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We consider the following nonlinear hyperbolic equation{
ut + f(u)x = 0.
u(x, 0) = u0

The finite volume scheme on Eulerian mesh can be written as

ūn+1
j = ūnj +

∆t

∆x

(
f̂j− 1

2
− f̂j+ 1

2

)
.

Consider the Burger’s equation, i.e. f(u) = u2/2, with Lax-Friedrichs
flux. To preserve the maximum-principle of the first-order scheme, we
need ∆t ≤ ∆x

max |u0| .
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Linear problems

I Semi-Lagrangian method: Follow the characteristics exactly or
seek high-order accurate approximations.

I Eulerian-Lagrangian method: Approximate the local
characteristic speed by linear functions.

I Both methods are mostly used for linear problems.

I No previous works can handle nonlinear problems with shocks.
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We consider the following nonlinear hyperbolic equation{
ut + f(u)x = 0.
u(x, 0) = u0

subject to periodic boundary condition and assume b ≤ u0 ≤ a. We
give a partition of the computational domain Ω = [0, 2π] as

0 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= 2π,

and denote Ij = [xj− 1
2
, xj+ 1

2
] as the cells with length ∆x. Let tn be

the n−th time level and denote ∆t as the time step size.
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Space-time domain

Ωj

tn

tn+1

x?
j− 1

2

x?
j+ 1

2

xj− 1
2

xj+ 1
2Ĩj(t

n) = Ij

Ĩj(t
n+1) = I?j

Ĩj(t)ν j
−

1
2

ν j
+

1 2

Figure: The space-time region.
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Given the numerical
approximations u at tn, we take

ν =
[f ]

[u]
.
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If the characteristics intersect
before t = tn+1, then Ij is defined
as a troubled cell and the time
that the intersection appears t?j
satisfies

xj− 1
2

+ νj− 1
2
t? = xj+ 1

2
+ νj+ 1

2
t?.

Otherwise,

∆x?j = ∆x+ νj+ 1
2
∆t− νj− 1

2
∆t.
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The semi-discrete scheme can be written as

d

dt

∫
Ĩj(t)

u dx+ F |x̃
j+1

2
(t) − F |x̃

j− 1
2

(t) = 0.

where
Fj± 1

2
(u)

.
= f(u)− νj± 1

2
u.

It is easy to verify that

[F ]j+ 1
2

= [f ]j+ 1
2
− νj+ 1

2
[u]j+ 1

2
= 0.

With Euler forward time discretization, we have

∆x?ju
? −∆xu+ ∆t

(
Fj+ 1

2
− Fj− 1

2

)
= 0.
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I For each troubled cell Ii, we construct the influence region of
Ii (5 or 6 cells) and merge them. If there is another troubled cell
between Ii−1 and Ii+1, the influence region can be selected based
on either one, and the selected cell is called an Effective
troubled cell (ETC).

I Merge the cells in the influence region and update the numerical
approximations by L2-projection.

I If the influence regions of two ETCs do not overlap, then we say
the two troubled cells are isolated. Otherwise, we combine the
two influence regions together.

I Keep the original numerical fluxes at the interfaces of the
influence region.

I Update the numerical approximations.

I After we obtain the numerical approximations on the next time
level, we map the mesh to the original background uniform mesh
by L2 projection.
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A basic lemma

We consider (1) f(u) = u2

2 , (2) first-order scheme, (3) the troubled
cells are isolated.

Lemma

Suppose the characteristics do not intersect and {Ωj}Nj=1 is the

partition of the space-time domain Ω× [tn, tn+1], then the first-order
numerical approximation satisfies

u? = u.

Hence the scheme is total-variation-diminishing (TVD) and
Maximum-principle-preserving (MPP).
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Basic idea

I Merge the cells in the influence region.

I Redefine the numerical approximations within the influence
region, such that the local characteristics do not intersect within
one time step.

I The size of the influence region cannot be too large.

I The modification keeps the numerical fluxes at the boundaries of
the influence region.

I The modification keeps to the total mass within the influence
region.

I The modification keeps the physical bounds.

I The modification does not increase the total variation.

I In general we merge 5 cells. (exceptions may apply)
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Influence region

Suppose Ij is an ETC, and the numerical approximations on cell Ii,
i = j − 3, · · · , j + 3 are s`, z`, z1, z2, z3, zr, sr, respectively. Assume
the initial condition is bounded by a ≥ u0 ≥ b.
I Keep the boundary cells, i.e. z` and zr.

I Assume z1 ≥ z2 ≥ z3, to obtain the smallest possible total
variation.

I Let the updated numerical approximations be r1, r2, r3.

I r1 + r2 + r3 = z1 + z2 + z3.

I TV (s`, z`, z1, z2, z3, zr, sr) ≥ TV (s`, z`, r1, r2, r3, zr, sr).

I b ≥ r1 ≥ r2 ≥ r3 ≥ a.
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Minimum total variation

We want to find z̃1, z̃2, z̃3 yielding minimum total variation.

The admissible set is

G =

{
(z1, z2, z3) : a ≥ z1 ≥ z2 ≥ z3 ≥ b, z1 ≥ z3 +

2

λ

}
, λ =

∆t

∆x
.

Theorem

Let z`, z1, z2, z3, zr ∈ [b, a] be the numerical approximations within five
adjacent cells from left to right, then we can define z̃1, z̃2, z̃3 in the
admissible set G such that TV (z`, z̃1, z̃2, z̃3, zr) ≤ TV (z`, z1, z2, z3, zr).
In addition, the chosen z̃1, z̃2, z̃3 satisfy z̃1 ≥ a+b

2 , z̃3 ≤ a+b
2 and

z̃1 = z̃3 + 2
λ .
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A preliminary result

Then we can update z̃i, i = 1, 2, 3 to obtain ri, i = 1, 2, 3 such that
the characteristics originated from the cell interfaces do not intersect
within one time step. Moreover, the total variation does not increase.

This algorithm can yield a time step size ∆t < C∆x
b−a , with C = 3,

which theoretically guarantees the MPP and TVD properties. This
time step larger than ∆x

max{|a|,|b|}
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Consider the initial condition

u0(x) =

 2, x ≤ 0,
−0.6, 0 < x ≤ ∆x,
−2, otherwise,

where x ∈ [−π, π]. We set final time T = 3 and N = 100. We choose
C = 3.4, 3.6 and 3.9 (CFL = 1.7, 1.8, and 1.95) to compute the total
variations at each time step.
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Figure: The numerical solution at T = 3, N = 100.
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Definition of the influence region

Definition

Suppose Ij is an ETC, and the numerical approximations on cell Ii,
i = j − 3, · · · , j + 3 are s`, z`, z1, z2, z3, zr, sr, respectively. Assume
the initial condition is bounded by a ≥ u0 ≥ b, Then the influence
region is defined as follows:
1. If sr + zr <

a+3b
2 , A = z1 + z2 + z3 ≥ 7a+5b

4 , then the influence
region contains Ii, i = j − 2 · · · , j + 3.
2. If s` + z` >

3a+b
2 , A = z1 + z2 + z3 ≤ 5a+7b

4 , then the influence
region contains Ii, i = j − 3 · · · , j + 2.
3. In all other cases, the influence region contains Ii,
i = j − 2, · · · , j + 2.
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Theorem

Suppose the numerical approximations are within the interval [b, a],
and Ij is an ETC. The numerical approximations on Ij−3, · · · , Ij+3

are s`, z`, z1, z2, z3, zr, sr, respectively, with z1 ≥ z2 ≥ z3 and
z1 ≥ z3 + 2

λ . The influence region is given in the previous slides. If we
take

λ =
c

a− b
, C = 4

then we can find r`, r1, r2, r3, rr ∈ [b, a] defined in cells Ij−2, · · · ,
Ij+2, respectively, without changing the numerical approximations on
the boundary cells in the influence region, such that the proposed new
numerical approximations satisfy∑

j=`,1,2,3,r

zj =
∑

j=`,1,2,3,r

rj ,

TV (s`, z`, z1, z2, z3, zr, sr) ≥ TV (s`, r`, r1, r2, r3, rr, sr).

Moreover, the characteristics originated from xi+ 1
2
, i = j−3, · · · , j+ 2

do not intersect within one time step and the characteristics speeds at
the boundaries of the influence region keep the same.
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Figure: The numerical solution at T = 3 and N = 100.
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High-order extension

High-order spatial discretization can be obtained by using the
minmod limiter to the reconstructed function.

It is not easy to apply the SSP RK methods since the space-time
domain is partitioned based on the numerical approximation at time
level n. Therefore, the partition may not work for the second stage in
the SSP RK methods.
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Shock-shock interaction
We consider the cells on the right to the influence region. Suppose the
5 cells, with the ETC as the center, in the influence region and the 5
cells on the right are given as r`, r1, r2, r3, rr, s1, s2, s3, s4, s5 from left
to right, where r′s are the updated numerical approximations in the
influence region. Then rr is not a troubled cell. Therefore, the
troubled cells can only be s1, s2 or s3. The procedure is given as
follows:

1. If s2 is a troubled cell, then s2 is regarded as an ETC. The cells to
be merged also include si, i = 1, 2, 3, 4, and probably s5 depending on
the influence region of s2.

2. If s2 is not a troubled cell, but s3 is an ETC. We will show that the
influence region of s3 does not contain rr, then we also merge cells si,
i = 1, 2, 3, 4, 5.

3. If s2 is not a troubled cell, but s1 is a troubled cell, then s1 is
regarded as an ETC. Then s3 is not a troubled cell. The cells to be
merged also include si, i = 1, 2, 3, and probably s4 depending on the
influence region of s1.
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We first test the method with continuous initial value u0(x) = sin(x),
where x ∈ [0, 2π]. We apply a periodic boundary condition. We test
the methods when the solution evolves up T = 1.3 (after shock) where
the shock is located at x = π.

We take

∆t =
C

max{u0} −min{u0}
·∆x, 0 < C < 4,

where u0 is the initial conditions.

The CFL number is

CFL =
∆t

∆x
·max|f ′(u)|.

This is example, C=2*CFL

25



Figure: CFL vs. error plot and total variation over time with T = 1.3,
N = 200, C = 3.9.
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Shock wave

We consider a Riemann problem with initial condition

u0(x) =

{
2, x ≤ 0,
−1, otherwise,

27



Figure: Total variation and the numerical solutions (C=3.9).
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Rarefaction wave

We consider a Riemann problem with initial condition

u0(x) =

{
−1, x ≤ 0,
1, otherwise,

29



Figure: The numerical solution at T = 1.3 and total variation over time.
N = 100, and CFL = 1.95 (C = 3.9).
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Two dimensional problems

We take the initial condition as

31



Figure: Nx = Ny = 100, C = 3.8.
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Consider the 2D Burgers’ equation with the Riemann Initial
condition:

u0(x) =


1, (x, y) ∈ (0, 0.5]× (0, 0.5],
2, (x, y) ∈ (−0.5, 0]× [0, 0.5),
3, (x, y) ∈ [−0.5, 0)× [−0.5, 0),
4, (x, y) ∈ (0, 0.5)× (−0.5, 0).
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Figure: T = 0.1, Nx = Ny = 100, CFL = 8.6.
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In this talk, we designed a novel Eulerian-Lagrangian finite volume
method. With special merging strategies, the numerical algorithm is
theoretically proved to be TVD and MPP under the condition that
∆t ≤ 4∆x

a−b , where a and b are the maximum and minimum values of
the initial condition.
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