ), where σ’s are the smallest eigenvalues of A. Hence

when the condition number of A is bad, i.e., if µ >> σ, then we might lose a significant

number of digits of accuracy for computing µ− (µ− σ). In our numerical tests, we did not

encounter this numerical accuracy issue. The performance is shown in Figure  5.10 . Notice

that the negative-shift method is much slower than the shift-and-inverse method, because of

the different distributions of the largest eigenvalues of µI − A and (A + µI)−1.
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Figure 5.10. The negative-shift method on the smallest-10-eigenvalue prob-
lem of a 106-by-106 2D-Laplacian matrix.

Negative 3D Laplacian matrix

We repeat the same test as in the previous subsection for a larger problem of finding

the smallest eigenvalues of a 3D discrete Laplacian on a 5003 grid, which corresponds to a

matrix of size 1.25E8×1.25E8. We implement both the simple CG method (  5.5 ) and TriOFM

method on an Nvidia GPU A100 80G.
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Figure 5.11. The shift-and-inverse method on the smallest-3-eigenvalue
problem of a 3D-Laplacian matrix on a 5003 grid. The matrix size is
1.25E8×1.25E8. Computation was done on Nvidia GPU A100 80G.

5.6.4 Coordinate Riemannian gradient descent

We consider applying the coordinate Riemannian gradient descent method described in

Section  5.5 to a 1D Laplacian matrix of size n-by-n given by A = 1
∆x2 K, where ∆x = 1

n+1 and

K are the tridiagonal matrix defined in ( 5.30 ). This example is only for the demonstration

purpose of the coordinate gradient descent method. Choosing this simple A makes it easy

for the compact implementation of the matrix-vector multiplication of Au. One can also

apply this method to any sparse matrix A as long as one has the compact implementation

of Mk(Au) in O(N), where N is a constant independent of the problem size n.

As we can see from Figure  5.12 , the CPU time for running the first 3000 iterations is

independent of problem size. This demonstrated the O(1) computational complexity of the

coordinate Riemannian gradient descent method for leading eigenpairs.

5.7 Concluding Remarks

In this chapter, we have shown the orthogonalization-free method to find leading eigen-

pairs of a positive semi-definite Hermitian matrix via an unconstrained Burer-Monteiro

formulation. For this optimization problem, we have shown the equivalence between the
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Figure 5.12. Coordinate Riemannian gradient descent for solving the top-10
eigenvalues of a Laplacian matrix.
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nonlinear conjugate gradient method and a Riemannian conjugate gradient method on a

quotient manifold with the Bures-Wasserstein metric, leading to a new understanding of the

global convergence of the nonlinear conjugate gradient method in Burer-Monteiro formula-

tion to a stationary point. We have also shown that the simple coordinate descent method

in Burer-Monteiro formulation is equivalent to a coordinate Riemannian gradient descent

method. Numerical tests on large scale matrices have verified the numerical performance of

the simple conjugate gradient method in Burer-Monteiro formulation for computing leading

eigen-pairs, which is consistent with findings in the literature.
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6. RIEMANNIAN LANGEVIN MONTE CARLO SCHEMES

FOR SAMPLING PSD MATRICES WITH FIXED RANK

6.1 Introduction

In this chapter, we turn our attention from Riemannian optimization to Riemannian

sampling.

We will introduce two explicit numerical schemes to sample matrices from the Gibbs

distributions on Sn,p
+ , the manifold of real PSD matrices of size n × n and rank p. Gibbs

distributions originate in statistical physics, while the sampling problem may also be seen

as a stochastic variant of the optimization problem. Given an energy function E : Sn,p
+ →

R and certain Riemannian metrics g on Sn,p
+ , these schemes rely on an Euler-Maruyama

discretization of the Riemannian Langevin equation (RLE) with Brownian motion on the

manifold. We present numerical schemes for RLE under two fundamental metrics on Sn,p
+ :

(a) the metric obtained from the embedding of Sn,p
+ ⊂ Rn×n; and (b) the Bures-Wasserstein

metric corresponding to quotient geometry. We also provide examples of energy functions

with explicit Gibbs distributions that allow numerical validation of these schemes.

This chapter is based on [ 79 ]. The main contribution in this chapter is the efficient sam-

pling schemes for ρβ based on Langevin dynamics. Our approach builds on the geometric

theory of optimization; in particular, we extend Riemannian optimization on Sn,p
+ [ 75 ,  80 ]

to Gibbs sampling as follows. In [ 80 ] it was recognized that two commonly used gradient

descent schemes over Sn,p
+ are time discretizations of Riemannian gradient flows, where Sn,p

+

is equipped with the two natural Riemannian metrics listed below. We combine this obser-

vation with the theory of Brownian motion on Riemannian manifolds to obtain Riemannian

Langevin equations and explicit sampling schemes. This sampling problem is related to

the optimization problem minX∈Sn,p
+
E(X) since in the limit β → ∞ the Gibbs distribution

concentrates at the global minima of E(X).

The reader unfamiliar with these concepts should note that while the abstract theory

serves to guide our work, the schemes presented in this chapter may be implemented without

requiring a complete understanding of the underlying theory. Further, while this chapter is

focused on the two numerical schemes below, the underlying framework can be used to extend
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other Riemannian gradient descent schemes to sampling schemes for the Gibbs measure.

The new phenomenon that arises is the interplay between Brownian motion and curvature

in the Riemannian Langevin equation. This interplay has been studied in depth by two

of the authors (TY and GM) and their co-workers in recent papers for geometries used in

optimization and physics [  81 – 83 ].

6.2 Problem Statement

Consider the space of real, symmetric positive semi-definite matrices with size n×n and

rank p, denoted by

Sn,p
+ = {X ∈ Rn×n|X = XT , X � 0, rank(X) = p}. (6.1)

Given an energy E : Sn,p
+ → R and a parameter β > 0 referred to as the inverse temperature,

our goal is to sample efficiently from the Gibbs distribution.

ρβ(X) = 1
Zβ

e−βE(X)ρref(X), Zβ =
∫

Sn,p
+

e−βE(X′)ρref(X ′) dX ′. (6.2)

Gibbs measures must be defined with respect to a base measure. In this work, we equip

the space Sn,p
+ with a Riemannian metric g and choose ρref(X)dX =

√
det g(X)dX to be

the canonical volume form associated to the metric g. This volume form is expressed in

coordinates for the metrics studied in Section  6.5 .

6.3 Riemannian Langevin Equations on Sn,p
+

In this section , we will show how Langevin equations are defined intrinsically on the

Riemannian manifold (Sn,p
+ , g). We will state the Itô form of the Riemannian Langevin

equation ( 6.6 ) for both Riemannian geometries. The main ideas are as follows: (a) the

abstract theory of Brownian motion on Riemannian manifolds is used to define the Rieman-

nian Langevin equation in Stratonovich form for the metrics gE and gBW on Sn,p
+ ; (b) the

Itô-Stratonovich conversion rule is used to compute the associated Itô form of these SDEs
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and it is observed that the Itô-Stratonovich correction term corresponds to mean curvature.

This approach yields the SDEs below.

6.3.1 The Classical Euclidean Langevin Equation on Rn

Let us first recall the Langevin equation on Rn. Given a potential or energy function

E : Rn → R and let Wt denote the standard Wiener process on Rn. The Langevin equation

for the potential E is the Itô differential equation

dxt = −∇E(xt) dt +
√

2
β

dWt. (6.3)

The Fokker-Planck equation describes the evolution of the probability density of xt. With

ρ(x, t) dx = P(xt ∈ (x, x + dx)), we have

∂tρ = 1
β
4ρ +∇ · (ρ∇E) . (6.4)

The Gibbs density (with reference density being uniform with respect to Lebesgue measure)

is the unique equilibrium of equation (  6.4 ) under natural growth assumptions on the energy

E as |x| → ∞.

The Langevin equation immediately yields a numerical scheme for (approximate) sam-

pling from the Gibbs distribution. Fix a step size ∆t > 0, let tk = k∆t, k = 0, 1, . . ., and let

xk denote the numerical approximation to (  6.3 ) at time tk. The Euler-Maruyama scheme to

approximate equation ( 6.3 ), also known as Langevin Monte Carlo in the statistics literature,

is

xk+1 = xk −∆t∇E(xk) +
√

2∆t

β
ξk, (6.5)

where ξk = (ξ1
k, . . . , ξn

k ) is an i.i.d. sequence of standard Gaussian vectors in Rn. This scheme

is explicit. In order to extend it to sampling from ( 6.2 ) we must understand how to modify

the Langevin equation on the Riemannian manifold (Sn,p
+ , g).

First, the term ∇E must be replaced by the Riemannian gradient, written as grad E .

The more subtle modification of equation (  6.3 ) concerns the noise. The natural analogy is
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to replace the Wiener process Wt on Rn with Brownian motion on the Riemannian mani-

fold (Sn,p
+ , g) at inverse temperature β, denoted Bg,β

t . This yields the (formal) Riemannian

Langevin equation on (Sn,p
+ , g)

dX t = −grad E(X t)dt + dBg,β
t . (6.6)

This equation is only formal because stochastic differential equations on manifolds must

be defined using the Stratonovich formulation in order to ensure coordinate independence

(Itô differentials do not satisfy the chain rule, while Stratonovich differentials do) [  84 ,  85 ].

On the other hand, Itô differential equations are convenient for analysis as well as simulation.

Thus, in formulating the Riemannian Langevin equation, it is necessary to first formulate

the appropriate Stratonovich equation and then compute the deterministic Itô–Stratonovich

correction. A central observation in our work is that this correction term is due to curvature

and is explicitly computable for several Riemannian geometries relevant to optimization [ 81 –

 83 ,  86 ].

6.3.2 The Riemannian Langevin Equation Sn,p
+ with the Euclidean Metric

Let X ∈ Sn,p
+ whose compact SVD is X = UΛUT with U ∈ Rn×p. Equation (  6.6 )

describes the evolution of a point X t ∈ Sn,p
+ in abstract terms. We now rewrite it in a simpler

equivalent form describing the evolution of the entries of the matrix entries {(Xt)ij}n
i,j=1

representing X t. Let us write X = UΛUT for the compact SVD of X with the singular

values Λ = diag(λ1, ..., λp) written in decreasing order. We suppress the subscript t in the

following equations, though the reader should note that U and Λ depend on Xt.

It can be shown that the law of Xt is determined by the Itô differential equation

dXt = −grad E(Xt)dt +
√

2
β

dW n,p,Xt
t + 1

β
H(Xt)dt. (6.7)
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In this equation, the stochastic forcing W n,p,Xt
t is the orthogonal projection of white noise in

Rn×n onto TXtS
n,p
+ . Precisely, given W i

t for 1 ≤ i ≤ n and W i,j
t for 1 ≤ i < j ≤ n independent

standard one-dimensional Wiener process, we set

dW n,p,Xt
t =

[
U U⊥

]



dW 1
t · · · 1√

2dW 1,p
t

1√
2dW 1,p+1

t · · · 1√
2dW 1,n

t

... . . . ... ... . . . ...
1√
2dW 1,p

t · · · dW p
t

1√
2dW p,p+1

t · · · 1√
2dW p,n

t

1√
2dW 1,p+1

t · · · 1√
2dW p,p+1

t 0 · · · 0
... . . . ... ... . . . ...

1√
2dW 1,n

t · · · 1√
2dW p,n

t 0 · · · 0



UT

UT
⊥

 ,

The term H(Xt) is the mean curvature of the embedding Sn,p
+ → Rn×n. We adopt the

convention in geometric analysis: the mean curvature is defined as the trace of the second

fundamental form of the embedding. Explicitly, we have

H(Xt) =
( p∑

i=1

1
λi

) [
U U⊥

]  0p×p 0p×(n−p)

0(n−p)×p In−p


UT

UT
⊥

 . (6.8)

An important role of H(Xt) in equation ( 6.7 ) is the following: the stochastic forcing is the

naive projection of white noise in the ambient space Rn×n onto TXtS
n,p
+ . Intuitively, when

one uses the Euler-Maruyama discretization, the role of this term is to update Xt by taking

unbiased random steps in any direction in the tangent space. However, Itô calculus has a

subtle interplay with the geometry of the embedding, and in order to keep Xt on the manifold

Sn,p
+ , it is necessary to include the correction term given by the mean curvature.

6.3.3 The Riemannian Langevin Equation for Sn,p
+ with the Bures-Wasserstein

Metric

The manifold Sn,p
+ can also be viewed as a quotient manifold Rn×p

∗ /Op. Recall that the

noncompact Stiefel manifold Rn×p
∗ is the total space and the natural projection is

π : Rn×p
∗ → Rn×p

∗ /Op.
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For any Y ∈ Rn×p
∗ , the equivalence class containing Y is

[Y ] = π−1(π(Y )) = {Y O | O ∈ Op} ,

which is an embedded submanifold of Rn×p
∗ (see e.g., [ 87 , Prop. 3.4.4]). The tangent space

of [Y ] at Y is a subspace of TY Rn×p
∗ called the vertical space at Y , denoted by VY ={

Y Ω | ΩT = −Ω, Ω ∈ Rp×p
}

and HY is the horizontal space w.r.t. the Bures-Wasserstein

metric g1.

And also recall that
θ : Rn×p

∗ → Sn,p
+

Y 7→ Y Y T .

is invariant under the equivalence relation and induces a bijection θ̃ on Rn×p
∗ /Op such that

θ = θ̃ ◦ π. For any function E(X) defined on Sn,p
+ , there is a function F defined on Rn×p

∗ that

induces E : for any X = Y Y T ∈ Sn,p
+ , F (Y ) := E ◦ θ(Y ) = E(Y Y T ). This is summarized in

the diagram below:
Rn×p

∗

Rn×p
∗ /Op Sn,p

+ R

θ:=θ̃◦π
π

θ̃ E

In particular, Sn,p
+ is diffeomorphic to Rn×p

∗ /Op under θ̃, see [ 75 ]. Therefore, the Bures-

Wasserstein metric g1 defined in Chapter  2 on the quotient manifold Rn×p
∗ /Op induces a

metric on Sn,p
+ , which we also call the Bures-Wasserstein metric and denote it by gBW .

To understand the Bures-Wasserstein metric gBW on Sn,p
+ is via the map θ̃: for any A, B ∈

TXSn,p
+ with X = Y Y T , there exists a, b ∈ HY such that dθ̃(π(Y ))[a] = A, dθ̃(π(Y ))[b] = B.

Then the Bures-Wasserstein metric on Sn,p
+ can be written as

gBW (A, B) := g1
π(Y )(a, b).

The Riemannian Langevin equation is now determined by the geometry of Riemannian

submersion. We must obtain an Itô differential equation for Yt, such that Xt = YtY
T

t is a

matrix that has the same law as the solution to ( 6.6 ) in (Sn,p
+ , gBW ).
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In comparison with equation ( 6.7 ), we see that the natural choice for white noise driving Yt

is white noise in Rn×p. This is the stochastic differential dWt, where Wt = {W ij
t }1≤i≤n,1≤j≤p

consists of np independent standard one-dimensional Wiener processes. However, as in

equation ( 6.7 ) we must include a deterministic correction. This correction corresponds to

mean curvature again, but in a more subtle way than (  6.7 ). The equivalence class of Y such

that X = Y Y T is a group orbit of Op embedded within Rn×p. The logarithm of the volume

of this group orbit constitutes a natural Boltzmann entropy denoted by S(Y ). It can be

shown that

S(Y ) = 1
2

p∑
i=1

p∑
j=i+1

log(σ2
i + σ2

j ) (6.9)

where {σi}p
i=1 are singular values of Y . It is known that ∇S(Y ) is the mean curvature of the

group orbit in Rn×p [ 88 , p.3505].

We then have the following Itô differential equation for Yt such that Xt = YtY
T

t has the

same law as the solution to (  6.6 ).

dYij =− ∂E(Y Y T )
∂Yij

dt +
√

2
β

dW ij
t −

1
β

∂S(Y )
∂Yij

dt, 1 ≤ i ≤ n, 1 ≤ j ≤ p. (6.10)

The correction term ∂S(Y )
∂Yij

can be explicitly computed using the following Lemma.

Lemma 6.3.1. If Y ∈ Rn×p
∗ has SVD as Y = QΣP T with singular values σi, then the gradient

of the correction term S is given by ∇S(Y ) = QΣ̃P T where Σ̃ is a diagonal matrix with

diagonal entries ∑j 6=1
σ1

σ2
1+σ2

j
,
∑

j 6=2
σ2

σ2
2+σ2

j
, · · · ,

∑
j6=p

σp

σ2
p+σ2

j
.

6.4 The Riemannian Langevin Monte Carlo Schemes

In this section, we give two simple Riemannian Langevin Monte Carlo sampling schemes

corresponding to the two Riemannian Langevin equations (  6.7 ) and ( 6.10 ). We only con-

sider convenient discretization and approximation methods, i.e., the Euler-Maruyama type

discretization; and we use retraction to approximate the exponential map. In particular, we

get the two simple Riemannian Langevin Monte Carlo schemes as follows.
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6.4.1 Scheme E for the Embedded Geometry

For approximating the SDE (  6.7 ) on (Sn,p
+ , gE), with the retraction operator and Euler-

Maruyama method for SDE, we have the following scheme

Xk+1 = PSn,p
+

Xk −∆t grad E(Xk) + Qk

√2∆t

β

B11 B12

BT
12 0

+ ∆t

β

p∑
i=1

1
λi

0 0

0 In−p


QT

k

,

(6.11)

which can be written equivalently as

Xk+1 = PSn,p
+

[U U⊥

] Λ−∆tUT∇E(Xk)U +
√

2∆t
β

B11 −∆tUT∇E(Xk)U⊥ +
√

2∆t
β

B12

−∆tUT
⊥∇E(Xk)U +

√
2∆t

β
BT

12
∆t
β

p∑
i=1

1
λi

In−p


UT

UT
⊥


 ,

(6.12)

where Xk = UΛUT is the compact SVD of Xk ∈ Sn,p
+ with eigenvalues λ1 ≥ λ2 ≥ · · · ≥

λp > 0. The third term in the right hand side is the white noise term in the tangent space

TXk
Sn,p

+ . Entries of B12 ∈ R
p×(n−p) are i.i.d drawn from

√
1
2N (0, 1), and B11 ∈ R

p×p are

defined as follows.

B11 =



N (0, 1)
. . . bij

bji
. . .

N (0, 1)


(6.13)

with bij = bji ∼
√

1
2N (0, 1). The implementation details of the scheme (  6.11 ) are given as

follows in the Algorithm  16 .
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Algorithm 16 The Riemannian Langevin Monte Carlo scheme (  6.11 ) for (Sn,p
+ , gE)

Require: initial iterate X1 ∈ Sn,p
+ ; full SVD of X1: X1 = Q1Λ1Q

T
1

1: for k = 1, 2, . . . , N do

2: Compute Riemannian gradient

ξk := grad E(Xk) . See Algorithm  3 

3: Compute noise term

B =
√

2∆t
β

B11 B12

BT
12 0

+ ∆t
β

p∑
i=1

1
λi

0 0

0 In−p


4: Obtain the new iterate by retraction

Xk+1 = PSn,p
+

(Xk −∆tξk + QkBQT
k ) . See Algorithm  6 

5: end for

Remark 6.4.1. The mean curvature correction term is necessary for avoiding rank deficient

samples in the following sense. A sampling scheme on Sn,p
+ might generate a sample X with

a rank numerically close to p − 1, and the mean curvature correction term in the scheme

( 6.11 ) would be huge if λp → 0, thus it will force iterate Xk to stay away from the boundary

of Sn,p
+ .

Remark 6.4.2. Notice that the complexity of computing SVD of X +Z in Algorithm  6 would

be O(n3) in a naive implementation. For a Riemannian gradient method, if Z ∈ TXk
Sn,p

+ , a

compact implementation of computing PSn,p
+

(X + Z) in [ 75 ] is only O(np2) + O(p3), which is

no longer possible for the Langevin Monte Carlo scheme ( 6.11 ) due to the mean curvature

correction term in the normal space. On the other hand, if a Lanczos type algorithm is used

for computing the top p eigen-components of X + Z, it seems possible to explore the special

structure in (  6.12 ) to find a more efficient implementation, but we do not consider a more

compact implementation in this thesis.

6.4.2 Scheme BW for the Bures-Wasserstein Metric

With the Euler-Maruyama discretization for SDE ( 6.10 ), and the simple retraction and

Riemannian gradient of quotient manifold which are given in chapter  2 , a simple Rieman-
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nian Langevin Monte Carlo scheme for approximating the Riemannian SDE ( 6.10 ) on the

Riemannian manifold (Sn,p
+ , gBW ) can be given as

Yk+1 = Yk −∆t2∇E(YkY T
k )Yk +

√
2∆t

β
Bk + ∆t

β
U
[∑

j:j 6=i
σi

σ2
i +σ2

j

]
ii

V T , (6.14)

where Bk is n-by-p matrix with i.i.d. N (0, 1) entries and Yk = UΣV T is the compact SVD

of Yk with singular values σi > 0 for i = 1, 2, · · · , p.

Notice that all operations are performed in the space of size n× p. For finding compact

SVD of Y , one can first compute QR decomposition of Y , which costs O(np2) + O(p3).

Then compute SVD of size p × p, which is O(p3). So the complexity of this scheme is

O(np2) + O(p3) for each iteration. For large n and small p, Scheme BW should be cheaper

than Scheme E in each iteration, but they generate different samples for different Gibbs

distributions which depend on the metric, i.e., Scheme BW cannot replace Scheme E for

generating Gibbs distribution defined by embedded geometry.

6.5 Examples with Analytical Formulae

In this section, we provide a few examples with analytical formulae so that they can be

used in numerical experiments for testing the two schemes ( 6.12 ) and ( 6.14 ) on the Gibbs

distribution.

For the rest of this section, X = QΛQT ∈ Sn,p
+ denotes the full SVD with descending

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp > 0.

6.5.1 Scalar Random Variables as the Testing Random Variable

Let X be a random variable satisfying the Gibbs distribution on Sn,p
+ with dimension

N = np− p(p−1)
2 under either metric gE or gBW , then X is a matrix-valued random variable,

making it difficult to validate our schemes. Therefore, for convenience, we consider a scalar

random variable D = D(X) which is a function of X ∈ Sn,p
+ , e.g., D = ‖X‖F where ‖ · ‖F is

the matrix Frobenius norm.
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We consider the distribution function for the scalar random variable D:

Pr[D < d] = 1
Zβ

∫
Ud

e−βEdV, Zβ =
∫

M

e−βEdV, (6.15)

where Ud := {X ∈ Sn,p
+ |D(X) < d} is the domain of the integral. For simplicity, we only

consider symmetric functions such that the random variable D, the energy function E , and

the volume form are all invariant under rotations, i.e., the group action by the orthogonal

group On. We consider an energy function E satisfying E(X) = E(OXOT ), ∀O ∈ On, such

that the Gibbs distribution function only depends on the spectrum of X when considering

( 6.15 ) with D = ‖X‖F =
√

λ2
1 + · · ·+ λ2

p. Since On is an isometry group for both metrics

gE and gBW , the volume form dV in the two cases is also invariant under On action.

Notice that Q and Λ can be used as coordinates of the manifold Sn,p
+ . The volume form

expressed by coordinates Q and Λ is given by

dV =
√

det g(
p∏

i=1
dλi)dµOn ,

where µOn is the Haar measure on On, and g is the matrix of metric gE or gBW expressed

under coordinate Q and λ. For gE its determinant det g is

det g =
( ∏

1≤i<j≤p

|λi − λj|2
)( ∏

1≤i≤p

λ
2(n−p)
i

)
,

and for gBW it is

det g =
( ∏

1≤i<j≤p

|λi − λj|2

λi + λj

)( ∏
1≤i≤p

λ
(n−p)
i

)
.

So for gE the distribution Pr[D < d] is expressed as

Pr[D < d] = 1
Zβ

∫
‖X‖F <d

e−βEdV
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∝
∫

p∑
i=1

λ2
i <d2

λi>0,i=1,...,p

e−βE(λ1,...,λp)
( ∏

1≤i<j≤p

|λi − λj|
)( ∏

1≤i≤p

λn−p
i

)
dλ1 · · · dλp, (6.16)

where we have used the fact that the integrand does not depend on the coordinate Q ∈ On,

so the integral of µOn only provides a constant coefficient. As we could always renormalize

Pr[D < d] by considering the quotient Pr[D<d]
Pr[D<∞] , we only need the dependence of the integral

on parameter d.

Similarly, for the Bures-Wasserstein metric gBW we have

Pr[D < d] ∝
∫

p∑
i=1

λ2
i <d2

λi>0,i=1,...,p

e−βE(λ1,...,λp)
( ∏

1≤i<j≤p

|λi − λj|√
λi + λj

)( ∏
1≤i≤p

λ
n−p

2
i

)
dλ1 · · · dλp (6.17)

6.5.2 Example I: E(X) = 1
2‖X‖

2
F

This is the simplest example. Applying the general expression (  6.16 ), for embedded

geometry gE we have

Pr[D < d] ∝
∫

p∑
i=1

λ2
i <d2

λi>0,i=1,...,p

e
− β

2

p∑
i=1

λ2
i ( ∏

1≤i<j≤p

|λi − λj|
)( ∏

1≤i≤p

λn−p
i

)
dλ1 · · · dλp

=
d∫

0

e− β
2 ρ2

ρN−1
( ∫

Sp−1
+

∏
1≤i<j≤p

|ωi − ωj|
p∏

i=1
|ωi|n−p

p∏
i=1

dω
)
dρ

=
( ∫

Sp−1
+

∏
1≤i<j≤p

|ωi − ωj|
p∏

i=1
|ωi|n−p

p∏
i=1

dω
) d∫

0

e− β
2 ρ2

ρN−1dρ

∝
d∫

0

e− β
2 ρ2

ρN−1dρ, (6.18)
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where we have used the spherical coordinate for (λ1, ..., λp) = ρω, with ρ =
√

p∑
i=1

λ2
i being

the radius and ω ∈ Sp−1
+ = Sp−1 ∩ Rp

+ being the coordinate on the positive orthant of the

unit sphere.

For gBW , similarly we have

Pr[D < d] ∝
d∫

0

e−βρ2
ρ

N
2 −1dρ. (6.19)

Now we can see that βD2 = β‖X‖2
F is subject to χ2(N) distribution for the embedded

metric gE, and χ2(N
2 ) distribution for the Bures-Wasserstein metric.

6.5.3 Example II: E(X) = Tr(X log X)

The second example for the energy function is the von Neumann entropy defined as

E(X) = Tr(X log X) =
p∑

i=1
λi log λi

The minimizers of E(X) = Tr(X log X) on Sn,p
+ are matrices X ∈ Sn,p

+ with spectrum

λ1 = · · · = λp = e−1.

We still consider the scalar random variable D = ‖X‖F . Since E(X) = Tr(X log X) =
p∑

i=1
λi log λi only depends on spectrum, the argument in the previous section about integral

on On still applies. Applying ( 6.16 ), for gE we have

Pr(D < d) =
∫

p∑
i=1

λ2
i <d2

λi>0,i=1,...,p

e
−β

p∑
i=1

λi log λi ∏
1≤i<j≤p

|λi − λj|
p∏

i=1
|λi|n−p

p∏
i=1

dλi

=
∫

p∑
i=1

λ2
i <d2

λi>0,i=1,...,p

∏
1≤i<j≤p

|λi − λj|
p∏

i=1
|λi|n−p−βλi

p∏
i=1

dλi,
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and for gBW we have

Pr(D < d) =
∫

p∑
i=1

λ2
i <d2

λi>0,i=1,...,p

∏
1≤i<j≤p

|λi − λj|√
λi + λj

p∏
i=1
|λi|

n−p
2 −βλi

p∏
i=1

dλi.

Although we do not have a closed expression for both cases, such integrals can be easily

approximated by an accurate quadrature when p is small, e.g., p ≤ 3.

6.5.4 Example III: E(X) = 1
2‖X − A‖2

F

In the third example, we consider a quadratic energy function E(X) = 1
2‖X − A‖2

F where

A ∈ Sn,p
+ ; and the scalar random variable is D = ‖X − A‖F . In this example, On symmetry

does not hold, and we can only make an estimate of the distribution function.

The distribution function of D is evaluated through

Pr(D < d) ∝
∫

Ud

e− β
2 D2dV,

where Ud = {X ∈ Sn,p
+ |D(X) < d}. Using delta function, formally we can simplify the

integral to

Pr(D < d) ∝
∫

M
1{D<d}e− β

2 D2dV (6.20)

=
∫

Sn,p
+

(
∫ ∞

0
1{ρ<d}e− β

2 ρ2
δ(D − ρ)dρ)dV

=
∫ ∞

0
1{ρ<d}e− β

2 ρ2(
∫

Sn,p
+

δ(D − ρ)dV )dρ

=
∫ d

0
e− β

2 ρ2(
∫

M

d
dρ

1{D−ρ}dV )dρ

=
∫ d

0
e− β

2 ρ2 d
dρ

(
∫

Sn,p
+

1{D−ρ}dV )dρ

=
∫ d

0
e− β

2 ρ2 d
dρ

VD(ρ)dρ

(6.21)
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where VD(ρ) =
∫

M 1{D<ρ}dV =
∫

D<ρ dV .

In general, it is difficult to calculate VD(ρ). But we can intuitively replace it with some

approximations. VD(ρ) is intuitively the volume of the intersection of Sn,p
+ and the ball

centered at A of radius ρ: Bn,p
A (ρ) := BA(ρ) ∩ Sn,p

+ , where

BA(ρ) =
{
X ∈ Sn×n : ‖X − A‖F < ρ

}
.

Therefore, when the eigenvalues of A are large, we have the following approximation:

VD(ρ) ≈ αρN , (6.22)

where α is a constant that does not depend on r, N is the dimension of Sn,p
+ . For gE, α

is exactly the volume of unit ball in R
N , while for gBW , α depends on dimension N and

A ∈ Sn,p
+ .

For the gBW metric, following similar arguments, we can get the same approximation

( 6.22 ). Putting all this together, when A has eigenvalues λ1 ≥ · · · ≥ λp � 1, we have the

following

Pr(D < d) ∝
∫

D<d

e− β
2 D2dV =

d∫
0

e− β
2 ρ2 d

dρ

(
VD(ρ)

)
dρ ∝∼

t∫
0

e− β
2 ρ2

ρN−1dρ, (6.23)

where ∝∼ stands for being approximately proportional to.

6.5.5 MCMC Numerical Integration

It is well known that MCMC can be used for integrating a function numerically, and that

one of the main advantages is that the convergence rate is independent of the dimension.

Both schemes in this chapter are MCMC type sampling schemes on the manifold. Suppose

we have generated samples Xi satisfying the Gibbs distribution on the manifold, e.g.,

Xi ∼
1

Zβ

e−βE(X)dVg,
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where Zβ =
∫

Sn,p
+

e−βE(X)dV is an unknown normalization factor and dV is the volume form

depending on the metric. Then for approximating the integral of a nice function f(X) on

the same manifold
∫

Sn,p
+

f(X)dV, we can use

1
m

m∑
i=1

f(Xi)eβE(Xi) ≈

∫
Sn,p

+

f(X)dV

∫
Sn,p

+

e−βE(X)dV
= 1

Zβ

∫
Sn,p

+

f(X)dV, (6.24)

because each f(Xi)eβE(Xi) is a random variable with expectation

E
[
f(Xi)eβE(Xi)

]
= 1

Zβ

∫
Sn,p

+

f(Xi)eβE(Xi)e−βE(Xi)dV,

and the left hand side is a random variable with expectation

E
[

1
m

m∑
i=1

f(Xi)eβE(Xi)
]

= 1
m

m∑
i=1

E
[
f(Xi)eβE(Xi)

]
= 1

Zβ

∫
Sn,p

+

f(X)dV,

where the expectation E[·] is taken w.r.t. the Gibbs distribution under the corresponding

metric.

So using the generated samples Xi, we can approximate the integral
∫

Sn,p
+

f(X)dV up to a

constant Zβ that does not depend on f(X). Notice that the additional advantage of Monte

Carlo type quadrature on a manifold is that we do not need to know what dV is. On the

other hand, Zβ cannot be approximated by the same approach. Though we do not consider

any specific application for numerical integration, equation (  6.24 ) can be used as one way to

validate the Riemannian Langevin Monte Carlo schemes.

For the following special functions, it is possible to calculate the exact integrals. For

the energy function E(X) = 1
2‖X‖

2
F , and a special integrand f(X) = ‖X‖k

F e− α
m

‖X‖m
F with

k > −N, m > 2, α > 0, using the results in Section  6.5.2 , the distribution of D = ‖X‖F

obtains the following explicit forms:

for metric gE : Pr[D < d] ∝
∫ d

0
e− β

2 ρ2
ρN−1dρ, (6.25)
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for metric gBW : Pr[D < d] ∝
∫ d

0
e− β

2 ρ2
ρ

N
2 −1dρ, (6.26)

so the integral on the manifold could be expressed by the expectation of a random variable,

which leads to

for gE : 1
Zβ

∫
Sn,p

+

f(X)dV = E[f(X)e
β
2 ‖X‖2

F ] = E[Dke− α
m

Dme
β
2 D2 ]

=
∫∞

0 ρke− α
m

ρm+ β
2 ρ2

ρN−1e− β
2 ρ2dρ∫∞

0 ρN−1e− β
2 ρ2dρ

=
1
m

(α/m)− k+N
m Γ((k + N)/m)

1
2(β/2)−N/2Γ(N/2) (6.27)

for gBW : 1
Zβ

∫
Sn,p

+

f(X)dV = E[f(X)e
β
2 ‖X‖2

F ] = E[Dke− α
m

Dme
β
2 D2 ]

=
∫∞

0 ρke− α
m

ρm+ β
2 ρ2

ρ
N
2 −1e− β

2 ρ2dρ∫∞
0 ρ

N
2 −1e− β

2 ρ2dρ
=

1
m

(α/m)− k+N/2
m Γ((k + N/2)/m)

1
2(β/2)−N/4Γ(N/4) . (6.28)

6.6 Numerical Experiments

In this section, we test the samples generated by the two Riemannian Langevin Monte

Carlo schemes (  6.12 ) and ( 6.14 ) on the examples constructed in the previous section. The

samples are generated by the following procedure: we run the iterative schemes ( 6.12 ) or

( 6.14 ) for sufficiently many m̃ iterations then take the last m iterates as the samples for the

Gibbs distribution. Both m̃ and m should be chosen such that the (m̃ −m)-th iterate has

already reached equilibrium e.g., m̃ is 6, 000, 000 and m is 5, 000, 000 for specially chosen

energy functions and parameters β.

Now suppose we have generated samples Xi ∈ Sn,p
+ (i = 1, · · · , m) for either metric. In

order to test or show the numerical convergence to the Gibbs distribution, we will consider

two kinds of numerical tests.

The first kind of tests is to test on the scalar random variable D(X) = ‖X‖F or D(X) =

‖X−A‖F as described in Section  6.5 . Then we compare the cumulative distribution function

(CDF) of the random variable D with its empirical CDF calculated from the MCMC samples.
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Denote the true CDF of D by FD(t) := Pr(D ≤ t). The empirical CDF of samples is

F̂D(t) := 1
m

m∑
i=1

1D(Xi)≤t,

where 1D(Xi)≤t takes value 1 if D(Xi) ≤ t, and value 0 if otherwise. The KolmogorovSmirnov

test statistic (K-S statistic) is defined by

KSD := sup
t

∣∣∣FD(t)− F̂D(t)
∣∣∣. (6.29)

In our numerical tests, we compute the KS statistic by taking the maximum difference

of FD and F̂D at 100 equally spaced points in the interval [0, tmax] where FD(tmax) ≈ 1.

The second kind of tests is on the integral examples in Section  6.5.5 , let X be a random

variable satisfying Gibbs distribution on the manifold Sn,p
+ under either metric. Define

µ := E f(X)eβE(X) = 1
Zβ

∫
Sn,p

+

f(X)dV.

Given m samples Xi ∈ Sn,p
+ , we define

µ̂m := 1
m

m∑
i=1

f(Xi)eβE(Xi). (6.30)

Notice that samples generated by MCMC are not independent. If we assume

σ2 := var
(
f(X1)eβE(X1)

)
+ 2

∞∑
k=1

cov
(
f(X1)eβE(X1), f(X1+k)eβE(X1+k)

)
<∞,

then by the Markov Chain Central Limit Theorem[  89 ,  90 ], as m→∞, we have

√
m(µ̂m − µ)→ N (0, σ2) (6.31)

where the convergence is in the sense of distribution. Thus if m� 1, µ̂m−µ
µ

roughly follows

the distribution N (0, O( 1
m

)) and the relative error term
∣∣∣ µ̂m−µ

µ

∣∣∣ roughly follows the folded

129



normal distribution with mean O( 1√
m

) and variance O( 1
m

). Hence we can use µ̂m defined in

( 6.30 ) to estimate µ = 1
Zβ

∫
Sn,p

+

f(X)dV , and the relative error is O( 1√
m

).

6.6.1 Numerical Validation of the CDF of the Scalar Variable D(X)

The manifold Sn,p
+ has dimension N = np − p(p − 1)/2. For both metrics, we consider

three examples in Section  6.5 with special energy functions E in the Gibbs distribution e−βE

and the CDF for the scalar variable D(X):

1. Example I: E(X) = 1
2‖X‖

2
F with the CDF for D(X) = ‖X‖F :

For gE : FD(t) = Pr(‖X‖F ≤ t) ∝
t∫

0

e− β
2 ρ2

ρN−1dρ,

For gBW : FD(t) = Pr(‖X‖F ≤ t) ∝
t∫

0

e− β
2 ρ2

ρN/2−1dρ.

2. Example II: E(X) = tr(X log X) with the CDF FD(t) = Pr(‖X‖F ≤ t) for D(X) =

‖X‖F :

For gE : FD(t) ∝
∫

p∑
i=1

λ2
i <t2

λi>0,i=1,...,p

∏
1≤i<j≤p

|λi − λj|
p∏

i=1
|λi|n−p−βλi

p∏
i=1

dλi,

For gBW : FD(t) ∝
∫

p∑
i=1

λ2
i <t2

λi>0,i=1,...,p

∏
1≤i<j≤p

|λi − λj|√
λi + λj

p∏
i=1
|λi|

n−p−1
2 −βλi

p∏
i=1

dλi.

which is a p-fold integral and can be approximated accurately by quadrature such as

Simpson’s rule for relatively small values of p, e.g., p = 2, 3.
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3. Example III: E(X) = 1
2‖X − A‖2

F where A ∈ Sn,p
+ has eigenvalues λ1 ≥ · · · ≥ λp � 1,

with the CDF for D(X) = ‖X − A‖F :

For both gE and gBW : FD(t) = Pr(‖X − A‖F ≤ t) ∝∼
t∫

0

e− β
2 ρ2

ρN−1dρ.

In the implementation of the scheme, the step size ∆t and β in schemes (  6.12 ) and (  6.14 )

are two parameters that need to be tuned to reach equilibrium with reasonable computing

time. We first use a numerically stable ∆t then adjust β so that the noise term has reasonable

variance. And of course one needs a sufficiently large number of iterations for schemes ( 6.12 )

and ( 6.14 ) to reach their equilibrium state, and a sufficiently large number m of samples

to observe numerical convergence toward the Gibbs distribution through the scalar random

variable D, e.g., the KS statistic (  6.29 ) should be small. See Figure  6.1 , Figure  6.2 , Figure

 6.3 , and Figure  6.4 for the numerical results.
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(a) Scheme E (  6.12 ) on (Sn,p
+ , gE) with

∆t = 0.001 and β = 0.4. The error be-
tween two CDFs is KS = 0.0054.
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1

Empirical CDF

True CDF

(b) Scheme BW (  6.14 ) on (Sn,p
+ , gBW )

with ∆t = 0.001 and β = 0.4. The er-
ror between two CDFs is KS = 0.0023.

Figure 6.1. Example I: E(X) = 1
2‖X‖

2
F , n = 5, p = 3 and manifold dimension

is N = 12. The empirical CDF is computed by 5E6 MCMC samples generated
after 6E6 iterations of the Riemannian Langevin Monte Carlo schemes. Both
CDFs of scheme E and scheme BW are evaluated at 100 equally spaced points
on [0, 10] and [0, 8], respectively, and the difference can be measured by the
KS statistic (  6.29 ).
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(a) Scheme E (  6.12 ) on (Sn,p
+ , gE) with

∆t = 0.001 and β = 0.5. The error be-
tween two CDFs is KS = 0.0096
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Empirical CDF

True CDF

(b) Scheme BW (  6.14 ) on (Sn,p
+ , gBW )

with ∆t = 0.001 and β = 0.5. The er-
ror between two CDFs is KS = 0.0043.

Figure 6.2. Example II: E(X) = tr(X log X), n = 5, p = 3 and manifold
dimension is N = 12. The empirical CDF is computed by 5E6 MCMC sam-
ples generated after 6E6 iterations of the Riemannian Langevin Monte Carlo
schemes. Both CDFs are evaluated at 100 equally spaced points on [0, 15], and
the difference can be measured by the KS statistic ( 6.29 ).
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(a) Scheme E (  6.12 ) on (Sn,p
+ , gE) with

∆t = 0.001 and β = 0.5. The error be-
tween two CDFs is KS = 0.006.
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(b) Scheme BW (  6.14 ) on (Sn,p
+ , gBW )

with ∆t = 0.001 and β = 0.5. The er-
ror between two CDFs is KS = 0.0043.

Figure 6.3. Example II: E(X) = tr(X log X), n = 10, p = 2 and manifold
dimension is N = 19. The empirical CDF is computed by 5E6 MCMC sam-
ples generated after 6E6 iterations of the Riemannian Langevin Monte Carlo
schemes. Both CDFs of scheme E and scheme BW are evaluated at 100 equally
spaced points on [0, 20] and [0, 15],respectively, and the difference can be mea-
sured by the KS statistic (  6.29 ).
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(a) Scheme E (  6.12 ) on (Sn,p
+ , gE) with

∆t = 0.001 and β = 0.4. The error be-
tween two CDFs is KS = 0.0084.
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Empirical CDF

Approximated CDF

(b) Scheme BW (  6.14 ) on (Sn,p
+ , gBW )

with ∆t =2E-7 and β = 0.4. The error
between two CDFs is KS = 0.0052.

Figure 6.4. Example III: E(X) = 1
2‖X − A‖2

F , n = 5, p = 3 and manifold
dimension is N = 12. The nonzero eigenvalues of A are equally spaced be-
tween 10000 and 20000. The empirical CDF is computed by 5E6 MCMC
samples generated after 6E6 iterations of the Riemannian Langevin Monte
Carlo schemes. Both CDFs are evaluated at 100 equally spaced points on
[0, 10], and the difference can be measured by the KS statistic (  6.29 ).
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6.6.2 Validation using MCMC Numerical Integration

We consider special cases k = 0, m = 2 in the examples (  6.27 ) and (  6.28 ), then (  6.27 )

reduces to (β
α
)N/2 and (  6.28 ) reduces to (β

α
)N/4. In other words, we may verify the numerical

convergence of samples Xi to Gibbs distribution by verifying

For gE : 1
m

m∑
i=1

e− α−β
2 ‖Xi‖2

F →
(

β

α

)N/2

, (6.32)

For gBW : 1
m

m∑
i=1

e− α−β
2 ‖Xi‖2

F →
(

β

α

)N/4

. (6.33)

In Figure  6.5 we indeed observe the O(1/
√

m) for the relative error of numerical integra-

tion.
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(a) Integration on (Sn,p
+ , gE) via samples gen-

erated by Scheme E (  6.12 ) with ∆t = 0.001
and β = 0.4.
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(b) Integration on (Sn,p
+ , gBW ) via samples

generated by Scheme BW (  6.14 ) with ∆t =
0.001 and β = 0.4.

Figure 6.5. Convergence rate of the relative error of
∣∣∣ µ̂m−µ

µ

∣∣∣ MCMC integra-
tion on the manifold with n = 10, p = 2 and dimension N = 19. Parameters
are α = 0.75, β = 0.4, for which it is a numerical integration of the function
E(X) = 1

2‖X‖
2
F on the manifold Sn,p

+ . The error shown is the averaged one of
12 independent runs.
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6.7 Concluding Remarks

We have constructed two efficient Riemannian Langevin Monte Carlo schemes for sam-

pling PSD matrices of fixed rank from the Gibbs distribution on the manifold Sn,p
+ equipped

with two fundamental metrics: the embedded metric and the Bures-Wasserstein metric. We

have also provided several examples for which these sampling schemes can be numerically

validated for correctness.
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7. SUMMARY AND FUTURE WORKS

This dissertation develops a unified geometric framework for optimization and sampling over

the manifold of fixed-rank positive semidefinite (PSD) matrices. These types of constraints

arise naturally in a variety of applications, including matrix completion, phase retrieval,

eigenvalue problems, and Bayesian inference. Motivated by both practical needs and theo-

retical challenges, we investigate efficient algorithms that exploit the underlying Riemannian

manifold structure of the constraint set.

We begin by analyzing the manifold geometry of Hermitian PSD matrices of fixed rank,

considering both embedded and quotient representations. This leads to three different but

closely related formulations of Riemannian optimization over PSD matrices. We show how

these formulations relate to each other, and we study their computational and theoretical

implications.

Next, we analyze the convergence and performance of Riemannian optimization algo-

rithms within this framework. Particular attention is paid to orthogonalization-free meth-

ods and the impact of rank-deficiency on the conditioning of the problem. We derive and

validate condition number estimates for Riemannian Hessians and justify the performance

of numerical algorithms.

In addition to optimization, we extend this framework to the stochastic setting by devel-

oping Riemannian Langevin Monte Carlo algorithms designed for sampling over fixed-rank

PSD manifolds. We propose two sampling schemes: one based on the embedded geometry

and one on quotient geometry and validate their correctness and efficiency through numerical

experiments.

The theoretical insights and algorithmic developments in this thesis are supported by

extensive numerical results across a variety of problem domains. Collectively, the contribu-

tions provide a rigorous and practical foundation for computation over low-rank PSD matrix

manifolds, bridging the gap between abstract geometric tools and real-world applications.

For future works, there remains an unanswered question in the work [  75 ]: how to show

the convergence of our Riemannian gradient-based method for the rank-deficient case, and

in what sense does the convergence occur? We assume that the iterates generated by RCG
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on solving ( 3.2 ) will converge to a minimizer of ( 1.1 ), but such a convergence has not been

rigorously justified. In fact, if the minimizer X̂ is rank-deficient, X̂ is not even in the fixed

rank constraint set. One of my future interests aims to answer this question rigorously.

There have been several works in literature related to such a convergence question, e.g.,

[ 91 ] proposed a preconditioned gradient descent whose function value still has linear conver-

gence for the rank-deficient case. However, it does not consider any manifold structure. Even

though the preconditioning itself can be understood as a consequence of some Riemannian

metric, it does not imply directly the convergence of the Riemannian gradient-based method

w.r.t. that metric.

Instead of considering the fixed-rank manifold, there has been increasing interest in con-

sidering stratified sets [  92 ,  93 ], which consider Sn×n
≤p , the set of n-by-n PSD matrices of rank

≤ p. Sn×n
≤p is no longer a manifold, but a collection of fixed-rank manifolds. Each fixed-rank

manifold behaves like a stratum, conceptually suggesting the highest rank manifold stacks

on top of lower-rank manifolds. Similar geometric manifold concepts, such as tangent spaces

and gradients, can be generalized to stratified sets. If the constraint is the stratified set, op-

timization naturally happens to consider all rank scenarios and the convergence, if proved,

would be more rigorous than the current one.
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A. Derivatives

See A.5 in [ 30 ] for more details in this section.

A.0.1 Fréchet Derivatives

For any two finite-dimensional inner product vector spaces U and V over R, a mapping

F : U → V is Fréchet differentiable at x ∈ U if there exists a linear operator

DF (x) : U → V

h 7→ DF (x)[h]

such that

F (x + h) = F (x) + DF (x)[h] + o(‖h‖).

The operator DF (x) is called the Fréchet differential and DF (x)[h] is called the directional

derivative of F at x along h. The derivative satisfies the chain rule:

D(f ◦ g)(x)[h] = Df(g(x))[Dg(x)[h]].

For a smooth real-valued function f : U → R, the Fréchet gradient of f at x, denoted by

∇f(x), is the unique element in U satisfying

〈∇f(x), h〉U = Df(x)[h], ∀h ∈ U ,

where 〈·, ·〉U is the inner product in U .

In particular, regard U = Cn×n as a vector space over R with the standard inner

product 〈X, Y 〉Cn×n = Re(tr(X∗Y )). Regard X as (Re(X), Im(X)) and regard f(X) as

f(Re(X), Im(X)). By the multivariate Taylor theorem of the function f(Re(X), Im(X)), we

get

|f(X + h)− f(X)− 〈∇f(X), h〉Cn×n| =

|f (Re(X) + Re(h), Im(X) + Im(h))− f(Re(X), Im(X))−
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(〈
∂f

∂ Re(X) , Re(h)
〉

Rn×n

+
〈

∂f

∂ Im(X) , Im(h)
〉

Rn×n

)∣∣∣∣∣
= o(‖h‖Cn×n).

Notice

〈
∂f

∂ Re(X) , Re(h)
〉

Rn×n

+
〈

∂f

∂ Im(X) , Im(h)
〉

Rn×n

=
〈

∂f(X)
∂ ReX

+ i
∂f(X)
∂ ImX

, h

〉
Cn×n

.

Thus the expression

∇f(X) = ∂f(X)
∂ ReX

+ i
∂f(X)
∂ ImX

coincides with the Fréchet gradient for f(X) under the real inner product (  2.17 ).

Proposition A.0.1. Regard U = Cn×n as a vector space over R with the standard inner

product 〈X, Y 〉Cn×n = Re(tr(X∗Y )). Let X ∈ Cn×n. If X = X∗, then ∇f(X) = (∇f(X))∗.

Proof. Let g : Cn×n → Cn×n : X 7→ X∗. Then it is straightforward to verify that

D g(X)[h] = h∗,∀h ∈ Cn×n.

Therefore for any f : Cn×n → R, by chain rule we have ∀h ∈ Cn×n

D (f ◦ g)(X)[h] = D f(g(X))[D g(X)[h]]

= D f(X∗)[h∗]

= 〈∇f(X∗), h∗〉Cn×n

= 〈(∇f(X∗))∗, h〉Cn×n .

Therefore we have

∇(f ◦ g)(X) = (∇f(X∗))∗.

So by the definition of Fréchet derivative of f ◦ g at X ∈ Cn×n, we have the following.

(f ◦ g)(X + h) = (f ◦ g)(X) + 〈(∇f(X∗))∗, h〉Cn×n + o(‖h‖), ∀h ∈ Cn×n.
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Let Hn×n = {X ∈ Cn×n : X∗ = X}. Then Hn×n is a linear subspace of the vector space

Cn×n. Hence we can restrict f to Hn×n and define its Fréchet gradient in Hn×n. Let ∇Hf

denote the Fréchet gradient of f in Hn×n. In particular, consider X, h ∈ Hn×n, then the

above equality turns into

f(X + h) = f(X) + 〈(∇f(X))∗, h〉Cn×n + o(‖h‖), ∀h ∈ Hn×n.

Hence we have

∀X ∈ Hn×n,∇Hf(X) = (∇f(X))∗. (A.1)

On the other hand, by the definition of Fréchet derivative of f , we have

f(X + h) = f(X) + 〈∇f(X), h〉Cn×n + o(‖h‖), ∀h ∈ Cn×n.

In particular consider X, h ∈ Hn×n, then the above equality turns into

f(X + h) = f(X) + 〈∇f(X), h〉Cn×n + o(‖h‖), ∀h ∈ Hn×n.

This gives us

∇Hf(X) = ∇f(X). (A.2)

Combining ( A.1 ) and (  A.2 ), we obtain the desired result.

Proposition A.0.2. Let β : Cn×p → Cn×n : Y 7→ Y Y ∗ and the inner product on Cn×p as the

standard inner product 〈A, B〉Cn×p = Re(tr(A∗B)). Then the Fréchet gradient of F := f ◦ β

satisfies

∇F (Y ) = 2∇f(Y Y ∗)Y. (A.3)

Proof. Indeed, by the chain rule of Fréchet derivative we have

D F (Y )[h] = D f(β(Y )) [D β(Y )[h]] , ∀h ∈ Cn×p.

Hence

〈∇F (Y ), h〉Cn×p = 〈∇f(Y Y ∗), D β(Y )[h]〉Cn×n .
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One can check by definition that D β(Y )[h] = Y h∗ + hY ∗. Hence

〈∇F (Y ), h〉Cn×p = 〈∇f(Y Y ∗), Y h∗ + hY ∗〉Cn×n = 〈2∇f(Y Y ∗)Y, h〉Cn×p .

This proves ( A.3 ).

Proposition A.0.3. If f takes the form of f(X) = 1
2‖A(X) − b‖2

F for a linear operator A,

then the Fréchet gradient of f(X) is given by

∇f(X) = A∗(A(X)− b),

where A∗ is the conjugate operator of A.

Proof. We know by the definition of Fréchet gradient that

∇f(X) = ∂f

∂ ReX

+ i
∂f

∂ ImX

,

Now for f(X) = 1
2‖A(X)− b‖2 = 1

2〈A(X)− b,A(X)− b〉, by the linearity of A, we have

∇f(X) = 1
2

∂

∂X
〈A(X)− b, A(∆)− b〉|∆=X + 1

2
∂

∂∆〈A(X)− b, A(∆)− b〉|∆=X

= 1
2

∂

∂X
〈A(X)− b, A(∆)− b〉Cn×n|∆=X + 1

2
∂

∂∆〈A(∆)− b, A(X)− b〉Cn×n|∆=X

= 1
2

∂

∂X
〈X, A∗(A(∆)− b)〉Cn×n|∆=X + 1

2
∂

∂∆〈∆, A∗(A(X)− b)〉Cn×n|∆=X

= 1
2

∂

∂X
(〈Re(X), Re(A∗(A(∆)− b))〉+ 〈Im(X), Im(A∗(A(∆)− b))〉) |∆=X

+1
2

∂

∂∆ (〈Re(∆), Re(A∗(A(X)− b))〉+ 〈Im(∆), Im(A∗(A(X)− b))〉) |∆=X

= 1
2

(
∂

∂ Re(X) + i
∂

∂ Im(X)

)
(〈Re(X), Re(A∗(A(∆)− b))〉

+〈Im(X), Im(A∗(A(∆)− b))〉) |∆=X

+1
2

(
∂

∂ Re(∆) + i
∂

∂ Im(∆)

)
(〈Re(∆), Re(A∗(A(X)− b))〉

+〈Im(∆), Im(A∗(A(X)− b))〉) |∆=X

= 1
2 (Re(A∗(A(∆)− b)) + i Im(A∗(A(∆)− b))) |∆=X
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+1
2 (Re(A∗(A(X)− b)) + i Im(A∗(A(X)− b))) |∆=X

= A∗(A(X)− b).

A.0.2 Fréchet Hessian

For a Euclidean space E and a twice-differentiable, real-valued function f on E , the

Fréchet Hessian operator of f at x is the unique symmetric operator ∇2f(x) : E → E defined

by

∇2f(x)[h] = D (∇f)(x)[h]

for all h ∈ E .

Proposition A.0.4. Regard E = Cn×n as a Euclidean space over R with the standard inner

product 〈X, Y 〉Cn×n = Re(tr(X∗Y )). If X = X∗ and h = h∗, then

∇2f(X)[h] = (∇2f(X)[h])∗.

Proof. Let g : Cn×n → Cn×n : X 7→ X∗. Consider the Fréchet Hessian of f ◦ g. By the

definition of Fréchet Hessian we have

∇(f ◦ g)(X + h) = ∇(f ◦ g)(X) +∇2(f ◦ g)(X)[h] + o(‖h‖2).

We know from the proof of Proposition  A.0.1 that

∇(f ◦ g)(X) = (∇f(X∗))∗.

Hence

(∇f(X∗ + h∗))∗ = (∇f(X∗))∗ +∇2(f ◦ g)(X)[h] + o(‖h‖2).

Therefore

∇2(f ◦ g)(X)[h] = (∇2f(X∗)[h∗])∗.
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Now restrict f ◦g on the subspace Hn×n, we have f ◦g|Hn×n = f |Hn×n . Hence the Fréchet

Hessian operator of f on Hn×n is (∇2f(X∗)[h∗])∗ = (∇2f(X)[h])∗. On the other hand, the

Fréchet Hessian operator of f on Hn×n is denoted as ∇2f(X)[h]. Hence if X, h ∈ Hn×n, we

have

∇2f(X)[h] = (∇2f(X)[h])∗.

This proves the proposition.

A.0.3 Taylor’s Formula

Let E be finite-dimensional Euclidean space. Let f be a twice-differentiable real-valued

function on an open convex domain Ω ⊂ E . Then for all x and x + h ∈ Ω,

f(x + h) = f(x) + 〈∇f(x), h〉E + 1
2
〈
∇2f(x)[h], h

〉
E

+ O
(
‖h‖3

E

)
.
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B. Embedded manifold Hn,p
+

The geometry of the real case, i.e., Sn,p
+ has been explored in [  43 ]. However, it is not

straightforward to extend these results directly to the complex case. Although the methods

of proofs of the complex case turn out to be similar to the real case, we still need to provide

them. Recall that a complex matrix manifold is viewed as a manifold over R instead of C.

One way is to identify a complex matrix with the pair of its real and imaginary part; another

way is to identify the matrix with its realification.

Definition B.0.1 (Realification). The realification is an injective mappingR : Cn×n → R2n×2n

defined by replacing each entry aij of A = (aij)n×n ∈ Cn×n by the 2× 2 matrix

Re(aij) − Im(aij)

Im(aij) Re(aij)

 .

It can be shown that R preserves the algebraic structure:

• R(A + B) = R(A) +R(B)

• R(AB) = R(A)R(B)

• R(aA) = aR(A) ∀a ∈ R

• R(I) = I

• R(A∗) = (R(A))T

Hence A ∈ Cn×n is invertible if and only if R(A) is invertible.  

1
 

Lemma B.0.1. Let GL(n,C) be the general linear group viewed as a real Lie group. Then

it is a semialgebraic set.

Proof. Recall that a subset of Rm is a semialgebraic set if it can be obtained by finitely many

intersections, union and set differences starting from sets of the from {x ∈ Rm : P (x) > 0}
1

 ↑ . See for example  https://www.maths.tcd.ie/pub/coursework/424/LieGroups.pdf  
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with P a polynomial on Rm [ 28 , Appendix B]. Since GL(n,C) is viewed as a real Lie group,

GL(n,C) is understood as a subset of GL(2n,R) through realification. It can be shown that

GL(n,C) = {X ∈ GL(2n,R) : XJ = JX} , with J = R(iI).

We know that GL(2n,R) is a semialgebraic set since it is the non-vanishing points of de-

terminant; and {X ∈ R2n×2n : XJ = JX} is also a semialgebraic set by definition. Hence

GL(n,C) is a semialgebraic set.

B.0.1 Calculations for the Riemannian Hessian

Let f be a smooth real-valued function onHn,p
+ . In this section, we derive the Riemannian

Hessian operator of f .

By [  39 , section 4] we know that the retraction R defined in (  2.20 ) is a second-order

retraction.

Proposition 5.5.5 in [  30 ] states that if R is a second-order retraction, then the Riemannian

Hessian of f can be computed in the following nice way:

Hess f(X) = Hess (f ◦RX)(0X).

Notice that now f ◦RX is a smooth function defined on a vector space. Hence, we obtain

gX (Hess f(X)[ξX ], ξX) = d2

dt2 f(RX(tξX))|t=0.

However, it is difficult to obtain a second-order derivative of f ◦RX using the retraction RX

defined in (  2.20 ). The references [  7 ] and [  41 ] proposed a method to compute Hess f(X) by

constructing a second-order retraction R(2) that has a second-order series expansion which

makes it simple to derive a series expansion of f ◦ R
(2)
X up to second order and thus obtain

the Hessian of f . We will summarize the derivation below.
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Lemma B.0.2. For any X ∈ Hn,p
+ with X† the pseudoinverse, the mapping R

(2)
X : TXHn,p

+ →

Hn,p
+ given by

ξX 7→ wX†w∗, with w = X + 1
2ξs

X + ξp
X −

1
8ξs

XX†ξs
X −

1
2ξp

XX†ξs
X ,

is a second-order retraction on Hn,p
+ , where ξs

X = P s
X(ξX) and ξp

X = P p
X(ξX) as defined in

( 2.7 ). Moreover, we have

R
(2)
X (ξX) = X + ξX + ξp

XX†ξp
X + O(‖ξX‖3).

Proof. It follows the same proof of [ 7 , Proposition 5.10] .

From this, the Riemannian Hessian operator of f can be computed in essentially the

same way as in [  38 , Section A.2] but applied to the general cost function f(X) instead of

a least squared cost function. Consider the Taylor expansion of f̂
(2)
X := f ◦ R

(2)
X , which is a

real-valued function on a vector space. We get

f̂
(2)
X (ξX) = f(R(2)

X (ξX))

= f
(
X + ξX + ξp

XX†ξp
X + O(‖ξX‖3)

)
= f(X) +

〈
∇f(X), ξX + ξp

XX†ξp
X

〉
Cn×n

+1
2
〈
∇2f(X)[ξX + ξp

XX†ξp
X ], ξX + ξp

XX†ξp
X

〉
Cn×n

+ O(‖ξX‖3)

= f(X) + 〈∇f(X), ξX〉Cn×n +
〈
∇f(X), ξp

XX†ξp
X

〉
Cn×n

+1
2
〈
∇2f(X)[ξX ], ξX

〉
Cn×n

+ O(‖ξX‖3).

We can immediately recognize the first order term and the second order term that contribute

to the Riemannian gradient and Hessian, respectively. That is,

gX (grad f(X), ξX) = 〈∇f(X), ξX〉Cn×n ,
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gX (Hess f(X)[ξX ], ξX) = 2
〈
∇f(X), ξp

XX†ξp
X

〉
Cn×n︸ ︷︷ ︸

f1:=〈H1(ξX),ξX〉Cn×n

+
〈
∇2f(X)[ξX ], ξX

〉
Cn×n︸ ︷︷ ︸

f2:=〈H2(ξX),ξX〉Cn×n

.

The first equation immediately gives us

grad f(X) = P t
X(∇f(X)).

For the second equation, the inner product of the Riemannian Hessian consists of the

sum of f1 and f2; and the Riemannian Hessian operator is the sum of two operators H1 and

H2. Since ξX is already separated in f2, the contribution to the Riemannian Hessian from

H2 is readily given by

H2(ξX) = P t
X(∇2f(X)[ξX ]).

Now, we still need to separate ξX in f1 to see the contribution to Riemannian Hessian

from H1. Since we can choose to bring over ξp
XX† or X†ξp

X to the first position of 〈., .〉Cn×n ,

we write H1(ξX) as the linear combination of both:

f1 = 2c
〈
∇f(X)(X†ξp

X)∗, ξp
X

〉
Cn×n

+ 2(1− c)
〈
(ξp

XX†)∗∇f(X), ξp
X

〉
Cn×n

.

Operator H1 is clearly linear. Since H1 is symmetric, we must have 〈H1(ξX), νX〉Cn×n =

〈νX ,H1(ξX)〉Cn×n for all tangent vector νX . Hence we must have c = 1
2 and we obtain

H1(ξX) = P p
X

(
∇f(X)(X†ξp

X)∗ + (ξp
XX†)∗∇f(X)

)
.

Putting H1 and H2 together, we obtain

Hess f(X)[ξX ] = P t
X(∇2f(X)[ξX ]) + P p

X

(
∇f(X)(X†ξp

X)∗ + (ξp
XX†)∗∇f(X)

)
.
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C. Quotient Manifold Cn×p
∗ /Op

C.0.1 Calculations for the Riemannian Hessian

In this section, we outline the computations of the Riemannian Hessian operators of the

cost function h defined on Cn×p
∗ /Op under the three different metrics gi.

Definition C.0.1. [ 30 , Definition 5.5.1] Given a real-valued function f on a Riemannian man-

ifoldM, the Riemannian Hessian of f at a point x inM is the linear mapping Hess f(x) of

TxM into itself defined by

Hess f(x)[ξx] = ∇ξxgrad f(x)

for all ξx in TxM, where ∇ is the Riemannian connection on M.

Lemma C.0.1. The Riemannian Hessian of h : Cn×p
∗ /Op 7→ R is related to the Riemannian

Hessian of F : Cn×p
∗ 7→ R in the following way:

(
Hess h(π(Y ))[ξπ(Y )]

)
Y

= P H
Y

(
Hess F (Y )[ξY ]

)
,

where ξY is the horizontal lift of ξπ(Y ) at Y .

Proof. The result follows from [  30 , Proposition 5.3.3] and the definition of the Riemannian

Hessian.

Riemannian Hessian for the Metric g1

Using the Riemannian metric g1, Cn×p
∗ is a Riemannian submanifold of a Euclidean space.

By [ 30 , Proposition 5.3.2], the Riemannian connection on Cn×p
∗ is the classical directional

derivative:

∇ηY
ξ = D ξ(Y )[ηY ].

Recall that for g1, grad F (Y ) = 2∇f(Y Y ∗)Y . Hence, the Riemannian Hessian of F at Y is

given by

Hess F (Y )[ξY ] = ∇ξY
grad F
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= D grad F (Y )[ξY ]

= 2∇2f(Y Y ∗)[Y ξ∗
Y + ξY Y ∗]Y + 2∇f(Y Y ∗)ξY .

The last line is by the product rule and the chain rule of differentiation. Therefore, we obtain

(
Hess h(π(Y ))[ξπ(Y )]

)
Y

= P H1

Y

(
2∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y ∗]Y + 2∇f(Y Y ∗)ξY

)
.

Riemannian Hessian Under Metric g2

First, for any Riemannian metric g, g satisfies the Koszul formula

2gx(∇ξxλ, ηx) = ξxg(λ, η) + λxg(η, ξ)− ηxg(ξ, λ)

−gx(ξx, [λ, η]x) + gx(λx, [η, ξ]x) + gx(η, [ξ, λ]x)

= D g(λ, η)(x)[ξx] + D g(η, ξ)(x)[λx]−D g(ξ, λ)(x)[ηx]

−gx(ξx, [λ, η]x) + gx(λx, [η, ξ]x) + gx(η, [ξ, λ]x),

where the Lie bracket [·, ·] is defined in [ 30 ].

In particular, for g2 the above Koszul formula turns into

2g2
Y (∇ξY

λ, ηY ) = D g2(λ, η)(Y )[ξY ] + D g2(η, ξ)(Y )[λY ]−D g2(ξ, λ)(Y )[ηY ]

−g2
Y (ξY , [λ, η]Y ) + g2

Y (λY , [η, ξ]Y ) + g2
Y (η, [ξ, λ]Y ).

Recall that g2(λ, η)(Y ) = Re(tr(Y ∗Y λ∗
Y ηY )). Hence, the first term in the above sum

equals

D g2(λ, η)(Y )[ξY ] = g2
Y (D λ(Y )[ξY ], ηY ) + g2

Y (λY , D η(Y )[ξY ])

+ Re(tr(ξ∗
Y Y λ∗

Y ηY )) + Re(tr(Y ∗ξY λ∗
Y ηY )).

Following [  30 , Section 5.3.4], since Cn×p
∗ is an open subset of Cn×p, we also have

[λ, η]Y = D η(Y )[λY ]−D λ(Y )[ηY ].
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Summarizing, we get

2g2
Y (∇ξY

λ, ηY ) = D g2(λ, η)(Y )[ξY ] + D g2(η, ξ)(Y )[λY ]−D g2(ξ, λ)(Y )[ηY ]

−g2(ξY , D η(Y )[λY ]−D λ(Y )[ηY ])

+g2(λY , D ξ(Y )[ηY ]−D η(Y )[ξY ])

+g2(ηY , D λ(Y )[ξY ]−D ξ(Y )[λY ])

= 2g2
Y (ηY , D λ(Y )[ξY ])

+ Re(tr(η∗
Y (λY (ξ∗

Y Y + Y ∗ξY ) + ξY (Y ∗λY + λ∗
Y Y )− Y λ∗

Y ξY − Y ξ∗
Y λY )))

= 2g2
Y (ηY , D λ(Y )[ξY ])

+g2
Y (ηY , (λY (ξ∗

Y Y + Y ∗ξY ) +

ξY (Y ∗λY + λ∗
Y Y )− Y λ∗

Y ξY − Y ξ∗
Y λY )(Y ∗Y )−1).

We therefore obtain a closed-form expression for Riemannian connection on Cn×p
∗ for g2:

∇ξY
λ = D λ(Y )[ξY ]+ 1

2 (λY (ξ∗
Y Y + Y ∗ξY ) + ξY (Y ∗λY + λ∗

Y Y )− Y λ∗
Y ξY − Y ξ∗

Y λY ) (Y ∗Y )−1.

Recall that for the Riemannian metric g2, we have grad F (Y ) = 2∇f(Y Y ∗)Y (Y ∗Y )−1.

Hence, we have

Hess F (Y )[ξY ] = ∇ξY
grad F

= D Y grad F (Y )[ξY ]

+1
2{grad F (Y )(ξ∗

Y Y + Y ∗ξY ) + ξY (Y ∗grad F (Y ) + grad F (Y )∗Y )−

Y grad F (Y )∗ξY − Y ξ∗
Y grad F (Y )}(Y ∗Y )−1

= 2∇2f(Y Y ∗)[Y ξ∗
Y + ξY Y ∗]Y (Y ∗Y )−1 + 2∇f(Y Y ∗)ξY (Y ∗Y )−1

−2∇f(Y Y ∗)Y (Y ∗Y )−1(Y ∗ξY + ξ∗
Y Y )(Y ∗Y )−1

+∇f(Y Y ∗)Y (Y ∗Y )−1(Y ∗ξY + ξ∗
Y Y )(Y ∗Y )−1

+ξY {Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1 + (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y }(Y ∗Y )−1

−{Y (Y ∗Y )−1Y ∗∇f(Y Y ∗)ξY + Y ξ∗
Y∇f(Y Y ∗)Y (Y ∗Y )−1}(Y ∗Y )−1
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= 2∇2f(Y Y ∗)[Y ξ∗
Y + ξY Y ∗]Y (Y ∗Y )−1 + 2∇f(Y Y ∗)ξY (Y ∗Y )−1

−∇f(Y Y ∗)Y (Y ∗Y )−1(Y ∗ξY + ξ∗
Y Y )(Y ∗Y )−1

+ξY {Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1 + (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y }(Y ∗Y )−1

−{Y (Y ∗Y )−1Y ∗∇f(Y Y ∗)ξY + Y ξ∗
Y∇f(Y Y ∗)Y (Y ∗Y )−1}(Y ∗Y )−1

= 2∇2f(Y Y ∗)[Y ξ∗
Y + ξY Y ∗]Y (Y ∗Y )−1 + 2∇f(Y Y ∗)ξY (Y ∗Y )−1

−∇f(Y Y ∗)PY ξY (Y ∗Y )−1 −∇f(Y Y ∗)Y (Y ∗Y )−1ξ∗
Y Y (Y ∗Y )−1

+ξY Y ∗∇f(Y Y ∗)Y (Y ∗Y )−2 + ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1

−PY∇f(Y Y ∗)ξY (Y ∗Y )−1 − Y ξ∗
Y∇f(Y Y ∗)Y (Y ∗Y )−2

= 2∇2f(Y Y ∗)[Y ξ∗
Y + ξY Y ∗]Y (Y ∗Y )−1

+∇f(Y Y ∗)ξY (Y ∗Y )−1 −∇f(Y Y ∗)PY ξY (Y ∗Y )−1

+∇f(Y Y ∗)ξY (Y ∗Y )−1 − PY∇f(Y Y ∗)ξY (Y ∗Y )−1

+2skew(ξY Y ∗)∇f(Y Y ∗)Y (Y ∗Y )−2

+2skew{ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)}Y (Y ∗Y )−1

= 2∇2f(Y Y ∗)[Y ξ∗
Y + ξY Y ∗]Y (Y ∗Y )−1

+∇f(Y Y ∗)P ⊥
Y ξY (Y ∗Y )−1 + P ⊥

Y ∇f(Y Y ∗)ξY (Y ∗Y )−1

+2skew(ξY Y ∗)∇f(Y Y ∗)Y (Y ∗Y )−2

+2skew{ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)}Y (Y ∗Y )−1.

To conclude, we obtain

(
Hess h(π(Y ))[ηπ(Y )]

)
Y

= P H2

Y

{
2∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y ∗]Y (Y ∗Y )−1

+∇f(Y Y ∗)P ⊥
Y ξY (Y ∗Y )−1 + P ⊥

Y ∇f(Y Y ∗)ξY (Y ∗Y )−1

+2skew(ξY Y ∗)∇f(Y Y ∗)Y (Y ∗Y )−2

+ 2skew{ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)}Y (Y ∗Y )−1
}

.
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Riemannian Hessian Under Metric g3

Recall that the Riemannian metric g3 on Cn×p
∗ satisfies

g3
Y (ξY , ηY ) = g̃Y (ξY , ηY ) + g2

Y (P V
Y (ξY ), P V

Y (ηY ))

= 2 Re(tr(Y ∗ξY Y ∗ηY + Y ∗Y ξ∗
Y ηY )) + Re(tr(Y P V

Y (ξY )∗P V
Y (ηY )Y ∗))

where

g̃Y (ξY , ηY ) = 〈Y ξ∗
Y + ξY Y ∗, Y η∗

Y + ηY Y ∗〉Cn×n .

P V
Y (λY ) = Y skew((Y ∗Y )−1Y ∗λY ).

Hence

D g3(λ, η)(Y )[ξY ]

= g̃Y (D λ(Y )[ξY ], ηY ) + g̃(λY , Dη(Y )[ξY ])

+2 Re(tr(ξ∗
Y λY Y ∗ηY + Y ∗λY ξ∗

Y ηY + ξ∗
Y Y λ∗

Y ηY + Y ∗ξY λ∗
Y ηY ))

+g2
Y (P V

Y (λY ), DP V
Y (ηY )[ξY ]) + g2(D P V

Y (λY )[ξY ], P V
Y (ηY ))

+ Re(tr(ξY P V
Y (λY )∗P V

Y (ηY )Y ∗ + Y P V
Y (λY )∗P V

Y (ηY )ξ∗
Y )).

Suppose λ, η and ξ are horizontal vector fields, then many terms in the above equation

vanish:

D g3(λ, η)(Y )[ξY ] = g̃Y (D λ(Y )[ξY ], ηY ) + g̃Y (λY , D ηY [ξY ])

+2 Re(tr(ξ∗
Y λY Y ∗ηY + Y ∗λY ξ∗

Y ηY + ξ∗
Y Y λ∗

Y ηY + Y ∗ξY λ∗
Y ηY )).

Combining the above equation and the Koszul formula with ξ, η, λ horizontal vector fields,

we obtain

2g3
Y (∇ξY

λ, ηY )

= D g3(λ, η)(Y )[ξY ] + D g3(η, ξ)(Y )[λY ]−D g3(ξ, λ)(Y )[ηY ]
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−g3
Y (ξY , D η(Y )[λY ]−D λ(Y )[ηY ])

+g3
Y (λY , D ξ(Y )[ηY ]−D η(Y )[ξY ])

+g3
Y (ηY , D λ(Y )[ξY ]−D ξ(Y )[λY ])

= g̃Y (D λ(Y )[ξY ], ηY ) + g̃Y (λY , D η(Y )[ξY ])

+2 Re(tr(ξ∗
Y λY Y ∗ηY + Y ∗λY ξ∗

Y ηY + ξ∗
Y Y λ∗

Y ηY + Y ∗ξY λ∗
Y ηY ))

+g̃Y (D η(Y )[λY ], ξY ) + g̃Y (ηY , D ξ(Y )[λY ])

+2 Re(tr(λ∗
Y ηY Y ∗ξY + Y ∗ηY λ∗

Y ξY + λ∗
Y Y η∗

Y ξY + Y ∗λY η∗
Y ξY ))

−g̃Y (D ξ(Y )[ηY ], λY )− g̃Y (ξY , D λ(Y )[ηY ])

−2 Re(tr(η∗
Y ξY Y ∗λY + Y ∗ξY η∗

Y λY + η∗
Y Y ξ∗

Y λY + Y ∗ηY ξ∗
Y λY ))

−g̃Y (ξY , D η(Y )[λY ]) + g̃Y (ξY , D λ(Y )[ηY ])

+g̃Y (λY , D ξ(Y )[ηY ])− g̃Y (λY , D η(Y )[ξY ])

+g̃Y (ηY , D λ(Y )[ξY ])− g̃Y (ηY , D ξ(Y )[λY ])

= 2g̃Y (D λ(Y )[ξY ], ηY ) + 4 Re(tr(Y ∗ξY λ∗
Y ηY + Y ∗λY ξ∗

Y ηY )).

It follows that

g3
Y (∇ξY

λ, ηY ) = g̃Y (D λ(Y )[ξY ], ηY ) + 2 Re(tr(Y ∗ξY λ∗
Y ηY + Y ∗λY ξ∗ηY )).

By definition, we have Hess F (Y )[ξY ] = ∇ξY
grad F . By Lemma (  C.0.1 ), it suffices to

assume that ξY is a horizontal vector in order to obtain the Hessian operator of h. Therefore,

g3
Y (Hess F (Y )[ξY ], ηY )

= g3
Y (∇ξY

grad F, ηY )

= g̃(ηY , D grad F (Y )[ξY ]) + 2 Re(tr(Y ∗ξY grad F (Y )∗ηY + Y ∗grad F (Y )ξ∗
Y ηY ))

= g̃(ηY , D grad F (Y )[ξY ]) + Re(tr((Y η∗
Y + ηY Y ∗)(grad F (Y )ξ∗

Y + ξY grad F (Y )∗)))

= g̃(ηY , D grad F (Y )[ξY ])

+g̃
(

ηY ,
(

I − 1
2PY

)
(grad F (Y )ξ∗

Y + ξY grad F (Y )∗)Y (Y ∗Y )−1
)

.
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Recall that for Riemannian metric g3, we have

grad F (Y ) =
(

I − 1
2PY

)
∇f(Y Y ∗)Y (Y ∗Y )−1.

Hence,

D grad F (Y )[ξY ] =
(

I − 1
2PY

)
∇2f(Y Y ∗)[Y ξ∗

Y + ξY Y ∗]Y (Y ∗Y )−1

−1
2(D (PY )[ξY ])∇f(Y Y ∗)Y (Y ∗Y )−1

+
(

I − 1
2PY

)
∇f(Y Y ∗)D (Y (Y ∗Y )−1)[ξY ],

where we have

D (PY )[ξY ] = D (Y (Y ∗Y )−1Y ∗)[ξY ]

= ξY (Y ∗Y )−1Y ∗ − Y (Y ∗Y )−1(ξ∗
Y Y + Y ∗ξY )(Y ∗Y )−1Y ∗ + Y (Y ∗Y )−1ξ∗

Y

and

D (Y (Y ∗Y )−1)[ξY ] = ξY (Y ∗Y )−1 − Y (Y ∗Y )−1(ξ∗
Y Y + Y ∗ξY )(Y ∗Y )−1.

Combining these equations we have

g3
Y (Hess F (Y )[ξY ], ηY )

= g̃
(

ηY ,
(

I − 1
2PY

)
∇2f(Y Y ∗)[Y ξ∗

Y + ξY Y ∗]Y (Y ∗Y )−1
)

−g̃
(

ηY ,
1
2(ξY (Y ∗Y )−1Y ∗ − Y (Y ∗Y )−1(ξ∗

Y Y + Y ∗ξY )(Y ∗Y )−1Y ∗ + Y (Y ∗Y )−1ξ∗
Y )

∇f(Y Y ∗)Y (Y ∗Y )−1
)

+g̃
(

ηY ,
(

I − 1
2PY

)
∇f(Y Y ∗)

(
ξY (Y ∗Y )−1 − Y (Y ∗Y )−1(ξ∗

Y Y + Y ∗ξY )(Y ∗Y )−1
))

+g̃
(

ηY ,
(

I − 1
2PY

)((
I − 1

2PY

)
∇f(Y Y ∗)Y (Y ∗Y )−1ξ∗

Y

+ ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)
(

I − 1
2PY

))
Y (Y ∗Y )−1

)
= g̃

(
ηY ,

(
I − 1

2PY

)
∇2f(Y Y ∗)[Y ξ∗

Y + ξY Y ∗]Y (Y ∗Y )−1
)
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−g̃
(

ηY ,
1
2(ξY (Y ∗Y )−1Y ∗ − Y (Y ∗Y )−1(ξ∗

Y Y + Y ∗ξY )(Y ∗Y )−1Y ∗ + Y (Y ∗Y )−1ξ∗
Y )

∇f(Y Y ∗)Y (Y ∗Y )−1
)

+g̃
(

ηY ,
(

I − 1
2PY

)
∇f(Y Y ∗)

(
ξY (Y ∗Y )−1 − Y (Y ∗Y )−1(ξ∗

Y Y + Y ∗ξY )(Y ∗Y )−1
))

+g̃
(

ηY ,
(

I − 3
4PY

)
∇f(Y Y ∗)Y (Y ∗Y )−1ξ∗

Y Y (Y ∗Y )−1
)

+g̃
(

ηY ,
1
2

(
I − 1

2PY

)
ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1

)
= g̃

(
ηY ,

(
I − 1

2PY

)
∇2f(Y Y ∗)[Y ξ∗

Y + ξY Y ∗]Y (Y ∗Y )−1
)

−g̃
(

ηY ,
1
2ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1

)
−g̃

(
ηY ,

1
2Y (Y ∗Y )−1ξ∗

Y∇f(Y Y ∗)Y (Y ∗Y )−1
)

+g̃
(

ηY ,
1
2Y (Y ∗Y )−1ξ∗

Y PY∇f(Y Y ∗)Y (Y ∗Y )−1
)

+g̃
(

ηY ,
1
2PY ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1

)
+g̃

(
ηY ,

(
I − 1

2PY

)
∇f(Y Y ∗)

(
(I − PY )ξY (Y ∗Y )−1 − Y (Y ∗Y )−1ξ∗

Y Y (Y ∗Y )−1
))

+g̃
(

ηY ,
(

I − 1
2PY

)
∇f(Y Y ∗)Y (Y ∗Y )−1ξ∗

Y Y (Y ∗Y )−1−

1
4PY∇f(Y Y ∗)Y (Y ∗Y )−1ξ∗

Y Y (Y ∗Y )−1
)

+g̃
(

ηY ,
1
2 (I − PY ) ξY Y (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1+

1
4PY ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1

)
= g̃

(
ηY ,

(
I − 1

2PY

)
∇2f(Y Y ∗)[Y ξ∗

Y + ξY Y ∗]Y (Y ∗Y )−1
)

+g̃
(
ηY , (I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1

)
+g̃

(
ηY ,

1
2Y skew

(
(Y ∗Y )−1Y ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1

))
+g̃

(
ηY , Y skew

(
(Y ∗Y )−1Y ∗∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1

))
= g̃

(
ηY ,

(
I − 1

2PY

)
∇2f(Y Y ∗)[Y ξ∗

Y + ξY Y ∗]Y (Y ∗Y )−1
)

+g̃
(
ηY , (I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1

)
= g3

Y

(
ηY ,

(
I − 1

2PY

)
∇2f(Y Y ∗)[Y ξ∗

Y + ξY Y ∗]Y (Y ∗Y )−1+

(I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1
)
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Hence for ξY ∈ HY , we have

Hess F (Y )[ξY ] =
(

I − 1
2PY

)
∇2f(Y Y ∗)[Y ξ∗

Y + ξY Y ∗]Y (Y ∗Y )−1

+(I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1

To summarize, we obtain

(
Hess h(π(Y ))[ηπ(Y )]

)
Y

= P H3

Y (Hess F (Y )[ξY ])

=
(

I − 1
2PY

)
∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y ∗]Y (Y ∗Y )−1

+(I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1.
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