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Simulations and Modeling of Turbulent Mixing

Rayleigh–Taylor Instability (RTI) :

arises at the interface between two fluids of different densities whenever the
pressure gradient opposes the density gradient.

Richtmyer-Meshkov Instability (RMI) :

arises when a shock wave interacts with the interface. RMI is known as the
impulsive or shock-induced RTI.

Photograph courtesy of NASA, ESA, J. Hester
and A. Loll (Arizona State University)

Photograph courtesy of David Jewitt, University
of California at Los Angeles.
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Problem statement

• Growth rate of RTI,
�� ��αRTI ,

h = αAgt2

h, penetration distance of the light fluid into the heavy fluid
A, Atwood ratio = (ρ1−ρ2)/(ρ1 + ρ2)
g , acceleration

• Growth rate of RMI,
�� ��VRMI ,

VRMI = kh0A∆U

k, wave number
h0, initial perturbation
A, Atwood ratio = (ρ1−ρ2)/(ρ1 + ρ2)
∆U, interface velocity

Gravitational acceleration.
The heavy fluid is supported by the lighter fluid.

Inertial Confinement Fusion fuel capsule.
The lighter material is pushing on the heavier one.
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Numerical Approaches to Model Turbulent Flows

Three levels of numerical simulation for turbulent flows :

• Direct Numerical Simulation (DNS)
• The full NSE is solved without any model for turbulence
• The most demanding method among the three, very accurate

• Large Eddy Simulation (LES)
• Flow field is resolved down to a certain length scale, and scales smaller than

that are modeled rather than resolved
• Computational cost higher than RANS, but much lower than DNS

• Reynolds Averaged Navier Stokes (RANS)
• Time-averaged equations solving for the mean values of all quantities
• The least demanding in terms of resources
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LES/SGS/FT I

The essential features of the algorithms are

• Large Eddy Simulations (LES) with subgrid scale (SGS) terms to model
the diffusive transport corrections to the mesh (Reynolds) averaged
Navier-Stokes equations. Coefficients in SGS models are determined from
the simulation itself and the models are parameter free.

They are quite complex at a detailed level, have a very simple conceptual
derivation. For example the Reynolds stress tensor, which for a nonlinear
flux term F is the difference

F (〈U〉)−〈F (U)〉

This difference is approximated by a term proportional to a gradient, ∇U.
The problem is to determine the coefficient of proportionality. The missing
coefficient is selected dynamically from the simulation.

• Front Tracking (FT), to achieve resolution of steep and sharp density
gradients
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Front Tracking (FT) I
Glimm, Grove, Li and Zhoa 1998, 2000

• An adaptive computational method that provides sharp resolution of a
wave front by tracking the interfaces between distinct materials.

• It represents interfaces explicitly as lower dimensional meshes moving
through a rectangular grid. In 2D, the wave is represented by a curve
which is comprised of connected line segments. In 3D, the wave is
represented by a triangular mesh.

• The states (density, pressure and velocity) of fluids are located in the
centers of each grid cell.

• The method solves the equations with the following main steps :
1 interface propagation
2 interpolation reconstruction,
3 interior states update
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Front Tracking API

These features are included in the multipurpose simulation code FronTier.

Performance of FronTier

• FronTier scales to the entire system on Argonne’s IBM Blue Gene/P
supercomputer - 163,840 cores

• Innovative and Novel Computational Impact on Theory and Experiment Awards

• “Stochastic (w*) Convergence for Turbulent Combustion”
• “Uncertainty Quantification for Turbulent Mixing”

Figure – RTI single mode simulation at t = 10s. Comparison of a FLASH run without
(left) and with (right) the use of front tracking API.
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Model : Multiphase Navier-Stokes equations I

The mathematical formulation is based on the filtered Navier-Stokes equations
for the multiphase flows :

• The variables filtered on the grid scale are denoted by the overbar.

• The density-weighted filtering operation is denoted by the tilde.

The Favre-filtered continuity equation is obtained by

1 applying the grid scale onto the continuity equation

∂ρ

∂ t
+

∂ρvi
∂xi

= 0,

2 then the density-weighted filtering ṽi =
ρvi
ρ

.

For the compressible flows, the Favre-filtered continuity equation

∂ρ

∂ t
+

∂ρ ṽi
∂xi

= 0
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Model : Multiphase Navier-Stokes equations II

J. Glimm, D. H. Sharp, TK, H. Lim. New Directions for Rayleigh - Taylor Mixing. Phil. Trans. of the Royal Society A, 371, pp.183, 2013.

∂ρ

∂ t
+

∂ρ ṽi
∂xi

= 0 ,

∂ρ ṽj
∂ t

+
∂ (ρ ṽi ṽj +pδij )

∂xi
=

∂dij
∂xi
−

∂τij

∂xi
,

∂E

∂ t
+

∂ (E +p)ṽi
∂xi

=
∂dij ṽj

∂xi
+

∂

∂xi

(
κ

∂ T̃

∂xi

)
+

∂

∂xi

(
(H̃h− H̃l )ρD̃

∂ Ψ̃

∂xi

)

+

(
1

2

∂τkk ṽi
∂xi

−
∂q

(H)
i

∂xi
−

∂q
(T )
i

∂xi
−

∂q
(V )
i

∂xi

)
,

∂ρΨ̃

∂ t
+

∂ρΨ̃ṽi
∂xi

=
∂

∂xi

(
ρD̃

∂ Ψ̃

∂xi

)
−

∂q
(Ψ)
i

∂xi
.

The dependent filtered variables ρ,Ψ̃, ṽi ,p, and E the total mass, the species
mass fraction, the velocity, the pressure and the total specific energy, with

E = ρ ẽ + ρ ṽk
2/2 + τkk/2

T. Kaman Numerical Simulations of Richtmyer-Meshkov Instability CCAM-Purdue Workshop 10/24



Model : Multiphase Navier-Stokes equations III

H̃h and H̃l are the partial specific enthalpy of each species defined by

H̃h = ẽh +
p

ρ
, H̃l = ẽl +

p

ρ
,

where ẽh and ẽl are the specific internal energy of each species. The viscous
stress tensor, dij , in momentum and energy equations is expressed as

dij = νd

((
∂ ṽi
∂xj

+
∂ ṽj
∂xi

)
− 2

3

∂ ṽk
∂xk

δij

)
,

where νd = ρνk is the filtered dynamic viscosity.

SGS variables :

τij = ρ(ṽivj − ṽi ṽj )

q
(H)
i = ρ(c̃pTvi − c̃pT̃ ṽi )

q
(T )
i =

1

2
ρ(ṽkvkvi − ṽk ṽk ṽi )

q
(V )
i = dijvj −dij ṽj

q
(Ψ)
i = ρ(Ψ̃vi − Ψ̃ṽi ) .

• Implemented in the code
FRONTIER.

• Equation of state

• Time stepping 2nd order
Runge-Kutta
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Validation and Verification of Turbulent Mixing due to the multi-mode RTI

Kaufman, TK, Yu, Glimm. Stochastic Convergence and the Software Tool W*. Numerical Methods for Hyperbolic Equations, 2012

Turbulent Mixing due to Rayleigh-Taylor Instability within a rocket tank
(Smeeton Youngs 1987)

• Heavy fluid concentration at the
midplane, t = 50.

• For each supercell, we bin the
concentration values into 5 bins,
and count the number of values
lying in each bin, to obtain a
probability.

• We study integrated convergence
through an L1 norm (relative to
integration both in solution state
variables and over space-time) for
the CDFs.

• Spatial array of L1 norms of CDF
mesh differences for heavy fluid
concentrations at the midplane.

T. Kaman Numerical Simulations of Richtmyer-Meshkov Instability CCAM-Purdue Workshop 12/24



Validation and Verification of Turbulent Mixing due to the single mode RMI

TK, Holley, V&V of Turbulence Mixing due to Richtmyer-Meshkov Instability of an air/SF6

interface, IJNAM 22 (accepted). https://kaman.uark.edu/research/publications/

2D Euler equations of the compressible inviscid gases :

Ut +F(U)x +G(U)y = 0

where U,F(U) and G(U) are the vectors of conserved (mass, momentum,
energy) variables and the fluxes in x and y direction.

U =


ρ

ρu
ρv
E

 ,F(U) =


ρu

ρu2 +p
ρuv

(E +p)u

 ,G(U) =


ρv

ρuv
ρv2 +p
(E +p)v


Here ρ is the density, (u,v) is the velocity in (x ,y) directions, p is the pressure,
E = ρe + 1

2 ρ(u2 +v2) is the total energy e = p
(γ−1)ρ

is the specific internal

energy γ is the constant specific heat ratio.
The Euler equations (1) are extended with the equation of concentration
equation

∂ρM

∂ t
+

∂ρMu

∂x
+

∂ρMv

∂y
= 0,

where M is the mass fraction for the heavy fluid.
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Summary of the Weighted essentially non-oscillatory (WENO) Method
Jiang and Shu 1996, Balsara and Shu 2000, Shu 2020, Schilling and Latini 2004

flux-averaged WENO method uses local Lax-Friedrichs flux-splitting and a
characteristic decomposition of the variables and fluxes∗

1 compute the average state ϕ
α at (i + 1/2, j ,k) ;

2 evaluate the left and right eigenvector matrices L(ϕ) and R(ϕ), and the
eigenvalues of the Jacobian matrix at the average state ;

3 for every stencil, project the conservative fields and the fluxes onto the
local characteristic directions using the left eigenvector matrix (2r −1 is

the formal order of accuracy), ϕ
α(ch)
m,j ,k = L(ϕ)ϕα

m,j ,k and

F
α(ch)
m,j ,k = L(ϕ)Fα

m,j ,k with m ∈ [i − r + 1, i + r ] ;

4 evaluate the left and right characteristic fluxes F̂
α(ch)±

m,j ,k pointwise value

Fα
m,j ,k using local or global Lax-Friedrichs flux-splitting ;

5 reconstruct the numerical characteristic flux functions F̂
α(ch)±

m,j ,k from the

pointwise values Fα
m,j ,k using the WENO method

6 compute the numerical flux function in physical space by projecting back
using the right eigenvector matrix Fα

i+1/2,j ,k = R(ϕ)(Fα,+
i+1/2,j ,k

+Fα,−
i+1/2,j ,k

)

7 obtain the fluxes in the y- and z-directions (i , j + 1/2,k) and (i , j ,k + 1/2)
accordingly, and ;

8 advance the solution one timestep using the second-order Runge-Kutta
scheme, and compute a new timestep based on the CFL condition.
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Problem 1 : Sod Shock Tube Problem I

For the contact discontinuity tracking,
Sod’s shock tube problem which is a Riemann problem with initial condition

(ρ,u,p) =

{
(1,0,1) if −5≤ x ≤ 0

(0.125,0,0.1) if 0≤ x ≤ 5
(1)

Figure – Left : The fifth order WENO scheme with and without artificial compression
method of Yang are compared with the exact solution of Sod’s shock tube problem.
Right : A zoomed view on domain [1,3].
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Problem 1 : Sod Shock Tube Problem II

Pressure and velocity profiles on 100 and 200 mesh points at t=0.2s are
compared with the exact solution of Sod’s shock tube problem.
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Problem 2 : Shock-entropy wave interaction (Shu-Osher) I

Study the stability and accuracy of the WENO scheme for strong shocks.
Shu-Osher’s test problem corresponds to a Mach M = 3 shock wave passing
through an entropy wave on the spatial domain (−5,5) and the time domain
(0,2).

(ρ,u,p) =

{
(3.857143,2.629369,10.33333) if x ≤−4

(1 + 0.2sin5x ,0,1) if x ≥−4
(2)

The solution near N-wave ([−2,0],) the transition to the N-wave (x ∈ [0,1]),
the entropy wave (x ∈ [1,2]), and the shock (x ∈ [2,2.5]) is displayed under
three levels of mesh refinement, 200, 400 and 1600 mesh points at t = 1.8.
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Problem 3 : Richtmyer-Meshkov Instability I

For validation study, the model and input parameters are set according to the single mode RMI of

Collins and Jacobs shock tube experiments for the two shock wave Mach numbers M = 1.11 and

M = 1.21.

Mach Numbers
1.11 1.21

Initial amplitude a0 (cm) 0.229 0.183
Initial wavelength λ0 (cm) 5.933
Ratio between a0/λ0 0.0386 0.0308
Heavy fluid (SF6) density ρ1 (g/cm3) 5.944×10−3

Light fluid (air-acetone) density ρ2 (g/cm3) 1.351×10−3

Atwood number A 0.6053
Molecular weight of SF6 (g/mol) 146.05
Molecular weight of air-acetone (g/mol) 34.76
Ratio of specific heats γ 1.276
Pressure at interface p (bar) 0.956
Courant–Friedrichs–Lewy (CFL) number 0.45

Table – The parameter values of RMI simulations.

T. Kaman Numerical Simulations of Richtmyer-Meshkov Instability CCAM-Purdue Workshop 18/24



Problem 3 : Richtmyer-Meshkov Instability II

Figure – Comparison of interface displacement (mm) and interface velocity between
Collins and Jacobs 2002 experiments and FronTier fine grid simulations.
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Problem 3 : Richtmyer-Meshkov Instability III

Comparison of amplitude between Collins and Jacobs 2002 M = 1.11
experiments and FronTier fine grid simulation.

Figure – Each experimental data point with error bar in time (ms) and amplitude
(mm) comes from five experiments.

Simulation Experiment
M=1.11 M=1.21 M=1.11 M=1.21

Vintfc(m/s) 35.5 65.7 33.0 60.6
V0(m/s) 4.02 5.18 3.92±0.23 6.28±0.6
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Problem 3 : Richtmyer-Meshkov Instability IV

Figure – Comparison of the amplitude between Collins and Jacobs 2002 experiments
and FronTier simulations. Left : Fine, medium and coarse grid simulations for M=1.11,
Right : Finest (in progress), fine, medium and coarse grid simulations for M=1.21.
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Conclusion

Single-mode shock-induced RMI simulations of an air/SF6 interface for the
Mach numbers M = 1.11 and M = 1.21 experiments of Collins and Jacobs

• Accurate and robust front tracking simulations with the fifth order WENO
(Shu 2020 advises a new user to use, simple to code and generate stable
and accurate result) and Yang’s artificial compression reveal agreement
with experimental data.

• Good agreement on the interface displacement and amplitude :
• Mach number M = 1.11 : Excellent agreement between the fine grid

simulation and the experiment.
• Mach number M = 1.21 : 9% discrepancy on the early-time growth rate

• For Mach 1.21 air/SF6 shock-tube experiments, FT simulation with 512
grid points per initial perturbed interface gives the best agreement with
the experimental data.
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Future Work :

• The uncertainty quantification studies to investigate the effect of model
and input parameters on the growth rate and model improvement to
capture the vortices at the interface are under development.

• Study the effect of higher-order WENO reconstruction on RMI.
5-9-13 perform better than 3-7-11 ?

• Explore successful ICF designs capable of achieving ignition
• The goal is to generate a net excess of energy from this process, known as

ignition, making fusion a viable alternative energy source.
• In the design of ICF capsules, understanding the mechanisms governing the

growth of RT and RM instabilities during the implosion, play an important
role in achieving ignition.

Betti, R., Hurricane, O.A., 2016. Inertial-confinement fusion with lasers. Nature Phys. 12, 435.
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