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ABSTRACT

Optimization and sampling over the manifold of fixed-rank positive semidefinite (PSD)
matrices arise in a wide range of scientific and engineering applications, including signal
processing, machine learning, quantum information, and statistical inference. This thesis
develops a comprehensive geometric framework for addressing such problems using Rieman-
nian optimization and Riemannian Langevin Monte Carlo techniques.

We begin by studying the manifold of Hermitian PSD matrices of fixed rank through
both embedded and quotient manifold perspectives. A unified framework is proposed to
encompass three commonly used geometriesembedded geometry, quotient geometry with the
Bures—Wasserstein metric, and quotient geometry with alternative metrics that clarify their
relationships and computational trade-offs.

Building on this framework, we design and analyze several Riemannian optimization al-
gorithms, including the Riemannian conjugate gradient method. We prove their equivalence
to classical Burer-Monteiro type algorithms and provide new insights into their convergence
behavior, especially in the presence of rank-deficiency. A detailed condition number analysis
reveals that certain Riemannian metrics lead to ill-conditioning near the boundary of the
manifold, impacting algorithm performance.

Extending beyond optimization, we develop Riemannian Langevin Monte Carlo schemes
for sampling from distributions defined over fixed-rank PSD manifolds. Two discretiza-
tionsbased on embedded and quotient geometriesare proposed, analyzed, and validated
through numerical experiments.

Comprehensive numerical results on eigenvalue computation, matrix completion, phase
retrieval, and interferometric recovery demonstrate the effectiveness of the proposed algo-
rithms and validate the theoretical findings. This thesis thus offers both theoretical founda-
tions and practical tools for manifold-based optimization and sampling over low-rank PSD

matrix constraints.
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1. INTRODUCTION

1.1 Optimization over PSD Constraints

Optimization over positive semidefinite (PSD) matrices is a central theme in numerous
areas such as covariance estimation [1], kernel learning [2], semidefinite programming [3], etc.
In many modern applications, large-scale semidefinite programs and matrix approximation
problems demand not only low-rank structure but also efficient numerical schemes that
exploit manifold geometry. See [4] and [5] for some of these applications. In mathematical
notations, the optimization problem over PSD matrices can be written formally as

minimize  f(X)

XeCnxn : (1.1)
subject to X =0

A particularly compelling structure arises when one restricts attention to the manifold of
PSD matrices with fixed rank, which possesses both rich geometric properties and significant
practical relevance. For example, real symmetric PSD fixed-rank matrices were used in [6,
7). When the solution to (1.1) exhibits low-rank structure, we can significantly reduce
computational complexity by working directly with the manifold of fixed-rank matrices:

miniXmize f(X)

: (1.2)
subject to X € H}P

where H'["” denotes the set of n-by-n Hermitian PSD matrices of fixed rank p < n. Optimiza-
tion over PSD matrices of fixed rank can also be used for solving non-symmetric problems.
Suppose the set of non-symmetric matrices of fixed-rank is {X = LR? : rank(X) = p}.
Then define the symmetric lifting: {X := [L, R][LR]"}, which again becomes a PSD fixed
rank constraint. However, the nature of nonconvex optimization problems also makes (1.2)
challenging to solve.

Since the elements in the constraint set H'}” have a low-rank structure, they can be
represented in a low-rank compact form on the order of O(np?), which is smaller than the

O(n?) storage when directly using X € C™". In many applications, the cost function in

13



(1.1) takes the form f(X) = 3|l A(X) —b||3 where A is a linear operator and the norm is the
Frobenius norm, and f(X) can be evaluated efficiently by O(pnlogn) flops for X € HL*,
e.g., the PhaseLift problem [8, 9] and the interferometry recovery problem [10, 11]. For
these kinds of problems, solving (1.2) with an iterative algorithm that works with low-rank

representations for X € H'” can lead to a good approximate solution to (1.1) with compact

storage and computational cost.

1.2 Sampling over PSD Constraints

Beyond optimization, we can also explore the stochastic counterpart of such problems—
namely, Riemannian sampling over fixed-rank PSD manifolds, thus extending the scope of
manifold-based computation beyond optimization.

There is an extensive literature on Langevin dynamics in statistics and related areas, with
interest in nonconvex optimization [12, 13], as well as machine learning such as generative
models [14].

In recent years, there has been interest in studying Langevin diffusion and Monte Carlo
Markov Chain (MCMC) schemes on manifolds [15-24]. In this thesis, we focus on the
Riemannian Langevin Monte Carlo schemes on 87" that samples from the Gibbs distribution

on the manifold of fixed rank PSD matrices:
sample from p(X) oc e X subject to X € S}7, (1.3)

based on the Riemannian Langevin equation (RLE) on the manifold that generalizes the
Langevin dynamics in the Euclidean space.

Gibbs distributions originate in statistical physics, while the sampling problem may also
be seen as a stochastic variant of the optimization problem in the sense that the sampling
problem is related to the optimization problem since in the limit 3 — oo the Gibbs distribu-
tion concentrates at the global minima of f(X). In general, a Langevin scheme can be used
for either optimization [24, 25|, or Monte Carlo type numerical integration, which is com-

mon in Bayesian statistics. For optimization, stochastic optimization by Langevin dynamics

14



with simulated annealing is an established approach [26]. For sampling, Metropolis-adjusted

Langevin algorithm [17] is often used.

1.3

Contributions of This Thesis

This thesis contributes to the field of manifold optimization and sampling in several key

ways:

Unified Riemannian Optimization Framework: We present and analyze three method-
ologies for optimization on the manifold of Hermitian PSD matrices of fixed rank,
including Burer—-Monteiro factorization, embedded geometry, and quotient geometry
using the Bures—Wasserstein metric. We show theoretical equivalence between these

formulations under appropriate settings and validate them numerically.

. Condition Number Analysis: We investigate the impact of rank-deficiency on the con-

ditioning of Riemannian Hessians, deriving bounds and demonstrating how they inform

the performance of Riemannian optimization algorithms.

Convergence Analysis of Orthogonalization-Free Algorithms: We analyze the conver-
gence of orthogonalization-free Riemannian conjugate gradient methods. This con-
tributes to understanding the global behavior of such methods in the Burer—Monteiro

setting.

Riemannian Langevin Monte Carlo on Fixed-Rank PSD Manifolds: We introduce two
numerical schemes for sampling from Gibbs distributions defined on the manifold of
fixed-rank PSD matrices using Riemannian Langevin dynamics. These are built upon
the same geometric structures used in optimization, allowing a principled transition

between deterministic and stochastic methods.

Comprehensive Numerical Validation: Each of the proposed frameworks is validated on
a range of problems, including eigenvalue computation, matrix completion, PhaseLift,
and interferometric inversion. Our experiments demonstrate the practical viability of

the theoretical framework developed throughout the thesis.

15



1.4 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 provides the mathematical preliminaries and geometric foundations of fixed-
rank PSD manifolds, including both embedded and quotient geometries.

Chapter 3 presents a unified view of optimization over fixed-rank Hermitian PSD ma-
trices, contrasting three algorithmic approaches and exploring their theoretical connections.

Chapter 4 conducts a condition number analysis of Riemannian Hessians in the presence
of rank-deficiency and discusses its implications through illustrative applications.

Chapter 5 studies the convergence properties of orthogonalization-free Riemannian con-
jugate gradient methods, providing both theoretical guarantees and numerical evidence.

Chapter 6 transitions to Riemannian sampling and introduces Langevin Monte Carlo
schemes designed for the fixed-rank PSD manifold, complete with empirical validation against
known distributions.

Appendices contain detailed derivations, supplemental mathematical results, and im-

plementation notes that support the main text.

16



2. PRELIMINARIES AND THE MANIFOLD OF
FIXED-RANK PSD MATRICES

In this chapter, we first review some preliminaries and introduce the geometric structure of
the manifold of the fixed-rank PSD matrices. We only consider the case of Hermitian PSD

matrices since the results of the real symmetric PSD matrices will simply follow.

2.1 Embedded Manifold Geometry of Fixed-rank PSD Matrices

We first show that H'}"” is a smooth embedded submanifold of C™*™.

Theorem 2.1.1. Regard C™*™ as a real vector space over R of dimension 2n?. Then H'? is

a smooth embedded submanifold of C* ™ of dimension 2np — p.

Proof. Let

E =

]po Opx (n—p)
O(nfp)xp 0(nw) X (n—p)

and consider the smooth Lie group action

@ : GL(n,C) x C™" —  C™"

(9,N)— gNg~

where

gNg* = (Re(g)Re(N) — Im(g) Im(N)) Re(g)” + (Im(g) Re(N) + Re(g) Im(N)) Tm(g)"
+i ((Im(g) Re(N) + Re(g) Im(N)) Re(g)" — (Re(g) Re(N) — Im(g) Im(N)) Im(g)") .

From the above expression of g N ¢g*, we see that ® is a rational mapping. Since GL(n, C) is
a semialgebraic set by Lemma (B.0.1) in the Appendix, we have that GL(n, C) x C"*" is also
a semialgebraic set [27, section 2.1.1]. It follows from (B1) in [28] that ® is a semialgebraic
mapping. Observe that H'}'” is the orbit of E through ®. It therefore follows from (B4) in
[28] that H'}'” is a smooth submanifold of C"*".
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Next, we compute the dimension of H'”. Consider the smooth surjective mapping
n:GL(n,C) — H? v yE~".

The differential of n at v € GL(n,C) is the linear mapping Dn(y) : T,GL(n,C) =
Cm — TxHYP, where X = n(y) = vEv*, by Dn(v)[A] = AEy* + vEA*. Observe
that the differential at arbitrary ~ is related to the differential at I, by a full-rank linear

transformation:

Dn(7)[A] = vDn(L,) [y Aly". (2.1)

Recall that the rank of a differentiable mapping f between two differentiable manifolds is
the dimension of the image of the differential of f. So, from equation (2.1) we see that the
rank of n is constant. It follows from Theorem 4.14 in [29] that 7 is a smooth submersion.

As a consequence Dn(y) maps 7,GL(n, C) = C™*" surjectively onto TxH'” and we obtain
TxHL = {AX + XA*: A e Cmm} (2.2)

Ay A
Let A = HOTE be partitioned according to the partition of E = diag(lyx,) =
Ao Ag

IPXP

0
. Then it can be easily verified that A € KerDn([I) if and only if
0 O

Ap = —-A7, Ay =0

This implies that Aj; is a skew-Hermitian matrix, hence its diagonal entries are purely
imaginary and its off diagonal entries satisfy a;; = —aj. This gives us p+2x(14+2+- - -+(p—1))
degrees of freedom. For A5 and Ay there are 2n(n—p) degrees of freedom. So, the dimension

of Ker(Dn(I)) is 2n(n — p) + p+ 2p(p — 1)/2 = 2n* — 2np + p* and by rank-nullity we get

dim D n(I) = 2n* — dimker Dn(I) = 2np — p*.
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Since 7 is of constant rank, the dimension of TxH"? is therefore 2np — p?. Remember that
the dimension of the tangent space at every point of a connected manifold is the same as that
of the manifold itself. Let GL*(n,C) denote the connected subset of GL(n, C) with positive
determinant, then H''? is the image of the connected set GL*(n,C) under a continuous

mapping 7, so H}? is connected. We conclude that the dimension of H'}” is 2np — p*.

The next result characterizes the tangent space.

Theorem 2.1.2. Let X = UXU* € H'P. Then the tangent space of H '’ at X is given by

|

Proof. Let t — U(t) be any smooth curve in St (p,n) through U at t = 0 such that U(t) €
C»? U(0) =U and U(t)*U(t) = I, for all t. Let t — 3(¢) be any smooth curve in Diag(p, p)
through X at ¢ = 0. Then X (¢) := U(¢)X(¢t)U(t)* defines a smooth curve in H}* through X.
It follows by differentiating X (¢) := U(¢)X(t)U(t)* that

H K
K 0

U*
Ui

TxH? = {[U U,

where H = H* € CP*P, K € C»=p)xp,

X'(t) = UOSOUR) + UGBS (WU + URSHU ().

Without loss of generality, since U’'(t) is an element of C"*? and U (t) has full rank, we can

set

U'(t)=U()A(t) + UL(t)B(t).

Hence, we have

ABDE) + (1) + S(OAR)* S(H)BE)
B(H)E(t) 0

U(t)”

X0 = v v.) ULty
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H K| |U*

with H = H*.
K ol|uz
For any H = H* € CP*? and K € C"P)*?_taking A = (UH/2 + U, K)X"Y(U*U)"'U* in

(2.2), we see that

Thus we consider the tangent vectors in the form of {U U,

HOK U ,
U UJ_ = XH+ . ( 3)
K o] |Ur

Now counting the real dimension we see that H has p + 2 X @ = p? number of freedom
and K has 2 x p(n — p) number of freedom. So the LHS of the inclusion (2.3) has freedom
2np — p?, which is equal to the dimension of TxH'"”’. Hence, the inclusion in (2.3) is an

equality.

The Riemannian metric of the embedded manifold at X € Hﬁ’p is induced from the

Euclidean inner product on C™*",

9x(C1, G2) = (1, Qo) onxn = Re(tr((7C2)), G, G € TxHYP. (2.4)

With the Riemannian metric, the angle is defined on a manifold and we can then define

the normal space, which is the orthogonal space to the tangent space.
Lemma 2.1.8. The normal space NxHP at X = UXU* € H''? is given by

Q —L*| |U*

N = {U U ow | e
1

where 2 = —Q* € CP*?, M € C(v=P)*("=P) and L € C=p)*»,

Proof. First we show that every vector in (2.5) is orthogonal to TxH'}". Since U is orthonor-

H K~ Q —-L*
; =0 for all H,K,Q,L and M

defined in Theorem 2.1.2 and Lemma 2.1.3. Indeed we have

mal, we only need to show that <

H K*| |Q -L* Lo
; — <Q7 H)(Cnxn - <L ,K >(Cn><n + <L, K)Cnxn
K 0 L M

CnXxn
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— <Q7H>(Cn><n — 0

Next, we count the real dimension of NxH . Remember that a skew-Hermitian matrix has

purely imaginary numbers on its diagonal entries, and w;; = —wj; on its off diagonal entries.
So the number of degree of freedoms in €2 is p + 2 x % = p?. The number of degree of

freedoms in L is 2 x p(n — p), and the number of degree of freedoms in M is 2 x (n — p)2.
So, the dimension of NxH'}[* is 2n* + p? — 2np. This gives us the desired dimension since

the sum of the dimension of the tangent space and its normal space should be 2n2.

The orthogonal projection from C™*" onto TxH'* can also be calculated based on the

Riemannian metric, which is given in the following theorem.

Theorem 2.1.4. Let X = YY* = USU* be the compact SVD for X € H? with Y € CI*P.
Let Z € C™". Then the operator P% defined below is the orthogonal projection onto
T)(Hi’pi

Pi(Z) = S (Pr(Z+Z)Py+ PH(Z+Z")Py + Py(Z + Z) PY)

(Pu(Z+ Z°)Py + Pg(Z + Z")Py + Pu(Z + Z7) Py ) (2.6)

[NCREE NOR

Uy g2y, | U

Uy Ay 0 U

1

U U,

Y

where Py =Y (Y*Y)'Y* Pt =1—-Py =Py, Py =UU*and P+ =1 - Py = Py, .
Proof. First, observe that

Z+zZ*  Z+Z* PY

PL(Z) = {Py PYJ ° ’

ZE 0 | [Py

Uy g2y, | U

= U UJ .
{ U Ay 0 U
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is a tangent vector at X. So it suffices to show that Z — P%(Z) is a normal vector. Write

Z Z| | P
Zas /4 = f)yZ.Py—f—.PyZ.PYl —f—PyLZPy—f—PyLZPyL = |:PY PYJ_:| Y . Then we
Z Z| |Py,

have

Z-2* Z-Z* Py
2 2

Z_P§<(Z) = {Py PYJ Py

= Z | |Py,

UrZ Ay g EAy | U

- v v *
{ v Ay uizu, | |Us

Hence, Z — P%(Z) is a normal vector, which completes the proof.

Remark 2.1.5. We can write Py = P5 + P% by introducing the two operators

7+ 7"
Py 7 Pl

Py (2.7a)

Z+ 7 Z+ 7"

P;%ZZP—>PUl PU‘I’PU

Py, (2.7b)

2.2 Quotient Manifold Geometry of Fixed-rank PSD Matrices

Besides being regarded as an embedded manifold in C™*" H* can also be viewed as a
quotient set C*?/QO,,, where O, = {O € CP*? : U*U = I} denotes the unitary group, since
any X € H'P can be written as X = YY™* with Y € C?*P. But there is an ambiguity in YV’
because such an Y is not uniquely determined by X. We define an equivalence relation on

Cy*P through the smooth Lie group action of O, on the manifold C}*?:

nxXp nxp
CP x 0, — C”

(Y,O0)— YO.

This action defines an equivalence relation on C}*P by setting Y; ~ Y5 if there exists an
O € O, such that ¥; = Y20. Hence we have constructed a quotient space C?*?/0O, that
removes this ambiguity. The set C*? is called the total space of C}*?/O,,.
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Denote the natural projection as
n: CP? — C*?/0,.

For any Y € CP, n(Y) is an element in C*?/0,. We denote the equivalence class con-
taining Y as
Y] =7"'(n(Y)) ={YOlO € O,} .
Define
g CrP — HPP
Y — YY"
Then 8 is invariant under the equivalence relation ~ and induces a unique function 5 on

Cr*r /O, called the projection of /3, such that g = 3o [30, section 3.4.2]. One can easily

check that 3 is a bijection. This is summarized in the diagram below:

Cnxp
*
l S~ B:=for
n ~

S
C? /0, _— HLP
The next theorem shows that C?*?/0, is a smooth manifold.

Theorem 2.2.1. The quotient space C*?/O, is a quotient manifold over R of dimension

2np — p? and has a unique smooth structure such that the natural projection = is a smooth

submersion.

Proof. The proof follows from Corollary 21.6 and Theorem 21.10 of [29].

The next theorem shows that H}” and C?*?/O, are essentially the same in the sense

that there is a diffcomorphism between them. The proof uses the same technique in [4,

Prop. A.7]

Theorem 2.2.2. The quotient manifold C*?/0O,, is diffeomorphic to H'* under 8.
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Proof. Recall from Theorem 2.1.2, any tangent vector in TpyyH'” can be written as
Caoy)y =YHY" "+ Y, KY" +YK*Y,

where Y| has orthonormal columns. Let V =Y H/2+ Y, K, then DS(Y)[V] = (s(vy. This
implies that 3 is a submersion.

Now notice that 1 = 571 o 8 and 8 = S on. By [31, Prop. 6.1.2], we conclude that 1
and /3 are both differentiable. So 3 is a diffeomorphism between Cr=? /O, and H*.

The equivalence class [Y] is an embedded submanifold of C?*P([30, Prop. 3.4.4]). The
tangent space of [Y] at YV is therefore a subspace of Ty C"*P called the vertical space at Y

and is denoted by Vy. The following proposition characterizes Vy .

Proposition 2.2.3. The vertical space at Y € [Y] = {YO|O € O,}, which is the tangent
space of [Y] at YV is
Vy:{YQm*:—QAleCWﬂ.

Proof. The tangent space of O, at I, is T;,0, = {Q : Q" = —Q,Q € CP*?}, which is
also the set {7/(0) : vy is a curve in O,,v(0) = I,}. Hence Ty {YO|O € O,} = {Y+(0) :
v is a curve in O,,y(0) = I,} = {YQ|Q* = —Q,Q € CP*P}.

2.2.1 Choices of Riemannian Metric and Horizontal Space

A Riemannian metric can be defined on the total space CI*P. That is, gy (-, -) is an inner
product on Ty C*P. Once we choose a Riemannian metric g for CI*P, we can obtain the
orthogonal complement in 7y C?*P of Vy with respect to the metric since Vy is an embedded
submanifold of the total space. In other words, we choose the horizontal distribution as
orthogonal complement w.r.t. Riemannian metric, see [30, Section 3.5.8]. This orthogonal

complement to Vy is called horizontal space at Y and is denoted by Hy. We thus have

TyC™ = Hy & Vy. (2.8)
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Once we have the horizontal space, there exists a unique vector & € My that satisfies
Dr(Y)[éy] = &xvy for each & vy € ThyCP*?/O,. This &y is called the horizontal lift of
&xv) at Y.

There exist more than one choice of Riemannian metric on C7*P. Different Riemannian
metrics do not affect the vertical space, but generally result in different horizontal spaces.

Now, we will introduce several metric choices for the total space C!*P. Then, we will
show that these metrics also induce Riemannian metrics for the quotient manifold, such that

the quotient manifold becomes a Riemannian manifold.

The Bures-Wasserstein Metric

The most straightforward choice of a Riemannian metric on C*? is the canonical Eu-

clidean inner product on C"*? defined by
9y (A, B) := (A, B)cuxy = Re(tr(A*B)), VA, B € TyCl*? = C™.

The metric g' is also called the Bures-Wasserstein metric [32] for the quotient manifold
C»*?/O,. On the other hand, the following metric for Hermitian positive-definite matrices

H™ [33-35] is also called the Bures-Wasserstein metric.

Definition 2.2.1 (The Bures-Wasserstein metric for H"). Let X € Hy™" and A, B € TxH}".
Then

dBW (A, B) = = (Lx(A),B),

DN | —

where Lx(A) = M solves the following Lyapunov equation

XM+ MX =A (2.9)

which has a unique solution provided X is Hermitian positive-definite.

Notice that it is not clear whether Definition 2.2.1 can also apply to a low-rank matrix
X € HYP. In this subsection, we show how the metric g' can be used to generalize Defi-

nition 2.2.1 to Definition 2.2.2, which defines the Bures-Wasserstein metric in the low-rank
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case H';'P. This non-trivial generalization is presented as Theorem 2.2.6. It is of interest to
see how ¢! connects the Bures-Wasserstein metric on the quotient manifold to its counterpart

on the embedded manifold.

Definition 2.2.2 (The Bures-Wasserstein metric on Hy*). Let A,B € Tyy«H}", then by
the 1-to-1 correspondence between Tyy«H'? and the horizontal space H3, there exist unique
Ey,my € Hi such that A = Y& + &Y™ and B = Y + nyY*. We define the Bures-

Wasserstein metric at the low-rank X = YY™* as

gll/g}yy(Aa B) = gll/(§Y7 T]Y)

Lemma 2.2.4. Forany A, B € TxH''"¥ with X = YY™*, there is a unique solution M € TxH'”

satisfying both

Y*XMY +Y*MXY =Y*AY (2.10)
and
B 1
a2 (4, B) = 5 (M, B)casn - (2.11)

Proof. Let & =Y (Y*Y)™'S+Y, K € Hi with S* = S be the unique horizontal vector such
that A =Y&5 + &Y™, Let Y = UR where U has size n-by-p with orthonormal columns and

R is an p-by-p invertible matrix. Thus (2.10) is equivalent to
RR*(U*MU) + (U*MU)RR* = RSR™ + (R*)"\SR". (2.12)

Since RR* is positive definite, (2.12) has a unique solution in U*MU; see Remark 2.2.5

below, which can be written explicitly:

UMU = (R*)"'SR. (2.13)
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(R)"'SR™' Kj,| |U*
Ky 0| |vs
additional equation (2.11). With B = Y3 + nyY™* we have,

Thus M = [U Y, , where K, is to be determined by the

1 1 . 1 «
5 <M7 B>(Cn><n — 5 <M7 YTIY>(Cn><n + 5 <M7 T]YY >(Cn><n — <MY) 77Y>(Cn><p .

Thus in order for (2.11) to hold, M needs to satisfy MY = &. Recall that & = Y (Y*Y) 1S+
Y, K = U(R*)"'S+Y, K. Thus K, needs to satisfy Y, Ky R = Y| K, which gives the unique
Ky =KR™

Remark 2.2.5. The solution X to the Lyapunov equation XE + FX = Z for a Hermitian
E is unique if F is Hermitian positive-definite [4, Section 2.2]. Let E = UAU* be the SVD,

then the Lyapunov equation X E + EX = Z becomes
(UXU)A+ ANU*XU) =U"ZU,
which gives the solution
(U XU)iy = (U ZU )15/ (Ais + Ay)-

Now we can show that Definition 2.2.1 generalizes the Definition 2.2.2 and defines the

Bures-Wasserstein metric in the low-rank case H'}” in the following theorem.

Theorem 2.2.6 (Equivalence of the two Bures-Wasserstein metrics). If p = n, then the Def-
inition 2.2.2 reduces to the Definition 2.2.1.

Proof. For the case p = n, Y is invertible, thus (2.10) is equivalent to the Lyapunov equation

(2.9). Therefore, the Definition 2.2.2 indeed reduces to the Definition 2.2.1 when p = n.

The next proposition characterizes the horizontal space for metric g'.

Proposition 2.2.7. Under metric g*, the horizontal space at Y satisfies

Hy = {ZeCvr vz =2V}
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— {Y(Y'Y) 'S+ YLK|S" = 5.5 € CP7, K € Crr),

where Y| has orthonormal columns.

Proof. The result of real case can be found in [32] but the proof was omitted. For complete-
ness, we outline the proof here. Z € C"*? belongs to H- if and only if Z is orthogonal to Vy
under the metric gy, i.e., 3(Z,YQ) = (Z,Y Q) cuxp = (Y*Z, Q) cnxp = 0,YQ = —Q*. This is
equivalent to Y*Z = Z*Y. The second equality can be obtained by writing any Z € Hi as
Z=YY*Y)'S+Y K as Y(Y*Y)" ! and Y, forms a basis for the column space of C"*?,
and verify that S = S5*

Proposition 2.2.8. If we use ¢g' as our Riemannian metric on C" P, then the orthogonal

projections of any A € C™*P to Vy and Hi are
PY(A)=YQ, PF(A)=A4-YQ,
where () is the skew-symmetric matrix that solves the Lyapunov equation
QY'Y +Y'YQ=Y"A - A"Y.

The Second Quotient Metric

Another Riemannian metric used in [36, 37] is
G5 (A, B) := (AY"*, BY ") cuxn = Re(tr((Y*Y)A*B)), VA, B € TyClP? =C".
Proposition 2.2.9. Under the metric g2, the horizontal space at Y is characterized by

W o= {ZeCr (Y)Y = 2Y (Y)Y
— {YS+YLK|S" = 8,5 € OV, K e Comnr).

Proof. The proof follows the same idea used in proving Proposition 2.2.7.
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Proposition 2.2.10. If we use g as our Riemannian metric on C"*?, then the orthogonal

projection of any A € C™*? to vertical space Vy satisfies

(VY)Y A — AY (YY)~
2

PY(A) =Y < ) =Y Skew ((Y*Y)~'V*A),

and the orthogonal projection of any A € C™ P to the horizontal space H3- is

P(A) = A-PY(4)
_ oy (Y)Y A AY (YY)
B 2
= YHerm (YY) 'Y"A) + Y. YT A

> FYLYTA

The Third Quotient Metric

The third Riemannian metric for C?*? is motivated by the Riemannian metric of H'”
and the diffeomorphism between C*? /O, and H'”. We know that § is a submersion. Every
tangent vector of H'}'” corresponds to a tangent vector of C?*?. We can use the Riemannian
metric of H'” and the correspondence of tangent vectors between H'” and CI*? to define

a Riemannian metric for CI*P. A natural first attempt would be to use
g9v (A, B) := (DB(Y)[ALD B(Y)[B])grsn = (Y A" + AY", Y B" + BY") ccn

which is however not a Riemannian metric because it is not positive-definite. To see this,
notice that ker(D 3(Y)[-]) = Vy. Consider C # 0 € Vy, then ¢3(C,C) = 0. To modify this
definition for ¢g®, we can use the Riemannian metric g2 and the decomposition Ty C*? =

H2 & Vy, by which A € Ty C™ P can be uniquely decomposed as
A=AV + A
where AY € Vy and A** € #3.. Now define ¢* as

G (A, B) = (DBY)ALDBY)BY]), . + 97 (4%, BY)

CnXxn
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= (DBY)[A],D BY)[Bl)gun + (PY(A)Y", PLB)Y™)

CnXxn ’

= (YA*+ AY*YB* + BY ") poxn + <P}’(A)Y*, Pg/)(B)Y*%nxn

where PY is the projection of any tangent vector of C™ P to the vertical space Vy. It
is straightforward to verify that ¢ defined above is now a Riemannian metric. With the
definition (2.17), the properties tr(UV') = tr(VU) for two matrices U, V and Re(tr(C+C*)) =
2Re(tr(C)), we have

VA,Be€H;y, ¢i(A B)= (YA +AY* YB* + BY")cnxn = 2(AY*Y + YA*Y, B) cury -
(2.14)

Proposition 2.2.11. Under metric ¢g°, the horizontal space at Y is the same set as H3-. That

is,

Hy = {zeCw . (yY) 'y Z=2YV(YY)
= {YS+VYLK|$"=8,5eC K e CmPrl,

Proof. Z € H} if and only if ¢5-(Z,YQ) = 0 for all Q = Q*. That is, VQ = Q*,

(YZ* 4+ ZY" 2V QY ") g + (PY(Z)Y",YQY™) =0,

CnXxn

Hence we must have

(YZ* 4+ ZY* 2Y QY™ e = 0 (2.15a)

and

(Y2 yoys) =0 (2.15b)
(2.15a) is equivalent to
(YZY*Y, Q) gin =0 ¥Q = Q.

Hence Y ZY*Y must be Hermitian since €2 is an arbitrary skew Hermitian matrix. Therefore

7 is in H% as well and hence (2.15Db) is satisfied.
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Thus we have shown that
Hy =My ={ZeC™ . (YY)'V'Z=2Y(YY)'}.

Proposition 2.2.12. If we use ¢ as our Riemannian metric on C"*?, then the orthogonal

projection of any A € C™*? to vertical space Vy satisfies

R@@:YCWYYWMEAW“MWA>:Y%wqwm*ymx

and the orthogonal projection of any A € C™ P to the horizontal space H3- is

P¥(A) = A-PY(A)
_ Y((Y*Y)lY*A+A*Y(Y*Y)1

2
= YHerm (YY) 'Y"A) + Y.YTA

> FYLYTA

2.2.2 The Riemannian Quotient Manifold

Now, we will show that the quotient manifold becomes a Riemannian quotient manifold
with the Riemannian metrics induced from the total space.
First we show in the following lemma the relationship between the horizontal lifts of the

quotient tangent vector &y lifted at different representatives in [Y].

Lemma 2.2.13. Let n be a vector field on C*?/O,, and let 7 be the horizontal lift of 7.
Then for each Y € C}*P, we have
nyo = nyO

for all O € O,.

Proof. [4, Prop. A.8] gives a proof based on metric g! for the real case, and [36, Lemma 5.1]
proves the result for metric g2. For completeness, we will provide a proof applying to all

three metrics g¢'.
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By the definition of horizontal lift, we have
T(y) = Nxvo) = D (Y O)[yo].
On the other hand, notice that n(Y) = n(Y'O). Taking the differential w.r.t. Y we have
Drn(Y)[A] =Dn(YO)[AO] VA e C™P.
In particular, let A =7, € Hy we have
Nvy = Dr(Y)[iy] = Dn(YO)[ny O].

Thus, we have

Dn(YO)[7y0] = Dr(YO)[7yo)

So
MyO — Ty € ker(D(YO)[-]) = Vyo.

Now, one can verify that for each ¢' and YOQ € Vyo, ¢4o(7,0,YOQ) = 0. So 7,0 is

orthogonal to Vy and hence 7,,O € H},,. So we have

MyO = Tyo € Hyo-
Therefore 7,0 — Ty € Vyo N Hi o = {0} and we complete the proof.

Recall from [30, Section 3.6.2] that if the expression gy (&, (y) does not depend on the
choice of Y € [Y] for every n(Y') € C*?/O, and every & vy, (ry) € Trv)yCL*?/Op, then

*

9=r) (&rv): Gevy) = gy (v, Cy) (2.16)

defines a Riemannian metric on the quotient manifold C7*?/0,. By Lemma 2.2.13, it is
straightforward to verify that each Riemannian metric ¢' on C™*? induces a Riemannian

metric on C?*?/0,. The quotient manifold C?*?/0O, endowed with a Riemannian metric
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defined in (2.16) is called a Riemannian quotient manifold. By abuse of notation, we use ¢'

for denoting Riemannian metrics on both total space C7*? and quotient space CI*?/O,,.

2.3 Riemannian Gradients

In this section, we tackle functions defined on the manifold of PSD fixed-rank matrices

and their gradients. First, let us define the Fréchet gradient of a real-valued function f.

2.3.1 The Fréchet Gradient of a Real-valued Function

A real-valued function f(X) defined on complex matrices is not holomorphic, thus f(X)
does not have a complex derivative with respect to X € C"*".

For any real vector space £, the inner product on € is denoted by (-, ). For real matrices
A, B € R™" the HilbertSchmidt inner product is (A, B)gmx. = tr(A” B).

The linear spaces of complex matrices can be regarded as vector spaces over R. Let Re(A)
and Im(B) represent the real and imaginary parts of a complex matrix A. For A, B € C™*",

the real inner product for the real vector space C"™*" then equals

(A, B)gmxn = Re(tr(A*B)), (2.17)

where * is the conjugate transpose. We emphasize that (2.17) is a real inner product, rather
than the complex Hilbert-Schmidt inner product. It is straightforward to verify that (2.17)

can be written as

(A, B) gmxn = tr(Re(A)" Re(B))+tr(Im(A)" Im(B)) = (Re(A), Re(B))gmxn-+{Im(A), Im(B)) gosn -

With the real inner product (2.17) for the real vector space C™*", a Fréchet derivative for

any real valued function f(X) can be defined as

vi(x) = 2 +ﬁaalﬁ()§g)

= ORe(X) e cmn, (2.18)
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In particular, for f(X) = 3||A(X) — b||3 with a linear operator A, the Fréchet derivative
(2.18) becomes
V(X)) = A (A(X) - b)

where A* is the adjoint operator of A.

2.3.2 Riemannian Gradient of the Embedded Manifold

The Riemannian gradient of f at X € H'P, denoted by grad f(X), is the projection of
V£(X) onto TxH'" ( [30, Sect. 3.6.1]):

grad f(X) = Py (Vf(X)),
where P% denotes the orthogonal projection onto TxH'”.

2.3.3 Riemannian Gradient of the Riemannian Quotient Manifold

For any real-valued function f defined on H'”, there is a real-valued function F' defined
on C7*P that induces f: for any X = YY* € H", F(Y) := foB(Y) = f(YY™). Recall that
C™*? /O, is diffeomorphic to H'” under 3. Given a smooth real-valued function f on H}?,

the corresponding cost function i on C?*?/Q, is defined as

h:CP/0, — R

_ (2.19)
n(Y) = f(B(r(Y))) = f(BY)) = f(YY™).

The Riemannian gradient of i at n(Y) is a tangent vector in Ty C7*?/O, . The next
theorem shows that the horizontal lift of grad h(n(Y")) can be obtained from the Riemannian

gradient of F' defined on CI'*P.

Theorem 2.3.1. The horizontal lift of the gradient of h at n(Y") is the Riemannian gradient
of F'at Y. That is,
grad h(n(Y)), = grad F((Y).

Therefore, grad F/(Y') is automatically in Hy .
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Proof. See [30, Section 3.6.2].

The next proposition summarizes the expression of grad F/(Y') under different metrics.

Proposition 2.3.2. Let f be a smooth real-valued function defined on H'/” and let F': C*? —

R:Y — f(YY™). Assume YY* = X. Then the Riemannian gradient of F is given by

2VF(YY™)Y, if using metric g'
grad F(Y) = 2VF(YYH)Y (YY), if using metric ¢

1
<] - 2Py) ViYYHY (YY) if using metric ¢°
where V f denotes Fréchet gradient (2.18) and Py = Y (Y*Y)~1Y™*.

Proof. Let A € TyClP = C™"*P. By the chain rule, we have
DFE(Y)[A =D f(YY")[Y A" + AY™].

This yields to
gy (grad F(Y), A) = gx (grad f(YY™), Y A" + AY™)

where gy is the metric (2.4). Since Y A* + AY™* € Tyy-H", we have

gx (grad f(YY™), Y A* + AY*) = <P§Y*(Vf(YY*)),YA*+YA*>C

nxn

= (VFYY"), YA + AY™) crsen -
It is straightforward to verify that

(VYY) YA + AY ) = gy QVF(YY™)Y, A)
= g% 2VF(YY)Y (YY) A),

which yields the expression of grad F'(Y') under ¢g' and ¢
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The Riemannian gradient for ¢2 is due to

(Pry-(VFYY"), YA +YA") = g

~w

(1 _ ;Py) PLVF(YY )Y (YY), A)

= g

(
((I - ;Py) VEYY)Y (YY) A) .

2.4 Riemannian Hessians

Definition 2.4.1 ([30, definition 5.5.1]). Given a real-valued function f on a Riemannian
manifold M, the Riemannian Hessian of f at a point = in M is the linear mapping Hess f(z)

of T, M into itself defined by

Hess f(2)[¢;] = Ve, grad f

for all &, in T, M, where V is the Riemannian connection on M.

2.4.1 Riemannian Hessian of the Embedded Manifold

For a real-valued function f(X) defined on the Euclidean space C**™, the Fréchet Hessian
V2f(X) is defined in the sense of the Fréchet derivative; see Appendix A.0.2 for the definition
of the Fréchet Hessian. The Riemannian Hessian of f at X, denoted by Hess f(X) is related
to, but different from its Fréchet Hessian.

The following proposition gives the Riemannian Hessian of f. The proof follows similar
ideas as in [7, Prop. 5.10] and [38, Prop. 2.3] where a second-order retraction based on a

simple power expansion is constructed. We will leave the outline of the proof in Appendix

B.0.1.

Proposition 2.4.1. Let f(X) be a real-valued function defined on H}”. Let X € H}” and

Ex € TxH}YP. Then the Riemannian Hessian operator of f at X is given by
Hess f(X)[6x] = Pi(V2F(X)[ex]) + P (VF(X)(XTE)" + (& XT)'V£(X))
where &% = P5(¢x) and &% = P{(¢x) and Py and P% are defined in (2.7).
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2.4.2 Riemannian Hessian of the Quotient Manifold

Recall that the cost function h on C}*?/0O, is defined in (2.19). In this section, we

summarize the Riemannian Hessian of i under the three different metrics ¢'. The proofs are

tedious calculations and given in Appendix C.0.1.

Proposition 2.4.2. 1. Using g', the Riemannian Hessian of h is given by

(Hess h(=(Y))[&x)]), = P (2V2F(YY)YE + & V7)Y + 2V (YY)Ey ) .

2. Using ¢?, the Riemannian Hessian of A is given by

(Hessh(=z(Y))&xm)), = P 2V f(YY)YVE + &Y Y (YY)~
VYY) P& (YY) + P V(Y Y )6 (YY)
+2skew(Ey Y )V (YY)Y (YY) 2
+ 2skew{E, (VY)Y V(YY) (YY)

3. Using ¢?, the Riemannian Hessian of h is given by

(Hesh(=iem]), = (1= 3Pv) VAOYIIVE + &YV (1Y)

+H(I = P )VYY)I = Py)&y (YY)

2.5 Computational Tools

In this section, we introduce some computational tools that will be used later.

2.5.1 Retraction

A retraction is essentially a first-order approximation to the exponential map; see [30,

Def. 4.1.1].
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Definition 2.5.1 ([30, Def. 4.1.1]). A retraction on a manifold M is a smooth mapping R
from the tangent bundle 7'M onto M with the following properties. Let R, denote the
restriction of R to T, M.

1. R,(0,) = =, where 0, denotes the zero element of T, M.

2. With the canonical identification 7y, T, M = T, M, R, satisfies
D R,(0,) = idp, m,

where idy, o¢ denotes the identity mapping on 7, M.

Suppose M is an embedded submanifold of a Euclidean space &, then by [39, Props. 3.2
and 3.3|, the mapping R from the tangent bundle T M to the manifold M defined by

™™™ — M
(2.20)

(x,u) = Pp(z +u)

is a retraction, where P is the orthogonal projection onto the manifold M with respect
to the Euclidean distance, that is, the closest point. In our case M = H* and & = C™*".

Hence, a retraction on H'” is defined by the truncated SVD:
P
Rx(Z) = Pyne(X + Z) = Y oi(X + Z)v
i=1

where v; is the singular vector of X + Z corresponding to the ith largest singular value
O'i(X + Z)
The retraction on the quotient manifold C}*? /O, can be defined using the retraction on

the total space C}*P. For any A € TyC*? and a step size 7 > 0,

Ry(TA) =Y +TA,
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is a retraction on C*? if Y +7 A remains full rank, which is ensured for small enough 7. Then

Lemma 2.2.13 indicates that R satisfies the conditions of [30, Prop. 4.1.3], which implies that

Ry (T1(v)) := n(By (17)y)) = (Y + 77y (2.21)
defines a retraction on the quotient manifold C}*?/0, for a small enough step size 7 > 0.

2.5.2 Vector Transport

The vector transport is a mapping that transports a tangent vector from one tangent

space to another tangent space.

Definition 2.5.2 ([30, definition 8.1.1]). A vector transport on a manifold M is a smooth
mapping
TMSTM —=TM: (1n,,&) — T (&) € TM

satisfying the following properties for all x € M:

1. (Associated retraction) There exists a retraction R, called the retraction associated

with 7, such that the following diagram commutes

| I
where II(7,, (£;)) denotes the foot of the tangent vector 7, (&)
2. (Consistency) 7o, & = &, for all &, € T, M;

3. (Linearity) T,,(a&s + b)) = aT,, (&) + Ty, (C)-

Let &x,nx € TxH? and let R be a retraction on H}*. By [30, section 8.1.3], the projection

of one tangent vector onto another tangent space is a vector transport,

Toxbx = Py naéx (2.22)
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where P} is the projection operator onto TzH'}"’. Namely, we first apply retraction to X +ny
to arrive at a new point on the manifold, then we project the old tangent vector £x onto the
tangent space at that new point.

A vector transport on C*? /O, introduced in [30, Section 8.1.4] is projection to horizontal

space.
(En(y)gﬂ(Y))Y+ﬁY = P;l_;'_ﬁy (EY) (223)

It can be shown that this vector transport is actually the differential of the retraction R

defined in (2.21) (see [30, Section 8.1.2]) since

D Rey) (=) [éx)] = D (Ry (7)) [D Ry () [Ey ]
= Dn(Y +7y) EY}

= Dn(Y +7y) [Pl?/iﬁy (EY)} '

Based on the projection formulae in Section 2.2.1, we can obtain formulae of vector
transports using different Riemannian metrics. Denote Y5 = Y] 4 7y.. If we use metric ¢,
then

m = gyl — Y50,

Yy +ﬁy1

where () solves the Lyapunov equation
VY20 4+ QY5Ys = Y5y, — &, Ya.
If we use metric g? or g3, then

(T o)y o = & = PR

Yi+7y,
= &y, — Skew ((Y;Y2) 'Y5Ey,)

v (%%V%*ﬁyl + &, Ya(Y5Yo) !
- 2
2

> + }/QJ_}@*J_EYE °
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3. A UNIFIED FRAMEWORK FOR RIEMANNIAN
OPTIMIZATION ON FIXED-RANK HERMITIAN PSD
MATRICES VIA QUOTIENT GEOMETRY

3.1 Introduction

In this chapter, we will consider three straightforward ideas and methodologies for solving

(1.2).

3.2 Three Different Methodologies

3.2.1 The Burer—Monteiro Method

The Burer-Monteiro method [40], is to solve the unconstrained problem
Yrer(éigp F(Y):= f(YY™). (3.1)
As proven in Appendix A, the chain rule of Fréchet derivatives gives
VEY)=2Vf(YY")Y € C™P.
The gradient descent method simply takes the form of

Yo=Y, —7VF(Y,) =Y, -2V f(Y,Y.))Y,,

which is one of the simplest low-rank algorithms. The nonlinear conjugate gradient and
quasi-Newton type methods, like L-BFGS, can also be easily used for (3.1). On the other
hand, F(Y) = F(YO) for any unitary matrix O € QP*?, where

0, ={0 € C?: 0*0 = 00" = I}.

Even though this ambiguity of unitary matrices is never explicitly addressed in the Burer—

Monteiro method, in this section, we will prove that the gradient descent and nonlinear
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conjugate gradient methods for solving (3.1) are exactly equivalent to the Riemannian gra-
dient descent and Riemannian conjugate gradient methods on a quotient manifold with a
Euclidean metric, which is also referred to as the Bures-Wasserstein metric [4, 32]. Thus
the convergence of the Burer-Monteiro method can be understood within the context of

Riemannian optimization on a quotient manifold.

3.2.2 Riemannian Optimization with the Embedded Geometry of H”

Another natural approach is to regard H}"’ as an embedded manifold in the Euclidean
space C™*". For instance, Riemannian optimization algorithms on the embedded manifold
of low-rank matrices and tensors are quite efficient and popular [41, 42]. Even though it
is possible to study H? C C™™ as a complex manifold, we will regard C"*" as a 2n?-
dimensional real vector space and H}" C C™ " as a manifold over R since f(X) is real-
valued. In particular, the embedded geometry of S}*, representing the set of real symmetric

PSD low-rank matrices, was studied in [43].

3.2.3 Riemannian Optimization by Using Quotient Geometry

The third approach is to consider the quotient manifold C*?/O,. Since there is a one-
to-one correspondence between X = YY* € H" and n(Y) € C*?/O,, the optimization

problem (1.2) is equivalent to
minimize  h(n(Y))
) | (3.2
subject to n(Y) € C*?/0,
where the cost function h is defined as h(n(Y)) = F(Y) = f(YY™).
For the quotient manifold C*? /O, one can first choose a metric for its total space CI*?,

which induces a Riemannian metric on the quotient manifold under suitable conditions. In

particular, a special metric was used in [36] to construct efficient Riemannian optimization
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algorithms for the problem (3.1). The horizontal lift of the Riemannian gradient for h(r(Y"))

under this particular metric satisfies

(grad h(n(Y)))y = VF(Y)(Y*Y) ' =2V (YY" )Y (Y*Y) L. (3.3)

From the representation of the Riemannian gradient (3.3), we see that this approach gener-

ates different algorithms from the simpler Burer-Monteiro approach.

3.3 The Riemannian Conjugate Gradient Method

In this section, we introduce the Riemannian conjugate gradient (RCG) method described
as Algorithm 1 in [41] with the geometric variant of PolakRibiére (PR+) for computing the
conjugate direction. It is possible to explore other methods such as the limited-memory
version of the Riemannian BFGS method (LRBFGS) as in [44]. However, RCG performs
very well on a wide variety of problems and is easier to implement for our numerical examples.

We first summarize two Riemannian CG algorithms in Algorithm 1 and Algorithm 2
below. Algorithm 1 is the RCG on the embedded manifold for solving (1.2) and Algorithm
2 is the RCG on the quotient manifold (C?*?/0,, g') for solving (3.2). We remark that the

explicit constants 0.0001 and 0.5 in the Armijo backtracking are chosen for convenience.

3.4 Equivalence Between Burer—Monteiro CG and RCG on the Riemannian
Quotient Manifold with the Bures-Wasserstein Metric (C?*?/0,, ¢")

In this section, we focus on establishing two equivalences in algorithms.First, we show
that the Burer-Monteiro CG method, which is simply applying the CG method for the
unconstrained problem (3.1), is equivalent to RCG on the Riemannian quotient manifold

(C*? /O, g*) with our retraction and vector transport defined in the previous sections.

Theorem 3.4.1. Using retraction (2.21), vector transport (2.23) and metric g!, Algorithm 2
is equivalent to the conjugate gradient method solving (3.1) in the sense that they produce

exactly the same iterates if started from the same initial point.
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Algorithm 1 Riemannian Conjugate Gradient on the embedded manifold H’”

Require: initial iterate X, € H}”, initial gradient &, = grad f(X), initial conjugate direc-
tion 7y = —grad f(Xj), tolerance € > 0
1: for k=1,2,... do
2: Compute an initial step t;. For special cost functions, it is possible to compute:
t, = argmin, f(Xy_1 + tne_1)
3: Perform Armijo backtracking to find the smallest integer m > 0 such that

f(Xe—1) = f(Rx,_, (0.5™tpmp—1)) > —0.0001 x 0.5™txgx,_, (§r—1,Mk—1)

Ce := 0.5"tpmp—1

4: Obtain the new iterate by retraction

Xy = Rx,_,(C) > See Algorithm 6
5: Compute gradient

& = grad f(Xy) > See Algorithm 3
6: Check convergence

if ||€]l == v/9x, (&, &) < € or f(Xg) < e, then break
7 Compute a conjugate direction by PR, and vector transport

e = =& + BT, (Mi—1), > See Algorithm 4, 5

. 9%, (& & — T (§r1))
with /Bk o 99X (5k—17£k—1) ‘

8: end for
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Algorithm 2 Riemannian Conjugate Gradient on the quotient manifold C*?/O, with
metric ¢!

Require: initial iterate Yy € n71(n(Yy)), initial horizontal lift of gradient &, = grad F(Yj),
initial conjugate direction 7, = —&,, tolerance & > 0
1: for k=1,2,... do
2: Compute an initial step ¢;. For special cost functions, it is possible to compute:
tr = argmin, F'(Yi_1 + t7,_1)
3: Perform Armijo backtracking to find the smallest integer m > 0 such that

F(kal) - F(Equ(O-‘Smtkm—l)) > —0.0001 x 0-5mtk9§/k,1(§k_1,ﬁk_1)

Ck = O5mtkﬁk

4: Obtain the new iterate by retraction

Yie = Ry, (Ck)
5: Compute the horizontal lift of gradient

& = (grad h(n(Y)))y, = grad F'(Yy) > See Algorithm 7
6: Check convergence

if Hng = /gy (&, &) < € or F(Y},) < e, then break
7 Compute a conjugate direction by PR, and vector transport

T, = =& + 5,{(7'@77,{71)%, > See Algorithm &

9 (grad F(Yy), grad F(Yy) — m%)

with = g
& 9y, (grad F(Yy_1), grad F(Y;_1))

8: end for

45



Proof. First of all, for ¢, the Riemannian gradient of F' at Y is grad F(Y) = 2V f(YY*)Y,
which is equal to the Fréchet gradient of F(Y) = f(YY*) at Y. Since vector transport is the

orthogonal projection to the horizontal space, the PR, i used in Riemannian CG becomes

gy, (grad F(Yy), grad F(Y;) — P (grad F(Y; 1))

P = o (erad F(Viy), grad F(Y;1))

(3.4)
Now observe that
P} (grad F(Y;._1)) = grad F(Y;,_1) — Py, (grad F(Vy_1))

and g' is equivalent to the classical inner product for C**?. Hence f3;, computed by (3.4) is
equal to PR, f; in conjugate gradient for (3.1).

The first conjugate direction is 7, = —grad FI(Y;) = —VF(Y}), so Burer-Monteiro CG
coincides with Riemannian CG for the first iteration. It remains to show that 7, generated

in Riemannian CG by

me = —&k + kaéf(nkfl)

is equal to n; generated in Burer-Monteiro CG for each k > 2. It suffices to show that
P;,f (Mk—1) = M1, VE>2.
Equivalently we need to show that for all £ > 2, the Lyapunov equation
(YeYe)Q+ QYYy) = Yim—1 — me1 Ya (3.5)

only has trivial solution 2 = 0. By invertibility of the equation, this means that we only
need to show the right hand side is zero. We prove it by induction.

For k =2, g1 = m = =& = —grad F(Y7). The following computations show that the
RHS of (3.5) satisfies

Yom —mYe = Y56 +Ys
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= N —c&) &G+ &)
= Y1 —Y7G
= YQeVfnY)Y1 - Y2V iMY]))N

= 0.

Hence Q = 0 and P} (1,_1) = ni—y for k = 2.
Now suppose for & > 2, the RHS of (3.5) is 0 and hence Py%kl(nk_l) = n—1 holds. Then
the RHS of the Lyapunov equation of step k£ + 1 is

YViame = miYeer = (Yo + ) ne — np(Ye + i)
= Y — Y
= Yy <—§k + B Py (ﬁk—l)) - (—&c + B P (Uk—l))* Yy,
= Y (=& + Bemi—1) — (=& + Bem—1)"Ya
= Y &G+ 6%
= Y @VIYY))Ye + Y2V f(YY)))Ye

= 0.

Hence Pf,f:ﬂ (nk) = M also holds. We have thus proven that Riemannian CG is equivalent to

Burer-Monteiro CG.

Since the gradient descent corresponds to 5, = 0, the same discussion also implies the

following

Corollary 3.4.2. Using retraction (2.21) and metric g', the Riemannian gradient descent on
the quotient manifold is equivalent to the Burer—-Monteiro gradient descent method with a

suitable step size (3.2.1) in the sense that they produce exactly the same iterates.
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3.5 Equivalence Between RCG on Embedded Manifold and RCG on the Quo-
tient Manifold (C?*?/0,, ¢*)

In this subsection we show that Algorithm 1 is equivalent to Algorithm 2 with Riemannian
metric g3, a specific initial line-search in step 5, a specific retraction and a specific vector
transport. The idea is to take advantage of the diffeomorphism /3 between C7*? /O, and
H'YP as well as the fact that the metric g* of C?*? /O, is induced from the metric of H'}*.

The Lemma below shows that there is a one-to-one correspondence between grad f and

grad h.

Lemma 3.5.1. If we use ¢g* as the Riemannian metric for C?*?/O,, then the Riemannian

gradient of f and h is related by the diffeomorphism 3 in the following way:

(D B)(x(Y))[grad h(n(Y))] = grad f(YY™).

Proof. Recall that 8 = 3 o and we have Theorem 2.3.1. By chain rule and the definition

of horizontal lift we have

LHS = (D B)(x(Y))[grad h(x(Y))] = (DB)(=(Y)) [Dr(Y) [grad h(z(Y))y ]
= DY) [grad h(x(Y))y |
= DA(Y)[grad F(V)],

where the second equality follows from the inverse direction of chain rule.

Now recall that F' = fo 3. Let A € C"*P then
DFE(Y)A =D f(YY")[YA*+ Y A"
Let X =YY*. Then we have

gy (grad F(Y), A) = gx(grad f(YY™), Y A* + AY™).
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Applying the definition of ¢®, we have
gx (DB(Y)[grad F(Y)],YA" + AY™) = gx (grad f(YY™), Y A" + AY™),

or

gx (LHS, Y A* + AY*) = gx (RHS, Y A* + AY™) |

Now notice that A is arbitrary and Y A* + AY™ can be any tangent vector in TxH';'. Hence
we must have LHS = RHS

Since § is a diffeomorphism bewteen C**?/O, and H't*, DB(r(Y))[] defines an isomor-
phism between the tangent space Try\C*? /O, and Tyy+H'". We denote this isomorphism
by Lry). When the tangent space is clear from the context, n(Y’) is omitted and we only

use the notation L for simplicity. The previous lemma then simply reads as

Lay)(grad h(r(Y))) = grad f(B(n(Y))).

In Algorithm 1, we have a retraction R and a vector transport 7% on the embedded
manifold H'?, (with the superscript F for Embedded), such that RF is the retraction associ-
ated with 7. Then we claim that there is a retraction R and a vector transport 79, (with
the superscript @ denoting Quotient), on the Riemannian quotient manifold (C2**/0,, ¢*),
such that Algorithm 2 is equivalent to Algorithm 1. The idea is again to use the diffeo-
morphism /3 and the isomorphism Lryv). We give the desired expression of R? and 7€ as

follows.

Rr?(Y) (fﬁ(Y)> = Bil (Rg(n(y)) (L(gn(Y)))> . (3.6)
7:ICT'EQ(Y)(&‘(Y)) = L;(l}@) ( ngnn(y)) (L(fn(y)))) ) (3.7)

where (Y3) is in C7*? /O, such that §(r(Y3)) denotes the foot of the tangent vector TL%]KM) (L(gn(y))).
Now it remains to show that R? defined in (3.6) is indeed a retraction and 7% defined

in (3.7) is indeed a vector transport.
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Lemma 8.5.2. R° defined in (3.6) is a retraction.

Proof. First it is easy to see that Rf?(y)(on(y)) = 1(Y’). Then we also have for all vyy) €
T:vC? /O,

D Ry (00 [v=r)] =

Hence D Rfj’(y)(on(y))[-] is an identity map.

Lemma 8.5.3. TP defined in (3.7) is a vector transport and R is the retraction associated

with 7F.

Proof. Consistency and linearity are straightforward. It thus suffices to verify that the foot
of E?(Y)(fn(y)) is equal to Rﬁy) (7x(v))- Since RF is the associated retraction with 7%, the
foot of ﬂ?nn(y))(L(fn(y))) is equal to Rg(n(y)) (L(T]n(y))), which we denote by 3(n(Y3)) for
some 1(Y3). Hence Rff(y) (Me(vy) = B (Rg(n(y)) (L(nn(y)))) = 1(Ys).

Furthermore, we have that ﬁ?(y) (bxvy) = L;(lx@) (E]%nnm) (L(fn(y))» is a tangent vector

in Tr(y,)Cy*?/O,. Hence, the foot of 7:7?(},) (&x(v)) is also (Y3).

Finally, in order to reach an equivalence, we also need the initial step size to match the

one in step 5 of Algorithm 2. We simply replace the original initial step size t; by
by = arg min FYRY) + (Y + mieYy)).

This value of ¢, now is equivalent to the initial step size in step 5 of Algorithm 1. This gives

us the following result:
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Theorem 3.5.4. With the newly constructed initial step size, retraction and vector transport
in this subsection, Algorithm 2 for solving (3.2) is equivalent to Algorithm 1 solving (1.2) in

the sense that they produce exactly the same iterates.

3.6 Implementation details

The algorithms in this section can be applied for minimizing any smooth function f(X)
in (1.2). For problems with large n, however, it is advisable to avoid constructing and
storing the Fréchet derivative V f(X) € C"™" explicitly. Instead, one directly computes
the matrix-vector multiplications V f(X)U. In the PhaseLift problem [8], for example, these
matrix-vector multiplications can be implemented via the FFT at a cost of O(pnlogn) when
U € C™*P; see [36].

Below, we detail the calculations needed in Algorithms 1 and 2. When giving flop counts,
we assume that V f(X)U € C"P can be computed in spn logn flops with s small. For g and
g% in Algorithms 7 and 8, we use forward slash "/" and backslash "\" in Matlab command to

compute the inverse of Y*Y'.

3.6.1 Embedded manifold

Algorithm 3 Calculate the Riemannian gradient grad f(X)
Require: X = UXU* € H?

Ensure: grad f(X) = UHU* + U,U* + UU; € TxH}”

T+ Vf(X)U > # spnlogn flops
H «+ U*T > # p*(2n — 1) flops
U+ T—-UH > # np +np(2p — 1) flops

In implementation, we observe a vector transport that has better numerical performance
if we only keep the first term in the above sum of H; and the second term of Uy, in Algorithm

4, which is outlined in Algorithm 5.
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Algorithm 4 Calculate the vector transport by projection to tangent space Py, (v)

Require: X, = U, X,U;, Xy = UyX,Us and tangent vector v = U H Uy + U, Uy + U U, €
TXI%TP.

Ensure: Py, (v) = UyHyUs + Uy, Us + UsUy,

A+ UiU, > # p?(2n — 1) flops

D A H, A, UV < U (H,A) > # 3p*(2p — 1) + np(2p — 1) flops
HY UsUp A, UZSZ) — Uy A > # p*(2n — 1) + 2np(2p — 1) flops
HY « HY,  UB « Uy (UyUs) > # np(2p — 1) + p*(2n — 1) flops
Hy HQ(I) + HéQ) + H2(3) > # 2p? flops
Upy UM +UPD +UP, Uy 4 Upy — Up(UsUpy) > #

3np +np(2p — 1) + p*(2n — 1) flops

Algorithm 5 Calculate the simpler form of vector transport used in implementation that
has a better performance P, (v)

Require: X, = U;2,Uf, Xy = Uy3,Uy and tangent vector v = U H Uy + U, Uy + U U,| €
TXl/H:L_’p
Ensure: Pk, (v) = UyHyUs + Uy, Us + UsUp)

A+ UiU, > # p?(2n — 1) flops
Hy +— A*H A > # 2p*(2p — 1) flops
U, U, A > # np(2p — 1) flops
Upy < Uy, — Us(UsU,) > # np+ p?(2n — 1) +np(2p — 1) flops

Algorithm 6 Calculate the retraction Rx(Z) = Py (X + Z)

Require: X = UXU* € H*, tangent vector Z = UHU* + U,U* + UUj.
Ensure: Pynr(X +2) = U, X, U7

Y+H R*
(@, R) < qr(Up,0) M « > # 20np? flops
R 0
[V, 5] + eig(M) > O(p?) flops
S+« SA:p1:p), Us <« {U Q] V(:1:p) > # np(4p — 1) flops
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3.6.2 Quotient manifold

Algorithm 7 Calculate the Riemannian gradient grad F'(Y)

Require: Y € CI*?
Ensure: T = grad F(Y)
1: if metric is ¢ then
T« 2VF(YY*)Y.
2: else if metric is ¢g* then
7« Y(Y*Y)!
T« 2Vf(YY*)Z
3: else if metric is g3 then
7« Y (YY)
T« 2Vf(YY*)Z
M <« Y*T, T%T—%ZM

4: end if

> # 2spnlogn flops

> # np(2p — 1) + p*(2n — 1) + O(p?) flops

> # 2spnlogn flops

> # np(2p — 1) + p*(2n — 1) + O(p?) flops
> # 2spnlogn flops
> # p*(2n — 1) + np + 2np?* flops
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Algorithm 8 Calculate the quotient vector transport Pff(hy)

Require: Y; € C*P Y, € CI*P and horizontal vector hy € Hy,.
Ensure: hy = P}t(hy) € Hy,.

1: if metric is ¢' then

E —Y}Y, > # p*(2n — 1) flops
(Q,9) + eig(E), d < diag(S) > # O(p?) flops
A<—d[1,1,---,1}+[1,17--~,1TdT > # 2p° flops
A Q*(Ysh — hiY2)Q > # p*(2n — 1) + np + 2p*(2p — 1) flops
Q<+ Q(A./NQ* > # p* + 2p*(2p — 1) flops
hy < hy — Y30 > # np +np(2p — 1) flops
2: else if metric is ¢ or ¢° then
Qe (YY) (Y5 h) > # 2p*(2p — 1) +p*(2n — 1) + O(p*) flops
Q<+ %(Q — Q*) > # 2p? flops
hy < hi — Y50 > # np + np(2p — 1) flops

3: end if

3.6.3 Initial guess for the line search

The initial guess for the line search generally depends on the expression of the cost
function f(X). For the important case of f(X) = 3|l A(X) — b||% where A is a linear operator
and b is a matrix, the initial guess for embedded CG requires solving a linear equation and
for quotient CG it requires solving a cubic equation. Below this calculation is detailed for

b of size mn for some m and assuming that A(X), A(T) and A(Y7n*) can be evaluated in
sp®nlogn flops for X € HP, T € TxHP and Y,n € C*P,

Algorithm 9 Calculate the initial guess t, = arg min, f(X + tT')
Require: X € H'? and a descend direction T' € TxH'”

Ensure: ¢, = argmin, f(X + tT') = argmin, 3 | A(X +¢T) — b|%

R+ AX)—-1b > # sp®nlogn + mn flops
S« A(T) > # sp®nlogn flops
t*e—% > # 4mn — 1 flops
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Algorithm 10 Calculate the initial guess ¢, = arg min, F'(Y + tn)

Require: Y € C'*P  a descend direction n € Hy,

Ensure: ¢, = argmin, F(Y + tn) = argmin, $ | A((Y + tn)(Y + tn)*) — b

co+— AYY*)—b > # sp®nlogn + mn flops
cgl) «— A(Yn"), 052) — AnY™), ¢ « cgl) - 052) > # 2sp*nlogn + mn flops
ey < A(nmm*) > # sp®nlogn flops
dy < {(Co, o), d3 < 2{co, 1) > # 4mn — 1 flops
dy < 2{(ca,co) + (c1,c1), di + 2{c1,co) > # 6mn — 1 flops

C <« |4dy 3ds 2dy d;

S < roots(C), t. < the smallest real positive root in S

3.7 Concluding Remarks

In this chapter, we have shown that the nonlinear conjugate gradient method on the un-
constrained Burer-Monteiro formulation for Hermitian PSD fixed-rank constraints is equiv-
alent to a Riemannian conjugate gradient method on a quotient manifold C?*?/O, with the
Bures-Wasserstein metric ¢!, retraction, and vector transport. We have also shown that the
Riemannian conjugate gradient method on the embedded geometry of H'” is equivalent to
a Riemannian conjugate gradient method on a quotient manifold C}*?/0O, with a metric
g%, a special retraction, and a special vector transport. With these equivalences, we are
able to unify three different methodologies within the same framework via optimizations

on the quotient Riemannian manifold and conduct a fair comparison of the performance of

algorithms.
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4. CONDITION NUMBER ANALYSIS OF RIEMANNIAN
HESSIANS AND RANK-DEFICIENCY EFFECTS

4.1 Introduction

In many applications, (1.2) or (3.2) is often used for solving (1.1). In [45], it was proven
that first-order and second-order optimality conditions for the nonconvex Burer—Monteiro
approach are sufficient to find the global minimizer of certain convex semi-definite programs
under certain assumptions. In practice, even if the global minimizer of (1.1) has a known
rank 7, one might consider solving (1.2) or (3.2) for Hermitian PSD matrices with fixed rank
p > r. For instance, in PhaseLift [8] and interferometry recovery [11], the minimizer to (1.1)
is rank one, but in practice optimization over the set of PSD Hermitian matrices of rank p
with p > 2 is often used because of a larger basin of attraction [11, 36]. If p > r, then an
algorithm that solves (1.2) or (3.2) can generate a sequence that goes to the boundary of
the manifold. Numerically, the smallest p — r singular values of the iterates X, will become
very small as k — oo.

In this chapter, we analyze the eigenvalues of the Riemannian Hessian near the global
minimizer. More specifically, we will obtain upper and lower bounds of the Rayleigh quotient
at the point X = Y'Y* (or n(Y)) that is close to the global minimizer X = YY™* (or n(Y)).

We first define the Rayleigh quotient and the condition number of the Riemannian Hes-

sian.

Definition 4.1.1 (Rayleigh quotient of Riemannian Hessian). The Rayleigh quotient of the

Riemannian Hessian of (H}”, g) is defined by

gx (Hess f(X)[Cx], Cx)
gx(Cx,Cx)

IOE<X7 CX) =

for CX S TX/H?_’p.

The Rayleigh quotient of the Riemannian Hessian of (C*?/0,, ¢') is defined by

oy (Hess h(n(Y)) [§xr)], Exv)
g:'[(Y) (gn(Y) ) gn(Y))

pi(n(y)v gﬂ(Y)) =
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for &xvy € Try)CP*P/O,. If the Rayleigh quotient has lower bound a and upper bound b,

then we define g as the upper bound on the condition number of the Riemannian Hessian.

4.2 The Rayleigh Quotient Estimates

We assume that the Fréchet Hessian V2f is well conditioned when restricted to the
tangent space. Formally, our bounds will be stated in terms of the constants A, B defined

in the following assumption:

Assumption 4.2.1. For a fixed € > 0, there exist constants A > 0 and B > 0 such that for

all X with HX - X HF < ¢, the following inequality holds for all (x € TxH™".

Al < (VA Cx) e < Bl

Observe that this assumption is always satisfied for sufficiently small ¢ when f is smooth.
However, the condition number B/A might be large in general. An important case for which
this assumption holds everywhere is f(X) = 1| X — H |7, with H a given Hermitian PSD
matrix. In this case, V2 f(X) is the identity operator thus A = B = 1.

The main result in this chapter is given in the following theorem.

Theorem 4.2.1. Let X = YY* be the global minimizer of (1.1) with rank r < p. For
X =YY* near X where Y € Cp?, let (x € TxH}" be any tangent vector at X, &y €
TvyC*? /O, be any tangent vector at ©(Y), and &, € Hi be its horizontal lift at ¥ w.r.t.
the metric ¢'. Let X = UXU* denote the compact SVD of X and denote the ith diagonal
entry of ¥ to be o; with 01 > -+ > 0, > 0. Under the Assumption 4.2.1, for any arbitrary

tangent vectors (x and &y, the following bounds hold:

1. For the embedded manifold,

A= ZIVF)) < pP(X,Gx) < B VA
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2. For the quotient manifold metric ¢',

240, = 2|V (YY) < p'(n(Y), &xv)) < B Dy + 2| V(YY)

24~ P ED g r vy < 2 ), ) < 48+ "2 gy

Op Op

A VY < PR ) < B+ VAV,

p p

where Di(y) satisfies 20, < Di(y) <2 (U% + 01).

Ip

In particular, if X = YYV* has rank p, e.g., X has singular values ¢y > --- > 7, > 0,

then under the Assumption 4.2.1, we have the following limits, where the limits X — X and

A,

n(Y) — n(Y) are taken in the sense of HX - )A(HF — 0 and HYY* —YY*

— 0:
F

1. For the embedded manifold

A ;HW(X)

|

’ < lim pP(X,¢éx) < B+ AzHVf(X)
X=X Op

2. For the quotient manifold metric ¢',

246, = 2|VF(X)| < lim _ p'(n(Y),&p) < B DLy +2|VAX),

T:(Y)HK(Y)

9

24 - WPV 1G9 < tim (). g0) <48+ VP o)

Op n(Y)—r(Y) 2
1 - . . 1 N
A= —|viX)| < lim  pPEY), &) < B+ —|VFX)|,
Op n(Y)—=n(Y) Op
1 . A 1 57 | A
where Dn(f,) satisfies 207 < Dn(Y) <2 (6]0 +61).

Remark 4.2.2. If we further assume that Vf(X) = 0, then the limits above can be further
simplified. Such an assumption V f (X ) = 0 may not be true in general, but it holds, e.g.,
for all cost functions that take the form f(X) = 1| A(X)— b||% for some matrix-valued

linear operator A, and the minimizer X for constrained minimization (1.2) or (1.1) satisfies
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f(X) =0. Thus X is also the global minimizer for minimizing f(X) over all X € C, which
implies V f(X) = 0.

Remark 4.2.3. We can define the ratio of the upper and lower bounds of the Rayleigh quo-
tient as the upper bound on the condition number of the Riemannian Hessian. Then under
the assumption Vf(X) = 0, the limit of the condition number of the Riemannian Hessian
for the Bures-Wasserstein metric g' depends on the condition number of the minimizer X.

This reflects a significant difference between ¢g' and the other two metrics.

Remark 4.2.4. For the case Vf(X) # 0, if ||[Vf(X)]| is sufficiently small in the sense that

A

VX)) < a, (4.1)

where a is equal to 6,A/4, 6,A/8/(\/p+1), and 6,A/2 for the embedded metric, the condition
numbers of the embedded metric, quotient metric g* and ¢* are on the order of B/A. The
quotient manifold with ¢! is still different from the other metrics since the condition number

of its Riemannian Hessian additionally depends on the ratio 61/6,.

The rest of this subsection is the proof of Theorem 4.2.1. By the expressions of Rieman-

nian Hessian, we have

VX)) Cxdgn 0% (PR (VFOOXTR)" + (XN V(X)) Cx)

(X, (x) 9x (Cxs Cx) * gx(Cx,Cx)
VI(YY)YE + &Y, YE + &, V™) yV(YY*)Ey Ey)
. v :< Yr Cnxn 9y 77Y7Y.
pH(R(Y ), &) G5 GG
VYY)YE + &Y. YE +EY")
2 Y _ < Y i (Cnxn
oY), &) 9 &y, &y)
<Vf<YY*)P¢EY>gY>CnXp + <P¢Vf(YY*>EY’EY>CnXP
g}z/(gY7gY) g%’(gYagY)
<YE*YEY7 2Vf(YY*)Y(Y*Y)_1>Cnxp
+

912/ (EY» EY)
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(EY 2V Y)Y (VY)Y

g%(fyfy)

CnXp

(V2 IYYYE + &Y YE + 6V

3 % Ly _ - Cnxn
P, baer) FEne) ]

LI = POVAYY)U = PG (YY) &)

7 (&, &) '

Observe that the leading terms in the above Rayleigh quotients take similar form: the
numerator involves the Fréchet Hessian V2f, and the denominator is the induced norm of
tangent vector from the respective Riemannian metric. We call the leading term second
order term (SOT) as it involves Fréchet Hessian of f as the second order information of f
and we call the other terms that follow the leading term first order terms (FOTs) as they
only contain the first order Fréchet gradient.

Under the Assumption 4.2.1, we get bounds of the SOT in p¥ (X, (x) as:

a o a exlE (OO e _ Nk

gx(Cx,Cx) — 9x(Cx, Cx) ~ gx(Cx,Cx) =5

For the quotient manifold, observe that Yg; + &Y™ € Tyy-HP. Hence Assumption

4.2.1 also applies and we get

% = 2 —% = —% = —% = 2
P Y&+ &Y, (TIOYIVE +EYLYE A6V . V& +& v,
gi’ <EY7 EY) B gi/(gy’ fY) - gi/ (EY? EY)
. . . N GER
Hence the analysis of SOT for the quotient manifold now turns to analyzing A ma)
Y \SYSY

We denote its infimum and supremum by

- = 2
L pEea
TE(Y) = 11 . T — s
e ETo ) C? 10, 9y (Ey5 &)
e 2
; Y&y + &Y™
Diyy = sup H £

§n(Y)€Tn(y)(Cpr/Op g?(é}Y’éY)
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The subscript is used to emphasize that the infimum and supremum are dependent on n(Y").

The next lemma characterizes these infimum and supremum.

Lemma 4.2.5. For any Y € n7!(n(Y)), let YY* = USU* denote the compact SVD of YY*
and denote the ith diagonal entry of ¥ by o; with oy > --- > 0, > 0. Then the following

—% = 2

: . 1% v
estimates for the infimum C7 and the supremum Dy of M hold:
T T gly (§Y7£Y

2
CT%(Y) = 20'p, 20’1 S DTlt(y) S 2 (Z_-l + O'1> .

p

3 _ 3 _
CTE(Y) - DT:(Y) =L

Next we estimate the FOTs in the Rayleigh quotient. The result is given in the next

lemma.

Lemma 4.2.6. Let X = YY* for any Y € n}(n(Y)) with X € H}” and =(Y) € C*?/0,,
Let UXU* be the compact SVD of X and denote the ith diagonal entry of ¥ with o1 > --- >
o, > 0. Then we have the following bounds for the FOTs in the Rayleigh quotient of the

Riemannian Hessian.

1. For the embedded manifold we have

2
[FOT| < —|IVf(X)].
Op

2. For the quotient manifold with metric g* we have

[FOT| < 2[[Vf(YY)].

3. For the quotient manifold with ¢g? we have

Fots < 2P g riyvy).

Op
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4. For the quotient manifold with ¢* we have

1
[FOTs| < —|[VF(YY)].
Op

The proofs for Lemma 4.2.6 and Lemma 4.2.5 are given in Section 4.4. With Lemma

4.2.6 and Lemma 4.2.5, the proof of Theorem 4.2.1 is concluded.

4.3 The Limit of the Rayleigh Quotient for a Rank-deficient Minimizer X

Next, we consider the rank deficient case p > r where r is the rank of the minimizer X ,
i.e., the minimizer X lies on the boundary of the constraint manifold. Under the Assumption
Vf(X) = 0, any convergent algorithm that solves (1.2) or (3.2) will generate a sequence such
that both 0,41, -+, 0, and V f(X) will vanish as X — X. We make one more assumption
for a simpler quantification of the lower and upper bounds of the Rayleigh quotient near the

minimizer.

Assumption 4.3.1. For a sequence {X;} with Xy € H” (or n(Yy) € CI*?/O, ) that con-
verges to the minimizer X (or n(Y)), let (0p), be the smallest nonzero singular value of

X =YY}, assume the following limits hold.

1. For the embedded manifold,

A
li X < —=.
Jim (o IV <
2. For the quotient manifold with metric ¢!,
1 A
li .Y < —.

3. For the quotient manifold with metric g2,

tim 2P g vy < A

k—o0 (O-p)k
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4. For the quotient manifold with metric g3,

. 1
lim
k—o0 (o'p)k

ViYY<

N[

We remark that Assumption 4.3.1 may not always hold. In the next section, we will give
some numerical evaluation of this assumption for four examples listed in Figure 4.3 (eigen-
value problem), Figure 4.5 (matrix completion), Figure 4.7 (phase retrieval), and Figure 4.9

(interferometry recovery). Assumption 4.3.1 holds numerically in most of these tests.

Remark 4.3.1. In general, there exists a sequence such that the FOT in p*(n(Y), & v)) may
blow up. Consider the following simple example of eigenvalue problem.
A 2
minimize f(X)= 2HX XHF

: 3,2
subject to X € HY

1 00
where X = 0 0 0| is a rank-1 minimizer. Suppose X takes the simple diagonal form
0 0O
o1 0 0

X=10 o9 0|. Then we have

0 0 O
0'1—1 0 0
Vf(X): 0 oy 0
0 0 O

Since Vf(X) — 0 as X — X, we have oy — 1 and o5 — 0.

Recall that the FOT in p*(n(Y), &xvy) is

(I = P)VIYY)I = P&y (VYY) &) (VIOY YLK Y K)oy
97y &y) 2|V SY*||5 + | YLK Y™

.
F
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01
Hence if we choose S =0 and Y, K = |0 0], we have

0 0

(VIYY VYLK Y. K) gy 01— 1

2y SY*|[7 + |YLEY 7 oz

whose limit is dependent on the path that the tuple (oy,02) goes to (1,0) and hence may
blow up.

If X has rank r < p and {X}} is a sequence that satisfies Assumption 4.3.1, then Theorem
4.2.1 implies

1. For the embedded manifold we have

A
k—o00 2

A
2

2. For the quotient manifold with metric ¢' we have

1 Y, D1

T k—oo (Up)k k—o00 (Up)k

124,

< lim p*(n(Ya), xvy)) < 4B+ A,

) A
< lim p? < =
= kh—>r£10p (T[(Yk)afn(Yk)) = B+ 97

Dy 2oy
where lim 208 > lim 27Uk = 400 since 0, — 6, = 0.
k—oo (p)k k—oo (Op)k

Notice that the condition number in the Bures—Wassertein metric g' is fundamentally dif-

ferent from the other ones since it is the only metric that blows up.

4.4 Proof of Lemmas in This Chapter

4.4.1 Proof of Lemma 4.2.5

Proof. Tt is straightforward to see C7y) = D2,y = 1 by the definition of g°.
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For metric 2, write &, = Y'S + Y| K for some S = S* € CP*? and K € C"*?. We have

= 2
Yo +ev, o avsv:
952/(55/:53/) HYSY*H?; + ||KY*H;

Hence it is easy to see Cﬁ(y) = 2 when S is zero matrix and Dﬁ(y) = 4 when Y SY™* is nonzero
and K is zero matrix.

For metric 1, by its horizontal space, we can write &, = Y(Y*Y)71S + Y| K for some
S =5 € CP? and K € C"P. Notice that the SVD of Y can be given as Y = UszV*
where V is unitary. Let S = V*SV and K = KV, and K; be the ith column of K, then

e +av ey s seey)y e« 2lmyed
NG &) YY) TSI+ KT
|25 4 zbsw3 | oKt
= L2 2
[==25], + |1,

v (g a2 s 2 S alK],

ij=1

P ’gijf P = 2
DR
i,j=1 i=1

Poogla |2 P~ 2 P 9
2% BIS[ +2 2 |S[ + 22 el K%
_ i,j=1 i,j=1 i=1 (42)
P ’511|2 P = 2 ’
= S+ 2],

gi

where symmetry S* = S is used in the last step. The lower bound is given by

P = (2 P - 2 P _ 2 P _
2 - 2l 2 s e SalE]L 2(z 1) SIS +20, S|E|

i,j=1 i,j=1 i=1 i,j=1 i=1

3. |2 _ = P~ |2 D — 12

P L o oz il + S
>(+0) £J5 +203 £

B 71 =1 Pis

= P P -2

2 |8y + o 2| K

v
DO
EQ
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=0

This lower bound is sharp as one can choose S = 0 and K with HK},HF =1 and H[_(i h

for i < p.

We have the upper bound as follows.

2y alg P12 218 +2 5 o K 2(2 4+ 1) ¥ |8y[ + 200 S| K

ij=1 7 Y ij=1 ) P R 1V Ip ij=1 Y 11:1 e
o A = iig--2+§:H‘f(.2
1,?::17i +i§1HKi F o1 sz Y Sl e

2 (U% +O'1) Zp: Sij ’ + 20'% iHK} ?

B op ij=1 i=1 F
o P = 2 D = 112
LjZ:l S o i;HKi F

where the last inequality is obtained by investigating the range of the rational function

f(z,y) = % witha:2(g—i+01),b:20f and d = o1 on {(z,y)|xr > 0,y > 0,zy # 0}.

This upper bound 2 (Z—i + 01) may not be the supremum as the inequalities are not sharp.

However, we can show that D}c(y) > 20,. To see this, choose S = 0 and K with HK]HF =1

and HKI

e 0 for i > 1. Then (4.2) reaches the value 20;. Hence the supremum must be

at least 201. So we have
2
201 < Dypyy < 2 (Ul + 01> : (4.3)

Op

4.4.2 Proof of Lemma 4.2.6

Proof. We will use the inequality ||B*A*||r = ||[ABllr < [|A|ll|Bllr < ||Al|lr||Bl|F for two
matrices where || A|| is the spectral norm. In particular, if X is Hermitian, then we also have
[AX|[r = [[ XA < [ X[[[[A*][7 = [[ X[ All -

For the embedded manifold, recall that £ = Py (£x) and &5 = PY(€x) and Py and PY
are defined in (2.7), and the bound for the FOT is given by

lgx (P (VAO(XTE)™ + (XN V (X)), ¢x))|
9x(Cx, Cx)
(PR (VA)GEXT+ XTRVAX)), Cx )
<€X7 CX)(Can
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(P (THOEX) )

(P (XTRVF(X)) )

= (Cx, Cx) enxn - (Cx, Cx)enxn
IVSOGEX rliexlle _  IVFEOMIGEX Nelexlle _ o IVAEOMX IR e
N (Cxs Cx) gnxn - (Cx Cx) onxn - (Cx, Cx ) enxn
2|V £ CON X llex

2
S T e VIO = e S0l

For the quotient manifold with g¢*, the FOT is bounded by

BOVIOYIEE)| @V Er) | 2 VIO E ],
931/(51/751/) <EY7€Y>(CWP B <EY7EY>(CnXp
2|V YY)l |y

<EY’ gY>(C"><p

2
: = 2[[VfYYI).

For the quotient manifold with g2, the FOTs are

(VIYY)PEEE ). (PEVAYY 6. &)

FOTs = — _ 1> fgnxe 4.4
S A& &) #EE) o
(Y&& 2V (Y Y)Y (YY) ™)
— (4.5)
gY(€Y7€Y
(&Y & 2V FYYY (VYY)
_ R , (4.6)
9y (& &)

We can estimate each term separately. Notice that the SVD of Y can be givenasY = U Y2V
where V is unitary. Let S = V*SV and K = KV, and K, be the ith column of K. For the

first summand we have

(VIOYIRE &y ), (VIYY)PEEy Gy ),
9% &y &y) <EYY*EYY*>CM”
IV y)llé,
<EYY*> EYY*>Cn><n .

1S5 + 117 .
el VYY)l
IV SY* [ + [ KY ™[5
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Y K|
= (an/SﬂﬂF ||Q<Y|=‘kﬂ%> IvIel
B ( |ves, &l )W(W)
HfS\FH "RvE
< 2Ivry

Similarly we have the bounds for the second term:

> p < —||IVf(Y Y™
g%(f%f}f) Tp v .

For the third term, with the fact ||A*Al|r = ||A||%, we have

(YE& 2y L YRS YTy YY) Y

R (& &) 7 (& &)

YEEY| 29y )y (VY)Y
g%(gyfy)

IRV Y)Y (Y)Y
7 (& &)

= 2V (Y)Y VYY)

IN

e

IA

2
< 2w sy

Similarly we can bound the fourth term:

Y 2V A(YYHY (YY) !
’<£Y £Y72 f2( 7 >, ( ) > CnXxp S QﬁHVf(YY*)H
9y &y &) Ip

Thus, for the quotient manifold with g% we have

4 1
Fons| < D9 vy
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For the quotient manifold with g3, recall that P = I — Py = [ — Y(Y*Y)~'Y*, with
the property (2.14) and the fact (I — Py)*Y = 0, the FOT can be bounded as follows:

G (L= P VYY) = P&y (YY), &)
gé(gyfy)
2(PEVF(YY*)PEEy, &y )

g%(EY?EY)
2UVF(VY YLK, VIE) |
gig’f(gyfy)
VS (VY )YLE, VIE) |
Y& +&v+|
VS (VY YLE, VI K)o
12V SY* + YV, KY* + YK*Y7|%
2VF(YY*)YLK YLK) cs|
12V SY*|[7 + YLK Y |5 + YK=Y |7
(VIYY)YLE YIE) o
2[Y SY*[|7 + VLY (|7
(VY YLE, YL K)o
YL EY™|5

YLK .
S IVAYY)
VLY ™[5

jpuw<w*>u.

IFOT| =

(Cnxp

IN

IN

IN

4.5 Numerical Experiments and Interpretations

In this section, we report on the numerical performance of the conjugate gradient methods
on three kinds of cost functions of f(X): eigenvalue problem, matrix completion, phase-
retrieval, and interferometry. In particular, we implement and compare the following four

algorithms:

1. Riemannian CG on the quotient manifold (C?*?/0,, g*), i.e., Algorithm 2 with metric
g'. This algorithm is equivalent to Burer-Monteiro CG, that is, CG applied directly
to (3.1).
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2. Riemannian CG on the quotient manifold (C"*?/0,, %), i.e., Algorithm 2 with metric

g*>. The same metric g> was used in [36].

3. Riemannian CG on the quotient manifold (C?*?/0,, ¢*), i.e., Algorithm 2 with metric
g°, and also a specific retraction, vector transport and initial step as described in
Section 3.5. This special implementation is equivalent to Riemannian CG on embedded

manifold, i.e., Algorithm 1.

4. Burer—Monteiro L-BFGS method, that is, using the L-BFGS method directly applied
to (3.1). This method was used in [11].

4.5.1 Eigenvalue Problem

For any n-by-n Hermitian PSD matrix A, its top p eigenvalues and associated eigenvectors

can be found by solving the following minimization problem:

mingnize f(X):= %HX - AH??

subject to X € HP

or equivalently

o . 2
mlal(llr}r)uze h(n(Y)) == YY* — A% |
subject to n(Y) € CI*?/0,

It is easy to verify that
VIX)=X-A, Vf(X)(x] =C, C(xe€C™m

In practice we only need A as an operator A : v — Av. We consider a numerical test
for a random Hermitian PSD matrix A of size 50 000-by-50 000 with rank 10. We solve the
minimization problem above with p = 15. Obviously, the minimizer is rank-10 thus rank
deficient for C}*? /O, with p = 15. This corresponds to a scenario of finding the eigenvalue
decomposition of a low rank Hermitian PSD matrix A with estimated rank at most 15. The

results are shown in Figure 4.1. The initial guess is the same random initial matrix for all
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four algorithms. We see that the simpler Burer—Monteiro approach, including the L-BFGS
method and the CG method with metric ¢!, is significantly slower.

In the second test of Figure 4.2, the minimizer has rank r = 15, and the fixed rank
for the manifold is also set to p = 15; i.e., there is no rank deficiency. But the condition
number of the minimizer A causes a difference in the asymptotic convergence rate for the
CG method with metric g'. In 4.2a, the condition number of A is large and we observe a
slower asymptotic convergence rate for the CG method with metric g'; while in 4.2b, the
condition number of A is smaller and the asymptotic convergence rate becomes much faster.

This is consistent with Theorem 4.2.1. In the third test of Figure 4.3, we show the ratio term
W in Assumption 4.3.1 versus the iteration number k. This ratio does not blow up

as 1(Y},) converges to n(Y).
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Figure 4.1. Eigenvalue problem of a random 50 000-by-50 000 PSD matrix

of rank 10 solved on the rank 15 manifold: a comparison of normalized cost
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function value % decrease versus iteration number k£ when using L-
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4.5.2 Matrix Completion Problem

Let Q be a subset of the complete set {1,--- ,n} x {1,---,n}. Then the projection

operator onto €2 is a sampling operator defined as

Xi,j if (17.]) S Qa

0 if (i,j) ¢ Q.

PQ CM 5 Xi,j —>

The original matrix completion problem has no symmetry or Hermitian constraint. Here,

we just consider an artificial Hermitian matrix completion problem for a given A € H}”:

minimize f(X) = 4[| Po(X — Al

subject to X € H'P

or equivalently

n(Y)

minimize  h(n(Y)) := 3||Po(YY™ — Al
subject to n(Y') € C*?/O,

Straightforward calculation shows
VHX) = Po(X = A), V2F(X)[Cx] = PalCx),  Cx € T,

We consider a Hermitian PSD matrix A € C**" with n = 10000 and P, a random 90%
sampling operator. In the first test of Figure 4.4a, the minimizer has rank r» = 25, and the
fixed rank for the manifold is set to p = 30. In the second test of Figure 4.4b, the minimizer
has rank » = 25, and the fixed rank for the manifold is set to p = 25. The initial guess
is the same random matrix for all four algorithms. For both cases, we see that the simpler
Burer—Monteiro approach, including the L-BFGS method and the CG method with metric

g', is significantly slower.

In the third test of Figure 4.5, we show that the ratio term W in Assumption

4.3.1 versus the iteration number k does not blow up as n(Y}) converges to n(Y).
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4.5.3 The PhaseLift Problem

We now solve the phase retrieval problem as described in [8]: Take an image z € CV *x1
and a collection of masks denoted by {M;}™, where N? = n is the size of the flattened image.
Each M; is of the same size as x and the elements in each M, are real or complex numbers
with both real and imaginary parts between 0 and 1. We can choose M; to be random

numbers or i.i.d. Gaussian. We have m number of observations for each maski=1,---  m:
d' = N(z) := |(DFT(Diag(M;) * z)|%, (4.7)

where N denotes the nonlinear operator. The squared power is taken element-wisely.
Diag(M;) denotes the diagonal matrix whose diagonal is M;. DFT denotes the n x n discrete
Fourier transform matrix. Therefore, d! is a vector of size n x 1.

Now we lift # so that V' can be treated as a linear operator. Let d} denote the jth
component of d'. Let 2" denote DFT-Diag(M;) and z!” denote the jth row of DFT-Diag(M;).
Then equation (4.7) can be written as

2 e .
‘(z},x)‘ =z 'y =d, j=1,...n, i=1...,m.

Denoting X := zx*, the nonlinear operator N can be rewritten as the linear operator
A:CY 5 R X s [tr(2l2l X)), - (22X, e (XD, - (2™ X))
Let Z':= DFT - Diag(M;) = | ... |, then we have alternatively

it
A CY 5 R™ X s [diag(ZP X ZY), - - - diag(Zm X Z™)]".
Denote b = [d",--- ,d™]T . Then the cost function can be written as

FX) = LA — b
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The conjugate of operator A, denoted by A* is given by

S S Tbz =3 77 Diag(t)Z',  if domain of A is C"
i=1j=1 i=1

A(b) =
Re (Z Z: b2z | =Re (Z; A Diag(bi)Zi> , if domain of A is R"*".

i=1j=1

Straightforward calculation shows
V(X)) = A (AX) = 1), Vf(X)[¢x] = A (A(¢x)) forall (x € C™™.

For the numerical experiments, we take the phase retrieval problem for a complex gold
ball image of size 256 x 256 as in [36]. Thus n = 2562 = 65,536 in (1.1) or (1.2). We
consider the operator A that corresponds to 6 Gaussian random masks. Hence, the size of b
is 6n = 393,216. Remark that problem is easier to solve with more masks.

We first test the algorithms on the rank 3 manifold, and then on the rank 1 manifolds.
The results are visible in Figure 4.6. The initial guess is randomly generated. First, we
observe that solving the PhaseLift problem on the rank p manifold with p > 1 can accelerate
the convergence, compared to solving it on the rank 1 manifold. Second, when p = r =1,
the asymptotic convergence rates of all algorithms are essentially the same, though the
algorithms differ in the length of their convergence "plateaus'. When p =3 > r = 1, we can
see that the Burer-Monteiro approach has slower asymptotic convergence rates.

. . vy . .
In the second test of Figure 4.7, we show that the ratio term | f((U k)k’“ in Assumption
Ve

A,

4.3.1 versus the iteration number k& does not blow up as n(Y}) converges to n(Y").
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When the minimizer is rank deficient (the case in 4.6a), L-BFGS approach and
CG method with metric ¢! is significantly slower.
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4.5.4 Interferometry Recovery Problem

As last example, we consider solving the interferometry recovery problem described in
[11]. Consider solving the linear system Fz = d where F € C™" with m > n and x € C"*1.
For the sake of robustness, the interferometry recovery [11] requires solving the lifted problem

minimize  f(X) = 3| Po(FXF* — dd*)][3

subject to X € HY?P
where €) is a sparse and symmetric sampling index that includes all of the diagonal.

Straightforward calculation again shows
Vf(X)=FPo(FXF*—dd)F, V*f(X)[(x]=F*Po(F(xF*)F forall (x € C"".

We solve an interferometry problem with a randomly generated F' € C10000x1000  Hepce
n = 1000 in (1.1) or (1.2). The sampling operator € is also randomly generated, with 1%
density. In Figured.8a, p = 3 and r = 1 and we can see that the Burer-Monteiro approach
has slower asymptotic convergence rates. In Figure4.8b, p = r = 1 and we can see now that
all algorithms have more or less the same asymptotic convergence rates.
[vreivn||

In the second test of Figure 4.9, we show that the ratio term o, Assumption

4.3.1 versus the iteration number k does not blow up as n(Y}) converges to n(Y).
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versus iteration number £ when using L-BFGS approach and CG method with
metric ¢',i = 1,2,3. When the minimizer is rank deficient (the case in (a)),
L-BFGS approach and CG method with metric g! is significantly slower.
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) VIvYH|| . . . .
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plk
number % for L-BFGS approach and CG method with metric ¢',i = 1,2, 3.

4.6 Concluding Remarks

In this chapter, We have analyzed the condition numbers of the Riemannian Hessians
on (C™*?/0,,g'") for these metrics ¢g', g> and another metric g used in the literature. As
a noteworthy result, we have shown that when the rank p of the optimization manifold is
larger than the rank of the minimizer to the original PSD constrained minimization, the

condition number of the Riemannian Hessian on (C™*?/0,, g') can be unbounded, which
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is consistent with the observation that the Burer—Monteiro approach often has a slower

asymptotic convergence rate in numerical tests.

84



5. CONVERGENCE OF ORTHOGONALIZATION-FREE RCG
VIA RIEMANNIAN INTERPRETATION

5.1 Introduction

In many applications, it is desired to obtain extreme eigenvalues and eigenvectors of large
Hermitian matrices by efficient and compact algorithms. In particular, orthogonalization-free
methods are preferred for large-scale problems for finding eigenspaces of extreme eigenvalues
without explicitly computing orthogonal vectors in each iteration. For the top p eigenvalues,
the simplest orthogonalization-free method is to find the best rank-p approximation to a pos-
itive semi-definite Hermitian matrix by algorithms solving the unconstrained Burer-Monteiro
formulation. In this chapter, we show that the nonlinear conjugate gradient method for the
unconstrained Burer-Monteiro formulation is equivalent to a Riemannian conjugate gradient
method on a quotient manifold with the Bures-Wasserstein metric, thus its global conver-
gence to a stationary point can be proven. Numerical tests suggest that it is efficient for
computing the largest k eigenvalues for large-scale matrices if the largest k eigenvalues are
nearly distributed uniformly.

Given a Hermitian matrix B € C"*", the goal is to find its largest p eigenvalues and the
corresponding eigenvectors.

For large enough p > 0, A := B+ ul € C™" is a positive definite Hermitian matrix
with the same extreme eigenspaces. Thus we focus only on Hermitian positive definite or
semi-definite matrices.

Extreme eigenvalue problems for Hermitian matrices naturally arise in many applications
[46-52]. For example, many problems can be cast as a graph, for which the adjacency matrix
and the graph Laplacian are real symmetric thus Hermitian [53]. The extreme eigenvalues
and eigenvectors of these matrices contain information about the graph and the point cloud
data such as diffusion maps [54]. Notice that the discussion in this chapter also applies to
the smallest k eigenvalues for a positive definite Hermitian matrix B by considering either
A = ul — B with large enough p or A = B~! if an efficient implementation of the linear
system solver for Bx = b is available, i.e., the matrix-vector multiplication B~'b can be

efficiently implemented.
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In the literature, notable convergence results for orthogonalization-free methods include
global convergence of perturbed gradient descent for (5.4) in [55] and global convergence of
TriOFM in [56].

The same CG algorithm (5.5) was also considered in [57] for real symmetric matrices.
Both our algorithm and convergence proof also apply to the Hermitian matrices. We also
verify the numerical performance of the discussed algorithms on large matrices of the size
millions by millions. In particular, our numerical tests for large matrices are consistent with
the observation in [57] that the simple CG method (5.5) is superior for nearly uniformly
distributed extreme eigenvalues.

This chapter mainly focuses on the convergence analysis of the simplest orthogonalization-
free method (5.5) which is fully scalable in parallel computing. Developing distributed and
parallel numerical implementation will be left as future work. In the literature, most nu-
merical solvers for eigenvalue problems rely on orthogonalization to achieve high efficiency
in sequential computing. Well-developed algorithms with orthogonalization include [58-61].
To achieve better parallel efficiency for a full eigendecomposition, spectrum slicing can be

applied to estimate different eigenpairs in different spectrum regions simultaneously [62-67].

In the rest of this chapter, we will first review the equivalence of the conventional CG
method to the Riemannian CG method in Section 5.3, as first shown in Section 3.4. The
convergence proof of the Riemannian CG method is then shown in Section 5.4. In Section
5.5, we show that the simple coordinate descent method of minimizing (5.4) is also equivalent
to a coordinate Riemannian gradient descent method. Section 5.6 includes numerical tests.

Concluding remarks are given in Section 5.7. This chapter is based on [68]

5.2 Problem Formulation and the Riemannian Optimization Viewpoint

The extreme eigenvalue problem can be written as an optimization problem, with many
different cost functions to consider. The most well-known one is to minimize the multicolumn
Rayleigh quotient

minimize F(Y) :=tr ((Y*Y) 'Y*AY). (5.1)

YeCnxp
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If assuming the spectrum of Y*Y is bounded by one and taking the inverse of Y*Y as
the first order approximation of the Neumann series expansion, then as an approximation
to multicolumn Rayleigh quotient, a popular method known as the orbital minimization
method (OMM) is to minimize the cost function [69]:

m}in(icmize FY):=tr((2] —Y*Y)Y*AY) . (5.2)
c nXp

Another simple formulation is to consider optimization over the noncompact Stiefel manifold

Crr ={Y e C™*P: rank(Y)=p}:

minimize F(Y):=$||[YY* — A3 (5.3)
YeCy*?
where || - ||F is the matrix Frobenius norm. Various orthogonalization-free algorithms for

solving both (5.2) and (5.3) were considered and compared numerically in [57].

Notice that C*P is an open set in the Euclidean space C™*?_ thus any line search method
Tpr1 = T + M starting with the iterate xp € C}*P and a small enough step size oy will
give xp1 € CI*P. Therefore, any such line search algorithm can be regarded as the same
algorithm solving an unconstrained problem with a non-degenerate x € CI'*P:

e s 1 * 2
minimize f(x) = gllza* — A% . (5.4)

In the literature, the formulation (5.4) is often called the Burer-Monteiro method for Her-
mitian positive semi-definite (PSD) fixed rank p constraint, i.e., for minimizing || X — A||%
where X is a Hermitian PSD matrix of rank p.

The nonlinear conjugate gradient method for (5.4) can be written as

Tp1 = Tk + QMg (5.5)

M1 = —Vf(zg) + B = =2(zx* — A)x + Bini,

where oy, is the step size, [ is a nonlinear coefficient computed by various formulae, and 7

is the search direction in CG method. In this chapter, we only consider two variants for how
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to compute [: one is the PolakRibiére CG method, and the other one is the Fletcher-Reeves
CG method for computing the conjugate direction [70].

A third choice is LOBPCG method first introduced in [58]. A critical step in the
LOBPCG method is a Rayleigh-Ritz procedure in which an orthonormal basis is computed
to simplify calculations and ensure numerical stability, and it is the only orthogonaliza-
tion step. LOBPCG without orthogonalization also gives an orthogonalization-free method,
which may still work well for many problems in practice, though it might suffer from some
instability when the number of eigenpairs to be computed becomes large. Careful base
selection strategies [71] [72] can improve its robustness.

The landscape of (5.4) has been well studied in [55, 57, 73, 74] and its local minimizers
must also be global minimizers. Theorem 2.1 in [57] implies that, if ¥ € CP*P satisfies

A

VF(Y)=0for F(Y) = }|YY* — A||%, then Y = UO where O € CP*? is a unitary matrix,
and U € C™*P has orthogonal columns as some eigenvectors of A. Furthermore, any local
minimum is a global minimum, i.e., any local minimizer of (5.4) in C!*? has the form
YV = UO with columns of U being eigenvectors of a Hermitian PSD matrix A corresponding
to its top p eigenvectors.
However, the convergence of CG method (5.5) for (5.4) has never been rigorously justified.
Notice that there is an ambiguity up to unitary matrices in both formulations (5.4) and

5.3), that is F(YO) = F(Y) for any O € O,, where O, are all p X p unitary matrices. To
P P

this end, mathematically it is proper to consider an equivalence class for each x € C*?:
Y] ={YO :VO € O,},

and a quotient set

Ccr /0, = {[Y]: VY € CP}.

The quotient set with a proper metric becomes a quotient manifold.
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Now, we abuse notation by letting x denote the equivalent class [z], and T denote one
representation of this equivalent class. So we can instead consider the optimization over the

quotient manifold:

minimize h(z) := F(T) = ||zz* — All7 (5.6)

zeCy*? /0,

Following the recent progress in [75] for Riemannian optimization over Hermitian PSD
fixed rank manifolds, we first show that the simple unconstrained Burer-Monteiro CG method
(5.5) is equivalent to a Riemannian CG method solving (5.6) over the quotient manifold
C»*? /O, with the Bures-Wasserstein metric [32] and proper retraction and vector trans-
port operators. Then with existing Riemannian optimization convergence theory, we can
establish the global convergence of the simple algorithm (5.5) to a stationary point of (5.3).
We emphasize that the main result of this chapter is the global convergence proof for the
classical simple algorithm (5.5), and we do not modify the algorithm (5.5) at all. The Rie-
mannian optimization is used only for proving convergence of (5.5), and (5.5) should not be

implemented via much more complicated Riemannian optimization over a quotient manifold.

5.3 The Conjugate Gradient Methods

We first recall the traditional conjugate gradient method for solving (5.4), which is sum-
marized as Algorithm 11. We present the abstract Riemannian conjugate gradient method

for solving (5.6) over the quotient manifold as Algorithm 12, with Wolfe conditions
h( Ry, (cwnr)) < h(xk) + crowgs, (grad h(zy), nx), (5.7)

’ngk(aknk) (grad h( Ry, (axnk)), D Ry, (crmy) [Uk])’ < caga, (grad h(xx), mk)|, (5.8)

where 0 < ¢; < ¢y < 1; and the Riemannian metric on C}*P is chosen as the Bures-
Wasserstein metric ¢! introduced in Section 2.2.1, which is also the canonical Euclidean

inner product on C"*P,

95(A, B) = (A, B) gury = Re(tr(A*B)), VA, B € ToC™P = C™%. (5.9)
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The abstract Algorithm 12 can be implemented as Algorithm 13, in which each tangent
vector is treated as horizontal lift and each iterate is a representative of its equivalence class,

and it is independent of the choice of the representative of the equivalent class.

Algorithm 11 (PolakRibiére or Fletcher-Reeves) Conjugate Gradient on C"*?

Require: initial iterate Y, € C"*P, tolerance € > 0, initial descent direction as negative
aradient 7o = —VF(Yp) = —2(YoYg — A)Y
1: for £k=0,1,2,... do
2: Use backtracking to compute the step size ay > 0 satisfying the strong Wolfe condi-
tions
3: Obtain the new iterate by
Yipr =Y + apmp

4: Compute the gradient
Skt1 i= VF(YkH)
5: Check for convergence
if ||€k41]| < €, then break
6: Compute a conjugate direction by the PolakRibiére method or the Fletcher-Reeves
method

Mie+1 = —Ek1 + Brr17k

s (0 SV E i) VF L) V(i)
T (VF(W),VF(W)
<VF(Yk+1)7VF<Yk+1>>
(VF(%), VF(1,)

if using PolakRibiére
where (11 =

if using Fletcher-Reeves.

7. end for
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Algorithm 12 Formal form of the (PolakRibiére or Fletcher-Reeves) Riemannian Conjugate
Gradient on the quotient manifold C*? /O, with metric g(c.f. Algorithm 2)

Require: initial iterate xy € CI*?/0O,, tolerance £ > 0, tangent vector 1y = —grad h(zy)
1: for £k=0,1,2,... do
2: Compute the step size ay, > 0 satisfying the strong Wolfe conditions (5.7) and (5.8)
3: Obtain the new iterate by retraction

T = Ry, (i)

4: Compute the gradient

rrr = grad h(wp 1)
5: Check for convergence

if |1l == \/gxk+1(€k+17£k+1) < g, then break
6: Compute a conjugate direction by the PolakRibiére (PR, ) method or the Fletcher-
Reeves (FR) method, and vector transport

M1 = &kt + Bt T, (k)

max (O a1 (grad h(xk-‘rl)a grad h(xk:-i-l) - 7:)%% (fk») PR

’ gz, (grad h(zy), grad h(zy)) *

Gxpiq (grad h(zp41), grad h(zes1))
9z, (grad h(xy), grad h(zy))

where (.1 =
FR

7. end for
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Algorithm 13 Implementation for Riemannian Conjugate Gradient on the quotient mani-
fold C*?/O,, with metric g

Require: initial iterate 7, € CI*P, tolerance ¢ > 0, initial descent direction as 7, =
—grad F(Ty) = —2(ToTh — A)To
1: for £k=0,1,2,... do

2: Compute the step size ay > 0 satisfying the strong Wolfe conditions

3: Obtain the new iterate by retraction

Ty = Rg, () = Tr + gy,

4: Compute the horizontal lift of gradient

1 = grad F(Tp1) = 2(Tpn Tigy — A)Thn

5: Check for convergence
if HEI‘CHH = \/gml@mfk“) < ¢, then break
6: Compute a conjugate direction by PR, or by FR and vector transport

Mg+1 = _Ek—i-l + Biet1 Toni (k)

Tht1

gfk+1 <gra’d F(ka”l)? grad F<Tk+1) - 7;167716 (é-k)fk_,_l)
max | 0, — — PR,
9, (grad F'(zx), grad F(zy))

Gz, (grad F(Tp1), grad F(Tp41))
gz, (grad F(Ty,), grad F(Ty,))

where (11 =

FR

7. end for

The following results are already shown in Section 3.4 and we simply restate them here

without proof for completeness of this chapter.

Lemma 5.3.1. Let n be the descent direction generated by Algorithm 12. Then we have

Towm (nk)@,H = Pg—,i+akﬁk (M) = T (5.10)
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Theorem 5.3.2. Algorithm 13 is equivalent to Algorithm 11, which is the conjugate gradient
method solving (5.4), in the sense that they produce exactly the same iterates if started from

the same initial point.

5.4 The Convergence of the Fletcher-Reeves Riemannian Conjugate Gradient
Method

In this section, we will prove that the Fletcher-Reeves Riemannian Conjugate Gradient
method converges to a stationary point, thus Algorithm 11 also converges by Theorem 5.3.2.

The discussion in this section follows the same arguments as in standard convergence
theory, e.g., [76]. The cost function and vector transport considered in this chapter satisfy
the conditions for convergence analysis in [76]. Many results in this section are standard
convergence results for a line search method, see [70]. For completeness, we include the full
proof.

Let n, € T,,,C*? /O, be a descent direction. Define the angle 6, between —grad h(zy)

and 7 by
9a,, (grad h(xy), ni)
lgrad h(ze)ll,, NIkl

Let £ :={x € C?/O, : 0 < h(z) < h(zg)} and (L) = {z € C? : 0 < F(7) <
F(%y)}. We can show that n=!(£) is bounded.

cos O = — (5.11)

Lemma 5.4.1. There is a constant C' such that ||Z||r < C, Vz € n7!(L).

Proof. Assume it is not true, then Vn € N,3z, € n~!(L£) such that ||Z,||r > n. Let y, =

_i’VL
lZnllF>

then |ly,||r = 1 and z, = ||Z,]|Fyn = any, with a, > n. Thus F(z,) = %Haiyny,*l —
A% — oo since a, — oo and |ly,||r = 1. On the other hand, 7, € n~'(£) implies that

F(z,) should be bounded, which is a contradiction.

Lemma 5.4.2. The Riemannian gradient of F, i.e., grad F(Z) = 2(zz* — A)Z is Lipschitz

continuous on ©~'(£). That is, there exists a constant L > 0 such that

|legrad F'(y) — grad F(T)||» < L|y — Z||, forall T,y € 7' (L). (5.12)
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Proof. Tt suffices to show that ¢ : T — TZ*T is Lipschitz continuous on n=1(L). Let 7,7 €

1 (L). Then ||Z||» < C, 7]l < C by Lemma 5.4.2.

19@) —a@)r = 77T 779l = 17077 — 727 + 7277 — 757"Vl

IA

77"z — 7Y p + 777 — 55"l ¢

[77°% — 22y p + |72y — YTy + Y=Y — 9y Yl

< |[z7'7 — 7Y p + |TTY — TY| p + |¥TT — TTY|
< zz |z =9l p + 17 = 7l o [1Z°| o [Tl & + [Tl £ 1Z° = TN 217 2
< 3C%T — 7| -

Theorem 5.4.3 (Zoutendijks theorem on manifold). Let 1y be a descent direction and let ay
satisfy the strong Wolfe conditions (5.7) and (5.8). Then for the cost function h defined in

2.19, the following series converges.
> cos? 0 ||grad h(mk)Hik < 0.
k

Proof. From the strong Wolfe condition (5.8) we have

(ca = 1)gs, (grad h(zp), mk) < Gapy, ((grad h(Re, (arnk), D Re, (cxni) k) — 9e,, (grad h(z), ni)
= G7nis (grad F(Ty, + ouTy,), P;:-Hlkﬁk (ﬁk)) — gz, (grad F'(Ty), 7y,

= Yz (gradF(Tk + akﬁk)aﬁk) — 9z, (grad F<Tk)7ﬁk) .

Notice that our Riemannian metric g is simply the inner product on the Euclidean space

C"*P_ hence

Gz (grad F'(Ty, + axly), M) — gz, (grad F(Ty),7;) = (grad F'(Ty + axly) — grad F(Tx),7;,) -
(5.13)

From Lemma 5.4.2 we know
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(grad F(T), + auT,) — grad F(T,), 7,) < oo L|[T,]|7-

Hence for any k we have

ay, Z (02 - ]')gl’k (grad h(xk)777k) (514>

— 112
Ll

Now it follows from (5.7) and (5.14) that

0 <h(zp1) < h(xg) + crowgs, (grad h(zy), nx)
c(l—c
< h(wg) — 1(1,2) cos” O ||grad h(z)||2,
1 — k
< h(wo) - Cl(LCZ) > cos® Gy|grad ;)2
j=0
Hence
> L
20 dh S —— . 5.15
;;)COS kllgrad Az, < =) (20) < 00 (5.15)

Lemma 5.4.4. 1f using Fletcher-Reeves method in Algorithm 12, then for 0 < ¢; < ¢y < 1/2,

the search direction 7y is a descent direction satisfying

1 . ey, (grad h(wy), mk) L2001

_ . 5.16
—0 " |gadhal, - 1-o (516)

Proof. We prove it by induction on k.
When k£ = 0, (5.16) holds since

gmo(grad h(l’o)vno) _ gxo(grad h(l‘o), —grad h(l‘o)) _
lgrad (o), lgrad (o),

Now suppose (5.16) holds for some k > 0.

Recall that we use differentiated retraction as our vector transport:

T (k) = D Re, (i) 1]
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And the §.1 in Fletcher-Reeves method is defined as

Bk L= gffkﬂ (grad h(karl), grad h(l’kJrl))
" Gy (grad (), grad h(zy))

Hence the middle term in (5.16) for k + 1 is

[ET (grad A(@p41), Met1) _ Gzioqq (grad h(zg41), —grad h(zpsq1) + Brt1 Ty, (1))
lgrad h(zq)| lgrad h(wy1));

T+1 Th+1

Gapy (grad h(wpp1), —grad h(zp41) + Brp1D Ra, (0 ) [1e]))
lgrad A(zys1)|

Th+1
a1 (grad h(xk-i-l))a D Rl‘k (O‘knk) [nk])
lgrad h(zy)|3,

= 1+ (5.17)

From the strong Wolfe condition (5.8) we have
Co9a, (grad h(zr), M) < Gy, (rad h(@pi1), D Ry, (i) [mk]) < —c29a, (grad h(zy), ni).

(5.18)
Hence from (5.17) and (5.18) we have

g$k<gradh<xk)7nk) < glk+1(gradh('xk+l)ank+l> <
lgrad h(z)[;,  ~  llerad h(zp); B

Th+1

gmk(grad h(xk)u M)

-1+ (&)
lgrad a(a)ll;,

—1—02

And the result (5.16) follows from the induction hypothesis.

Theorem 5.4.5. For cost function A in (2.19), the Algorithm 12 with Fletcher-Reeves method

generates iterates xj such that

lim inf||grad h(xy)||,, = 0. (5.19)
k—o0

Tk

Proof. 1f grad h(zy) = 0 for some k = ky. Then grad h(zy) = 0 for all k > k.
So we consider grad h(zy) # 0 for all k. We shall prove (5.19) by contradiction. Suppose
(5.19) does not hold. Then there exists a constant ¢ > 0 such that

lgrad h(zy)|,, = c¢>0, Vk>0. (5.20)
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From (5.11) and (5.16) we have

1 — 2¢, [|lgrad h(a)|l,,

cos b > (5.21)
l—c 7|,
It follows by Theorem 5.4.3 that the following series converges.
o ||grad h(zy)||*

2
k=0 ansz

For k > 1, the strong Wolfe condition (5.8) and (5.16) gives rise to

Co

lgrad f(a-1) |

1-— Co Tt

G, (grad h(wy), Tay i, (1)) < —Coga_, (grad h(zs1), mk—1) <

. : 2
Hence we have the following recurrence equation for |||, -

I, = | —eradh(en) + BiTar m, ()|
< Jlgrad h(w) 2, + 26490, (81ad h(ee), Toyone s ()| + B2 Torame s )|
< llgrad (a3, + 12_02025k||grad Man I, + 68| Tawm ()
— lgrad e[, + 122 lewad b2, + 2 Tow_ s ()
— T Plgmad hlan) I, + 5T (5.23)

Recall that we use differentiated retraction as our vector transport:

Tosmer (Me—1) = D Ry (ag—1mi—1) [Mo—1] = D (Tp—1 + 171 ) [P%,1+ak,1ﬁk_l(ﬁk—l)} :

Hence

2

H,];chmkq(nkfl)H = Yz (7;%71%71(7716*1)77-011@71?71671(7716*1))

Tk

= Yz (7?%71771971 (nkfl)gka 7:11@71771@71 (7716*1)@)
H = H =
= gfk (Pik_1+ak_1ﬁk71 <nk‘fl)’ Pfk_1+ak_1ﬁk71 (nkfl))

_ — 2
= gfk,1 (nk’—1777k—1) = ||nk—1||$k_1'
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Hence (5.23) becomes the following recurrence formula for ||77k||ik

Imill7,, < (@n)ll5, + B, - (5.24)

By recursively using (5.23) and recall the definition of 3 in Fletcher-Reeves method we

obtain
Imlls, < 1“2 (llgrad h(zy)[I7, + Bllerad by )2, +- -+ BiB -, .. Billerad h(x)|2) )
+ 8587 1"‘ﬁOHT]0Hx0
= 1“2ngradh(xk>u (llgrad h(zx)l[2 + llerad Az 1,7, + - - + [lerad h(ay)[|,)
+|lgrad h(wy)|l; ||gradh(xo>||*2
< T grad )| xkzugradhaa)w < T2 grad w4,

where we have used the contradiction assumption (5.20) in the last inequality. (5.25) results

in the divergence of the following series.

< ||grad h(z;)|* l—co & 1
ZHg @i)lls, o 2 022k+1:°o' (5.25)

P =
k=0 I3, L+e o

This contradicts to (5.22) and hence we have completed the proof.

In general, it is more difficult to prove the convergence of the Riemannian PR, CG
method. It is possible to extend the convergence proof of PRy CG method in [77] to Rie-
mannian PR, CG method, but it is beyond the scope of this chapter.

5.5 Coordinate Riemannian Gradient Descent (CRGD)

The orthogonalization-free methods are preferred for large scale problems. For much
larger problems, the coordinate descent method is favored, since the full gradient can be too
large to even store. For instance, the coordinate gradient descent method for finding leading
eigenvalue in [74] is the coordinate descent method for minimizing (5.4) with rank p = 1. In

this section, following the same Riemannian manifold notation as in previous sections, we
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show that the a Riemmanian coordinate descent method is also equivalent to the coordinate
descent method for minimizing (5.4) with any rank p > 0, which is the generalization of the
algorithm in [74].

In [78], a method called the tangent subspace descent method was proposed: this method
generalized the block coordinate descent method to manifold settings. Instead of updating
the full gradient at each iteration, the tangent direction in each update is a projected vector
of the full Riemannian gradient to a subspace of the tangent space by some subspace selection
rule Py. In the specific case of C*?/O, considered in this chapter, this method is written
as Algorithm 14 and we denote it as Coordinate Riemannian Gradient Descent (CRGD).

Since the horizontal lift of grad h(xy) is a n-by-p matrix, we can simply choose the
subspace selection rule by cyclically selecting the N-column block of the n-by-p matrix
grad F'(Ty). Let M denote the mask that evaluates the k-th N-column block of a n-by-p

matrix cyclically. That is, if Z is a n-by-p matrix, then

My(Z) = Zins1:(e+ )N, (5.26)

where Zpni1:(k+1)n, denotes the N-by-p matrix that takes the (kNN 4 1)-th to (kK + 1)N-th
columns of Z. And the index that exceeds the matrix range is understood as modulo by the

matrix size, namely, cyclically. Then our update to Ty is written through the following

Trs1 = R, (aM(grad F(z,))), (5.27)

where « is a constant step size.

With the simple retraction as in Section 2.5.1, (5.27) simply reduces to

Tht1 = Tht1 — OéMk(Q(fkf]: — A)fk) (528)

Notice that (5.28) with p = 1 and N = 1 reduces to the coordinate descent method for the
leading eigenvalue in [74]. In particular, if p = 1 and we set N = 1 and P, in Algorithm
14 to be My, defined in (5.26), then Algorithm 14 is equivalent to Algorithm 2 in [74]. So
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the generalization of the method in [74] to top p eigenvalues can be equivalently written as
(5.28) or (5.27), which is a Riemannian coordinate descent method.

To take the advantage of CRGD to solve large-scaled problems, one should implement
it through compact implementation. That is, each update should only depend on the block
size N and should be independent of the problem size n. In the case of eigenvalue problem,
F(z) = §||zz* - A%, If we assume that A is a sparse matrix such that we can achieve
M. (Av) in O(N), then we can indeed achieve a compact implementation of CRGD as in
Algorithm 15.

Algorithm 14 Coordinate Riemannian gradient descent (CRGD) on the quotient manifold
C»*? /O, with metric g

Require: initial iterate xy € C*?/0,, tolerance ¢ > 0, tangent vector & = —grad h(x),
subspace selection rule Py, dg := Py(&o), stepsize o > 0.
1: for £k=0,1,2,... do
2: Obtain the new iterate by retraction

Tkt1 = Ra?k (O‘(Sk)

3: Compute the projection of 41 := —grad h(xx41) to a subspace of T, ,, C**?/0O,
Opy1 = Pk+1(§k+1)

4: Check for convergence
if (|01 ]| == 1/Grpir (Gk1, k1) < €, then break

5: end for

5.6 Numerical Experiments

The numerical performance of the simple CG methods (5.5) has been well studied in
the literature, e.g., see [57] for a comparison with other orthogonalization-free methods. In
general, the performance of (5.5) for solving (5.4) depends on the spectrum of the matrix
A. For completeness, in this section we verify the numerical performance of the simple CG

methods (5.5) on large matrices A.
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Algorithm 15 Compact implementation for cyclic coordinate Riemannian gradient descent
on the quotient manifold C?*?/O,, with metric g

Require: initial iterate 7, € CI*P, 7, = —grad F'(T,) € C™P, first N columns of 7j,:
00 = Mo(7y), ao = Thx0, by = 050, Co = 600, stepsize a > 0, s = ag + aby + abl + a’cy,
tolerance € > 0.

1: for £k=0,1,2,... do
2: Obtain the new iterate by retraction

Tht1 = ng (Oégk) =T + Oégk

@

Cyclically compute the next N columns of 7, = —grad F'(Ty41) B
6k+1 = —2Mk+1(fk8k) — QOsz+1(5k8k) + 2Mk+1(14fk) + QOsz+1(A5k)
4: Check for convergence
if HS"C“H = \/g5k+1(5k+1,5k+1) < ¢, then break
5: Compute and update agi1, b1, Cri1

_xT —=* NN
Q41 = Qg + QT 0 + a0,z + 0,0k
—
i1 = Op1Th1
=k
Ci41 = 5k+15k+1

6: Compute temporary variable s, € CP*P
Sk+1 = Qg1 + Olbk+1 + Ozbz+1 + Ozzck_,_l
7: end for

5.6.1 Real Symmetric PSD Matrices

We consider two types of matrices A. The first type is a 2D Laplacian matrix, which has
a nearly uniform eigenvalue gap for a few top eigenvalues. Consider the discretization of a
2D Poisson equation with homogeneous Dirichlet boundary conditions on [0, 1] x [0, 1] using
m-by-m interior grid points. Then the matrix representing the Laplacian operator is a 2D

Laplacian matrix A of size m2-by-m? given as

1
A=-—K&I,+1,®

= 3 K, (5.29)

Ay?
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_1
m+1"

where Az = Ay = and K is a m-by-m tridiagonal matrix.

K = o (5.30)

The second type is constructed by eigenvalue decomposition A = VAV ! where eigen-
vectors V' are given by discrete cosine transform. We assign A so that the eigenvalues \; have
four types of distribution of eigenvalues, similar to the numerical experiments considered in

[57] but with a much larger matrix size:

—_

. (random) A\ ~ |JN(0,1)|, where N'(0, 1) is standard normal distribution.
2. (uniform) \; =1 — %, 1<i<nr.

3. (u-shape) A\; = %,)\2 = %,)\3 = %,)\4 =L )=

4. (logarithm) \; = ptomerl L <i<r

n 219

We first compare the simple CG methods (5.5) with the TriOFM method in [56] for a
2D discrete Laplacian matrix, shown in Figure 5.1.

Next, we compare TriOFM, CG and LOBPCG for different distributed eigenvalues. We
use Algorithm 1 in [72] as the orthogonalization-free LOBPCG method in numerical tests.
The comparison is shown for randomly distributed eigenvalues in Figure 5.2, uniformly dis-
tributed eigenvalues in Figure 5.3, U-shape distribution of eigenvalues in Figure 5.4, and log
distribution of eigenvalues in Figure 5.5. In all these comparisons, the orthogonalization-free
LOBPCG method is the most efficient one. Notice that the simple CG-PR method is much
less efficient than the TriOFM method for the log distribution of eigenvalues. However,
this slowness is due to the eigenvalue gap between o, and o0,4;. In Figure 5.6, the top p

eigenvalues with p = 5 have a log distribution but the gap between o, and o,; is enlarged
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by shifting the top p eigenvalues from the same matrix in Figure 5.5, and we observe that
the simple CG-PR method is efficient in this scenario. In other words, the matrix in Fig-

ure 5.5 has eigenvalues \;y > \y > --- > ),, and the matrix in Figure 5.6 has eigenvalues

10% ‘ ‘ 10% :
: -0 TriOFM-0bj2(OMM) z -0 TriOFM-0bj2(OMM)
~+CG-PR ~+CG-PR
2 CG-FR 2 CG-FR
§ 10 § 10
w wm
210 S
T T
(O] (0]
o
10 T
108 ‘ ‘ ‘ ‘ ‘ :
0.5 1 1.5 2.5 5000 10000 15000
lteration x10% CPU Time
(a) Relative error vs iteration (b) Relative error vs CPU time
Figure 5.1. Comparison for computing the top-10 eigenvalues of a 2D Lapla-
cian matrix of size 10% x 10°.
100 ‘ ‘ ‘ 10%; ‘ ‘ ‘
h -5~ TriOFM-0bj2(OMM) % -5~ TriOFM-0bj2(OMM)
%@D ~+CG-PR N ~+ CG-PR
_ s LOBPCG _ *‘Sg@ LOBPCG
S10% 5 ™ o107
L i L
(O] + (0]
2 p ¢ 2
© * ‘ ©
31040 ) 310
o 5 %@& o
t
T |
) ]
10°® N | | b 10°®
50 100 150 200 250 0
Iteration CPU Time

(a) Relative error vs iteration

(b) Relative error vs CPU time

Figure 5.2. Comparison for computing the top-10-eigenvalue problem of a
10%-by-10* matrix with randomly distributed eigenvalues.
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(a) Relative error vs iteration
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(b) Relative error vs CPU time

Figure 5.3. Comparison for computing the top-10-eigenvalue problem of a
10*-by-10* matrix with uniformly distributed eigenvalues.
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(b) Relative error vs CPU time

Figure 5.4. Comparison for computing the top-10-eigenvalue problem of a
10%-by-10* matrix with U-shape distributed eigenvalues.
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Figure 5.5. Comparison for computing the top-5-eigenvalue problem of a
10*-by-10* matrix with logarithm distributed eigenvalues.
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Figure 5.6. Comparison for computing the top-5-eigenvalue problem of a
10%-by-10* matrix with eigenvalues \; + C > Mg+ C > -+ > A\ +C > Mgy >
coo > Ay, where C'= XAy and Ay > Ay > --- > )\, has a log distribution.

5.6.2 Hermitian PSD Matrices

It is shown in [75] that Algorithm 12 can be used for finding the top eigenvalues of a

Hermitian PSD matrix. We test Algorithm 12 on 5.4 for a matrix A with eigenvectors defined

by 2D Fast Fourier Transform. Namely, the linear operator of applying A to a 2D array w is

defined by

Au = 1f fE2(5. * [ f12(u)),



where .* denotes the entrywise product and ¥ is a 2D array consisting of nonnegative eigen-

values of A.

The performance of the CG-PR method is shown in Figure 5.7 for four kinds of eigenvalue

distributions in such a Hermitian PSD matrix.
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Figure 5.7. The CG-PR method for the top-10-eigenvalue problem with rank-

1000 Hermitian matrices of 105-by-10¢ with different distributions of eigenval-
ues.

5.6.3 Smallest Eigenvalues

Inverse 2D Laplacian Matrix

One technique to find the smallest eigenvalues of a given invertible matrix A is through
the shift-and-inverse method. That is, to find the largest eigenvalues of (A + ul)~!, where
i > 0 is a shift constant such that A 4 ul becomes positive definite. We use this method to
find the smallest eigenvalues of the 2D Laplacian matrix A as in (5.29).

Notice that the top eigenvalues of A~ almost follow a logarithm distribution. Based on
our observation, we can choose y appropriately to make the top eigenvalues of (A + ul)™*
have a uniform distribution to accelerate the convergence of the CG method. Since we know
the true eigenvalues of A, we shift it by choosing p to be the smallest desired eigenvalue.

That is, suppose the smallest r eigenvalues of A are o7 < 09 < --- < 0,. Then we choose

i = o1. As a result, the top eigenvalues of (A4 uI)~! would be —— > 21— >... > 1

o1+01 — o2+01 — — or+to1

that almost follow a uniform distribution. A fast matrix inversion is implemented by using
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the eigendecomposition of the matrix. The performance is shown in Figure 5.8 and Figure

5.9.
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Figure 5.8. The shift-and-inverse method on the smallest-10-eigenvalue prob-
lem of a 105-by-10° 2D-Laplacian matrix.
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Figure 5.9. The shift-and-inverse method on the smallest-3-eigenvalue prob-
lem of a 105-by-10° 2D-Laplacian matrix.

Negative 2D Laplacian Matrix

Another way to find the smallest eigenvalues of a given matrix A is through the negative-

shift

method. That is, to consider finding the largest eigenvalues of ul — A, where p > 0 is

107



a shift constant such that ul — A is positive semi-definite. We use this method to find the
smallest eigenvalues of the 2D Laplacian matrix defined in (5.29).

Notice we need to shift at least the largest eigenvalue of A to ensure that ul — A is PSD.
And once we find the top eigenvalues of ul — A we need to shift back and extract the smallest
eigenvalues of A by computing p— (— o), where o’s are the smallest eigenvalues of A. Hence
when the condition number of A is bad, i.e., if u >> o, then we might lose a significant
number of digits of accuracy for computing p — (@ — ). In our numerical tests, we did not
encounter this numerical accuracy issue. The performance is shown in Figure 5.10. Notice
that the negative-shift method is much slower than the shift-and-inverse method, because of

the different distributions of the largest eigenvalues of ul — A and (A + pul)~.
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(a) Relative error vs iteration (b) Relative error vs CPU time

Figure 5.10. The negative-shift method on the smallest-10-eigenvalue prob-
lem of a 105-by-10° 2D-Laplacian matrix.

Negative 3D Laplacian matrix

We repeat the same test as in the previous subsection for a larger problem of finding
the smallest eigenvalues of a 3D discrete Laplacian on a 500% grid, which corresponds to a
matrix of size 1.25E8x 1.25E8. We implement both the simple CG method (5.5) and TriOFM
method on an Nvidia GPU A100 80G.
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Figure 5.11. The shift-and-inverse method on the smallest-3-eigenvalue
problem of a 3D-Laplacian matrix on a 500% grid. The matrix size is
1.25E8x1.25E8. Computation was done on Nvidia GPU A100 80G.

5.6.4 Coordinate Riemannian gradient descent

We consider applying the coordinate Riemannian gradient descent method described in
Section 5.5 to a 1D Laplacian matrix of size n-by-n given by A = A%EQK , where Az = n%rl and
K are the tridiagonal matrix defined in (5.30). This example is only for the demonstration
purpose of the coordinate gradient descent method. Choosing this simple A makes it easy
for the compact implementation of the matrix-vector multiplication of Au. One can also
apply this method to any sparse matrix A as long as one has the compact implementation
of My(Au) in O(N), where N is a constant independent of the problem size n.

As we can see from Figure 5.12, the CPU time for running the first 3000 iterations is
independent of problem size. This demonstrated the O(1) computational complexity of the

coordinate Riemannian gradient descent method for leading eigenpairs.

5.7 Concluding Remarks

In this chapter, we have shown the orthogonalization-free method to find leading eigen-
pairs of a positive semi-definite Hermitian matrix via an unconstrained Burer-Monteiro

formulation. For this optimization problem, we have shown the equivalence between the
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Figure 5.12. Coordinate Riemannian gradient descent for solving the top-10
eigenvalues of a Laplacian matrix.
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nonlinear conjugate gradient method and a Riemannian conjugate gradient method on a
quotient manifold with the Bures-Wasserstein metric, leading to a new understanding of the
global convergence of the nonlinear conjugate gradient method in Burer-Monteiro formula-
tion to a stationary point. We have also shown that the simple coordinate descent method
in Burer-Monteiro formulation is equivalent to a coordinate Riemannian gradient descent
method. Numerical tests on large scale matrices have verified the numerical performance of
the simple conjugate gradient method in Burer-Monteiro formulation for computing leading

eigen-pairs, which is consistent with findings in the literature.
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6. RIEMANNIAN LANGEVIN MONTE CARLO SCHEMES
FOR SAMPLING PSD MATRICES WITH FIXED RANK

6.1 Introduction

In this chapter, we turn our attention from Riemannian optimization to Riemannian
sampling.

We will introduce two explicit numerical schemes to sample matrices from the Gibbs
distributions on S, the manifold of real PSD matrices of size n x n and rank p. Gibbs
distributions originate in statistical physics, while the sampling problem may also be seen
as a stochastic variant of the optimization problem. Given an energy function & : 8! —
R and certain Riemannian metrics g on S}*, these schemes rely on an Euler-Maruyama
discretization of the Riemannian Langevin equation (RLE) with Brownian motion on the
manifold. We present numerical schemes for RLE under two fundamental metrics on S}*:
(a) the metric obtained from the embedding of S}* C R™*"; and (b) the Bures-Wasserstein
metric corresponding to quotient geometry. We also provide examples of energy functions
with explicit Gibbs distributions that allow numerical validation of these schemes.

This chapter is based on [79]. The main contribution in this chapter is the efficient sam-
pling schemes for pg based on Langevin dynamics. Our approach builds on the geometric
theory of optimization; in particular, we extend Riemannian optimization on S{” [75, 80
to Gibbs sampling as follows. In [80] it was recognized that two commonly used gradient
descent schemes over S| are time discretizations of Riemannian gradient flows, where S
is equipped with the two natural Riemannian metrics listed below. We combine this obser-
vation with the theory of Brownian motion on Riemannian manifolds to obtain Riemannian
Langevin equations and explicit sampling schemes. This sampling problem is related to
the optimization problem minyegn» £(X) since in the limit 3 — oo the Gibbs distribution
concentrates at the global minima of £(X).

The reader unfamiliar with these concepts should note that while the abstract theory
serves to guide our work, the schemes presented in this chapter may be implemented without
requiring a complete understanding of the underlying theory. Further, while this chapter is

focused on the two numerical schemes below, the underlying framework can be used to extend
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other Riemannian gradient descent schemes to sampling schemes for the Gibbs measure.
The new phenomenon that arises is the interplay between Brownian motion and curvature
in the Riemannian Langevin equation. This interplay has been studied in depth by two
of the authors (TY and GM) and their co-workers in recent papers for geometries used in

optimization and physics [81-83].

6.2 Problem Statement

Consider the space of real, symmetric positive semi-definite matrices with size n x n and

rank p, denoted by
St ={X e R™"|X = X", X = 0,rank(X) = p}. (6.1)

Given an energy £ : S!"” — R and a parameter § > 0 referred to as the inverse temperature,

our goal is to sample efficiently from the Gibbs distribution.

1 _ _pe(x!
pB(X) = 76 ﬁg(X)pref(X)ﬂ Zg = /np e PEX )pref(X/) dXx’. (6'2)
B Sy
Gibbs measures must be defined with respect to a base measure. In this work, we equip
the space S"” with a Riemannian metric g and choose pyef(X)dX = (/det g(X)dX to be

the canonical volume form associated to the metric g. This volume form is expressed in

coordinates for the metrics studied in Section 6.5.

6.3 Riemannian Langevin Equations on S}”

In this section , we will show how Langevin equations are defined intrinsically on the
Riemannian manifold (S}* g). We will state the 1td form of the Riemannian Langevin
equation (6.6) for both Riemannian geometries. The main ideas are as follows: (a) the
abstract theory of Brownian motion on Riemannian manifolds is used to define the Rieman-

nian Langevin equation in Stratonovich form for the metrics gz and ggw on S77; (b) the

Ito-Stratonovich conversion rule is used to compute the associated Itd form of these SDEs
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and it is observed that the Ito-Stratonovich correction term corresponds to mean curvature.

This approach yields the SDEs below.

6.3.1 The Classical Euclidean Langevin Equation on R"

Let us first recall the Langevin equation on R". Given a potential or energy function
£ :R" — R and let W; denote the standard Wiener process on R". The Langevin equation
for the potential £ is the It6 differential equation

dry = —VE(xy) dt + \/gth. (6.3)

The Fokker-Planck equation describes the evolution of the probability density of x;. With
p(x,t)dx =P(x; € (x,x + dx)), we have

1

BAp + V- (pVE). (6.4)

Op =

The Gibbs density (with reference density being uniform with respect to Lebesgue measure)
is the unique equilibrium of equation (6.4) under natural growth assumptions on the energy
€ as |z| — oc.

The Langevin equation immediately yields a numerical scheme for (approximate) sam-
pling from the Gibbs distribution. Fix a step size At > 0, let t, = kAt, k=0,1,..., and let
xy denote the numerical approximation to (6.3) at time ¢;. The Euler-Maruyama scheme to
approximate equation (6.3), also known as Langevin Monte Carlo in the statistics literature,

is

2A¢
Tpy1 = T — AtVE(zp) + 7&, (6.5)
where & = (&}, ...,&}) is an i.i.d. sequence of standard Gaussian vectors in R”. This scheme

is explicit. In order to extend it to sampling from (6.2) we must understand how to modify
the Langevin equation on the Riemannian manifold (877, g).
First, the term V& must be replaced by the Riemannian gradient, written as grad &£.

The more subtle modification of equation (6.3) concerns the noise. The natural analogy is
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to replace the Wiener process W; on R" with Brownian motion on the Riemannian mani-
fold (S, g) at inverse temperature 3, denoted BY”_ This yields the (formal) Riemannian

Langevin equation on (S}”*, g)
dX, = —grad £(X,)dt + dB?". (6.6)

This equation is only formal because stochastic differential equations on manifolds must
be defined using the Stratonovich formulation in order to ensure coordinate independence
(Ito differentials do not satisfy the chain rule, while Stratonovich differentials do) [84, 85].
On the other hand, 1t6 differential equations are convenient for analysis as well as simulation.
Thus, in formulating the Riemannian Langevin equation, it is necessary to first formulate
the appropriate Stratonovich equation and then compute the deterministic It6—Stratonovich
correction. A central observation in our work is that this correction term is due to curvature

and is explicitly computable for several Riemannian geometries relevant to optimization [81-

83, 86).

6.3.2 The Riemannian Langevin Equation S” with the Euclidean Metric

Let X € 8" whose compact SVD is X = UAU?T with U € R™P. Equation (6.6)

describes the evolution of a point X; € S} in abstract terms. We now rewrite it in a simpler

n

equivalent form describing the evolution of the entries of the matrix entries {(X;);}¥—;

representing X,. Let us write X = UAUT for the compact SVD of X with the singular
values A = diag(Aq, ..., Ap) written in decreasing order. We suppress the subscript ¢ in the
following equations, though the reader should note that U and A depend on X;.

It can be shown that the law of X; is determined by the It6 differential equation

2 1
dXt = —grad g(Xt)dt + \/;thn,I%Xt + EH(Xt)dt (67)
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Pt is the orthogonal projection of white noise in

In this equation, the stochastic forcing W;"
R™™ onto Tx,S}". Precisely, given Wifor1<i<nand Wt” for 1 <i < j < n independent

standard one-dimensional Wiener process, we set

1 1 1, 1 Lp+1 1 1,n]
th R ﬁth P ﬁth P c ﬁth
1 1p p 1 p,p+1 1 DM T
thn,p,Xt _ {U U, ﬁth e dw] ﬁth c. ﬁth U
1 1,p+1 1 p,p+1 7l
1 1,n 1 n

The term H(X;) is the mean curvature of the embedding S}* — R™™. We adopt the
convention in geometric analysis: the mean curvature is defined as the trace of the second

fundamental form of the embedding. Explicitly, we have

Opxp  Opx(n—p | [U"

(6.8)
O(n—p)xp Inop Uf

H(X,) = (é i) v oo

An important role of H(X;) in equation (6.7) is the following: the stochastic forcing is the
naive projection of white noise in the ambient space R™™™ onto T'x,S\"”. Intuitively, when
one uses the Fuler-Maruyama discretization, the role of this term is to update X; by taking
unbiased random steps in any direction in the tangent space. However, [t6 calculus has a
subtle interplay with the geometry of the embedding, and in order to keep X; on the manifold

S'P| it is necessary to include the correction term given by the mean curvature.

6.3.3 The Riemannian Langevin Equation for S}” with the Bures-Wasserstein
Metric

The manifold S}” can also be viewed as a quotient manifold R?*?/0,,. Recall that the

noncompact Stiefel manifold R?*? is the total space and the natural projection is

n: RP? — R*?P/0,,.
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For any Y € R?*P, the equivalence class containing Y is
Y]=n"(z(Y)) ={YO| 0 € O},

which is an embedded submanifold of RI*? (see e.g., [87, Prop. 3.4.4]). The tangent space
of [Y] at Y is a subspace of TyR?*P called the wvertical space at Y, denoted by Vy =
{YQ QT =-0,Q¢ ]Rpr”} and Hy is the horizontal space w.r.t. the Bures-Wasserstein
metric g'.
And also recall that
6 :RP — SPP

Y —»YYT.

is invariant under the equivalence relation and induces a bijection 6 on R?*? /O, such that
§ = Gon. For any function £(X) defined on 877, there is a function F defined on R™*? that
induces &: for any X = YY7T € 8P F(Y):=E00(Y) = EXYYT). This is summarized in

the diagram below:
R7*P

\\\ Z:~O
[
S

R™? /0, «X— &7 £, R

In particular, S}” is diffeomorphic to R??/O, under 6, see [75]. Therefore, the Bures-
Wasserstein metric g' defined in Chapter 2 on the quotient manifold R?*? /O, induces a
metric on 877, which we also call the Bures-Wasserstein metric and denote it by gpw .

To understand the Bures-Wasserstein metric ggy on S is via the map 0: for any A, B €
TxS?” with X = YY7, there exists a,b € Hy such that dd(z(Y))[a] = A, dO(n(Y))[b] = B.

Then the Bures-Wasserstein metric on Sﬁ’p can be written as

ng(A, B) = grlc(Y) (CL, b)

The Riemannian Langevin equation is now determined by the geometry of Riemannian
submersion. We must obtain an Ito differential equation for Y;, such that X; = VYT is a

matrix that has the same law as the solution to (6.6) in (S"", gpw ).
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In comparison with equation (6.7), we see that the natural choice for white noise driving Y;
is white noise in R™*?. This is the stochastic differential dW;, where W, = {W}}<icni<i<p
consists of np independent standard one-dimensional Wiener processes. However, as in
equation (6.7) we must include a deterministic correction. This correction corresponds to
mean curvature again, but in a more subtle way than (6.7). The equivalence class of Y such
that X = YY7 is a group orbit of O, embedded within R™*?. The logarithm of the volume
of this group orbit constitutes a natural Boltzmann entropy denoted by S(Y). It can be

shown that

S(V) = ;i gpj log(0? + 02) (6.9)

where {o;}!_; are singular values of Y. It is known that V.S(Y") is the mean curvature of the
group orbit in R™*? [88 p.3505].
We then have the following Ito differential equation for Y; such that X; = Y;Y, has the

same law as the solution to (6.6).

IE(YYT) 2 o 105(Y)
dY; = — ————=dt —dwy — — dt 1<i<n,1<j<p. 6.10
The correction term 85%/) can be explicitly computed using the following Lemma.

Lemma 6.3.1. f Y € R™P has SVD as Y = QX P with singular values o;, then the gradient
of the correction term S is given by VS(Y) = QX PT where ¥ is a diagonal matrix with

o

diagonal entries 3744 Tral D42 oTra? s 2 itp e

6.4 The Riemannian Langevin Monte Carlo Schemes

In this section, we give two simple Riemannian Langevin Monte Carlo sampling schemes
corresponding to the two Riemannian Langevin equations (6.7) and (6.10). We only con-
sider convenient discretization and approximation methods, i.e., the Euler-Maruyama type
discretization; and we use retraction to approximate the exponential map. In particular, we

get the two simple Riemannian Langevin Monte Carlo schemes as follows.
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6.4.1 Scheme E for the Embedded Geometry

For approximating the SDE (6.7) on (S, gr), with the retraction operator and Euler-

Maruyama method for SDE, we have the following scheme

2At B Bz At » 0 0
Xk+1 :Pszyp Xk—Atgl“adg(Xk)—FQk 5 +7.Z )\% g s
V.8 \B%, o =00 1,
(6.11)
which can be written equivalently as

y . A~ AUTVEXW)U + /BB, ~AUTVEX)UL + /5B B [UT
=Py | |U U :

k1 = Pgr { | —AwTVEX)U + 2B, ¥ i ey uT
(6.12)

where X; = UAUT is the compact SVD of Xj, € S7P with eigenvalues Ay > Ay > -+ >
Ap > 0. The third term in the right hand side is the white noise term in the tangent space
Tx, SyP. Entries of By € RP*(P) are ii.d drawn from \/g/\/’((), 1), and By; € RP*P are

defined as follows.

N(0,1)

By = ' (6.13)
bji .

N(0,1)

with by = by ~ \/g]\f (0,1). The implementation details of the scheme (6.11) are given as
follows in the Algorithm 16.
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Algorithm 16 The Riemannian Langevin Monte Carlo scheme (6.11) for (S, gg)
Require: initial iterate X; € S'%; full SVD of X;: X; = Q1A Q7
1: for k=1,2,...,N do

2: Compute Riemannian gradient

& = grad £(Xx) > See Algorithm 3
3: Compute noise term

B /I Bi1 Bi LAt 0 0

B o TEMo g
12 n—p

4: Obtain the new iterate by retraction

Xit1 = Pgnr (X — At&, + Qe BQT) > See Algorithm 6
5: end for

Remark 6.4.1. The mean curvature correction term is necessary for avoiding rank deficient
samples in the following sense. A sampling scheme on S}” might generate a sample X with
a rank numerically close to p — 1, and the mean curvature correction term in the scheme
(6.11) would be huge if A, — 0, thus it will force iterate X} to stay away from the boundary

of S}P.

Remark 6.4.2. Notice that the complexity of computing SVD of X 4+ Z in Algorithm 6 would
be O(n?) in a naive implementation. For a Riemannian gradient method, if Z € Tx, S}'*; a
compact implementation of computing Pg»»(X + Z) in [75] is only O(np?) + O(p*), which is
no longer possible for the Langevin Monte Carlo scheme (6.11) due to the mean curvature
correction term in the normal space. On the other hand, if a Lanczos type algorithm is used
for computing the top p eigen-components of X + Z, it seems possible to explore the special

structure in (6.12) to find a more efficient implementation, but we do not consider a more

compact implementation in this thesis.

6.4.2 Scheme BW for the Bures-Wasserstein Metric

With the Euler-Maruyama discretization for SDE (6.10), and the simple retraction and

Riemannian gradient of quotient manifold which are given in chapter 2, a simple Rieman-
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nian Langevin Monte Carlo scheme for approximating the Riemannian SDE (6.10) on the

Riemannian manifold (S1*, gpw/) can be given as

At
— VT 6.14
/8 ) ( )

ii

2At
Y = Y — ARVE(V Y)Y, + ,/7Bk +

gi
U [Zj#i T2

where By is n-by-p matrix with i.i.d. A(0, 1) entries and Y, = UXV7 is the compact SVD
of Y}, with singular values o; > 0 fori=1,2,--- ,p.

Notice that all operations are performed in the space of size n x p. For finding compact
SVD of Y, one can first compute QR decomposition of Y, which costs O(np?) + O(p?).
Then compute SVD of size p x p, which is O(p?). So the complexity of this scheme is
O(np*) + O(p?) for each iteration. For large n and small p, Scheme BW should be cheaper
than Scheme E in each iteration, but they generate different samples for different Gibbs
distributions which depend on the metric, i.e., Scheme BW cannot replace Scheme E for

generating Gibbs distribution defined by embedded geometry.

6.5 Examples with Analytical Formulae

In this section, we provide a few examples with analytical formulae so that they can be
used in numerical experiments for testing the two schemes (6.12) and (6.14) on the Gibbs
distribution.

For the rest of this section, X = QAQT € S denotes the full SVD with descending

eigenvalues \y > Ay > --- > A\, > 0.

6.5.1 Scalar Random Variables as the Testing Random Variable

Let X be a random variable satisfying the Gibbs distribution on S}” with dimension
N =np— p(p7271) under either metric gg or ggw, then X is a matrix-valued random variable,
making it difficult to validate our schemes. Therefore, for convenience, we consider a scalar
random variable D = D(X) which is a function of X € SI'*| e.g., D = || X||r where || - || is

the matrix Frobenius norm.
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We consider the distribution function for the scalar random variable D:

1
PD <d] = / e 9V, Z;= / e 4V, (6.15)
Uy M

where Uy := {X € S!""|D(X) < d} is the domain of the integral. For simplicity, we only
consider symmetric functions such that the random variable D, the energy function &, and
the volume form are all invariant under rotations, i.e., the group action by the orthogonal
group O,. We consider an energy function &£ satisfying £(X) = £(OXO0T), VO € O, such
that the Gibbs distribution function only depends on the spectrum of X when considering
(6.15) with D = || X = \//\%4——+)\12) Since O, is an isometry group for both metrics
gr and ggw, the volume form dV in the two cases is also invariant under O,, action.
Notice that ) and A can be used as coordinates of the manifold S7”. The volume form

expressed by coordinates () and A is given by

p
dV = /det g(J [ dN)dpo,

i=1

where pp, is the Haar measure on O,,, and ¢ is the matrix of metric gr or gpw expressed

under coordinate ) and A. For ¢gg its determinant det g is

detg=( H ’)\i_/\j|2>< H )‘i2(n7p)>’

1<i<j<p 1<i<p
and for ggy it is
A=Al (n—p)
det g = —_ A :
(1<11:[j<p Ai A ) <1£[<p )

So for gg the distribution Pr[D < d] is expressed as

Pr[D < d] _Zl / ey

B
1X[lp<d
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x [ e (T =) ([T Ay, (616)

P 1<i<j<p 1<i<p
Z A2 <d?
i=1

where we have used the fact that the integrand does not depend on the coordinate @@ € O,,,

so the integral of pe, only provides a constant coefficient. As we could always renormalize

Pr[D < d] by considering the quotient P},)r r[%):i]}, we only need the dependence of the integral

on parameter d.

Similarly, for the Bures-Wasserstein metric ggy we have

A=\
Pr[D < d] / e PE (] A = Al

> e \/m><1<llp/\i 2 )d)\l Ay, (617)
> a2<a?
i=1

A{>0,i=1,...,p

6.5.2 Example I: £(X) = %HXH%

This is the simplest example. Applying the general expression (6.16), for embedded

geometry g we have

Pr[D < d] / egi—zlA?< 11 |)\i—)\j\)( 11 )\i"*p)d)\l...d)\p

P 1<i<j<p 1<i<p

d p p
:/e_gpgpN_l( / H \wi —wJ]H|w1|n_pHdw)dp
0 i=1 i=1

gp—1 I<i<j<p
+

d
p p
:( / Il —wl H|w1]"7PHdw) /e_§92pN_1dp
=1 5

gio1 1<i<i<p i=1
+

d
oc/e_gpgpN_ldp, (6.18)
0
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[P
where we have used the spherical coordinate for (A, ..., \,) = pw, with p = A? being
i=1
the radius and w € S27' = SP~' N R”. being the coordinate on the positive orthant of the
unit sphere.

For gpyw, similarly we have
d
Pr[D < d] oc/e’ﬁ’ﬁp%’ldp. (6.19)
0

Now we can see that 3D? = S]] X||% is subject to x*(N) distribution for the embedded

metric gg, and XQ(%) distribution for the Bures-Wasserstein metric.

6.5.3 Example II: £(X) = Tr(X log X)

The second example for the energy function is the von Neumann entropy defined as

p
E(X)=Tr(XlogX) => XlogX\

i=1

The minimizers of £(X) = Tr(X log X) on S}* are matrices X € S} with spectrum
M=-= A —el.

We still consider the scalar random variable D = || X||,. Since £(X) = Tr(Xlog X) =

p
> Ailog A only depends on spectrum, the argument in the previous section about integral
i=1

on O, still applies. Applying (6.16), for gg we have

7B§:Ailog)\i p p
PrD<d)= [ e i T N =N TIA" " TLan
i=1 i=1

v 1<i<j<p

I
—

p P
[T = AlTIx " T ax,
i=1

» 1<i<j<p i=1
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and for ggy we have

A= Al Py 22 T
Pr(D < d) = / 1A Z AT T d
( ) 1§11;]j:§p\/)\i+/\ji];[1| | 11;[1

P
> aZ<a?
A;;O,i:l,.“,p
Although we do not have a closed expression for both cases, such integrals can be easily

approximated by an accurate quadrature when p is small, e.g., p < 3.

6.5.4 Example III: £(X) = L||X — A[7

In the third example, we consider a quadratic energy function £(X) = $||X — A||%, where
A € §}7; and the scalar random variable is D = || X — A||. In this example, O,, symmetry
does not hold, and we can only make an estimate of the distribution function.

The distribution function of D is evaluated through
Pr(D < d) o</ e 30V,
Uda

where Uy = {X € S!P|D(X) < d}. Using delta function, formally we can simplify the

integral to

Pr(D < d) x / 1(pege 2%V (6.20)
M
0 _8
= Sn,p(/ 1ipcqpe 27 8(D — p)dp)dV’
B
= [ Ve ([, 60D = p)av)ap

d B o
= 0 e 2° / 1{D p}dV)d
d > d
= -5 = 1ip_ndV)d
0 ¢ dp(/sﬁ’p (w-pdV)dp
d s 2d
= 27 —Vp(p)d
0 ¢, p(p)dp

(6.21)
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where Vp(p) = [y 1ip<ppdV = Jp<,dV.
In general, it is difficult to calculate Vp(p). But we can intuitively replace it with some
approximations. Vp(p) is intuitively the volume of the intersection of S}* and the ball

centered at A of radius p: By"(p) := Ba(p) N S}*, where
Ba(p) = {X € 8V | X = Al|» < p}.
Therefore, when the eigenvalues of A are large, we have the following approximation:
Vp(p) = ap™, (6.22)

where « is a constant that does not depend on r, N is the dimension of S}”. For gg, «
is exactly the volume of unit ball in R”, while for ggw, o depends on dimension N and
AeSPP.

For the gy metric, following similar arguments, we can get the same approximation
(6.22). Putting all this together, when A has eigenvalues A\; > --- > A, > 1, we have the

following
d 4 ¢
Pr(D < d) x / e 2D°qV = /e’gﬁ—(VD(p))dp X /e’QPQpN’ldp, (6.23)
D<d 0 0

where X stands for being approximately proportional to.

6.5.5 MCMC Numerical Integration

It is well known that MCMC can be used for integrating a function numerically, and that
one of the main advantages is that the convergence rate is independent of the dimension.
Both schemes in this chapter are MCMC type sampling schemes on the manifold. Suppose

we have generated samples X; satisfying the Gibbs distribution on the manifold, e.g.,

1
Xi ~ ZiefﬁS(X) dV,

go
B
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where Z5 = [ e XAV is an unknown normalization factor and dV is the volume form

n,p
S-‘r

depending on the metric. Then for approximating the integral of a nice function f(X) on

the same manifold [ f(X)dV, we can use

e

. J nfp F(X)av

LS rix e o I / 6.24
Snp

because each f(X;)e?®(X) is a random variable with expectation
Bl )= 7 / Fx)e e xqy,

and the left hand side is a random variable with expectation

1

B | 30| = LS B [(x 5E<X1>]=ZBSL f(X)av.

m

where the expectation E[-] is taken w.r.t. the Gibbs distribution under the corresponding
metric.

So using the generated samples X;, we can approximate the integral [ f(X)dV up to a
smr

constant Zg that does not depend on f(X). Notice that the additional advantage of Monte
Carlo type quadrature on a manifold is that we do not need to know what dV is. On the
other hand, Zs cannot be approximated by the same approach. Though we do not consider
any specific application for numerical integration, equation (6.24) can be used as one way to
validate the Riemannian Langevin Monte Carlo schemes.

For the following special functions, it is possible to calculate the ezact integrals. For
the energy function £(X) = %||X||§;, and a special integrand f(X) = ||X||’;e_%”X”? with
k> —N,m > 2, > 0, using the results in Section 6.5.2, the distribution of D = || X]||

obtains the following explicit forms:
d B 2
for metric gg : Pr[D < d] « / e 27 pNldp, (6.25)
0
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d
for metric gpw : Pr[D < d] « / e_gpr%_ldp, (6.26)
0

so the integral on the manifold could be expressed by the expectation of a random variable,

which leads to

1 .
for s - [, 7)Y = EF(X)e 1] = B[Dte07ed
.

_fOOO pke—%pm-&-gPQpN—le_gPde B %(a/m)_kﬁvr((k’ + N)/m) (6 27)
J2° pN-le=5*dp 3(B/2) NPT (N/2) |
for gpw Zl/ f(X)dV = E[f(X>e§HX”%] = E[DkeiﬁDmegly]
B Js”
e it e iy L(a/m) " RED((k + N/2)/m) (6.28)
ity 17 T

6.6 Numerical Experiments

In this section, we test the samples generated by the two Riemannian Langevin Monte
Carlo schemes (6.12) and (6.14) on the examples constructed in the previous section. The
samples are generated by the following procedure: we run the iterative schemes (6.12) or
(6.14) for sufficiently many m iterations then take the last m iterates as the samples for the
Gibbs distribution. Both m and m should be chosen such that the (m — m)-th iterate has
already reached equilibrium e.g., m is 6,000,000 and m is 5,000,000 for specially chosen
energy functions and parameters [3.

Now suppose we have generated samples X; € St” (i = 1,--- ,m) for either metric. In
order to test or show the numerical convergence to the Gibbs distribution, we will consider
two kinds of numerical tests.

The first kind of tests is to test on the scalar random variable D(X) = || X||r or D(X) =
| X — Al| r as described in Section 6.5. Then we compare the cumulative distribution function

(CDF) of the random variable D with its empirical CDF calculated from the MCMC samples.
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Denote the true CDF of D by Fp(t) := Pr(D < t). The empirical CDF of samples is
Bo(t) = 131
plt) = — 2 D(Xi)<ts

where 1p(x,)<; takes value 1 if D(X;) < ¢, and value 0 if otherwise. The KolmogorovSmirnov

test statistic (K-S statistic) is defined by
KSp = sgp’FD(t) — Fp(t)|- (6.29)

In our numerical tests, we compute the KS statistic by taking the maximum difference
of Fp and Fp at 100 equally spaced points in the interval [0, t,4:] Where Fp(tme) =~ 1.
The second kind of tests is on the integral examples in Section 6.5.5, let X be a random

variable satisfying Gibbs distribution on the manifold S’ under either metric. Define

|
pi= B (X)) = — / F(X)dV.
B hp
S )

Given m samples X; € S}”, we define

_Z f(X;)e% X, (6.30)
Notice that samples generated by MCMC are not independent. If we assume
o? := var (f(X )efEX) ) +2 Z cov ( )efeXn) f(XHk)e'BS(X”’“)) < 00,
then by the Markov Chain Central Limit Theorem[89, 90|, as m — oo, we have
Vm(fim = p) = N(0,0%) (6.31)

where the convergence is in the sense of distribution. Thus if m > 1, % roughly follows

the distribution N (0, O(%)) and the relative error term ‘%‘ roughly follows the folded
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1
m

(6.30) to estimate p = Z% [ f(X)dV, and the relative error is O(
S

normal distribution with mean O(ﬁ) and variance O(--). Hence we can use /i, defined in

V)
6.6.1 Numerical Validation of the CDF of the Scalar Variable D(X)

The manifold S has dimension N = np — p(p — 1)/2. For both metrics, we consider
three examples in Section 6.5 with special energy functions £ in the Gibbs distribution e=#¢

and the CDF for the scalar variable D(X):

1. Example I: £(X) = 1 | X ||% with the CDF for D(X) = || X||¢:

t
For gi: Fp(t) = Pr(|X||; < 1) o< [ & 57 p¥1ap,
0

t
For gpw :  Fp(t) = Pr(|| X, < t) o /e—ngPNﬂ—ldp'
0

2. Example II: £(X) = tr(X log X) with the CDF Fp(t) = Pr(||X|| < t) for D(X) =
[ X |

p p
Forge: Fp)x [ TT =TI [T ax,
i=1 i=1

» 1<i<j<p
Z AZ<t?
i=1

Mo A B apr gy P
For gBw : FD<t> X / H g H’)\1| 5} LB Hd)\l
) 1<i<j<p \/Ai + Aji=1 =1
o aZ<i?
i=1

which is a p-fold integral and can be approximated accurately by quadrature such as

Simpson’s rule for relatively small values of p, e.g., p = 2, 3.
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3. Example III: £(X) = 1||X — A||%. where A € ST has eigenvalues A\; > --- >\, > 1,

with the CDF for D(X) = || X — A||¢:
¢
For both g and gpw :  Fp(t) =Pr(|X — Al <t) ¥ /e’gPQprldp.
0

In the implementation of the scheme, the step size At and S in schemes (6.12) and (6.14)
are two parameters that need to be tuned to reach equilibrium with reasonable computing
time. We first use a numerically stable At then adjust 3 so that the noise term has reasonable
variance. And of course one needs a sufficiently large number of iterations for schemes (6.12)
and (6.14) to reach their equilibrium state, and a sufficiently large number m of samples
to observe numerical convergence toward the Gibbs distribution through the scalar random
variable D, e.g., the KS statistic (6.29) should be small. See Figure 6.1, Figure 6.2, Figure

6.3, and Figure 6.4 for the numerical results.

o Empirical CDF o Empirical CDF
~ True CDF ~ True CDF
< 1] : = 1
VI VI
) $ A
= <
=057 s =057
) ~
& &
O j \ \ , 0 . . ,
0 2 4 6 8 10 0 4 6 8
t t

(a) Scheme E (6.12) on (S}7*,gg) with (b) Scheme BW (6.14) on (SY”.gpw)
At = 0.001 and 8 = 0.4. The error be- with At = 0.001 and 8 = 0.4. The er-
tween two CDFs is K'S = 0.0054. ror between two CDFs is K.S = 0.0023.

Figure 6.1. Example I: £(X) = %HXH;, n = 5, p = 3 and manifold dimension
is N = 12. The empirical CDF is computed by 5£6 MCMC samples generated
after 66 iterations of the Riemannian Langevin Monte Carlo schemes. Both
CDFs of scheme E and scheme BW are evaluated at 100 equally spaced points

on [0,10] and [0, 8], respectively, and the difference can be measured by the
KS statistic (6.29).
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o Empirical CDF o Empirical CDF
« True CDF
= 17 = 1
VI VI [
:Lp 99 :Lp Ges
N 9099 X 066
=05 K =057 o
~ P ~ ®
A & A
J/
0 ‘ : : 0 >4 : : :
0 5 10 15 0 5 10 15
t t

(a) Scheme E (6.12) on (S}*,gg) with (b) Scheme BW (6.14) on (S)",gpw)
At = 0.001 and 8 = 0.5. The error be- with At = 0.001 and § = 0.5. The er-
tween two CDFs is K'S' = 0.0096 ror between two CDFs is K5 = 0.0043.

Figure 6.2. Example II: £(X) = tr(Xlog X), n = 5,p = 3 and manifold
dimension is N = 12. The empirical CDF is computed by 5£6 MCMC sam-
ples generated after 6 6 iterations of the Riemannian Langevin Monte Carlo
schemes. Both CDFs are evaluated at 100 equally spaced points on [0, 15], and
the difference can be measured by the KS statistic (6.29).

o Empirical CDF o Empirical CDF
~ True CDF ~ True CDF

VI p VI

A $ &y E

> b

—=0.5¢ K =05+ o

o K o K

QA s e

-/ / | |
0 5 10 15 20 0 5 10 15
t t
(a) Scheme E (6.12) on (S}7*,gg) with (b) Scheme BW (6.14) on (8", gpw)
At = 0.001 and 8 = 0.5. The error be- with At = 0.001 and § = 0.5. The er-
tween two CDFs is K.S = 0.006. ror between two CDFs is KS = 0.0043.

Figure 6.3. Example II: £(X) = tr(Xlog X), n = 10,p = 2 and manifold
dimension is N = 19. The empirical CDF is computed by 5£6 MCMC sam-
ples generated after 6 6 iterations of the Riemannian Langevin Monte Carlo
schemes. Both CDFs of scheme E and scheme BW are evaluated at 100 equally
spaced points on [0, 20] and [0, 15],respectively, and the difference can be mea-
sured by the KS statistic (6.29).
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o Empirical CDF o Empirical CDF

= * Approximated CDF = * Approximated CDF

= =

< < s

! |

< 051 < 057 3

= T

A A j

0 ‘ : : : 0 ‘ : : :
0 2 4 6 8 10 0 2 4 6 8 10

t t

(a) Scheme E (6.12) on (S}*,gg) with (b) Scheme BW (6.14) on (SY”.gpw)

At = 0.001 and 8 = 0.4. The error be- with At =2E-7 and 8 = 0.4. The error

tween two CDFs is KS = 0.0084. between two CDFs is KS = 0.0052.
Figure 6.4. Example III: £(X) = $||X — A|l%, n = 5,p = 3 and manifold
dimension is N = 12. The nonzero eigenvalues of A are equally spaced be-
tween 10000 and 20000. The empirical CDF is computed by 5E6 MCMC
samples generated after 6F6 iterations of the Riemannian Langevin Monte
Carlo schemes. Both CDFs are evaluated at 100 equally spaced points on
[0, 10], and the difference can be measured by the KS statistic (6.29).
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6.6.2 Validation using MCMC Numerical Integration

We consider special cases kK = 0,m = 2 in the examples (6.27) and (6.28), then (6.27)
reduces to (g)N /2 and (6.28) reduces to (g)N /4. In other words, we may verify the numerical

convergence of samples X; to Gibbs distribution by verifying

1 & Bl x. (12 B N2
F : -3 HXIHF — — 632
or gg m ;:1 e 2 o ) ( )
m N/4
1 a—pB 112 5
E : —wE L, (P) 6.33
Oor gpw m ;e o ( )

In Figure 6.5 we indeed observe the O(1/y/m) for the relative error of numerical integra-

tion.
o _ Error Decay Rate Comparison o Error Decay Rate Comparison
10 ‘ ‘ 10 ‘ ‘
) —e— Relative error —e— Relative error
- = =1/sqgrt(m) - = =1/sqrt(m)
107
2102
LIJ P -~
107 LTl
-4 ‘ -4 ‘
10 10
10° 106 107 10° 108 107

Number of Samples
(a) Integration on (S}'*, gp) via samples gen-
erated by Scheme E (6.12) with At = 0.001
and 8 = 0.4.

Number of Samples
(b) Integration on (S’ gpw) via samples
generated by Scheme BW (6.14) with At =
0.001 and 8 = 0.4.

Figure 6.5. Convergence rate of the relative error of ‘M‘ MCMC integra-
tion on the manifold with n = 10, p = 2 and dimension N = 19. Parameters
are o = 0.75, 8 = 0.4, for which it is a numerical integration of the function
E(X) = L||X|% on the manifold S”. The error shown is the averaged one of

2
12 independent runs.
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6.7 Concluding Remarks

We have constructed two efficient Riemannian Langevin Monte Carlo schemes for sam-
pling PSD matrices of fixed rank from the Gibbs distribution on the manifold S equipped
with two fundamental metrics: the embedded metric and the Bures-Wasserstein metric. We
have also provided several examples for which these sampling schemes can be numerically

validated for correctness.
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7. SUMMARY AND FUTURE WORKS

This dissertation develops a unified geometric framework for optimization and sampling over
the manifold of fixed-rank positive semidefinite (PSD) matrices. These types of constraints
arise naturally in a variety of applications, including matrix completion, phase retrieval,
eigenvalue problems, and Bayesian inference. Motivated by both practical needs and theo-
retical challenges, we investigate efficient algorithms that exploit the underlying Riemannian
manifold structure of the constraint set.

We begin by analyzing the manifold geometry of Hermitian PSD matrices of fixed rank,
considering both embedded and quotient representations. This leads to three different but
closely related formulations of Riemannian optimization over PSD matrices. We show how
these formulations relate to each other, and we study their computational and theoretical
implications.

Next, we analyze the convergence and performance of Riemannian optimization algo-
rithms within this framework. Particular attention is paid to orthogonalization-free meth-
ods and the impact of rank-deficiency on the conditioning of the problem. We derive and
validate condition number estimates for Riemannian Hessians and justify the performance
of numerical algorithms.

In addition to optimization, we extend this framework to the stochastic setting by devel-
oping Riemannian Langevin Monte Carlo algorithms designed for sampling over fixed-rank
PSD manifolds. We propose two sampling schemes: one based on the embedded geometry
and one on quotient geometry and validate their correctness and efficiency through numerical
experiments.

The theoretical insights and algorithmic developments in this thesis are supported by
extensive numerical results across a variety of problem domains. Collectively, the contribu-
tions provide a rigorous and practical foundation for computation over low-rank PSD matrix
manifolds, bridging the gap between abstract geometric tools and real-world applications.

For future works, there remains an unanswered question in the work [75]: how to show
the convergence of our Riemannian gradient-based method for the rank-deficient case, and

in what sense does the convergence occur? We assume that the iterates generated by RCG
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on solving (3.2) will converge to a minimizer of (1.1), but such a convergence has not been
rigorously justified. In fact, if the minimizer X is rank-deficient, X is not even in the fixed
rank constraint set. One of my future interests aims to answer this question rigorously.

There have been several works in literature related to such a convergence question, e.g.,
[91] proposed a preconditioned gradient descent whose function value still has linear conver-
gence for the rank-deficient case. However, it does not consider any manifold structure. Even
though the preconditioning itself can be understood as a consequence of some Riemannian
metric, it does not imply directly the convergence of the Riemannian gradient-based method
w.r.t. that metric.

Instead of considering the fixed-rank manifold, there has been increasing interest in con-
sidering stratified sets [92, 93], which consider SZ7", the set of n-by-n PSD matrices of rank
< p. 8Z;" is no longer a manifold, but a collection of fixed-rank manifolds. Each fixed-rank
manifold behaves like a stratum, conceptually suggesting the highest rank manifold stacks
on top of lower-rank manifolds. Similar geometric manifold concepts, such as tangent spaces
and gradients, can be generalized to stratified sets. If the constraint is the stratified set, op-
timization naturally happens to consider all rank scenarios and the convergence, if proved,

would be more rigorous than the current one.
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A. Derivatives

See A.5 in [30] for more details in this section.

A.0.1 Fréchet Derivatives

For any two finite-dimensional inner product vector spaces U and V over R, a mapping

F:U — YV is Fréchet differentiable at x € U if there exists a linear operator

DF(z): U —V
h +— DF(z)[h]

such that
F(z+h) = F(x)+DF(x)[h] + o(]|h]]).

The operator DF(x) is called the Fréchet differential and DF(x)[h] is called the directional

derivative of F' at x along h. The derivative satisfies the chain rule:

D(f o g)(x)[h] = Df(g(x))[Dg(x)[R].

For a smooth real-valued function f : U4 — R, the Fréchet gradient of f at z, denoted by

V f(x), is the unique element in U satisfying

(Vf(x),h)u = Df(z)[h], Vhel,

where (-, )z is the inner product in U.

In particular, regard U4 = C"*" as a vector space over R with the standard inner
product (X,Y)caxn = Re(tr(X*Y)). Regard X as (Re(X),Im(X)) and regard f(X) as
f(Re(X),Im(X)). By the multivariate Taylor theorem of the function f(Re(X),Im(X)), we
get

[F(X+h) = F(X) = (V(X), h)enn| =
|f (Re(X) + Re(h), Im(X) + Im(h)) — f(Re(X),Im(X)) —
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(o). (o))

Notice

of of _JOf(X) | .Of(X)
<8Re(X)’Re(h)>Rm + <81m(X)’Im(h)>Rm = < ORex | " OImy ’h>cm ‘

Thus the expression

_0fX) L 0(X)

Vf(X) B 8Rex 81111)(

coincides with the Fréchet gradient for f(X) under the real inner product (2.17).

Proposition A.0.1. Regard U = C™*" as a vector space over R with the standard inner

product (X,Y)cnxn = Re(tr(X*Y)). Let X € C". If X = X*, then Vf(X) = (Vf(X))".
Proof. Let g : C"*"™ — C™" : X + X*. Then it is straightforward to verify that
Dg(X)[h| = h*,Yh € C™*".

Therefore for any f : C"*" — R, by chain rule we have Vh € C"*"

D(fog)(X)h] = D f(g(X))[Dg(X)[h]]
= DX
= (VA(XT), ) gnsn
= (VX)) A g -

Therefore we have

V(fog)(X)= (VX))

So by the definition of Fréchet derivative of f o g at X € C"*", we have the following.

(fog)(X +h) = (fog)(X)+ (VX)) Byenxn +o([[Al]),  Vh e T
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Let " ={X € C"" : X* = X}. Then H"*" is a linear subspace of the vector space
C™", Hence we can restrict f to H™ " and define its Fréchet gradient in H™*". Let V*f
denote the Fréchet gradient of f in H™ ™. In particular, consider X, h € H"*", then the

above equality turns into
FX+h) = F(X)+ (VX)) h)gnsn + o([[A]]), - VR € H™
Hence we have
VX € H™ " VHF(X) = (VF(X))". (A1)

On the other hand, by the definition of Fréchet derivative of f, we have
X+ h) = f(X) +(V(X), Mguen +o([[B]]),  Th e T
In particular consider X, h € H™*", then the above equality turns into
FOX 4 B) = FX) + (VFX) R+ ol 1B, ¥ €
This gives us
VEF(X) = VI(X). (A.2)

Combining (A.1) and (A.2), we obtain the desired result.

Proposition A.0.2. Let f: C"P — C™ " : Y — YY™ and the inner product on C"*? as the
standard inner product (A, B)cnx, = Re(tr(A*B)). Then the Fréchet gradient of F':= fo 3

satisfies

VE(Y) = 2VF(YY")Y. (A.3)

Proof. Indeed, by the chain rule of Fréchet derivative we have
DF(Y)[h] =D f(B(Y)) [DB(Y)[A], VheC™.

Hence

(VEY), h)gnp = (VYY) DB ) [A])gncn
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One can check by definition that D 5(Y)[h] = Yh* 4+ hY™*. Hence
(VE(Y), Ry = (VIYY), YR 4 BY g = (29 F(VY)Y, B

This proves (A.3).
Proposition A.0.3. If f takes the form of f(X) = 3|l A(X) — b||% for a linear operator A,
then the Fréchet gradient of f(X) is given by

VI(X) = A" (A(X) =),

where A* is the conjugate operator of A.

Proof. We know by the definition of Fréchet gradient that

of . of

VIX) = 5Rer T 9Ty

Now for f(X) = 3|l A(X) —b||* = $(A(X) — b, A(X) — b), by the linearity of A, we have

VIX) = 2 (A b A a4 5 (AC) ~ b D)~ Blacs
= L0 AK) b AB) — Bolacs + 5 O CA(D) b ACK) ~ v s x
= ;£(<X, A (A(A) = b)) enxn|az X+;ai<A A" (A(X) = b))ermen|a=x
= G ((Re(X), Re(A"(A(A) ~ ) + (In(X), Tm(A"(A(A) D)) [a-x
+;;A((Re( ), Re(A* X) =0))) + (Im(A), Im(A*(A(X) = )))) |a=x
_ ;(af aIm ) ((Re(X), Re(A*(A(A) — b))
+(Im(X), Im(A* = b)) la=x
4L ((mf( 5 i )><< (), Re(A*(A(X) — b))
F(Im(A), Tm(A*(ACX) — ) [sx
= 5 (Re(A"(A(8) — b)) + i (A" (A(A) — b)) [a=x
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+; (Re(A*(A(X) — b)) + 1 Im(A*(A(X) — D)) |acx
= A*(A(X) - ).

A.0.2 Fréchet Hessian

For a Euclidean space £ and a twice-differentiable, real-valued function f on &, the

Fréchet Hessian operator of f at x is the unique symmetric operator V2 f(z) : £ — £ defined
by
V2f(z)[h] = D(V)(z)[h]

for all h € &.

Proposition A.0.4. Regard £ = C™" as a Euclidean space over R with the standard inner
product (X,Y)cnxn = Re(tr(X*Y)). If X = X* and h = h*, then

VEF(X)[R] = (V2 F(X)[R])".

Proof. Let g : C"™ — C™" : X — X*. Consider the Fréchet Hessian of f o g. By the

definition of Fréchet Hessian we have
V(fog)(X +h) = V(fog)(X)+ V2(f 0 g)(X)[h] + o([|AII").
We know from the proof of Proposition A.0.1 that
V(feg)(X) = (Vf(X))"

Hence

(VAXT 4+ 1) = (VX)) + V(S 0 9)(X)[R] + ol |l]").

Therefore

VE(f o g)(X)[h] = (V2 F(X)[A7])"
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Now restrict fog on the subspace H"*"™, we have f o g|ynxn = f|gnxn. Hence the Fréchet
Hessian operator of f on H"*™ is (V2 f(X*)[h*])* = (V2f(X)[h])*. On the other hand, the
Fréchet Hessian operator of f on H"*" is denoted as V?f(X)[h]. Hence if X, h € H"*", we
have

VEF(X)[R] = (V2F(X)[R])".

This proves the proposition.

A.0.3 Taylor’s Formula

Let &€ be finite-dimensional Euclidean space. Let f be a twice-differentiable real-valued

function on an open convex domain {2 C £. Then for all x and z + h € (,

Flah) = f(2) + (V). Bg + 5 (T2 @)L A, + O (IAI2)
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B. Embedded manifold H”

The geometry of the real case, i.e., Sy has been explored in [43]. However, it is not
straightforward to extend these results directly to the complex case. Although the methods
of proofs of the complex case turn out to be similar to the real case, we still need to provide
them. Recall that a complex matrix manifold is viewed as a manifold over R instead of C.
One way is to identify a complex matrix with the pair of its real and imaginary part; another

way is to identify the matrix with its realification.

Definition B.0.1 (Realification). The realification is an injective mapping R : C"*™ — R2"x2n

defined by replacing each entry a;; of A = (aij)nxn € C**" by the 2 x 2 matrix
Re(a;) —Im(ay)
Im(a;)  Re(ay)
It can be shown that R preserves the algebraic structure:
e R(A+ B)=TR(A) +R(B)
e R(AB) =R(A)R(B)
e R(aA) =aR(A) VaeR
« RU) =1
¢ R(A%) = (R(A)T
Hence A € C™" is invertible if and only if R(A) is invertible. *

Lemma B.0.1. Let GL(n,C) be the general linear group viewed as a real Lie group. Then

it is a semialgebraic set.

Proof. Recall that a subset of R™ is a semialgebraic set if it can be obtained by finitely many

intersections, union and set differences starting from sets of the from {z € R™ : P(x) > 0}

14, See for example https://www.maths.ted.ie/pub/coursework/424 /LieGroups.pdf
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with P a polynomial on R™ [28 Appendix B]|. Since GL(n,C) is viewed as a real Lie group,
GL(n,C) is understood as a subset of GL(2n, R) through realification. It can be shown that

GL(n,C) = {X € GL(2n,R) : XJ = JX}, with J = R(I).

We know that GL(2n,R) is a semialgebraic set since it is the non-vanishing points of de-
terminant; and {X € R***" : XJ = JX} is also a semialgebraic set by definition. Hence

GL(n,C) is a semialgebraic set.

B.0.1 Calculations for the Riemannian Hessian

Let f be a smooth real-valued function on H’”. In this section, we derive the Riemannian
Hessian operator of f.

By [39, section 4] we know that the retraction R defined in (2.20) is a second-order
retraction.

Proposition 5.5.5 in [30] states that if R is a second-order retraction, then the Riemannian

Hessian of f can be computed in the following nice way:
Hess f(X) = Hess (f o Rx)(0x).

Notice that now f o Rx is a smooth function defined on a vector space. Hence, we obtain

gx (Hess F(X)[Ex], €x) = 3 F (Rx(16x)) o

However, it is difficult to obtain a second-order derivative of f o Rx using the retraction Ry
defined in (2.20). The references [7] and [41] proposed a method to compute Hess f(X) by
constructing a second-order retraction R that has a second-order series expansion which
makes it simple to derive a series expansion of f o Rg?) up to second order and thus obtain

the Hessian of f. We will summarize the derivation below.

153



Lemma B.0.2. For any X € H? with XT the pseudoinverse, the mapping Rg?) c TxHY? —

HP given by
* . 1 s 1 s s 1 s
Ex > wXTw*, with w = X + ifx + & — ngXTfX - ifngTf)(,

is a second-order retraction on H''") where £ = P§(&x) and &% = PY(€x) as defined in

(2.7). Moreover, we have

RP(6x) = X + &x + &5 X ek + O(|x|®).

Proof. 1t follows the same proof of [7, Proposition 5.10] .

From this, the Riemannian Hessian operator of f can be computed in essentially the
same way as in [38, Section A.2] but applied to the general cost function f(X) instead of
a least squared cost function. Consider the Taylor expansion of f)(? ) = fo Rg?), which is a

real-valued function on a vector space. We get

fPEx) = fRP(x))
= [ (X +&x +&XTE +O(ex]))
= F(X) +(VAX), &x + & XK .

+§< X)[ex + EXTER] e + 5 XTER) . + O(lléx]”)
= S+ (VX)) nmn + (VX)) EEXTER)
1
5 (VI XOlEx) Ex ) + OUlEXIP).

We can immediately recognize the first order term and the second order term that contribute

to the Riemannian gradient and Hessian, respectively. That is,

9x (gradf(X>7£X) = <vf(X)7£X>(C"><n )
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gx (Hess f(X)[éx], &x) = 2(VF(X), & X1k ) ., + (VA (X)[ex] éx) .,

f11:<H1(§X)7§X>Cn><n f2::<H2(5X)75X>Cn><n

The first equation immediately gives us

grad f(X) = Px(Vf(X)).

For the second equation, the inner product of the Riemannian Hessian consists of the
sum of f; and f5; and the Riemannian Hessian operator is the sum of two operators H; and
H,. Since Ex is already separated in fs, the contribution to the Riemannian Hessian from
‘H, is readily given by

Ha(6x) = Pe(V2F(X)[Ex)).

Now, we still need to separate {x in f; to see the contribution to Riemannian Hessian
from H;. Since we can choose to bring over £ X1 or XT¢% to the first position of (.,.)cnxn,

we write H;(€x) as the linear combination of both:

fr = 2e(VFX) (X)€% ), 200 = ) (X V(X)) €5) -

Operator H; is clearly linear. Since H; is symmetric, we must have (H;(€x), Vx)enxn =

(vx, H1(Ex))cnxn for all tangent vector vx. Hence we must have ¢ = £ and we obtain

Hi(6x) = Pk (VFX)(XT&) + (XN V(X))
Putting H; and H, together, we obtain

Hess £(X)[€x] = PL(V2F(X)Ex]) + P% (V) (XTE)" + (€ XT)VF(X)).

155



C. Quotient Manifold C!**/0,,

C.0.1 Calculations for the Riemannian Hessian

In this section, we outline the computations of the Riemannian Hessian operators of the

cost function h defined on C?*? /O, under the three different metrics g'.

Definition C.0.1. [30, Definition 5.5.1] Given a real-valued function f on a Riemannian man-
ifold M, the Riemannian Hessian of f at a point x in M is the linear mapping Hess f(x) of
T, M into itself defined by

Hess / (2)[&,] = Ve.grad f(x)

for all &, in T, M, where V is the Riemannian connection on M.

Lemma C.0.1. The Riemannian Hessian of h : C!*?/O, — R is related to the Riemannian

Hessian of F': C*? +— R in the following way:

(Hess h(r(Y)) [&x]), = P¥ (Hess F(Y)[E, ).

where &, is the horizontal lift of &xv) at Y.

Proof. The result follows from [30, Proposition 5.3.3] and the definition of the Riemannian

Hessian.

Riemannian Hessian for the Metric ¢!

Using the Riemannian metric g!, C**? is a Riemannian submanifold of a Euclidean space.
By [30, Proposition 5.3.2], the Riemannian connection on C*? is the classical directional

derivative:

vﬁyg = Dﬁ(Y)[TIY]
Recall that for g', grad F(Y) = 2V f(YY*)Y. Hence, the Riemannian Hessian of F' at Y is
given by
Hess F(Y)[{y] = Vg.gradF
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— Dgrad F(Y)[&y]
= AV(YY)VE + & VY + 2V (YY)

The last line is by the product rule and the chain rule of differentiation. Therefore, we obtain

(Hess h(=(Y)) &), = P (2V2F(YY)YE + & Y'Y +2VF(YY™)Ey ).

Riemannian Hessian Under Metric ¢°

First, for any Riemannian metric g, g satisfies the Koszul formula

29:(Ve, Ame) = &g(An) + Aeg(n,€) — m29(€,N)
~92(& [N le) + 9o (A [0, E]2) + 92(1, [§, ML)
= Dg(\n)(@)[&] +Dg(n, &) (x)[A] — D g(& N)(@) 0]
~92(&es [N 2) + 9o Ay [0, €]2) + 92(n, [ ML),

where the Lie bracket [-, -] is defined in [30].

In particular, for ¢ the above Koszul formula turns into

297 (Ve, Ay) = Dg?(\n)(Y)[&v] + D g*(n. ) (V) [Av] = Dg*(€, M (Y )]

—av (&, A nly) + 95 O, [0, €ly) + g5 (0, [€, Aly).

Recall that g?(\,7)(Y) = Re(tr(Y*Y Ayny)). Hence, the first term in the above sum

equals

DA\ n)(V)lev] = g (DAY)[Ev],nv) + g5 (Av, Dn(Y)[év])
+ Re(tr(& Y Ayny ) + Re(tr(Y76y Ay ny ).

Following [30, Section 5.3.4], since C"*? is an open subset of C"*?, we also have

(A nly = Dn(Y)[Ay] = DAY)[ny].
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Summarizing, we get

29‘2/(V£w\77h/) = Dg2()\,77)(Y)[§Y] + DQQ(TLQ(Y)[)\Y] - Dg2(§, MY [ny]
[

+Re(tr(ny (Ay (&Y + Y78y ) + & (Y Ay + AVY) = YAy — YERAy)))
= 2¢7 (v, DA(Y)[&))
+9v (ny, AW (&Y + Y&y ) +

(Y Ay +A0Y) = YAy — YEAY) (YY) ).
We therefore obtain a closed-form expression for Riemannian connection on C**? for g*:
1
Ve A = DAV)Ey]+5 (Y +Y76) + & (VA £ AY) = VARG = YEA) (YY)

Recall that for the Riemannian metric g%, we have grad F(Y) = 2V f(YY*)Y(Y*Y)"L.

Hence, we have

Hess F(Y)[Sy] = Ve grad F

= Dygrad FI(Y)[&y]
e {arad F(Y)(EY +Y"6) + & (Y grad F(Y) + grad F(Y)'Y) —
Ygrad F(Y)*¢y — Yéygrad F(Y) (YY) ™

= VYY)V + &YV (YY) 2V (VY )& (YY)
—2VYY )Y (YY) (Ve +§Y) (YY)
HVAYY)Y (YY) (Ve +§Y)(VY) T
+& YV VAYY)Y (YY) + (YY) YV YY) Y HYY) !
Y (VY)Y VYY) +YE VYY) Y (YY) (YY)
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= VYY)V + &YV (YY) + 2V (VY )er (YY)
~VIYY)Y (YY) (Y +§Y)(YY)
+& YV VAYY)Y (YY) + (YY) Y VA YY) Y HYY) !
Y (VY)Y VYY )y + YEVAYY)Y (YY) HYTY)
= VYY)V + &YV (YY) + 2V (VY )e (YY)
VYY" )Py (YY) = VIYY)Y (YY) Gy (YY)
+H& Y VIYY)Y (YY) 2+ & (YY) Y VAYYHY (YY) ™!
—Py VYY) (YY) = YEVYY)Y (YY)~
= 2V2F(YYHYE + &YV (YY)
FVIYY)e (YY) = VYY) P& (YY)
VYY) (YY) = B VYY" )ey (YY)
+2skew (&Y )VF(YY*)Y (YY) 2
+2skew{&y (YY) WY'VFYY)}Y (YY)
= 2V f(YY)VEG + &YV (YY)~
HVYY ) P&y (YY) + PRV (YY" )ey (YY)
+2skew(& Y ) V(YY" )Y (YY) ™2
+2skew{&y (YY) WY*'VF(YYH}Y (YY)

To conclude, we obtain

(Hessh(x(¥)lm)]), = P {2920V )YVE + &Y Y (YY)
FVIYY)PEEG (YY) 4+ PEV (YY) (YY)
+2skew (&Y )VF(YYH)Y (YY) 2

+ 2skew{€y (YY) 'Y'VA(YY )Y (YY)
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Riemannian Hessian Under Metric ¢*

Recall that the Riemannian metric g3 on C™ P satisfies

g (&ny) = dv(&,my) + o (PY (&), PY(ny))

= 2Re(tr(Y*& Y™ ny + Y*VEy)) + Re(tr(Y PY (&) Py (ny)Y™))
where
gY(£Y7 77Y) = <Y£;</ + ng*7 YT/;(/ + TIYY*>Can .
PY(\y) = Yskew((Y*Y) 'Y *Ay).

Hence

D g* (A, m)(Y)[&v]

= gy(DAY)[&v],mv) + 3(Ayv, Dn(Y)[Ey])
F2Re(tr(GAy Y ny + Y A&y + G YAy + Y Avny))
+03 (PY (Ay), DPY (1iv) [&v]) + ¢°(D PY () [&v ], Py (11v))

+Re(tr(&y PY (A\y ) Py (y) Y™ + Y (Ay) P (v )&57))-

Suppose A\, n and & are horizontal vector fields, then many terms in the above equation

vanish:

D@\ n)(Y)&] = av(DAY)[Ev],my) + v Ay, Doy éy])
+2Re(tr(§yAvY  ny + Y Ay &y + Y AVny + Y v Ay ).

Combining the above equation and the Koszul formula with &, n, A horizontal vector fields,

we obtain

29y (Vey Ay

= D@\ ))& ]+Dg*(n,8)(Y)[Ayv] =D g’ (&N (Y)ny]
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—gy (&, Dn(Y)[Ay] = DA(Y)[ny))
+gy (A, DEXY) [nv] = Dn(Y)[év])
+g5 (ny, DA(Y)[&y] = DE(Y) Ay ])
= r(DAY)& ], mv) + gy (A, Dn(Y)[&])
F2Re(tr(GA Yy + Y MGy + GV AV 0y + Y76 Avny))
+9vy (Dn(Y)[Av], &) + gy (ny, DE(Y)[Ay])
+2Re(tr(Ayny Y &y + Yy AV Sy + A Y e &y + Y A&y )
=gy (DEY) ], Av) = v (&, DAY [nv])
—2Re(tr(ny &Y Ay + Y Gy Ay + i3 YE Ay + Y 0y &G Ay))
=9y (&, Dn(Y)[Av]) + gy (&, DA(Y) [nv])
+y (A, DEY)[ny]) — gy (Av, Dn(Y)[&v])
+9v (v, DAY)[v]) — Gy (nv, DEY) [Av])
= 20y (DAY)[&v],ny) +4Re(tr(Y" &y Ayny + Y Av&ny)).

It follows that

9y (Ve Any) = gy (DAY)[Ev], ny) + 2Re(tr (Y& Ay + Y Ay Eny ).

By definition, we have Hess F(Y)[{y] = V¢, grad F. By Lemma (C.0.1), it suffices to

assume that &y is a horizontal vector in order to obtain the Hessian operator of h. Therefore,

gy (Hess F(Y)[&v]. nv)
= gy (Veygrad Fyoy)

(ny, Dgrad F(Y)[y]) + 2 Re(tr(Y "y grad F(Y) ny + Y grad F(Y)&5ny))
(nv, Dgrad F(Y)[y]) + Re(tr((Yny + nyY™)(grad F(Y)&5 + &ygrad F(Y)")))
9( )€

g(ny,Dgrad F(Y

Il
S}

Il
N}

(77%( ; )(gradF )& + Eygrad F(Y)* )Y(Y*Y)l)_
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Recall that for Riemannian metric ¢, we have
1
grad F(Y) = (I - 2Py) VYY) (YY)

Hence,

D grad F(Y)[&y] = <1 _ ;Py> VYY)V E + &Y Y (YY)
DRV YIY (Y
+ (1= 5P ) VIY D O (1Y) ey,
where we have
D(Py)l&y] = DY (YY) V)&

= Y)Y YY) HEY + Y ) YY) Y Y (YY) T
and
DYYY) &l = &YY) YY) (GY +Y&)(YY)
Combining these equations we have

gy (Hess F(Y)[&v], )
= 3 (m (1= 3R ) VHOYIYE + 6V Y)Y
=3 (@ 7YY YY) HEY YY) Y YY) )
VY)Y (YY)
4 (s (1= 37) VIOV (60 y) = YY) HGY +Y )y )
4 (v (157 (1= 58) IOy Y vy ) e
(YY) YV (YY) (1 _ 2Py>) Y(Y*Y)l)
= 3 (m (1= 3R) HOYIYE + &Y Y)Y
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—3 (s 36 (VY)Y YY) G Y)Y Y Y (1Y) )
(

)
)

2
+g (ny, (I
(
(
1

VIYY )Y (YY)

P

1
)
VYY) (& (Y) T =Y (YTY)” <5YY+Y &)Y
3
)

)
43 (e (137 ) D10y v (e )
49 (5 (1= 5P ) & VY)Y VY Y (1Y) )
3 (. (1= 5P ) PHOYIVE + 67 (Y)Y
—3 (s 3 (VY)Y VY)Y (Y ) )
—3 (s 3V OV G VY YY)
4 (Y V)G PV Sy Y () )
4 (s 3 & (Y)Y RSO (1Y) )
4 (v (1= 3 ) VIV (1= P (ry) 7 =y (VY) gy () )
4 (o (1= 5Py ) TIOY Y Y)Y ey

VIO YY) g Y ()

49 (3 (7= P) &Y (VY)Y VA Y (1Y)
inyy(Y*Y)‘lY*Vf(YY*)Y(Y*Y)‘l>

3 (v, (1= 500 ) HOYOYEG + &Yy (Y)Y
+3 (v, (I = P)VFYY*)I = Pr)ér (YY)

(v, Yskew (YY) 'Y*VFYY*) I = Pr)y (YY) 7))

g
j

j (n (I - ;Py) VI (YY)YEL + €YY*1Y<Y*Y)_1>
j

gv (7 (f - ;Py) VYY) YE + &YV (YY) +
(I—-Py)VIYY*)(I - PY)fY(Y*Y)”)
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Hence for & € Hy, we have

Hess (V)] = (1~ ;Py) VYY) YE + &YV (YY)
+(I = Py)V (YY) I = Py )y (YY)

To summarize, we obtain

(Hess h(=(Y)[=v)]),, = P (Hess F(Y)[Ey])
= (1= 3P ) PHOYIYE + EY YY)
+H(I = Pr)VFYY) I — Py )& (YY)
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