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Many errors affect comparisons between CFD and experiments

CFD and experiment

Comparison of
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We focus on controlling discretization errors

Error estimation
Error estimates on outputs of interest are necessary for confidence in CFD results
Mathematical theory exists for obtaining such estimates
Recent works demonstrate the success of this theory for aerospace applications

Mesh adaptation
Error estimation alone is not enough
Engineering accuracy for complex aerospace simulations demands mesh adaptation
to control numerical error
Automated adaptation improves robustness by closing the loop in CFD analysis
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A typical output-adaptive result
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Why not just adapt “obvious” regions?

Fishtail shock in M∞ = 0.95 inviscid flow over a NACA 0012 airfoil
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Computational fluid dynamics (CFD)

finite volume
finite difference
finite element
meshless methods

potential flow
Euler equations
Navier-Stokes
RANS
steady/unsteady
2D/3D

structured/unstructured
low/high order

solver choices
HPC support
visualization
verification
validation
adaptation

discretization solutionPDEs

∂(ρ~v)
∂t +∇ · (ρ~v~v + pδ) = 0
∂(ρE)
∂t +∇ · (ρ~vH) = 0

∂ρ
∂t +∇ · (ρ~v) = 0
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We use a high-order finite-element method

s conservation equations

∂u
∂t

+∇ · ~F + S = 0

state approximation

uh(~x) ≈
Ne∑

e=1

Npe∑
n=1

Uenφen(~x)

discrete primal problem

dU
dt

+ R(U) = 0

Ωe

domain Ω element e

Ne = # of elements
Npe = # of basis functions on element e

φen(~x) = nth basis function of order pe on e

pe = approximation order on element e

Uen = s coefficients on nth basis function on element e

U = vector of all N primal unknowns
R = vector N discrete residuals
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Discontinuous Galerkin solution approximation and weak form

x
y

TH

u(x, y)
u ∈ Vh = [Vh]s

Vh =
{

u ∈ L2(Ω) : u|Ωe ∈ Pp(Ωe) ∀Ωe ∈ Th

}
Weak form:

Rh(uh, vh) =

Ne∑
e=1

Rh(uh, vh|Ωe) = 0, ∀vh ∈ Vh,

The elemental contribution to the weak form is:

Rh(uh, vh|Ωe) =

∫
Ωe

vT
h∂tuh dΩ−

∫
Ωe

∂ivT
h Fi dΩ +

∫
∂Ωe

v+T
h F̂ ds

−
∫
∂Ωe

∂iv+T
h K+

ij

(
u+

h − ûh
)

nj ds +

∫
Ωe

vT
h S dΩ
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Adjoint solutions let us calculate sensitivities efficiently

Suppose Nµ parameters affect our PDE, but we only have one scalar output, J(U):

µ︸︷︷︸
inputs ∈ RNµ

→ R(U,µ) = 0︸ ︷︷ ︸
N equations

→ U︸︷︷︸
state ∈ RN

→ J(U)︸︷︷︸
output (scalar)

We can efficiently compute sensitivities
using a discrete adjoint vector, Ψ ∈ RN ,

dJ
dµ

= ΨT ∂R
∂µ

Ψ solves the linear discrete adjoint equation(
∂R
∂U

)T

Ψ +

(
∂J
∂U

)T

= 0

∂R
∂µ

solver
(expensive)

∂J
∂U

Rµ U J

δJ = ΨTδR
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Sample steady adjoint solution

output = pressure integral

green = zero adjoint

M = 1.5 flow

diamond airfoil

(showing y−mom component)
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Another steady adjoint solution

RAE 2822, M∞ = 0.5, Re = 105, α = 1◦

x-momentum primal state conservation of x-momentum drag adjoint
The adjoint shares similar qualitative features with the primal
Note a wake “reversal” in the adjoint solution
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An unsteady adjoint solution

Two NACA 0012 airfoils in pitch-plunge motion at M∞ = 0.3, Re = 1200
Output = lift on the aft airfoil at the end of the simulation

Primal solution (entropy) Adjoint solution (GCL)
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We estimate output errors relative to a fine space

injection: IH
h

UH
UH

h

Error estimate

Coarse space Fine space

δJ = JH − Jh ≈ ΨT
h δRh

δRh ≡ −Rh(UH
h )

RH(UH) = 0
output: JH(UH)

Rh(Uh) = 0
output: Jh(Uh)

Rh(UH
h ) 6= 0
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Example of output error estimation for an airfoil

A finer space (e.g. order enrichment) can uncover residuals in a converged solution
Example: NACA 0012 at α = 2◦ in Re = 5000, M∞ = 0.5 flow

Coarse space state, UH

Injected state, UH
h

pH = 1

ph = 2

Coarse space residual, RH(UH)

Fine space residual, Rh(UH
h )

Zero as expected

Nonzero: new info
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Example of output error estimation for an airfoil

Fine space residual, Rh(UH
h )

Fine space adjoint, Ψh

Error indicator, εe = |ΨT
h,eRh,e(UH

h )|

Output error: δJ ≈ −ΨT
h Rh(UH

h )

Idea: adapt where εe is high, to
reduce the residual there
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Mesh adaptation is an iterative process

Done

Initial coarse mesh and error tolerance

Mesh adaptation

Error localization

Error estimation

Flow and adjoint solution

Tolerance met?
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Adaptation can consist of local mesh modification

As generating meshes is hard, we can modify the mesh incrementally
Often more robust than global re-meshing
Node movement can improve quality
Hanging nodes easily supported in DG

Edge Swap Edge Split Edge Collapse

Unstructured local mesh operators

element
targeted

hanging
node

Hanging-node refinement
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Or the entire mesh can be globally regenerated

Make use of automated mesh generation software/scripts
Current mesh is used to define a Riemannian metric
Anisotropy can be incorporated/optimized (e.g. MOESS)
Example of refinement near a single point:

Original mesh After refinement
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Curved boundaries require special treatment at high order

DG needs an accurate representation of
curved boundaries
Curving elements is not easy
Tangling is hard to avoid, especially in
3D anisotropic elements

First-layer curving (extend via elasticity)

Agglomeration: linear→ cubic elements

pressure contours
p = 2 Euler flow over a
linear-element bump

representation

Anisotropic
simplex
cut cells
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A mesh optimization algorithm [Yano, 2012]

Given: mesh, primal and adjoint
Determine: mesh metric that minimizes
output error at a fixed solution cost
Key ingredients

1 Error convergence model: metric→
output error

2 Cost model: metric→ solution cost
3 Iterative algorithm that equidistributes

the marginal error-to-cost ratio

Expect multiple iterations of optimization
until error “bottoms out” at a fixed cost;
can then increase allowable cost to
further reduce error

increase dof

solution iteration10 200

log(error) log(dof)

Each iteration requires primal and
adjoint solutions
These are quick since starting from
good initial guesses
Use results from final run or average of
last few runs
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h-Adaptation Example: RAE 2822 in transonic flow

Spalart-Allmaras RANS, M∞ = 0.73, α = 2.79◦,Re = 6.5M

Mach number contours Initial mesh: 758 triangles, farfield @2000c
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RAE 2822 in transonic flow: output convergence

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1/sqrt(dof)

D
ra

g
 c

o
e

ff
ic

ie
n

t 
e

rr
o

r

 

 

Optimized: p=1
Optimized: p=2
Optimized: p=3
Uniform: p=1
Uniform: p=2
Uniform: p=3
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RAE 2822 in transonic flow: optimized meshes

p = 1

p = 2
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Simulations of turbulent flows

Turbulence = random state fluctuations in space and time, caused by flow
instabilities at high Reynolds numbers
Simulating unsteady turbulence (DNS, LES, . . . ) is accurate but expensive
Modeling turbulence via averaged quantities (RANS) is cheap but less accurate

e.g. Spalart-Allmaras 1-eqn. model:
D(ρν̃)

Dt
= P(u)︸ ︷︷ ︸

production

+ T (u)︸ ︷︷ ︸
transport

−D(u)︸ ︷︷ ︸
destruction

Large-eddy simulation (LES) Reynolds-averaged Navier-Stokes (RANS)
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Unsteady adjoint-based gradient calculations are unstable

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

simulation time, t

in
s
ta

n
ta

n
e

o
u

s
 d

ra
g

Mach: 0 - 0.35

0 20 40 60 80 100
10

−10

10
0

10
10

10
20

10
30

10
40

simulation time, t

n
o

rm
 o

f 
d

ra
g

 i
n

te
g

ra
l 
a

d
jo

in
t

Time = 98

Time = 95

Time-averaged quantities are still well-defined and interesting outputs
However, we cannot directly use unsteady adjoints to compute their derivatives
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Use a RANS model instead . . . with a correction

[Parish & Duraisamy, 2016]

RANS by itself may not accurately predict the average state, Ū
We can apply a correction field, β(~x), to the production term in the turbulence model,

D(ρν̃)

Dt
= β(~x) P(u)︸ ︷︷ ︸

production

+ T (u)︸ ︷︷ ︸
transport

−D(u)︸ ︷︷ ︸
destruction

Goal: minimize discrepancy between RANS and the unsteady solution, e.g.

β(~x) = arg min E2 = wu‖URANS(β(~x))− Ū‖2 +
∑

outputs

wJ(J(URANS(β(~x)))− J̄)2

Solve this optimization problem with a gradient-based method using RANS adjoints
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Corrected RANS is much more accurate

NACA 0012, M = 0.2, α = 5◦, Re = 10,000

Time-averaged state, Ū

Correction field, β(~x)

RANS without a correction, URANS

Corrected RANS, URANS(β(~x))
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We can obtain a model for β using machine learning

β(~x) for one shape is not in a useful form for optimization
We seek a model for β in terms of local flow quantities:

β ≈ βML(u,∇u, d)︸ ︷︷ ︸
NN model

(d = wall distance)

     

x0

Input layer

β

x1

∂u
∂x

∂u
∂y Output layer

d

u

Hidden layer

x1 = σ(W1x0 + b1) β = Woutx1 + bout

Each quadrature point of each element
yields one data point
Small network: hidden layer x1 ∈ R30

Adam optimizer, mini-batch size of
1,000, and 500,000 iterations
Sigmoid activation function
Once trained, deployed as part of the
turbulence model
Analytical linearization for derivatives
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Example of FIML sensitivities: camber variation

NACA X412 airfoils, M = 0.2, Re = 104

FIML at each camber shape
Interested in lift and its sensitivity with respect to
camber variations
Uncorrected RANS outputs severely off
Correction with β: much more accurate outputs,
and reasonable gradients
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Error estimation for time-averaged outputs

Define a time-averaged output computed from the unsteady discrete solution, U(t),

J̄ ≡ 1
Tf − Ti

∫ Tf

Ti

J(U(t)) dt

Suppose that we have an unsteady adjoint, Ψ(t), arising from the Lagrangian

L ≡ J̄ +
1

Tf − Ti

∫ Tf

Ti

Ψ(t)TR(U(t)) dt

The unsteady adjoint-weighted residual yields an estimate of the impact of a perturbation
to the residual, δR(t), on the time-averaged output,

δJ̄ ≈ 1
Tf − Ti

∫ Tf

Ti

Ψ(t)TδR(t) dt

Adjoint-based methods for adaptive simulations of turbulent flow Adaptation of unsteady turbulent flow 34/47



Error estimation for time-averaged outputs (ctd.)

We decompose the unsteady adjoint and residual perturbation into time-averaged and
time-varying components,

Ψ(t) = Ψ̄ + Ψ′(t), δR(t) = δR̄ + δR′(t)

so that the error estimate becomes

δJ̄ ≈ Ψ̄
T
δR̄ +

1
Tf − Ti

∫ Tf

Ti

Ψ′(t)TδR′(t) dt

We assume that the first term dominates for chaotic flows, in which the time-varying
components of the adjoint and residual perturbation are not strongly correlated
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Augmented steady-state systems for unsteady simulations

Suppose that an augmented steady-state system models the unsteady problem,

R̃(Ũ) = 0,

where Ũ ∈ RÑ is the augmented state vector, with Ñ ≥ N, and Ū ≈ IrŨ. The augmented
residual (e.g. for RANS) is

R̃(Ũ) =

[
R(IrŨ) + Raug(Ũ)

R̃aug(Ũ),

]
,

where Raug is an additive change to the original residuals, and R̃aug is the set of new
residuals (e.g. associated with the eddy-viscosity equation).
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Error estimation using the augmented system

Denote by UH
h (t) = IH

h UH(t) the prolongation of the coarse unsteady state into a fine
space. Similarly, ŨH

h is the prolongation of ŨH. Evaluating the fine-space residuals yields

δRh(t) = −Rh(UH
h (t)) + MhIH

h M−1
H RH(UH(t))

δR̃h = −R̃h(ŨH
h )

We use the augmented-system adjoint, Ψ̃h, to define two error estimates:

E1. Time-averaged unsteady residual weighted by the FIML adjoint:

δJ̄h ≈ δΨ̃
T
hδR̄h, δR̄h ≡

1
Tf − Ti

∫ Tf

Ti

δRh(t) dt

E2. FIML residual weighted by the FIML adjoint:

δJ̃h ≈ δΨ̃
T
hδR̃h
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Unsteady mesh adaptation iterations

δR̃

starting mesh

β(~x)

Ψ̃

Ũ

δR̄

β(u,∇u, d)

unsteady simulation

field inversion

error estimation
augmented primal/adjoint solutions

mesh adaptation

εe

machine learning

Ū, J̄
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FIML adaptation example

NACA 0012, M∞ = 0.2, Re = 10,000, α = 7◦

Instantaneous entropy

Instantaneous Mach

Time-averaged Mach

RANS Mach

Adjoint-based methods for adaptive simulations of turbulent flow Adaptation of unsteady turbulent flow 39/47



FIML adaptation example

NACA 0012, M∞ = 0.2, Re = 10,000, α = 7◦

Instantaneous entropy

Instantaneous Mach

Time-averaged Mach

FIML Mach
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Lift coefficient convergence
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FIML MOESS unsteady adaptation history
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Comparison of adapted meshes at 9000 dof

RANS MOESS FIML MOESS

Different mesh size and anisotropy due to different residuals and adjoints in AWR
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A higher Reynolds-number example

High-lift airfoil, M∞ = 0.2, Re = 1M, α = 17◦

Instantaneous entropy

RANS Mach

Time-averaged Mach

FIML Mach
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Lift coefficient convergence
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FIML MOESS unsteady adaptation history

0 50 100 150 200 250 300 350
time

1.6

1.8

2.0

2.2

2.4

lif
t c

oe
ffi

cie
nt

Red lines = time-averaged output Green bars = output-error estimates

Adjoint-based methods for adaptive simulations of turbulent flow Adaptation of unsteady turbulent flow 45/47



Comparison of adapted meshes at 13500 dof

RANS MOESS FIML MOESS

Different mesh size and anisotropy due to different residuals and adjoints in AWR
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Summary and conclusions

CFD results are polluted by various error sources

Improving CFD accuracy requires attention to models, meshes, and solvers

Adjoint-based methods work well for steady and deterministic unsteady problems

Chaotic problems preclude direct adjoint solutions, and regularization techniques are
expensive

Steady augmented models offer an attractive alternative when interested in
statistically-steady outputs

We have demonstrated output-based error estimation and mesh adaptation of
unsteady turbulent flow using tuned/trained steady augmented models
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