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Introduction



We consider the following nonlinear hyperbolic equation

{ ug + f(u), = 0.

u(z,0) = ug

The finite volume scheme on Eulerian mesh can be written as

At /. P
n41 -
it =t e (foy i)
Consider the Burger’s equation, i.e. f(u) = u?/2, with Lax-Friedrichs
flux. To preserve the maximum-principle of the first-order scheme, we
need At < —A4z

max |ug|*
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Linear problems

» Semi-Lagrangian method: Follow the characteristics exactly or
seek high-order accurate approximations.

» Eulerian-Lagrangian method: Approximate the local
characteristic speed by linear functions.

» Both methods are mostly used for linear problems.

» No previous works can handle nonlinear problems with shocks.
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Eulerian-Lagrangian finite volume scheme



We consider the following nonlinear hyperbolic equation

{ u + f(u)z = 0.

u(x,0) = ug

subject to periodic boundary condition and assume b < ug < a. We
give a partition of the computational domain Q = [0, 27] as

O:x%<x%<~~<xN+%:27r7

and denote I; = [z;_1,2;, 1] as the cells with length Az. Let t" be
the n—th time level and denote At as the time step size.
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Space-time domain

If the characteristics intersect
T, Fanty - @t before ¢ = ¢"*1, then I; is defined
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The semi-discrete scheme can be written as

4
dt JL;

where

It is easy to verify that

(Flivs = Uljes —vieslulipy

2

With Euler forward time discretization, we have

u d:ﬂ+ F|§j+%(t) - F|§r;’j7%(t) =0.

=0.

A:z:;u*fA:z:quAt(FH_% — F. %> = 0.

j—



» For each troubled cell I;, we construct the influence region of
I; (5 or 6 cells) and merge them. If there is another troubled cell
between I;,_1 and I;41, the influence region can be selected based
on either one, and the selected cell is called an Effective
troubled cell (ETC).
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For each troubled cell I;, we construct the influence region of
I; (5 or 6 cells) and merge them. If there is another troubled cell
between I;,_1 and I;41, the influence region can be selected based
on either one, and the selected cell is called an Effective
troubled cell (ETC).

Merge the cells in the influence region and update the numerical
approximations by L2-projection.
If the influence regions of two ETCs do not overlap, then we say

the two troubled cells are isolated. Otherwise, we combine the
two influence regions together.

Keep the original numerical fluxes at the interfaces of the
influence region.

Update the numerical approximations.

After we obtain the numerical approximations on the next time

level, we map the mesh to the original background uniform mesh
by L? projection.

10



Outline

Stability analysis



A basic lemma

We consider (1) f(u) = “72, (2) first-order scheme, (3) the troubled
cells are isolated.

Lemma

Suppose the characteristics do not intersect and {Qj}j.v:l 15 the

partition of the space-time domain 0 x [t",t" 1], then the first-order
numerical approximation satisfies

U =u.

Hence the scheme is total-variation-diminishing (TVD) and
Maximum-principle-preserving (MPP).
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Basic

v

idea

Merge the cells in the influence region.

Redefine the numerical approximations within the influence
region, such that the local characteristics do not intersect within
one time step.

The size of the influence region cannot be too large.

The modification keeps the numerical fluxes at the boundaries of
the influence region.

The modification keeps to the total mass within the influence
region.

The modification keeps the physical bounds.

The modification does not increase the total variation.

In general we merge 5 cells. (exceptions may apply)
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the initial condition is bounded by a > ug > b.

» Keep the boundary cells, i.e. z; and z,.
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Influence region

Suppose I; is an ETC, and the numerical approximations on cell I;,
i=75—3,--+,j+ 3 are sy, 2¢, 21, 22, 23, Zr, Sr, respectively. Assume
the initial condition is bounded by a > ug > b.
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Keep the boundary cells, i.e. zy and z,.

Assume z1 > 29 > z3, to obtain the smallest possible total
variation.

Let the updated numerical approximations be 71, ro, r3.
T +To+7T3 =21+ 22+ 23.

TV (80,20, 21,22, 23, 21, S¢) = TV (84, 20,71, 72,73, 21, Sr)-
b>ri>rao>r32>a.



Minimum total variation

We want to find z;, Z3, 2z3 yielding minimum total variation.

The admissible set is

2 At
G={(21722&3):@22122222326, 212z3+}, A=

A T Az’

Theorem

Let z¢, 21, 22, 23, 2r € [b,a] be the numerical approzimations within five
adjacent cells from left to right, then we can define z1, Z2, Z3 in the
admissible set G such that TV (zg, 21, 22, 23, 2r) < TV (24, 21, 22, 23, 2r) .-
In addition, the chosen Z1, Zo, Z3 satisfy zZ; > ‘%‘b, Z3 < “TH’ and

Z1 = 2Z3 + %



A preliminary result

Then we can update Z;, ¢ = 1,2, 3 to obtain r;, ¢ = 1,2, 3 such that
the characteristics originated from the cell interfaces do not intersect
within one time step. Moreover, the total variation does not increase.
This algorithm can yield a time step size At < %f;, with C' = 3,
which theoretically guarantees the MPP and TVD properties. This
time step larger than m




Consider the initial condition

2, z <0,
ug(z) =<¢ —0.6, 0<z <Az,
-2, otherwise,

where z € [—m, w]. We set final time T'= 3 and N = 100. We choose
C=34,36and 3.9 (CFL=1.7,1.8, and 1.95) to compute the total
variations at each time step.
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Figure: The numerical solution at 7' =3, N = 100.
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Definition of the influence region

Definition
Suppose I; is an ETC, and the numerical approximations on cell I;,
i=4—3,---,7+ 3 are sy, z¢, 21, 22, 23, Zr, Sy, respectively. Assume

the initial condition is bounded by a > ug > b, Then the influence
region is defined as follows:
1. If s, + 2. < %?’b, A=2z1+29+ 23 > MT%(’, then the influence

region contains I;, i =j —2---,j + 3.
2. If sy + 2o > 3‘17%, A=2z1+29+ 23 < LZ"’, then the influence
region contains I;, i =j —3--- ,j + 2.

3. In all other cases, the influence region contains I,
1=7—=2,---,j+2.



Theorem

Suppose the numerical approximations are within the interval [b, a],
and I; is an ETC. The numerical approzimations on Ij_3,--- ,Ij 3
are Sy, 2, 21, 22, 23, Zr, Sr, respectively, with z1 > zo > z3 and

z1 > 23+ % The influence region is given in the previous slides. If we

take
c

a—>b’
then we can find vy, 1, 72, T3, T € [b,a] defined in cells Ij_qg, - - -,
I, 2, respectively, without changing the numerical approrimations on
the boundary cells in the influence region, such that the proposed new
numerical approximations satisfy

> 5= 3 o

J=¢,1,2,3,r J=¢,12,3,r

A= C=14

TV (s, 20, 21, 22, 23, Zr, Sr) = TV (s¢,74,71,72,73, 7, 57).

Moreover, the characteristics originated from x;, 1,1 =75—3,--- ,j+2
do not intersect within one time step and the characteristics speeds at
the boundaries of the influence region keep the same.

20
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High-order extension

High-order spatial discretization can be obtained by using the
minmod limiter to the reconstructed function.

It is not easy to apply the SSP RK methods since the space-time
domain is partitioned based on the numerical approximation at time
level n. Therefore, the partition may not work for the second stage in
the SSP RK methods.

29



Shock-shock interaction

We consider the cells on the right to the influence region. Suppose the
5 cells, with the ETC as the center, in the influence region and the 5
cells on the right are given as ry,r1, 79,73, 7, S1, S2, S3, S4, S5 from left
to right, where r’s are the updated numerical approximations in the
influence region. Then r, is not a troubled cell. Therefore, the
troubled cells can only be s1, so or s3. The procedure is given as
follows:

1. If s is a troubled cell, then ss is regarded as an ETC. The cells to
be merged also include s;, i = 1,2, 3,4, and probably s5 depending on
the influence region of so.

2. If s5 is not a troubled cell, but sz is an ETC. We will show that the
influence region of s3 does not contain r,., then we also merge cells s;,
1=1,2,3,4,5.

3. If s5 is not a troubled cell, but s; is a troubled cell, then s; is
regarded as an ETC. Then s3 is not a troubled cell. The cells to be
merged also include s;, ¢ = 1,2, 3, and probably s; depending on the
influence region of s;.

929
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Numerical experiments
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We first test the method with continuous initial value ug(x) = sin(x),
where x € [0,27]. We apply a periodic boundary condition. We test
the methods when the solution evolves up 7' = 1.3 (after shock) where
the shock is located at x = 7.

We take

C
At = -A 4
max{ug} — min{ug} 7, 0<C<4,

where ug is the initial conditions.
The CFL number is

At ,
CFL = Ar -max|f'(u)].

This is example, C=2*CFL

25



10 After shock test, T = 1.3, N = 200 ©=3.9 (CFL=1.95), N=200, T=1.3
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Figure: CFL vs. error plot and total variation over time with 7' = 1.3,
N =200, C' = 3.9.



Shock wave

We consider a Riemann problem with initial condition

( ) _ 27 x S 07
Uol) = —1, otherwise,

27



Total Variation

Total Variation of different G
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Figure: Total variation and the numerical solutions (C=3.9).
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Rarefaction wave

We consider a Riemann problem with initial condition

() = -1, =<0,
Uol) = 1,  otherwise,

20



T=1.3, N=100, CFL=1.95 (C=3.9) T=1.3, N=100,C=3.9 (CFL=1.95)
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Figure: The numerical solution at 7" = 1.3 and total variation over time.
N =100, and CFL =1.95 (C = 3.9).
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Two dimensional problems

We take the initial condition as

Initial Condition

5 0.5 4

[e]
N

0.8

0.6

0.4

0.2
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Figure: N, = N, =100, C = 3.8.




Consider the 2D Burgers’ equation with the Riemann Initial

condition:

29
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Figure: T = 0.1, N, = N, = 100, CFL = 8.6.
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Conclusion
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In this talk, we designed a novel Eulerian-Lagrangian finite volume
method. With special merging strategies, the numerical algorithm is
theoretically proved to be TVD and MPP under the condition that
At < %, where a and b are the maximum and minimum values of
the initial condition.
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