An arbitrarily high-order moment limiter for the discontinuous Galerkin method on unstructured meshes

Lilia Krivodonova

#### joint work with Andrew Giuliani (NYU) and Krishna Dutt (UW)

Department of Applied Mathematics University of Waterloo

May 10, 2022

Lilia Krivodonova joint work with Andrew GiAn arbitrarily high-order moment limiter for t

#### Hyperbolic Conservation Laws

$$\mathbf{u}_t + \nabla \cdot \mathbf{F}(\mathbf{u}) = 0$$

Oscillatory solutions in the presence of discontinuities:



Noh test case with a second order numerical approximation

#### Limiters in two and three dimensions

- TVD in two dimensions is difficult to define.
- The number of derivatives that must be limited increases.
- No clear directions on unstructured meshes.
- Very few concrete theoretical results for higher than second order.
- Many limiters in two and three dimensions are complicated or ad hoc, without provable stability properties.

#### Goals

- Development of limiters for DG in two and three dimensions on unstructured meshes that are easy to implement, fast to execute, and
- with some theoretical backing: conditions on second order accuracy and stability (LMP).

#### The discontinuous Galerkin method

$$\frac{\partial}{\partial t}\mathbf{u} + \nabla \cdot \mathbf{F}(\mathbf{u}) = 0 \text{ on } \Omega$$
(1)

Partition the domain  $\Omega$  into a mesh of elements  $\Omega_i$  and define numerical solution  $\mathbf{U}_i$  on cell  $\Omega_i$  of polynomial order approximation p

$$\mathbf{U}_i = \sum_k \mathbf{c}_{i,k} \varphi_k.$$

 $\mathbf{c}_{i,k}$  kth solution coefficient, or moment, on cell  $\Omega_i$ .

 $\varphi_k$  kth orthonormal basis function.

The DG method for a scalar conservation law (1) is

$$\frac{d}{dt}c_{i,k} = \int_{\Omega_i} \mathbf{F}(U_i) \cdot \nabla \varphi_k d\Omega_i - \sum_j \int_{\partial \Omega_{i,j}} \mathbf{F}(U_i, U_j) \cdot \mathbf{n}_{i,j} \varphi_k dl.$$

 $\begin{aligned} \mathbf{F}(\mathbf{U}_i,\mathbf{U}_j) & \text{numerical flux function} \\ \partial\Omega_{i,j} & \text{edge shared by elements } \Omega_i \text{ and } \Omega_j \end{aligned}$ 

#### General approach

- Limit solution moments by reducing their magnitudes:  $c_{i,k} \rightarrow l_{i,k}c_{i,k}, \ 0 \le l_{i,k} \le 1$
- Original solution

$$U_i = \sum_k c_{i,k} \varphi_k.$$

Limited solution

$$\tilde{U}_i = \sum_k l_{i,k} c_{i,k} \varphi_k.$$

• Note: no need for expensive function evaluations

### Moment Limiter p = 1

• One-dimensional mimmod limiter

$$\tilde{c}_{i,1} = \mathsf{minmod}\bigg(c_{i+1,0} - c_{i,0}, c_{i,1}, c_{i,0} - c_{i-1,0}\bigg).$$

• Two-dimensional minmod limiter (p=1)

$$\begin{split} \tilde{c}_{i,1} &= \mathsf{minmod}\left(\delta \frac{U_{i,1}^f - \overline{U}_i^n}{2}, c_{i,1}, \delta \frac{\overline{U}_i^n - U_{i,1}^b}{2}\right), \\ \tilde{c}_{i,2} &= \mathsf{minmod}\left((4 - 2\delta) \frac{U_{i,2}^f - \overline{U}_i^n}{4\sqrt{3}}, c_{i,2}, (4 - 2\delta) \frac{\overline{U}_i^n - U_{i,2}^b}{4\sqrt{3}}\right) \end{split}$$

•  $\overline{U}_i^n$ - solution average,  $U_{i,1}^f - \overline{U}_i^n$  - forward difference,  $\overline{U}_i^n - U_{i,2}^b$  - backward difference,  $\delta$  and other coefficients - appropriate scaling factors.

#### Outline

Questions:

- In what directions to limit?
- How to find proper forward and backward values?
- How to find suitable scaling factors?
- How to be LMP and maintain second order accuracy?
- Time step restriction?

Outline:

- $\bullet\,$  Sketch of the derivation for p=1 in 2D on nonuniform conforming grids
- Extension to p>2 in 2D on nonuniform conforming grids
- Extension to nonconforming meshes (arbitrary p)
- Extension to 3D

#### Propagation of the solution averages

DG scheme for propagation of the solution coefficient corresponding to the constant basis function  $\left(k=0\right)$ 

$$\frac{d}{dt}c_{i,0} = -\frac{1}{\det J_i} \sum_{j \in N_i^e} \int_{\partial \Omega_{i,j}} \varphi_0 \mathbf{F}(U_i, U_j) \cdot \mathbf{n}_{i,j} \, dl.$$

Multiplying the above by  $\varphi_0$  and using  $\overline{U}_i = c_{i,0}\varphi_0$ , we obtain

$$\frac{d}{dt}\overline{U}_i = -\frac{1}{|\Omega_i|} \sum_{j \in N_i^e} \int_{\partial \Omega_{i,j}} \mathbf{F}(U_i, U_j) \cdot \mathbf{n}_{i,j} \, dl,$$

where  $|\Omega_i|$  is the area or volume of the cell. With one forward Euler time step:

$$\overline{U}_i^{n+1} = \overline{U}_i^n - \frac{\Delta t}{|\Omega_i|} \sum_{j \in N_i^e} \int_{\partial \Omega_{i,j}} \mathbf{F}(U_i^n, U_j^n) \cdot \mathbf{n}_{i,j} \ dl.$$

#### Fully discrete scheme for the solution averages

For a nonlinear flux

$$\overline{U}_i^{n+1} = \overline{U}_i^n - \Delta t \sum_{j \in N_i^e, j \neq i} \frac{1}{2} \frac{|\partial \Omega_{i,j}|}{|\Omega_i|} \sum_{q=1,2} \mathbf{F}^*(U_i^n(\mathbf{x}_{i,j,q}), U_j^n(\mathbf{x}_{i,j,q})) \cdot \mathbf{n}_{i,j},$$

and for a linear flux

$$\overline{U}_i^{n+1} = \overline{U}_i^n - \Delta t \sum_{j \in N_i^e, j \neq i} \frac{|\partial \Omega_{i,j}|}{|\Omega_i|} \mathbf{F}^*(U_i^n(\mathbf{x}_{i,j}), U_j^n(\mathbf{x}_{i,j})) \cdot \mathbf{n}_{i,j},$$

where  $x_{i,j}$  and  $x_{i,j,q}$  are quadrature points on the edge shared by  $\Omega_i$  and  $\Omega_j$ .

9/46

#### General approach to proof for triangles

#### 1. Limit the solution

$$U_i^n(\mathbf{x}) = c_{i,0}\varphi_0 + c_{i,1}\varphi_1 + c_{i,2}\varphi_2$$

to obtain

$$\tilde{U}_i^n(\mathbf{x}) = c_{i,0}\varphi_0 + l_{i,1}c_{i,1}\varphi_1 + l_{i,2}c_{i,2}\varphi_2$$

2. Substitute  $\tilde{U}_i^n(\mathbf{x})$  into the scheme for the DG solution averages

$$\overline{U}_{i}^{n+1} = \overline{U}_{i}^{n} - \Delta t \sum_{j \in N_{i}^{e}, j \neq i} \frac{|\partial \Omega_{i,j}|}{|\Omega_{i}|} \mathbf{F}(\tilde{U}_{i}^{n}(\mathbf{x}_{i,j}), \tilde{U}_{j}^{n}(\mathbf{x}_{i,j})) \cdot \mathbf{n}_{i,j},$$

#### General approach to proof for triangles

3. Derive conditions on  $l_{i,1}$ ,  $l_{i,2}$ , and  $\Delta t$  such that the scheme can be written as a convex combination

$$\overline{U}_i^{n+1} = \overline{U}_i + \sum d_j (U_j^n - \overline{U}_i),$$

where  $U_j$  are understood to be solution means and values in the neighborhood of  $\Omega_i$  at the previous time step  $t^n$ .

4. The local maximum principle

$$\min_{j \in \mathcal{N}_i} \overline{U}_j^n \le \overline{U}_i^{n+1} \le \max_{j \in \mathcal{N}_i} \overline{U}_j^n,$$

immediately follows.

5. Stability of solution in the maximum norm follows.

 $U_i$  written as a linear combination of basis functions of degree <= 1

$$U_i = c_{i,0}\varphi_0 + c_{i,1}\varphi_1 + c_{i,2}\varphi_2$$

basis functions

$$\varphi_0 = \sqrt{2}, \quad \varphi_1 = -2 + 6r,$$
$$\varphi_2 = -2\sqrt{3} + 2\sqrt{3}r + 4\sqrt{3}s$$

Decoupling linear coefficients Consider  $v_1 = (1, -1/2), v_2 = (0, 1)$  $c_{i,1} = \nabla_{rs}U_i \cdot v_1 = \nabla_{rs}U_i \cdot \left[1, -\frac{1}{2}\right]$  $c_{i,2} = \nabla_{rs}U_i \cdot v_2 = \nabla_{rs}U_i \cdot [0, 1]$ 



#### Directional derivatives in physical space

The linear moments on triangles can be written



Size parameters and limiting directions.

#### Moment limiters on unstructured meshes of triangles

• The limited moments are

$$l_{i,1}c_{i,1}^n = l_{i,1}\frac{h_{i,1}}{6}D_{\mathbf{v}_{i,1}}U_i^n \quad \text{ and } \quad l_{i,2}c_{i,2}^n = l_{i,2}\frac{h_{i,2}}{4\sqrt{3}}D_{\mathbf{v}_{i,2}}U_i^n.$$

• We limit the solution coefficients by comparing them to reconstructed forward and backward differences

$$\begin{split} l_{i,1}^f c_{i,1}^n &= l_{i,1}^f \frac{h_{i,1}}{6} \frac{U_{i,1}^f - \overline{U}_i}{d_{i,1}^f} \quad \text{ or } \quad l_{i,1}^b c_{i,1}^n = l_{i,1}^b \frac{h_{i,1}}{6} \frac{\overline{U}_i - U_{i,1}^b}{d_{i,1}^b}, \\ l_{i,2}^f c_{i,2}^n &= l_{i,2}^f \frac{h_{i,2}}{4\sqrt{3}} \frac{U_{i,2}^f - \overline{U}_i}{d_{i,2}^f} \quad \text{ or } \quad l_{i,2}^b c_{i,2}^n = l_{i,2}^b \frac{h_{i,2}}{4\sqrt{3}} \frac{\overline{U}_i - U_{i,2}^b}{d_{i,2}^b}, \end{split}$$

where  $d_{i,1}^{f}$  is the distance from the forward reconstruction point  $\mathbf{x}_{i,1}^{f}$  and the cell centroid  $\mathbf{x}_{i}$ .

• Substitute these expressions back in to the DG scheme for the propagation of the solution averages.

#### Reconstruction neighborhood in two dimensions

- Form a polygon from the centroids of the elements in the vertex neighborhood.
- Find the intersection of the lines defined by  $(\mathbf{x}_i, \mathbf{v}_{i,1})$  and  $(\mathbf{x}_i, \mathbf{v}_{i,2})$ and the edges of the polygon

 $\mathbf{x}_{i}^{b}$ 

Interpolation neighborhood with forward and backward interpolation points  $\mathbf{x}_{i,1}^{f}$ ,  $\mathbf{x}_{i,2}^{f}$ ,  $\mathbf{x}_{i,1}^{b}$ ,  $\mathbf{x}_{i,2}^{b}$ ,  $\mathbf{x}_{i,1}^{b}$ ,  $\mathbf{x}_{i,2}^{b}$ ,  $\mathbf{x}_{i,$ 

 $\Omega_m$ 

#### On a triangular element

Apply 1D limiter on the stencils along  $v_{i,1}$  and  $v_{i,1}$  independently to reconstruct the directional derivatives



(a) Reconstruction stencil along  $\mathbf{v}_{i,1}$ 



(b) Reconstruction stencil along  $\mathbf{v}_{i,2}$ 

#### Reconstruction in $v_{i,2}$ direction:

$$\begin{split} U_{i,2}^f &= \beta_{i,2}^f \overline{U}_m^n + (1 - \beta_{i,2}^f) \overline{U}_n \quad \text{with } 0 \le \beta_{i,2}^f \le 1. \\ U_{i,2}^b &= \beta_{i,2}^b \overline{U}_j^n + (1 - \beta_{i,2}^b) \overline{U}_k, \quad \text{with } 0 \le \beta_{i,2}^b \le 1. \end{split}$$

#### Limiter:

$$\begin{split} c_{i,1} &= \mathsf{minmod}\left(\frac{U_{i,1}^{f} - \overline{U}_{i}^{n}}{2}, c_{i,1}, \frac{\overline{U}_{i}^{n} - U_{i,1}^{b}}{2}\right) \\ c_{i,2} &= \mathsf{minmod}\left(\frac{U_{i,2}^{f} - \overline{U}_{i}^{n}}{2\sqrt{3}}, c_{i,2}, \frac{\overline{U}_{i}^{n} - U_{i,2}^{b}}{2\sqrt{3}}\right) \\ \end{split}$$

Ω

 $\dot{\Omega}_i$ 

 $\mathbf{v}_{i,2}$ 

After expressing the solution coefficients in terms of reconstructed forward and backward differences, we can derive the constraints on  $l_{i,1}$ ,  $l_{i,2}$ . There is one constraint per outflow edge of the limited element  $\Omega_i$ 

$$\begin{split} \frac{l_{i,1}}{6\gamma_{i,1}^f} + \frac{l_{i,2}}{4\gamma_{i,2}^b r_{i,2}} &\leq 1 \quad \text{and} \quad \frac{l_{i,1}}{6\gamma_{i,1}^b r_{i,1}} + \frac{l_{i,2}}{4\gamma_{i,2}^f} \leq 1 \quad \text{if} \quad s = 1, \\ \frac{l_{i,1}}{6\gamma_{i,1}^f} + \frac{l_{i,2}}{4\gamma_{i,2}^f} &\leq 1 \quad \text{and} \quad \frac{l_{i,1}}{6\gamma_{i,1}^b r_{i,1}} + \frac{l_{i,2}}{4\gamma_{i,1}^b r_{i,2}} \leq 1 \quad \text{if} \quad s = 2, \\ \frac{l_{i,1}}{3\gamma_{i,1}^b r_{i,1}} &\leq 1 \quad \text{and} \quad \frac{l_{i,1}}{3\gamma_{i,1}^f} \leq 1 \quad \text{if} \quad s = 3, \end{split}$$

where s is the face number, the  $\gamma_{i,k}$  are geometrical constants and  $r_{i,k}$  are the ratio of forward to backward reconstructed differences for k = 1, 2.

## Stability Region (shaded)





Ĩi 2

(a) The full set of inequalities.

(b) Simplified set of inequalities.

$$\begin{split} \tilde{c}_{i,1} &= \mathsf{minmod}\left(\delta \frac{U_{i,1}^f - \overline{U}_i^n}{2}, c_{i,1}, \delta \frac{\overline{U}_i^n - U_{i,1}^b}{2}\right), \\ \tilde{c}_{i,2} &= \mathsf{minmod}\left((4 - 2\delta) \frac{U_{i,2}^f - \overline{U}_i^n}{4\sqrt{3}}, c_{i,2}, (4 - 2\delta) \frac{\overline{U}_i^n - U_{i,2}^b}{4\sqrt{3}}\right). \end{split}$$

#### Requirement for second order accuracy

The interpolation points must lie a minimum distance from the centroid, i.e., outside the gray triangle.



(a) Edge neighborhood.



(b) Vertex neighborhood.

Interpolation points must lie outside the grayed diamond.

#### Time step restriction

Restrains also lead to a restriction on the time step size

$$\Delta t \le \frac{1}{4} \min_{i} \frac{h_i}{||\mathbf{a}||}$$

where  $h_i$  is the cell width in the direction of flow, a.



#### Summary

Local maximum principle in the means

$$m_i^n = \min_{j \in V_i} \overline{U}_j^n \le \overline{U}_i^{n+1} \le \max_{j \in V_i} \overline{U}_j^n = M_i^n$$

 $V_i$  - a neighborhood of  $\Omega_i$ ,  $\overline{U}_i^n$ ,  $\overline{U}_j^n$  are cell averages. • Moment limiter

$$\begin{aligned} c_{i,1} &= \mathsf{minmod}\left(\frac{U_{i,1}^f - \overline{U}_i^n}{2}, c_{i,1}, \frac{\overline{U}_i^n - U_{i,1}^b}{2}\right) \\ c_{i,2} &= \mathsf{minmod}\left(\frac{U_{i,2}^f - \overline{U}_i^n}{2\sqrt{3}}, c_{i,2}, \frac{\overline{U}_i^n - U_{i,2}^b}{2\sqrt{3}}\right) \end{aligned}$$

DGM with the moment limiter satisfies LMP under the time step restriction

$$\Delta t \le \frac{1}{4} \min_{i} \frac{h_i}{||\mathbf{a}||}$$

## Moment limiters on unstructured meshes of triangles Verification of CFL

We solve the linear advection equation with

$$u_0(x,y) = \begin{cases} 1 \text{ if } \max(|x|,|y|) \leq \frac{1}{4} \\ 0 \text{ elsewhere.} \end{cases}$$

| 1/CFL | Minimum   | Maximum | 1/CFL | Minimum | Maximum |
|-------|-----------|---------|-------|---------|---------|
| 2     | -3.97e-01 | 1.14    | 2     | 0       | 1       |
| 3     | -4.83-02  | 1.00062 | 3     | 0       | 1       |
| 3.5   | -4.31e-03 | 1       | 3.5   | 0       | 1       |
| 4     | 0         | 1       | 4     | 0       | 1       |

(a) Forward Euler.

(b) RK2.

Minimum and maximum cell averages for various CFL numbers. The derived bounds on the time step restrictions are tight.

## Moment limiters on unstructured meshes of triangles Rotating shapes

Solutions on unstructured triangular and Cartesian meshes are nearly the same.



Rotating shapes at T = 1.

#### Higher orders of approximation

#### Spatial approximation:

$$U_i = \sum_{l+k=0}^p c_{i,k}^l \varphi_k^l(r,s),$$

 $c_{i,k}^l$  : moments,  $\varphi_k^l$  : basis functions, p : degree of approximation

Dubiner basis  $\varphi_k^l$  :

$$\varphi_k^l(r,s) = 2^k L_k(a)(1-r)^k P_l^{2k+1,0}(b),$$
  
 $a = \frac{2s}{1-r} - 1, \quad b = 2r - 1.$ 



Denote  $j {\rm th}$  directional derivative,  $0 \leq j \leq p,$  by

$$D_{v_1}^j U_i = \frac{\partial^j}{\partial v_1^j} U_i, \quad D_{v_2}^j U_i = \frac{\partial^j}{\partial v_2^j} U_i$$

 $\beta=\frac{\sqrt{5}}{2},\,\theta_{i,j}$  : constants High-order solution coefficients do not fully decouple

## $\label{eq:limiting_limit} \text{Limiting with } p>1$

Reconstructing  $D_{\mathbf{v}_{i,2}}^{p-1}D_{\mathbf{v}_{i,2}}^{1}U_{i}$ :

$$\begin{split} \tilde{D}_{\mathbf{v}_{i,1}}^{p-1} \tilde{D}_{\mathbf{v}_{i,2}}^{1} U_{i} &= m(D_{\mathbf{v}_{i,1}}^{p-1} D_{\mathbf{v}_{i,2}}^{1} U_{i}, l_{i,2}^{f} D_{+}, l_{i,2}^{b} D_{-}), \\ D_{+} &= \frac{1}{\Delta \mathbf{x}^{f}} \left( D_{\mathbf{v}_{i,1}}^{p-1} U_{i}^{f} - D_{\mathbf{v}_{i,1}}^{p-1} U_{i} |_{\mathbf{x}_{i,0}} \right), \\ D_{-} &= \frac{1}{\Delta \mathbf{x}^{b}} \left( D_{\mathbf{v}_{i,1}}^{p-1} U_{i} |_{\mathbf{x}_{i,0}} - D_{\mathbf{v}_{i,1}}^{p-1} U_{i}^{b} \right), \\ 1 &\leq l_{i,2}^{f} \leq \frac{\Delta \mathbf{x}^{f}}{h_{i,2}} (2p-1), \ 1 \leq l_{i,2}^{b} \leq \frac{\Delta \mathbf{x}^{b}}{h_{i,2}} (2p-1) \\ \Delta \mathbf{x}^{f} &= |\mathbf{x}_{i,2}^{f} - \mathbf{x}_{i,0}|, \quad \Delta \mathbf{x}^{b} = |\mathbf{x}_{i,2}^{b} - \mathbf{x}_{i,0}| \end{split}$$

Interpolation:

$$D_{\mathbf{v}_{i,1}}^{p-1}U_i^f = \beta_{i,2}^f D_{\mathbf{v}_{i,1}}^{p-1} U_8 + (1 - \beta_{i,2}^f) D_{\mathbf{v}_{i,1}}^{p-1} U_9,$$
  
$$D_{\mathbf{v}_{i,1}}^{p-1} U_i^b = \beta_{i,2}^b D_{\mathbf{v}_{i,1}}^{p-1} U_2 + (1 - \beta_{i,2}^b) D_{\mathbf{v}_{i,1}}^{p-1} U_3$$

Lilia Krivodonova joint work with Andrew GiAn arbitrarily high-order moment limiter for t



May 10, 2022

### **Hierarchical Limiting**



#### Moment Limiter with p = 2

#### Limiting of 2nd order coefficients

$$\begin{pmatrix} h_{i,2}^2 D_{\mathbf{v}_{i,2}}^2 U_i(\mathbf{x}_{i,0}) \\ h_{i,2}h_{i,1} D_{\mathbf{v}_{i,2}} D_{\mathbf{v}_{i,1}} U_i(\mathbf{x}_{i,0}) \\ h_{i,1}^2 D_{\mathbf{v}_{i,1}}^2 U_i(\mathbf{x}_{i,0}) \end{pmatrix} = \begin{bmatrix} 12\sqrt{30} & 0 & 0 \\ 0 & 30\sqrt{2} & 0 \\ -\sqrt{30} & 0 & 20\sqrt{6} \end{bmatrix} \begin{pmatrix} c_{i,2}^0 \\ c_{i,1}^1 \\ c_{i,2}^2 \end{pmatrix}$$

Limit directional derivatives using 4 minmod limiters, update the solution coefficients

$$\begin{split} c_{i,2}^{0} &= \frac{h_{i,2}^{2}}{12\sqrt{30}} D_{\mathbf{v}_{i,2}}^{2} U_{i}, \\ c_{i,1}^{1} &= \frac{h_{i,2}h_{i,1}}{30\sqrt{2}} D_{\mathbf{v}_{i,2}} D_{\mathbf{v}_{i,1}} U_{i}, \\ c_{i,0}^{2} &= \frac{h_{i,1}^{2}}{20\sqrt{6}} D_{\mathbf{v}_{i,1}}^{2} U_{i} + \frac{h_{i,2}^{2}}{240\sqrt{6}} D_{\mathbf{v}_{i,2}}^{2} U_{i} \end{split}$$

If unlimited, stop. If limited, continue to p = 1 limiter

#### Limiting on adaptively refined nonconforming meshes

- Adaptive computations allow effective use of computational resource, e.g., to better capture the fine features of the solution
- Nonconforming meshes arise in simulations employing run-time adaptive mesh refinement
- Most limiting techniques are designed for conforming meshes, i.e., meshes where an edge is shared between only two elements
- Applying traditional techniques involve projecting solution to bigger/smaller elements, which is computationally expensive



(a) Conforming mesh



(b) Nonconforming mesh

### Limiting on nonconforming meshes



Reconstruction neighborhood for moment limiter

- Reconstruct the neighborhood of an element using vertex-element connectivity of its vertices
- Find interpolation points along  $v_1$  and  $v_2$
- Limit the solution coefficients by applying 1D limiters along  $\mathbf{v}_1$  and  $\mathbf{v}_2$

#### Limiting on nonconforming meshes



Reconstruction neighborhood for moment limiter

- More elements of varying sizes in the neighborhood
- Update the neighborhood with every mesh refinement
- Find a neighborhood not violating geometrical constrains
- Minimize the cost and storage of mesh connectivity info
- Race conditions on GPUs: simultaneously update neighborhoods
- New time step restriction

### Advecting hill



Initial nonconforming mesh

Linear advection

$$u_t + a_1 u_x + a_2 u_y = 0,$$

• 
$$(a_1, a_2) = (1, 1)$$
  
•  $u_0(x, y) = 2.5 \exp(-\frac{r^2}{2x0.15^2})$   
•  $r = |(x, y) - (-0.25, -0.25)|_2$   
•  $\Omega = [-1, 1] \times [-1, 1]$   
•  $T = 0.5$ 

33 / 46

### Advecting hill



Log-log plot of  $L_1$  error vs. number of elements

#### Double Mach reflection





(b) Final adapted mesh

Density isolines at t = 0.2 for double Mach test case, with second order approximation and moment limiter, on a final mesh with 236,910 triangles and 7 levels of refinement



(a) Zoom-in near slipline



(b) Final adapted mesh

Density isolines at t = 0.2 for double Mach test case, with second order approximation and moment limiter, on a final mesh with 236,910 triangles and 7 levels of refinement



(a) Zoom-in near slipline.



(b) Final adapted mesh.

Density isolines at t = 0.2 for double Mach test case, with fourth order approximation and moment limiter, on a final mesh with 222,969 triangles and 7 levels of refinement

# Comparing the performance of limiters on adaptively refined mesh

|                          | Moment limiter | Barth-Jesperson limiter |
|--------------------------|----------------|-------------------------|
| Total run time           | 1747.68s       | 1984.40s                |
| Limiting time            | 71.39s         | 311.5s                  |
| Setting up neighbourhood | 48.56s         | 18.94s                  |
| Total limiting time      | 119.95s        | 330.44s                 |

Wall clock timings (in seconds) for simulation of double mach test case until t = 0.2, with a second order approximation, an initial unstructured mesh of 1953 elements, 7 levels of refinement, and the mesh adapted every 10 timestep

## Limiting time with moment limiter $\approx 25\%$ of (Limiting time with Barth-Jesperson limiter)

#### Moment limiter on tetrahedral meshes

The linear moments on tetrahedra can be written

$$c_{i,1}^n = \frac{h_{i,1}}{4\sqrt{10}} D_{\mathbf{v}_{i,1}} U_i^n, \quad c_{i,2}^n = \frac{h_{i,2}}{6\sqrt{5}} D_{\mathbf{v}_{i,2}} U_i^n, \quad \text{ and } \quad c_{i,3}^n = \frac{h_{i,3}}{4\sqrt{15}} D_{\mathbf{v}_{i,3}} U_i^n.$$







(a) Limiting direction  $\mathbf{v}_{i,1}$ .

(b) Limiting direction  $\mathbf{v}_{i,2}$ .

(c) Limiting direction  $\mathbf{v}_{i,3}$ .

Limiting directions on tetrahedra.

#### Moment limiters on unstructured meshes

Reconstruction neighborhood in three dimensions

- Compute the convex hull of the centroids vertex neighbors and form a polyhedron.
- Find the intersection of the lines defined by  $(\mathbf{x}_i, \mathbf{v}_{i,1})$ ,  $(\mathbf{x}_i, \mathbf{v}_{i,2})$ , and  $(\mathbf{x}_i, \mathbf{v}_{i,3})$  and the faces of the polyhedron.



Interpolation in three dimensions.

#### Moment limiters on unstructured meshes

Interpolation in three dimensions

Using linear interpolation, reconstruct the numerical solution at the interpolation points using the solution averages of the elements that form the interpolation planes.



(a) Interpolation planes for  $c_{i,1}$ .

(b) Interpolation planes for  $c_{i,2}$ .

(c) Interpolation planes for  $c_{i,3}$ .

Interpolation in three dimensions.

## Moment limiters on unstructured meshes of tetrahedra The limiters

Limiters that result from an analysis in three dimensions on tetrahedra are

$$\begin{split} c_{i,1} &= \mathsf{minmod}\left(\frac{U_{i,1}^{f} - \overline{U}_{i}}{\sqrt{10}}, c_{i,1}, \frac{\overline{U}_{i}^{n} - U_{i,1}^{b}}{\sqrt{10}}\right), \\ c_{i,2} &= \mathsf{minmod}\left(\frac{U_{i,2}^{f} - \overline{U}_{i}}{2\sqrt{5}}, c_{i,2}, \frac{\overline{U}_{i}^{n} - U_{i,2}^{b}}{2\sqrt{5}}\right), \\ c_{i,3} &= \mathsf{minmod}\left(\frac{U_{i,3}^{f} - \overline{U}_{i}}{2\sqrt{15}}, c_{i,3}, \frac{\overline{U}_{i}^{n} - U_{i,2}^{b}}{2\sqrt{15}}\right). \end{split}$$

We store for each element  $\Omega_i$ 

- Pointers to the 18 elements involved in the interpolation stencil.
- 12 interpolation weights.

## Moment limiters on unstructured meshes of tetrahedra

Mach 10 shock interacting with a bubble



Isosurfaces of density after shock-bubble interaction.

Lilia Krivodonova joint work with Andrew GiAn arbitrarily high-order moment limiter for t

## Moment limiters on unstructured meshes of tetrahedra

Mach 10 shock interacting with a bubble



Isosurfaces of density after shock-bubble interaction.

#### Conclusion

- Arbitrary high-order moment limiter on conforming and nonconforming meshes
- Limiter is applied directly to solution coefficients (moments)
- Hierarchical limiting solution coefficients (moments) starting with the highest, thus preventing overlimiting
- Simple and fixed reconstruction stencil
- Proven stability property for p = 1 case
- The limiter takes only about fifteen percent of the total computing time
- DG method equipped with the proposed limiter retains the p+1 convergence rate for smooth solutions and eliminates spurious oscillations in the presence of discontinuities