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The Navier-Stokes equations

Consider the incompressible Navier-Stokes equations:

du+V-(u@u)+Vp—vViu=f, in Q,
V- =0, in Q,
u =0, on 09,

with initial condition
u(z,0) = up(z) Vo e Q.

> wu: velocity, p: pressure, 1> v > 0: viscosity.

» Q C R?: a polygonal domain.
» The initial velocity ug(z) is assumed to be divergence-free.



(very) Brief background on numerical methods for NS

Sequential methods
> Vorticity based formulation
FD: (Fromm, 63), Spectral (Orszag, 71), Compact FD/FE (E & Liu, 95-01)...
» Fractional step methods (Projection methods)
(Chorin,68),(Temam,69), (Guermond, Minev, Shen,06)...

Pro: efficient solver Con: numerical boundary conditions

Coupled methods
» Finite elements/discontinuous Galerkin
(Crouzeix & Raviart, 73), (Hood & Taylor, 74), (Arnold & Brezzi, 84)...
(Arnold & Qin, 92), (Zhang, 05), (Cockburn, Kanschat, Schétzau, 04-09)...
» Splines/IGA
(Awanou & Lai, 05), (Evans & Hughes, 13)...
P Least-squares (Hughes et al. 89)...

Pro: numerical boundary conditions Con: expensive solver




Goal: a fast and accurate scheme (velocity-only formulation)

> Velocity w lies in the divergence-free space
Vo={we H}Q): V-w=0}
» Leray's NS equation:
8tU:IP’(—V~(u®u)+1/V2u+f),

where P projects a vector onto its solenoidal part (Helmholtz decomposition)
> (Leray-Hopf) weak solution of NS: find u(t) € Vj s.t.

(Ou,v) = (u@u,Vv) — (vVu, Vo) + (f,v), Yv e V. (1)

Pressure does not enter into the weak formulation!



Goal: a fast and accurate scheme (velocity-only formulation)

> Velocity w lies in the divergence-free space
Vo={we H}Q): V-w=0}
» Leray's NS equation:
8tu:IP’(—V~(u®u)+z/V2u+f),

where P projects a vector onto its solenoidal part (Helmholtz decomposition)
> (Leray-Hopf) weak solution of NS: find u(t) € Vj s.t.

(Oru,v) = (u @ u, Vv) — (WVu, Vo) + (f,v), Yve V. (1)
Pressure does not enter into the weak formulation!

Obstacle: construction of finite element subspaces for Vj




The div-free DG approach (Fu, CMAME, 19)

» Relax tangential conformity of velocity field

» Use H(div)-conforming, and divergence-free finite elements:

VY = {w € Hy(div,Q) : wlp € PHT),V-w=0 VT € Tp,}
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The div-free DG approach (Fu, CMAME, 19)

» The div-free DG scheme: find uj, € Vdlv such that

(atUh,’lJ) = Gh(uh;uh,v)—th(uh’v)+(f7U)7 Yo € lev (2)

e Nonlinear convective operator (upwinding DG):

eh uhy“hv Z / uh®Uh V’UdX—/ (uhn)u}? -vds

TeT
Stk upwinding flux

e Second-order viscous term (symmetric interior penalty DG):

Br(up,v) : Z /Vuh Vodx — Z /{{Vuh [v®n]ds

TeTh FedFy

=S /{{w}} uh®n]]ds+/ —[[uh®n]][[ ] ds.

FeJy



The div-free DG scheme: properties

Exact mass conservation: V-u; = 0 pointwise

Natural upwinding discretization of convection term:
no need of additional stabilization or skew-symmetrization

Ch(un;vp,vp) = Z / lup, - n|(|[vn]?) ds > 0,

FEEF)
Energy-stability:
minimal amount of numerical dissipation

1
§3t(uh(t)7uh(t)) = — Cp(un;un, up) —vBp(up, up) <0

num. disp. phy. disp.

Pressure robustness (John et al., SIAM Rev., 17)
velocity estimates independent of pressure regularity

High-order accuracy



Time discretization: explicit Runge-Kutta

» The semi-discrete scheme (2) can be written as

]\J(@tuh) = L(uh),

where 1/ is the mass matrix for the space Vi, and L(u;) the
spatial discretization operator.

» We use RK3 (Shu and Osher, JCP, 88) time stepping:

MulV = Mu’;; + AtL(u")

Mul? = ZM nyZ []\['U,EL)—FAL‘L( ”)},

4

Mujt! = = 1ira g g

. [Mug )+ AtL(u? ))} :

3

P In each time step, three mass matrix inversions are needed.



Time discretization: explicit Runge-Kutta

» The semi-discrete scheme (2) can be written as

M(@tuh) = L(uh),

where 1/ is the mass matrix for the space Vi, and L(u;) the
spatial discretization operator.

» We use RK3 (Shu and Osher, JCP, 88) time stepping:

MulV = Mu;; + AtL(u")

Mul? = ZM nyZ []\['U,EL)—FAL‘L( ”)},

4

Mujt! = = 1ira g g

. [Mug )+ AtL(u? ))} :

3

P In each time step, three mass matrix inversions are needed.

apply M ~! & elliptic Poisson solver (fast!)




Example 1: double shear layer problem (Euler) (gell et al., 87)

Consider the incompressible Euler equations (v = 0)
» Periodic domain: [0, 27] x [0, 27]
> Initial condition:
tanh((y —m/2)/p) y<m

tanh((37/2 —y)/p) y>m
ug(z,y,0) = dsin(x),

u1($7y70) = {

with p = /15 and § = 0.05.



Example 1: double shear layer problem (Euler)

» Polynomial deg. k = 3, triangular mesh h = 27 /80

Vorticity contour lines, w, = Vj X uy,




Example 1: double shear layer problem (Euler)

» Polynomial deg. k = 3, triangular mesh h = 27 /80

Vorticity contour lines, w, = Vj X uy,
t=6




Example 1: double shear layer problem (Euler)

Time history of energy, [, u? dx
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Example 2: flow around a cylinder (NS) (schifer et al., %)

Consider the Navier-Stokes equations with Reynolds number Re = 100
» Domain: a rectangular channel without an almost vertically centered
circular obstacle

Q= [0,2.2] x [0,0.41\{||(z,5) — (0.2,0.2) ]2 < 0.05}.
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» Inflow boundary, I';, := {z = 0}:
u(0,y,t) = (6y(0.41 — y)/0.41%,0),
Outflow boundary, Ty := {z = 2.2}: (—vVu+pl)n =0,
No-slip boundary, T'yq = OQ\(Tip, UTgu): w = 0.
» The quantities of interest: (maximal and minimal) drag and lift forces
c¢D , cL that act on the disc:

[ep,cr] = 20/ (vVu — pInds
T




Example 2: flow around a cylinder (NS)

» The flow turns into a time-periodic behavior with a vortex shedding
behind the cylinder. A typical solution for velocity magnitude:

#dof #dof
local global

k=2 5 368 2316 3.132939 3.074858 0.935284 -0.884771
k=3 7 808 3088 3.229686 3.170424 0.969323 -0.965982
k=4 10 736 3860 3.226865 3.163545 0.986497 -1.018691

max cp mincp maxcy, min cy,

www.featflow.de 167 232 3.22662  3.16351  0.98620 -1.02093
Q2 — Pflise 667 264 3.22711  3.16426  0.98658  -1.02129




Implementation: basis functions for de

de Rham complex property (2D)
There holds Vﬁ% =V x <I>fl+1, with ‘bffl € HL(Q) given by
Ml = {p e HY(Q): o|r € PFTYT), VT € Ty}

=- mass matrix for Vdlv equals stiffness matrix for CI)Q“.

» Mass matrix inversion < Poisson solver (fast)
» 3D basis construction is much more complicated

H' — P*(T) H(div) — PY(T L* —



Alternative formulation: the mixed Poisson Solver

> Relax the divergence-free condition in velocity space:

Forward Euler-div-free “Relaxed” div-free

Find (u ”+1,p”+1)

Vil — Vi = {w € Hy(div, Q) :

P> Use a Lagrange multiplier to reinforce the divergence-free condition:

Wy =V ViV ={we L3(Q):

Find u} ™ € Vi such that

( n+1

uy,
where

F'(vp) =
— AtvBp(up, vn)+ At(f", vn))

7'Uh) — Fn(’l}h), V’Uh c lev

(up,vp) + AtC(up; uy, vp)

=

w|p € PX(T) VT € T)}

w|T S (.Pkil(T) VT € ‘.Th}

such that

(ﬂz+1ﬂ vh) (

for all (vp,wp) €

n+1
by,

At

V-vh)
(V';LVLh, wh)

lev % Wh

=F"(vp)
:O7
de X Wh.

4




Alternative formulation: hybrid-mixed Poisson solver

» Relax the divergence-conformity condition in velocity space:
Vil — Vi = {we L(Q): wlr € PXT),V -w=0 VT €Ty}
» Use a Lagrange multiplier to reinforce normal continuity:

My, ={w € L*(F): ©|r € P*(F) VF € F,}  (hybrid space)

“Relaxed” div-conformity = SPD system for the hybrid unknowns

Find (up ™, pp*!) € VIv9e s« M, such that

+1 Py _ o
(up ™, vp) + Z <A_t’vh -n)or =F"(vy,), <— local solver for uj
TETy
Z (up™ - m, @) or =0, +— global solver for py**
TETy

~ div,dg
for all (vp, @y) € V7, 5% X Mp,.
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The incompressible, resistive MHD equations

Consider the incompressible, resistive MHD equations:

o+ V-(u®@u)+ Vp—vViu = (V x B) x B,
—_———

Lorentz force

Vau=0,
B -V x (ux B)+nV x(VxB)=0,

> wu: velocity, p: pressure, B: magnetic filed.
> v > 0: viscosity, n > 0: resistivity.

» Both velocity u and magnetic field B are exactly divergence-free



The incompressible, resistive MHD equations

Consider the incompressible, resistive MHD equations:

o+ V-(u®@u)+ Vp—vViu = (V x B) x B,
| —
Lorentz force

Vau=0,
B -V x (ux B)+nV x(VxB)=0,

> wu: velocity, p: pressure, B: magnetic filed.
> v > 0: viscosity, n > 0: resistivity.

» Both velocity u and magnetic field B are exactly divergence-free

= use divergence-free space V%i})’ to approximate both quantities



The MHD equations in conservation form

» Vector calculus identities
(VxB)xB:(B-V)B—%V(B-B),
Vx(uxB)=V-(Bou-u®B)
Vx(VxB)= -V?’B+V(V-B),
» Denoting piot = p + %B - B, and using the fact that V- B =0,
— the incompressible MHD equations in conservation form:
du+ V- (u@u—B @ B) + Vpor — vV2u = 0,
V-u =0,
B+ V-(u® B—B®u)—nV:B =0,



The MHD equations in conservation form

» Vector calculus identities
(VxB)xB:(B-V)B—%V(B-B),
Vx(uxB)=V-(Bou-u®B)
Vx(VxB)= -V?’B+V(V-B),
» Denoting piot = p + %B - B, and using the fact that V- B =0,
— the incompressible MHD equations in conservation form:
du+ V- (u@u—B @ B) + Vpor — vV2u = 0,
V-u =0,
B+ V-(u® B—B®u)—nV:B =0,

> Energy stability:

1
23t/(u2 + BY)dx = — / (vVu:Vu+nVB:VB)dx <0
Q Q



The div-free DG scheme (Fu, Jsc, 19)

» The div-free DG scheme: find uy, By, € V%{‘é such that

(Orup,v) = — Cuy(un; up, v) + Cpp(Bp; Bh, v) — vBp(up, v),
(0¢Bp, @) = — Cup(un; By, @) + Copu (B un, @) — 1By (B, ¢),

for all test function v, ¢ € Vﬁ%.

e Second-order viscous/resistive terms: SIP DG, B, (-, )

e Nonlinear convective terms: upwinding DG, next 2 slides

Con © V- (u®u), Cu< V- (BoB),
Cup &V - (u®B), €< V- (Bou).



Upwinding DG for convection (I)
The four convection terms

Vi(uu),V- (BwB), V- (u®B),V-(B®u)

———— —_——
vel. driven vel. driven
Cuulunsup, v Z / (unp ®up) : Vo dX+/ (up - n)u, -vds,
TeT),
Cub(un; B, @ Z / (up, ® Bp) : V¢dx+/ (up -m)B, - ¢ds,
TeT),
Stability property:
euu(uh;uhauh) = / "Uah nHIUh]] ds > O
FEfT;
Cup(un; By, By) = Z / |up, - n|[Br]*ds > 0,

Fe&”



Upwinding DG for convection (II)

The four convection terms

Velu®u),V- - (B® B), Ve(uwB),V-(B®u)
—_—— —_——
mag. driven mag. driven

be(Bh;Bh,'u) = Z / —(Bh ®Bh) : V’UdX—F/ (B}L . n)LA?/,, . 'UdS,
TET, T orT

ebu(Bh;uh,¢) = Z /—(Bh®uh):v¢dx+/ (Bh'n)'a;,,'(bds,
T

TET), or
with numerical fluxes: @, = {us} + 3[Bnl, B, ={B)} + 3 [un].

Stability property:
—Cut(Bn; Bh, un) — Cou(Bhr; un, Br)

D> /F|Bh.n|([[uh]]2+[[Bh]]2>dszo,

FeTy



The div-free DG scheme: properties

(1) Exactly divergence-free: V-uy = V-B}, = 0 pointwise
(2) Natural upwinding discretization of convection terms:

no need of additional stabilization or skew-symmetrization
(3) Energy-stability:

minimal amount of numerical dissipation

30 (P 1Bul?) = = 5 3= [ (1Bunl+ un - i) ([wnl® + [Bi]*) ds

FeTy,

num. disp.

— (vBn(un, un) + 1Ba(Bn, Br)) <0

phy. disp.

(4) Pressure robustness/High-order accuracy

(5) Efficient solver (coupled with explicit time integrator)



Example 1: Orszag-Tang vortex problem (MHD)

(Orszag and Tang, 98)

Consider the incompressible, resistive MHD equations

8tU+V~(u®u—B®B)+thot—1/V2u:O,
Vau =0,
dB+V-(u® B—B®u)—nV?B =0,

with periodic boundary conditions on © = [0, 27] x [0, 27].
> wu: velocity, B: magnetic field.
P> v: viscosity, 1: resistivity.

» I|nitial condition:

u1 (xvya 0) = _Sin(y)a Ug(l',y, 0) = SiH(IE),
Bi(z,y,0) = —sin(y), Ba(z,y,0) = sin(2x).



Example 1: Orszag-Tang vortex problem (MHD)

» Polynomial deg. k = 3, triangular mesh h = 27 /80

Vorticity contour lines at time t=1

viscous case v =71 = 0.005




Example 1: Orszag-Tang vortex problem (MHD)

» Polynomial deg. k = 3, triangular mesh h = 27 /80

Vorticity contour lines at time t=2

viscous case v =71 = 0.005 inviscid case v =71 =0
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Example 1: Orszag-Tang vortex problem (MHD)

kinetic

total energy

40

30

20

N BN PN
NS O o

Time history of kinetic, magnetic, and total energy

o 551
| 1 T 5
&
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L | | | | 40 L | |
0 1 2 0 1
- viscous
|| == inviscid
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Example 2: MHD Kelvin-Helmholtz instability (Frank et al., 96)

Consider incompressible,inviscid, ideal MHD (v =7 = 0)

» Domain: [0, 1] x [0, 1]. Periodic boundary condition in z-direction,
and the no-flow boundary condition in y-direction.

> Initial conditions:
1
u(z,y,0) = (—2 tanh(20(y — 0.5)), 0) + 1073V x ¥(z,v),

B(z,y,0) = 0),

(Ev
with corresponding stream function

Y(z,y) = exp(—400(y — 0.5)?) cos (27z) .

Here M4 is the Alfvénic Mach number.



Example 2: MHD Kelvin-Helmholtz instability

P3 scheme on a 256 x 256 rectangular mesh. Vorticity contour at t=6

Hydrodynamic case (M 4 = oo) Weak magnetic case (M 4 = 5) Strong magnetic case (M4 = 2.5)

Time history of kinetic and magnetic energy
I [ [ T T [

0 22 [ N 0.16 [ ‘ B
' o
o e - weak
.g 0.20 | N % 0.10 | | == strong i
018 i h £ _/-\l
! ! ! 0.04 [ | ! L




ALE div-free HDG for free surface flow (Fu, JCP, 20)

* HDG: a DG scheme with reduced DOFs coupling (more efficient linear system solver)

DG

tion

* Test case: solitary wave propaga

T

1

P ¥ —

e

Q@

F1GURE 2. The free-boundary domain.

0,45, an
Duarte L{\ Ramaswamy 3] HDG
Heighe | 1427 s L ALE-div-free-HDG with moving mesh
Pressure 130 131.66 131.89 (Fu, JCP 2020)

TABLE 2. Comparison table: height, time and pressure.

H(d

HDG

nforming HDG

(conforming) CG

Figure 2.1.1: tangential and normal continuity for different methods

Features

* ALE moving mesh with node
redistribution

Exact mass conservation:
Upwinding (H)DG discretization of
nonlinear convection

Semi-discrete energy stability with
minimal amount of numerical
dissipation

High-order accurate (also low order)




HDG for Incompressible two-phase flow

. HDG aDG §cheme V\(ith reduced DOFs coupling (more efficient linear system solver)

u=0

fluid 1= Q4

T,

.
o o

-—5—

[Lx 05 u-v=0 e A e =
ALE-div-free-HDG with moving mesh Div-free HDG for a Cahn-Hillard-NS
phase-field model (Fu, CMAME 2020)

1
(Fu, JCP 2020)




HDG for phase-field model of incompressible two-phase
flow

* Test case 2: Rayleigh-Taylor instability

Div-free HDG for a Cahn-Hillard-NS
phase-field model (
ho+u-Vo=V-(M()Vu),
w=3a( "W (¢) — eAg),
p(O) O (u) +V-(u@u)=V-(2v(¢)D(u)) — Vp+pf + uVo.
V-u=0.

Figure: Re = 5000. Contour of the RTI at time t = 1.1.5,1.75,2.0,2.
h =27k =2. Red contour line: the interface ¢;, = 0.

P> Embedded DG for the phase-field equations
Divergence-free HDG for flow equation

v

P The divergence-free velocity space on 2D rectangular meshes:
div 1 k+1
VIt =V x {€€ Hy(Tp): &lr € @"TH(T), vT € 7).

P Upwinding treatment for the convection terms

v

No pressure approximation needed:
P Crank-Nicolson based implicit explicit time stepping.
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The shallow water equations

* SWEs is a system of nonlinear balance law that has been widely used to model flow in the
river, near shore ocean, and earth’s atmosphere.
* The 2D inviscid SWEs takes the following form:

hi +V - (hu) =0,
(hu); +V - (hu @ u) + %gV(hQ) = — ghVb,

* Main features of SWEs includes:
1) Entropy condition: the total energy (entropy) does not increase over time.
2) Steady state and well-balanced property: lake at rest steady state .
3) Positivity of water height: .
4) Conservation property: conservation for water height and discharge, and .

* Goal: design a DG scheme for SWEs that satisfies all these properties.



Entropy-stable DG for SWEs (Fu, arxiv:2201.13040)

* Main ideas: (1) work on a skew-symmetric formulation (for discharge), (2) use velocity and
water height as the main approximation unknowns.

h+ V- (hu) =0, L
¢ () skew-symmetrization

(hu); + V- (hu @ u) + ghV(h + b)|— %h,u - %V - (hu)u = 0.
* The designed DG spatial discretization is (1) entropy stable, (2) locally conservative, and (3)
well-balanced.
* Combined with explicit SSP-RK temporal discretization, we can guarantee positive of water
height with the help of a scaling limiter under a usual condition.
¢ Use characteristic-wise TVB limiter on troubled cells with the previous troubled-cell indicator
to handle strong shocks.
* Apply the following wetting/drying treatment for velocity computation near dry areas:
1) Identify dry cells as those with small water height cell average . Go back to piecewise
constant approximations on these dry cells.
2) Set athreshold velocity value , if the compute velocity in a cell is larger than , replace
it with an average of the neighboring velocities.




Entropy-stable DG for SWEs (Fu, arxiv:2201.13040)

¢ Test case 1: circular dam break problem. (DG-P2 with RK3)

Ficure 7. Example 4.9. Contour and surface plots of water height for the circular
dam-break problem at ¢ = 0.69. Left: web bed. 11 uniform contour lines from 2 to
9.4; Right dry bed. 12 uniform contour lines from 0.01 to 8.9.



Entropy-stable DG for SWEs (Fu, arxiv:2201.13040)

¢ Test case 2: dam break over three mounds. (DG-P2 with RK3)

S0 01 03 04 o5 08 08 09 1 11 l2em 30eu 01
— d 4 L ee—

13 ‘EE% W’

Vid |

L

Ficure 8. Example 4.10. Contour and surface plots of water surface for the dam-
break problem on a closed channel. 20 uniform contour lines from 0 to 1.2. Left to
right, top to bottom: ¢ = 5,10, 15, 20, 25, 30, 35, 40.

-



@ Divergence-free DG for incompressible Navier-Stokes
@ Divergence-free DG for incompressible magnetohydrodynamics
© Entropy-stable DG for shalow water equations (SWEs)

@ Conclusion and future work



Conclusion and future work

(i)

(i)

(iii)

Proposed to solve incompressible flow problems using a globally
divergence-free velocity space.

exact mass conservation, pressure-robustness ...

Upwinding treatment of the convection terms adds in necessary
numerical dissipation that makes the scheme stable even in the
convection-dominated regime without using any extra residual-based
stabilization

Enforce entropy stability for SWEs by using water height and

velocity as approximation unknowns. \
( Netgen/NGSolve



Conclusion and future work

(i) Proposed to solve incompressible flow problems using a globally
divergence-free velocity space.
exact mass conservation, pressure-robustness ...

(i) Upwinding treatment of the convection terms adds in necessary
numerical dissipation that makes the scheme stable even in the
convection-dominated regime without using any extra residual-based
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» Some future research plans:
e Other incompressible multiphysics problems
e Fluid flow on surfaces (e.g. SWE on sphere)
e All Mach number compressible flow solver



Conclusion and future work

(i) Proposed to solve incompressible flow problems using a globally
divergence-free velocity space.
exact mass conservation, pressure-robustness ...

(i) Upwinding treatment of the convection terms adds in necessary
numerical dissipation that makes the scheme stable even in the
convection-dominated regime without using any extra residual-based
stabilization

(iii) Enforce entropy stability for SWEs by using water height and

velocity as approximation unknowns. y «
( Netgen/NGSolve

» Some future research plans:
e Other incompressible multiphysics problems
e Fluid flow on surfaces (e.g. SWE on sphere)
e All Mach number compressible flow solver

Thank you for your attention! Any questions?



Netgen/NGSolve

Backup: Netgen/NGSolve

* Allinone

Netgen/NGSolve provides the full workflow of finite element simulation: The constructive solid geometry module
supports geometric modeling. Alternatively, geometric models can be imported from different formats. The Netgen
mesh generator automatically generates high quality tetrahedal meshes. The NGSolve finite element library discretizes
many physical models, and efficiently solves the arising systems of equations. The built-in visualization library allows fast
and interactive visualization of the solution.

* Flexible

The Python frontend NGS-Py provides a flexible way to setup and combine various physical models. The input is
provided in the natural mathematical language of variational formulations, where trial- and test-functions are chosen
from all usual function spaces.

* High-order Finite elements

High order finite element spaces of H1, HDiv, HCurl, L2, skeleton types for all common cell types (segm, trig, quad, tet,
prism, pyramid, hex). The order can be individually adapted for every edge, face, and cell of the mesh supporting hp-
adaptive simulations. Netgen/NGSolve supports surface PDEs and curved elements of arbitrary order.

¢ High performance/open source
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