Adjoint-based adaptation for high-order discretizations of unsteady turbulent flow simulations

UNIVERSITY of MICHIGAN
COLLEGE of ENGINEERING

Workshop on New Trends in Numerical Methods for Hyperbolic Conservation Laws

Center for Computational & Applied Mathematics (CCAM) Department of Mathematics, Purdue University

May 9, 2022

Outline

Introduction

2 Discretization

B Error estimation and adaptation

Adjoint-based methods for adaptive simulations of turbulent flow

Introduction

Many errors affect comparisons between CFD and experiments

3/47

We focus on controlling discretization errors

Error estimation

- Error estimates on outputs of interest are necessary for confidence in CFD results
- Mathematical theory exists for obtaining such estimates
- Recent works demonstrate the success of this theory for aerospace applications

Mesh adaptation

- Error estimation alone is not enough
- Engineering accuracy for complex aerospace simulations demands mesh adaptation to control numerical error
- Automated adaptation improves robustness by closing the loop in CFD analysis

A typical output-adaptive result

Adjoint-based methods for adaptive simulations of turbulent flow

Introduction

Why not just adapt "obvious" regions?

Fishtail shock in $M_{\infty}=0.95$ inviscid flow over a NACA 0012 airfoil

Discretization

B) Error estimation and adaptation

Adjoint-based methods for adaptive simulations of turbulent flow

Computational fluid dynamics (CFD)

potential flow Euler equations Navier-Stokes RANS steady/unsteady 2D/3D

finite volume finite difference finite element meshless methods structured/unstructured low/high order solver choices HPC support visualization verification validation adaptation

Adjoint-based methods for adaptive simulations of turbulent flow

Computational fluid dynamics (CFD)

potential flow Euler equations Navier-Stokes RANS steady/unsteady 2D/3D finite volume finite difference finite element meshless methods structured/unstructured low/high order

We use a high-order finite-element method

s conservation equations

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \vec{\mathbf{F}} + \mathbf{S} = \mathbf{0}$$

state approximation

$$\mathbf{u}_{h}(\vec{x}) \approx \sum_{e=1}^{N_{e}} \sum_{n=1}^{N_{p_{e}}} \mathbf{U}_{en} \phi_{en}(\vec{x})$$

discrete primal problem

$$\frac{d\mathbf{U}}{dt} + \mathbf{R}(\mathbf{U}) = \mathbf{0}$$

- $N_e = \# \text{ of elements}$
- N_{p_e} = # of basis functions on element e
- $\phi_{en}(\vec{x}) = n^{\text{th}}$ basis function of order p_e on e
 - p_e = approximation order on element e
 - \mathbf{U}_{en} = s coefficients on n^{th} basis function on element e
 - U = vector of all N primal unknowns
 - \mathbf{R} = vector N discrete residuals

Adjoint-based methods for adaptive simulations of turbulent flow

Discontinuous Galerkin solution approximation and weak form

The elemental contribution to the weak form is:

$$\mathcal{R}_{h}(\mathbf{u}_{h},\mathbf{v}_{h}|_{\Omega_{e}}) = \int_{\Omega_{e}} \mathbf{v}_{h}^{T} \partial_{t} \mathbf{u}_{h} d\Omega - \int_{\Omega_{e}} \partial_{i} \mathbf{v}_{h}^{T} \mathbf{F}_{i} d\Omega + \int_{\partial\Omega_{e}} \mathbf{v}_{h}^{+T} \widehat{\mathbf{F}} ds$$
$$- \int_{\partial\Omega_{e}} \partial_{i} \mathbf{v}_{h}^{+T} \mathbf{K}_{ij}^{+} \left(\mathbf{u}_{h}^{+} - \widehat{\mathbf{u}}_{h}\right) n_{j} ds + \int_{\Omega_{e}} \mathbf{v}_{h}^{T} \mathbf{S} d\Omega$$

Adjoint-based methods for adaptive simulations of turbulent flow

Adjoint solutions let us calculate sensitivities efficiently

• Suppose N_{μ} parameters affect our PDE, but we only have one scalar output, $J(\mathbf{U})$:

• We can efficiently compute sensitivities using a discrete adjoint vector, $\Psi \in \mathbb{R}^N$,

$$\frac{dJ}{d\boldsymbol{\mu}} = \boldsymbol{\Psi}^T \frac{\partial \mathbf{R}}{\partial \boldsymbol{\mu}}$$

• Ψ solves the linear discrete adjoint equation

$$\left(\frac{\partial \mathbf{R}}{\partial \mathbf{U}}\right)^T \Psi + \left(\frac{\partial J}{\partial \mathbf{U}}\right)^T = \mathbf{0}$$

Sample steady adjoint solution

Adjoint-based methods for adaptive simulations of turbulent flow

Another steady adjoint solution

RAE 2822,
$$M_{\infty} = 0.5$$
, $Re = 10^5$, $\alpha = 1^{\circ}$

x-momentum primal state

conservation of *x*-momentum drag adjoint

- The adjoint shares similar qualitative features with the primal
- Note a wake "reversal" in the adjoint solution

Adjoint-based methods for adaptive simulations of turbulent flow

An unsteady adjoint solution

- Two NACA 0012 airfoils in pitch-plunge motion at $M_{\infty} = 0.3$, Re = 1200
- Output = lift on the aft airfoil at the end of the simulation

Adjoint-based methods for adaptive simulations of turbulent flow

Adjoint-based methods for adaptive simulations of turbulent flow

We estimate output errors relative to a fine space

Adjoint-based methods for adaptive simulations of turbulent flow

Example of output error estimation for an airfoil

- A finer space (e.g. order enrichment) can uncover residuals in a converged solution
- Example: NACA 0012 at $\alpha = 2^{\circ}$ in Re = 5000, $M_{\infty} = 0.5$ flow

 $p_{H} = 1$

Zero as expected

Adjoint-based methods for adaptive simulations of turbulent flow

Example of output error estimation for an airfoil

- A finer space (e.g. order enrichment) can uncover residuals in a converged solution
- Example: NACA 0012 at $\alpha = 2^{\circ}$ in Re = 5000, $M_{\infty} = 0.5$ flow

 $p_h = 2$

Nonzero: new info

Adjoint-based methods for adaptive simulations of turbulent flow

Example of output error estimation for an airfoil

Fine space residual, $\mathbf{R}_h(\mathbf{U}_h^H)$

Fine space adjoint, Ψ_h

Adjoint-based methods for adaptive simulations of turbulent flow

Error indicator, $\epsilon_e = |\Psi_{h,e}^T \mathbf{R}_{h,e}(\mathbf{U}_h^H)|$

Output error: $\delta J \approx - \Psi_h^T \mathbf{R}_h(\mathbf{U}_h^H)$

Idea: adapt where ϵ_e is high, to reduce the residual there

Mesh adaptation is an iterative process

Adjoint-based methods for adaptive simulations of turbulent flow

Adaptation can consist of local mesh modification

- As generating meshes is hard, we can modify the mesh incrementally
- Often more robust than global re-meshing
- Node movement can improve quality
- Hanging nodes easily supported in DG

Adjoint-based methods for adaptive simulations of turbulent flow

Or the entire mesh can be globally regenerated

- Make use of automated mesh generation software/scripts
- Current mesh is used to define a Riemannian metric
- Anisotropy can be incorporated/optimized (e.g. MOESS)
- Example of refinement near a single point:

Curved boundaries require special treatment at high order

- DG needs an accurate representation of curved boundaries
- Curving elements is not easy
- Tangling is hard to avoid, especially in 3D anisotropic elements

Agglomeration: linear \rightarrow cubic elements

First-layer curving (extend via elasticity)

A mesh optimization algorithm [Yano, 2012]

- Given: mesh, primal and adjoint
- <u>Determine</u>: mesh metric that minimizes output error at a fixed solution cost
- Key ingredients
 - $\label{eq:convergence} \blacksquare \ \mbox{Error convergence model: metric} \rightarrow \ \mbox{output error}$
 - 2 Cost model: metric \rightarrow solution cost
 - Iterative algorithm that equidistributes the marginal error-to-cost ratio
- Expect multiple iterations of optimization until error "bottoms out" at a fixed cost; can then increase allowable cost to further reduce error

Adjoint-based methods for adaptive simulations of turbulent flow

- Each iteration requires primal and adjoint solutions
- These are quick since starting from good initial guesses
- Use results from final run or average of last few runs

h-Adaptation Example: RAE 2822 in transonic flow

Spalart-Allmaras RANS, $M_{\infty} = 0.73$, $\alpha = 2.79^{\circ}$, Re = 6.5M

Adjoint-based methods for adaptive simulations of turbulent flow

RAE 2822 in transonic flow: output convergence

Adjoint-based methods for adaptive simulations of turbulent flow

RAE 2822 in transonic flow: optimized meshes

Adjoint-based methods for adaptive simulations of turbulent flow

Outline

Introduction

2 Discretization

B) Error estimation and adaptation

Adaptation of unsteady turbulent flow

Adjoint-based methods for adaptive simulations of turbulent flow

Simulations of turbulent flows

- **Turbulence** = random state fluctuations in space and time, caused by flow instabilities at high Reynolds numbers
- Simulating unsteady turbulence (DNS, LES, ...) is accurate but expensive
- Modeling turbulence via averaged quantities (RANS) is cheap but less accurate

e.g. Spalart-Allmaras 1-eqn. model:
$$\frac{D(\rho\tilde{\nu})}{Dt} = \underbrace{\mathcal{P}(\mathbf{u})}_{\text{production}} \underbrace{+\mathcal{T}(\mathbf{u})}_{\text{transport}} \underbrace{-\mathcal{D}(\mathbf{u})}_{\text{destruction}}$$

Large-eddy simulation (LES)

Adjoint-based methods for adaptive simulations of turbulent flow

Unsteady adjoint-based gradient calculations are unstable

- Time-averaged quantities are still well-defined and interesting outputs
- However, we cannot directly use unsteady adjoints to compute their derivatives

Adjoint-based methods for adaptive simulations of turbulent flow

Use a RANS model instead ... with a correction

[Parish & Duraisamy, 2016]

- RANS by itself may not accurately predict the average state, $\bar{\mathbf{U}}$
- We can apply a correction field, $\beta(\vec{x})$, to the production term in the turbulence model,

• Goal: minimize discrepancy between RANS and the unsteady solution, e.g.

$$\beta(\vec{x}) = \arg\min \,\mathcal{E}^2 = w_u \|\mathbf{U}_{\text{RANS}}(\beta(\vec{x})) - \bar{\mathbf{U}}\|^2 + \sum_{\text{outputs}} w_J(J(\mathbf{U}_{\text{RANS}}(\beta(\vec{x}))) - \bar{J})^2$$

• Solve this optimization problem with a gradient-based method using RANS adjoints

Adjoint-based methods for adaptive simulations of turbulent flow

Corrected RANS is much more accurate

Time-averaged state, $\bar{\mathbf{U}}$

RANS without a correction, URANS

Correction field, $\beta(\vec{x})$

Adjoint-based methods for adaptive simulations of turbulent flow

We can obtain a model for β using machine learning

- $\beta(\vec{x})$ for one shape is not in a useful form for optimization
- We seek a model for β in terms of **local** flow quantities:

Adjoint-based methods for adaptive simulations of turbulent flow

- Each quadrature point of each element vields one data point
- Small network: hidden layer $\mathbf{x}_1 \in \mathbb{R}^{30}$
- Adam optimizer, mini-batch size of 1,000, and 500,000 iterations
- Sigmoid activation function
- Once trained, deployed as part of the turbulence model
- Analytical linearization for derivatives

Example of FIML sensitivities: camber variation

- NACA X412 airfoils, M = 0.2, $Re = 10^4$
- FIML at each camber shape

 $\beta(\vec{x})$

- Interested in lift and its sensitivity with respect to camber variations
- Uncorrected RANS outputs severely off
- Correction with β: much more accurate outputs, and reasonable gradients

Adjoint-based methods for adaptive simulations of turbulent flow

Adaptation of unsteady turbulent flow

 $\beta(\mathbf{u}, \nabla \mathbf{u}, d)$

Error estimation for time-averaged outputs

Define a time-averaged output computed from the unsteady discrete solution, $\mathbf{U}(t)$,

$$\bar{J} \equiv rac{1}{T_f - T_i} \int_{T_i}^{T_f} J(\mathbf{U}(t)) dt$$

Suppose that we have an unsteady adjoint, $\Psi(t)$, arising from the Lagrangian

$$\mathcal{L} \equiv \bar{J} + \frac{1}{T_f - T_i} \int_{T_i}^{T_f} \boldsymbol{\Psi}(t)^{\mathsf{T}} \mathbf{R}(\mathbf{U}(t)) dt$$

The unsteady adjoint-weighted residual yields an estimate of the impact of a perturbation to the residual, $\delta \mathbf{R}(t)$, on the time-averaged output,

$$\delta \bar{J} \approx \frac{1}{T_f - T_i} \int_{T_i}^{T_f} \boldsymbol{\Psi}(t)^{\mathsf{T}} \delta \mathbf{R}(t) dt$$

Adjoint-based methods for adaptive simulations of turbulent flow

We decompose the unsteady adjoint and residual perturbation into time-averaged and time-varying components,

$$\Psi(t) = \overline{\Psi} + \Psi'(t), \quad \delta \mathbf{R}(t) = \delta \overline{\mathbf{R}} + \delta \mathbf{R}'(t)$$

so that the error estimate becomes

$$\delta ar{J} pprox ar{\Psi}^{\mathsf{T}} \delta ar{\mathbf{R}} + rac{1}{T_f - T_i} \int_{T_i}^{T_f} \Psi'(t)^{\mathsf{T}} \delta \mathbf{R}'(t) dt$$

We assume that the first term dominates for chaotic flows, in which the time-varying components of the adjoint and residual perturbation are not strongly correlated

Augmented steady-state systems for unsteady simulations

Suppose that an augmented steady-state system models the unsteady problem,

$$\widetilde{\mathbf{R}}(\widetilde{\mathbf{U}}) = \mathbf{0},$$

where $\widetilde{\mathbf{U}} \in \mathbb{R}^{\widetilde{N}}$ is the augmented state vector, with $\widetilde{N} \ge N$, and $\overline{\mathbf{U}} \approx \mathbf{I}^{r} \widetilde{\mathbf{U}}$. The augmented residual (e.g. for RANS) is

$$\widetilde{\mathbf{R}}(\widetilde{\mathbf{U}}) = egin{bmatrix} \mathbf{R}(\mathbf{I}'\widetilde{\mathbf{U}}) + \mathbf{R}^{\mathrm{aug}}(\widetilde{\mathbf{U}}) \ \widetilde{\mathbf{R}}^{\mathrm{aug}}(\widetilde{\mathbf{U}}), \end{bmatrix},$$

where \mathbf{R}^{aug} is an additive change to the original residuals, and $\mathbf{\tilde{R}}^{\text{aug}}$ is the set of new residuals (e.g. associated with the eddy-viscosity equation).

Error estimation using the augmented system

Denote by $\mathbf{U}_{h}^{H}(t) = \mathbf{I}_{h}^{H}\mathbf{U}_{H}(t)$ the prolongation of the coarse unsteady state into a fine space. Similarly, $\widetilde{\mathbf{U}}_{h}^{H}$ is the prolongation of $\widetilde{\mathbf{U}}_{H}$. Evaluating the fine-space residuals yields

$$\delta \mathbf{R}_{h}(t) = -\mathbf{R}_{h}(\mathbf{U}_{h}^{H}(t)) + \mathbf{M}_{h}\mathbf{I}_{h}^{H}\mathbf{M}_{H}^{-1}\mathbf{R}_{H}(\mathbf{U}_{H}(t))$$

$$\delta \widetilde{\mathbf{R}}_{h} = -\widetilde{\mathbf{R}}_{h}(\widetilde{\mathbf{U}}_{h}^{H})$$

We use the augmented-system adjoint, $\widetilde{\Psi}_h$, to define two error estimates:

E1. Time-averaged unsteady residual weighted by the FIML adjoint: $\delta \bar{J}_h \approx \delta \widetilde{\Psi}_h^{\mathsf{T}} \delta \bar{\mathbf{R}}_h, \qquad \delta \bar{\mathbf{R}}_h \equiv \frac{1}{T_f - T_i} \int_{T_i}^{T_f} \delta \mathbf{R}_h(t) dt$

E2. FIML residual weighted by the FIML adjoint: $\delta \widetilde{J}_h \approx \delta \widetilde{\Psi}_h^{\mathsf{T}} \delta \widetilde{\mathbf{R}}_h$

Unsteady mesh adaptation iterations

Adjoint-based methods for adaptive simulations of turbulent flow

FIML adaptation example

Instantaneous entropy

Time-averaged Mach

Instantaneous Mach

Adjoint-based methods for adaptive simulations of turbulent flow

FIML adaptation example

Instantaneous entropy

Time-averaged Mach

Instantaneous Mach

Adjoint-based methods for adaptive simulations of turbulent flow

Lift coefficient convergence

Adjoint-based methods for adaptive simulations of turbulent flow

FIML MOESS unsteady adaptation history

Red lines = time-averaged output

output Green bars = output-error estimates

Adjoint-based methods for adaptive simulations of turbulent flow

Comparison of adapted meshes at 9000 dof

RANS MOESS

FIML MOESS

Different mesh size and anisotropy due to different residuals and adjoints in AWR

Adjoint-based methods for adaptive simulations of turbulent flow

A higher Reynolds-number example

High-lift airfoil, $M_{\infty} = 0.2$, Re = 1M, $\alpha = 17^{\circ}$

Instantaneous entropy

Time-averaged Mach

RANS Mach

Adjoint-based methods for adaptive simulations of turbulent flow

Lift coefficient convergence

FIML MOESS unsteady adaptation history

Red lines = time-averaged output

Green bars = output-error estimates

Adjoint-based methods for adaptive simulations of turbulent flow

Comparison of adapted meshes at 13500 dof

RANS MOESS

FIML MOESS

Different mesh size and anisotropy due to different residuals and adjoints in AWR

Adjoint-based methods for adaptive simulations of turbulent flow

Summary and conclusions

- CFD results are polluted by various error sources
- Improving CFD accuracy requires attention to models, meshes, and solvers
- Adjoint-based methods work well for steady and deterministic unsteady problems
- Chaotic problems preclude direct adjoint solutions, and regularization techniques are expensive
- Steady augmented models offer an attractive alternative when interested in statistically-steady outputs
- We have demonstrated output-based error estimation and mesh adaptation of unsteady turbulent flow using tuned/trained steady augmented models