Stability analysis of the Eulerian-Lagrangian finite volume methods for nonlinear hyperbolic equations in one space dimension

Yang Yang

Joint work with Jiajie Chen and Jing-Mei Qiu

Department of Mathematical Sciences, Michigan Technological University Houghton, Michigan 49931

yyang7@mtu.edu

This work is supported by NSF grant DMS-1818467.

May 9, 2022

Outline

Introduction

Eulerian-Lagrangian finite volume scheme

Stability analysis

Numerical experiments

Conclusion

・ロシュロシュー 山 シュー

Outline

Introduction

Eulerian-Lagrangian finite volume scheme

Stability analysis

Numerical experiments

Conclusion

・ロト ・ 母 ・ ・ 声 ・ ・ 一 き ・ うへぐ

We consider the following nonlinear hyperbolic equation

$$\begin{cases} u_t + f(u)_x = 0, \\ u(x,0) = u_0 \end{cases}$$

The finite volume scheme on Eulerian mesh can be written as

$$\bar{u}_{j}^{n+1} = \bar{u}_{j}^{n} + \frac{\Delta t}{\Delta x} \left(\hat{f}_{j-\frac{1}{2}} - \hat{f}_{j+\frac{1}{2}} \right).$$

Consider the Burger's equation, i.e. $f(u) = u^2/2$, with Lax-Friedrichs flux. To preserve the maximum-principle of the first-order scheme, we need $\Delta t \leq \frac{\Delta x}{\max |u_0|}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

 Semi-Lagrangian method: Follow the characteristics exactly or seek high-order accurate approximations.

- Semi-Lagrangian method: Follow the characteristics exactly or seek high-order accurate approximations.
- Eulerian-Lagrangian method: Approximate the local characteristic speed by linear functions.

- Semi-Lagrangian method: Follow the characteristics exactly or seek high-order accurate approximations.
- Eulerian-Lagrangian method: Approximate the local characteristic speed by linear functions.
- ▶ Both methods are mostly used for linear problems.

- Semi-Lagrangian method: Follow the characteristics exactly or seek high-order accurate approximations.
- Eulerian-Lagrangian method: Approximate the local characteristic speed by linear functions.
- ▶ Both methods are mostly used for linear problems.
- ▶ No previous works can handle nonlinear problems with shocks.

◆□ ▶ < 圖 ▶ < 圖 ▶ < ■ ● の Q @</p>

Outline

Introduction

Eulerian-Lagrangian finite volume scheme

Stability analysis

Numerical experiments

Conclusion

・ロト・4日・4日・4日・4日・4日・ 6 We consider the following nonlinear hyperbolic equation

$$\begin{cases} u_t + f(u)_x = 0\\ u(x,0) = u_0 \end{cases}$$

subject to periodic boundary condition and assume $b \le u_0 \le a$. We give a partition of the computational domain $\Omega = [0, 2\pi]$ as

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots < x_{N+\frac{1}{2}} = 2\pi,$$

and denote $I_j = [x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}]$ as the cells with length Δx . Let t^n be the *n*-th time level and denote Δt as the time step size.

・ロ・・ (日・・ (日・・ 日・)のへぐ

Figure: The space-time region.

Figure: The space-time region.

э

ヘロト 人間 とくほとくほとう

Figure: The space-time region.

If the characteristics intersect before $t = t^{n+1}$, then I_j is defined as a **troubled cell** and the time that the intersection appears t_j^* satisfies

$$x_{j-\frac{1}{2}} + \nu_{j-\frac{1}{2}}t^{\star} = x_{j+\frac{1}{2}} + \nu_{j+\frac{1}{2}}t^{\star}.$$

Otherwise,

$$\Delta x_j^{\star} = \Delta x + \nu_{j+\frac{1}{2}} \Delta t - \nu_{j-\frac{1}{2}} \Delta t.$$

・ロト ・ 日 ト ・ ヨ ト ・

8

The semi-discrete scheme can be written as

$$\frac{d}{dt} \int_{\widetilde{I}_{j}(t)} u \ dx + F|_{\widetilde{x}_{j+\frac{1}{2}}(t)} - F|_{\widetilde{x}_{j-\frac{1}{2}}(t)} = 0.$$

where

$$F_{j\pm\frac{1}{2}}(u) \doteq f(u) - \nu_{j\pm\frac{1}{2}}u.$$

It is easy to verify that

$$[F]_{j+\frac{1}{2}} = [f]_{j+\frac{1}{2}} - \nu_{j+\frac{1}{2}}[u]_{j+\frac{1}{2}} = 0.$$

With Euler forward time discretization, we have

$$\Delta x_j^{\star} u^{\star} - \Delta x u + \Delta t \left(F_{j+\frac{1}{2}} - F_{j-\frac{1}{2}} \right) = 0.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

▶ For each troubled cell I_i , we construct the **influence region** of I_i (5 or 6 cells) and merge them. If there is another troubled cell between I_{i-1} and I_{i+1} , the influence region can be selected based on either one, and the selected cell is called an **Effective troubled cell (ETC)**.

- ▶ For each troubled cell I_i , we construct the **influence region** of I_i (5 or 6 cells) and merge them. If there is another troubled cell between I_{i-1} and I_{i+1} , the influence region can be selected based on either one, and the selected cell is called an **Effective troubled cell (ETC)**.
- Merge the cells in the influence region and update the numerical approximations by L^2 -projection.

- ▶ For each troubled cell I_i , we construct the **influence region** of I_i (5 or 6 cells) and merge them. If there is another troubled cell between I_{i-1} and I_{i+1} , the influence region can be selected based on either one, and the selected cell is called an **Effective troubled cell (ETC)**.
- Merge the cells in the influence region and update the numerical approximations by L^2 -projection.
- ▶ If the influence regions of two ETCs do not overlap, then we say the two troubled cells are **isolated**. Otherwise, we combine the two influence regions together.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

- ▶ For each troubled cell I_i , we construct the **influence region** of I_i (5 or 6 cells) and merge them. If there is another troubled cell between I_{i-1} and I_{i+1} , the influence region can be selected based on either one, and the selected cell is called an **Effective troubled cell (ETC)**.
- Merge the cells in the influence region and update the numerical approximations by L^2 -projection.
- ▶ If the influence regions of two ETCs do not overlap, then we say the two troubled cells are **isolated**. Otherwise, we combine the two influence regions together.
- ▶ Keep the original numerical fluxes at the interfaces of the influence region.

- ▶ For each troubled cell I_i , we construct the **influence region** of I_i (5 or 6 cells) and merge them. If there is another troubled cell between I_{i-1} and I_{i+1} , the influence region can be selected based on either one, and the selected cell is called an **Effective troubled cell (ETC)**.
- Merge the cells in the influence region and update the numerical approximations by L^2 -projection.
- ▶ If the influence regions of two ETCs do not overlap, then we say the two troubled cells are **isolated**. Otherwise, we combine the two influence regions together.
- ▶ Keep the original numerical fluxes at the interfaces of the influence region.
- ▶ Update the numerical approximations.

- ▶ For each troubled cell I_i , we construct the **influence region** of I_i (5 or 6 cells) and merge them. If there is another troubled cell between I_{i-1} and I_{i+1} , the influence region can be selected based on either one, and the selected cell is called an **Effective troubled cell (ETC)**.
- Merge the cells in the influence region and update the numerical approximations by L^2 -projection.
- ▶ If the influence regions of two ETCs do not overlap, then we say the two troubled cells are **isolated**. Otherwise, we combine the two influence regions together.
- Keep the original numerical fluxes at the interfaces of the influence region.
- ▶ Update the numerical approximations.
- After we obtain the numerical approximations on the next time level, we map the mesh to the original background uniform mesh by L^2 projection.

Outline

Introduction

Eulerian-Lagrangian finite volume scheme

Stability analysis

Numerical experiments

Conclusion

<ロト < 団 > < 臣 > < 臣 > 臣 の Q () 11

A basic lemma

We consider (1) $f(u) = \frac{u^2}{2}$, (2) first-order scheme, (3) the troubled cells are isolated.

Lemma

Suppose the characteristics do not intersect and $\{\Omega_j\}_{j=1}^N$ is the partition of the space-time domain $\Omega \times [t^n, t^{n+1}]$, then the first-order numerical approximation satisfies

$$u^{\star} = u.$$

Hence the scheme is total-variation-diminishing (TVD) and Maximum-principle-preserving (MPP).

▶ Merge the cells in the influence region.

- ▶ Merge the cells in the influence region.
- Redefine the numerical approximations within the influence region, such that the local characteristics do not intersect within one time step.

- ▶ Merge the cells in the influence region.
- Redefine the numerical approximations within the influence region, such that the local characteristics do not intersect within one time step.
- ▶ The size of the influence region cannot be too large.

- ▶ Merge the cells in the influence region.
- Redefine the numerical approximations within the influence region, such that the local characteristics do not intersect within one time step.
- ▶ The size of the influence region cannot be too large.
- ▶ The modification keeps the numerical fluxes at the boundaries of the influence region.

- ▶ Merge the cells in the influence region.
- Redefine the numerical approximations within the influence region, such that the local characteristics do not intersect within one time step.
- ▶ The size of the influence region cannot be too large.
- ▶ The modification keeps the numerical fluxes at the boundaries of the influence region.
- ▶ The modification keeps to the total mass within the influence region.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

- Merge the cells in the influence region.
- Redefine the numerical approximations within the influence region, such that the local characteristics do not intersect within one time step.
- ▶ The size of the influence region cannot be too large.
- ▶ The modification keeps the numerical fluxes at the boundaries of the influence region.
- ▶ The modification keeps to the total mass within the influence region.
- ▶ The modification keeps the physical bounds.

- Merge the cells in the influence region.
- Redefine the numerical approximations within the influence region, such that the local characteristics do not intersect within one time step.
- ▶ The size of the influence region cannot be too large.
- ▶ The modification keeps the numerical fluxes at the boundaries of the influence region.
- ▶ The modification keeps to the total mass within the influence region.
- ▶ The modification keeps the physical bounds.
- ▶ The modification does not increase the total variation.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ■ ●○○

- Merge the cells in the influence region.
- Redefine the numerical approximations within the influence region, such that the local characteristics do not intersect within one time step.
- ▶ The size of the influence region cannot be too large.
- ▶ The modification keeps the numerical fluxes at the boundaries of the influence region.
- ▶ The modification keeps to the total mass within the influence region.
- ▶ The modification keeps the physical bounds.
- ▶ The modification does not increase the total variation.
- ▶ In general we merge 5 cells. (exceptions may apply)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Suppose I_j is an ETC, and the numerical approximations on cell I_i , $i = j - 3, \dots, j + 3$ are $s_\ell, z_\ell, z_1, z_2, z_3, z_r, s_r$, respectively. Assume the initial condition is bounded by $a \ge u_0 \ge b$.

▶ Keep the boundary cells, i.e. z_{ℓ} and z_r .

Suppose I_j is an ETC, and the numerical approximations on cell I_i , $i = j - 3, \dots, j + 3$ are $s_\ell, z_\ell, z_1, z_2, z_3, z_r, s_r$, respectively. Assume the initial condition is bounded by $a \ge u_0 \ge b$.

- Keep the boundary cells, i.e. z_{ℓ} and z_r .
- Assume $z_1 \ge z_2 \ge z_3$, to obtain the smallest possible total variation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Suppose I_j is an ETC, and the numerical approximations on cell I_i , $i = j - 3, \dots, j + 3$ are $s_\ell, z_\ell, z_1, z_2, z_3, z_r, s_r$, respectively. Assume the initial condition is bounded by $a \ge u_0 \ge b$.

- Keep the boundary cells, i.e. z_{ℓ} and z_r .
- Assume $z_1 \ge z_2 \ge z_3$, to obtain the smallest possible total variation.
- Let the updated numerical approximations be r_1, r_2, r_3 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Suppose I_j is an ETC, and the numerical approximations on cell I_i , $i = j - 3, \dots, j + 3$ are $s_\ell, z_\ell, z_1, z_2, z_3, z_r, s_r$, respectively. Assume the initial condition is bounded by $a \ge u_0 \ge b$.

- Keep the boundary cells, i.e. z_{ℓ} and z_r .
- Assume $z_1 \ge z_2 \ge z_3$, to obtain the smallest possible total variation.
- Let the updated numerical approximations be r_1, r_2, r_3 .

$$r_1 + r_2 + r_3 = z_1 + z_2 + z_3.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Suppose I_j is an ETC, and the numerical approximations on cell I_i , $i = j - 3, \dots, j + 3$ are $s_\ell, z_\ell, z_1, z_2, z_3, z_r, s_r$, respectively. Assume the initial condition is bounded by $a \ge u_0 \ge b$.

- Keep the boundary cells, i.e. z_{ℓ} and z_r .
- Assume $z_1 \ge z_2 \ge z_3$, to obtain the smallest possible total variation.
- Let the updated numerical approximations be r_1, r_2, r_3 .

$$r_1 + r_2 + r_3 = z_1 + z_2 + z_3$$

 $TV(s_{\ell}, z_{\ell}, z_1, z_2, z_3, z_r, s_r) \ge TV(s_{\ell}, z_{\ell}, r_1, r_2, r_3, z_r, s_r).$

Suppose I_j is an ETC, and the numerical approximations on cell I_i , $i = j - 3, \dots, j + 3$ are $s_\ell, z_\ell, z_1, z_2, z_3, z_r, s_r$, respectively. Assume the initial condition is bounded by $a \ge u_0 \ge b$.

- Keep the boundary cells, i.e. z_{ℓ} and z_r .
- Assume $z_1 \ge z_2 \ge z_3$, to obtain the smallest possible total variation.
- Let the updated numerical approximations be r_1, r_2, r_3 .

$$r_1 + r_2 + r_3 = z_1 + z_2 + z_3$$

- $TV(s_{\ell}, z_{\ell}, z_1, z_2, z_3, z_r, s_r) \ge TV(s_{\ell}, z_{\ell}, r_1, r_2, r_3, z_r, s_r).$
- $\blacktriangleright b \ge r_1 \ge r_2 \ge r_3 \ge a.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Minimum total variation

We want to find \tilde{z}_1 , \tilde{z}_2 , \tilde{z}_3 yielding minimum total variation.

The admissible set is

$$G = \left\{ (z_1, z_2, z_3) : a \ge z_1 \ge z_2 \ge z_3 \ge b, \ z_1 \ge z_3 + \frac{2}{\lambda} \right\}, \quad \lambda = \frac{\Delta t}{\Delta x}.$$

Theorem

Let $z_{\ell}, z_1, z_2, z_3, z_r \in [b, a]$ be the numerical approximations within five adjacent cells from left to right, then we can define $\tilde{z}_1, \tilde{z}_2, \tilde{z}_3$ in the admissible set G such that $TV(z_{\ell}, \tilde{z}_1, \tilde{z}_2, \tilde{z}_3, z_r) \leq TV(z_{\ell}, z_1, z_2, z_3, z_r)$. In addition, the chosen $\tilde{z}_1, \tilde{z}_2, \tilde{z}_3$ satisfy $\tilde{z}_1 \geq \frac{a+b}{2}$, $\tilde{z}_3 \leq \frac{a+b}{2}$ and $\tilde{z}_1 = \tilde{z}_3 + \frac{2}{\lambda}$.

A preliminary result

Then we can update \tilde{z}_i , i = 1, 2, 3 to obtain r_i , i = 1, 2, 3 such that the characteristics originated from the cell interfaces do not intersect within one time step. Moreover, the total variation does not increase.

This algorithm can yield a time step size $\Delta t < \frac{C\Delta x}{b-a}$, with C = 3, which theoretically guarantees the MPP and TVD properties. This time step larger than $\frac{\Delta x}{\max\{|a|,|b|\}}$

・ロト ・ ロト ・ ヨト ・ ヨー ・ つくぐ

Consider the initial condition

$$u_0(x) = \begin{cases} 2, & x \le 0, \\ -0.6, & 0 < x \le \Delta x, \\ -2, & \text{otherwise,} \end{cases}$$

where $x \in [-\pi, \pi]$. We set final time T = 3 and N = 100. We choose C = 3.4, 3.6 and 3.9 (CFL = 1.7, 1.8, and 1.95) to compute the total variations at each time step.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ■ ●○○

Figure: The numerical solution at T = 3, N = 100.

Definition of the influence region

Definition

Suppose I_j is an ETC, and the numerical approximations on cell I_i , $i = j - 3, \dots, j + 3$ are $s_\ell, z_\ell, z_1, z_2, z_3, z_r, s_r$, respectively. Assume the initial condition is bounded by $a \ge u_0 \ge b$, Then the influence region is defined as follows:

1. If $s_r + z_r < \frac{a+3b}{2}$, $A = z_1 + z_2 + z_3 \ge \frac{7a+5b}{4}$, then the influence region contains I_i , $i = j - 2 \cdots, j + 3$. 2. If $s_\ell + z_\ell > \frac{3a+b}{2}$, $A = z_1 + z_2 + z_3 \le \frac{5a+7b}{4}$, then the influence region contains I_i , $i = j - 3 \cdots, j + 2$. 3. In all other cases, the influence region contains I_i , $i = j - 2, \cdots, j + 2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

Theorem

Suppose the numerical approximations are within the interval [b, a], and I_j is an ETC. The numerical approximations on I_{j-3}, \dots, I_{j+3} are $s_{\ell}, z_{\ell}, z_1, z_2, z_3, z_r, s_r$, respectively, with $z_1 \ge z_2 \ge z_3$ and $z_1 \ge z_3 + \frac{2}{\lambda}$. The influence region is given in the previous slides. If we take

$$\lambda = \frac{c}{a-b}, \quad C = 4$$

then we can find r_{ℓ} , r_1 , r_2 , r_3 , $r_r \in [b, a]$ defined in cells I_{j-2}, \cdots, I_{j+2} , respectively, without changing the numerical approximations on the boundary cells in the influence region, such that the proposed new numerical approximations satisfy

$$\sum_{j=\ell,1,2,3,r} z_j = \sum_{j=\ell,1,2,3,r} r_j$$

 $TV(s_{\ell}, z_{\ell}, z_1, z_2, z_3, z_r, s_r) \ge TV(s_{\ell}, r_{\ell}, r_1, r_2, r_3, r_r, s_r).$

Moreover, the characteristics originated from $x_{i+\frac{1}{2}}$, $i = j - 3, \dots, j + 2$ do not intersect within one time step and the characteristics speeds at the boundaries of the influence region keep the same.

Figure: The numerical solution at T = 3 and N = 100.

High-order spatial discretization can be obtained by using the minmod limiter to the reconstructed function.

It is not easy to apply the SSP RK methods since the space-time domain is partitioned based on the numerical approximation at time level n. Therefore, the partition may not work for the second stage in the SSP RK methods.

・ロト・西ト・田・・田・ うへぐ

Shock-shock interaction

We consider the cells on the right to the influence region. Suppose the 5 cells, with the ETC as the center, in the influence region and the 5 cells on the right are given as $r_{\ell}, r_1, r_2, r_3, r_r, s_1, s_2, s_3, s_4, s_5$ from left to right, where r's are the updated numerical approximations in the influence region. Then r_r is not a troubled cell. Therefore, the troubled cells can only be s_1, s_2 or s_3 . The procedure is given as follows:

1. If s_2 is a troubled cell, then s_2 is regarded as an ETC. The cells to be merged also include s_i , i = 1, 2, 3, 4, and probably s_5 depending on the influence region of s_2 .

2. If s_2 is not a troubled cell, but s_3 is an ETC. We will show that the influence region of s_3 does not contain r_r , then we also merge cells s_i , i = 1, 2, 3, 4, 5.

3. If s_2 is not a troubled cell, but s_1 is a troubled cell, then s_1 is regarded as an ETC. Then s_3 is not a troubled cell. The cells to be merged also include s_i , i = 1, 2, 3, and probably s_4 depending on the influence region of s_1 .

Outline

Introduction

Eulerian-Lagrangian finite volume scheme

Stability analysis

Numerical experiments

Conclusion

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

We first test the method with continuous initial value $u_0(x) = \sin(x)$, where $x \in [0, 2\pi]$. We apply a periodic boundary condition. We test the methods when the solution evolves up T = 1.3 (after shock) where the shock is located at $x = \pi$.

We take

$$\Delta t = \frac{C}{\max\{u_0\} - \min\{u_0\}} \cdot \Delta x, \quad 0 < C < 4,$$

where u_0 is the initial conditions.

The CFL number is

$$CFL = \frac{\Delta t}{\Delta x} \cdot \max|f'(u)|.$$

This is example, C=2*CFL

25

◆□ ▶ < 圖 ▶ < 圖 ▶ < ■ ● の Q @</p>

Figure: CFL vs. error plot and total variation over time with T = 1.3, N = 200, C = 3.9.

We consider a Riemann problem with initial condition

$$u_0(x) = \begin{cases} 2, & x \le 0, \\ -1, & \text{otherwise,} \end{cases}$$

Figure: Total variation and the numerical solutions (C=3.9).

Rarefaction wave

We consider a Riemann problem with initial condition

$$u_0(x) = \begin{cases} -1, & x \le 0, \\ 1, & \text{otherwise,} \end{cases}$$

・ロト・4回ト・4回ト・4回ト・日 うへぐ

Figure: The numerical solution at T = 1.3 and total variation over time. N = 100, and CFL = 1.95 (C = 3.9).

Two dimensional problems

We take the initial condition as

31

Figure: $N_x = N_y = 100, C = 3.8.$

Consider the 2D Burgers' equation with the Riemann Initial condition:

$$u_0(x) = \begin{cases} 1, & (x,y) \in (0,0.5] \times (0,0.5], \\ 2, & (x,y) \in (-0.5,0] \times [0,0.5), \\ 3, & (x,y) \in [-0.5,0) \times [-0.5,0), \\ 4, & (x,y) \in (0,0.5) \times (-0.5,0). \end{cases}$$

Figure: T = 0.1, $N_x = N_y = 100$, CFL = 8.6.

Outline

Introduction

Eulerian-Lagrangian finite volume scheme

Stability analysis

Numerical experiments

Conclusion

In this talk, we designed a novel Eulerian-Lagrangian finite volume method. With special merging strategies, the numerical algorithm is theoretically proved to be TVD and MPP under the condition that $\Delta t \leq \frac{4\Delta x}{a-b}$, where a and b are the maximum and minimum values of the initial condition.

・ロト・西ト・市・・市・ うくぐ