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Systems of Balance Laws

Ut + f(U)x + g(U)y = S(U)

Examples:
Gas dynamics with pipe-wall
friction
Euler equations with
gravity/friction
shallow water equations with
Coriolis forces

Applications:

astrophysical and atmospheric
phenomena in many fields
including supernova explosions
(solar) climate modeling and
weather forecasting

Ut + f(U)x + g(U)y = 1
ε

S(U)

Examples:
low Mach number compressible
flows
low Froude number shallow water
flows
diffusive relaxation in kinetic
models

Applications:

various two-phase flows such as
bubbles in water
unmostly incompressible flows
with regions of high
compressibility such as underwater
explosions
atmospheric flows



Systems of Balance Laws

Ut + f(U)x + g(U)y = S(U) or Ut + f(U)x + g(U)y = 1
ε

S(U)

Challenges: certain structural properties of these hyperbolic
problems (conservation or balance law, equilibrium state, positivity,
assymptotic regimes, etc.) are essential in many applications1;

Goal: to design numerical methods that are not only consistent with
the given PDEs, but

preserve the structural properties at the discrete level –
well-balanced numerical methods

remain accurate and robust in certain asymptotic regimes of physical
interest – asymptotic preserving numerical methods

1LeFloch, 2014.



Well-Balanced (WB) Methods

Ut + f(U)x + g(U)y = S(U)

In many physical applications, solutions of the system are small
perturbations of the steady states;
These perturbations may be smaller than the size of the truncation
error on a coarse grid;
To overcome this difficulty, one can use very fine grid, but in many
physically relevant situations, this may be unaffordable;

Goal:

to design a well-balanced numerical method, that is, the method
which is capable of exactly preserving some steady state solutions;
perturbations of these solutions will be resolved on a coarse grid in a
non-oscillatory way.



Asymptotic Preserving (AP) Methods

Ut + f(U)x + g(U)y = 1
ε

S(U)

Solutions of many hyperbolic systems reveal a multiscale character
and thus their numerical resolution presence some major difficulties;
Such problems are typically characterized by the occurance of a
small parameter by 0 < ε� 1;
The solutions show a nonuniform behavior as ε→ 0;
the type of the limiting solution is different in nature from that of
the solutions for finite values of ε > 0.

Goal:

asymptotic passage from one model to another should be preserved
at the discrete level;
for a fixed mesh size and time step, AP method should automatically
transform into a stable discretization of the limiting model as ε→ 0.



Well-Balancing via Flux Globalization



Flux Globalization Approach2

Ut + f(U)x = S(U)︸ ︷︷ ︸
balance law

=⇒ Ut + K(U)x = 0︸ ︷︷ ︸
conservation law
with global flux

where
K(U(x, t)) := f(U(x, t)) + R(U(x, t))

R(U(x, t)) := −
x∫

S(U(ξ, t)) dξ

The steady-state is then the solution W such that

f(W )x = S(W ) =⇒ K(W ) = Const

U is the conservative variable
W is the equlibrium variable

2Chertock, Herty, and Özcan, 2018.



Finite-Volume Method

Ut + K(U)x = 0

U j(t) ≈
1

∆x
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Flux Globalization Approach

Ut + K(U)x = 0

{U j(t)} →
{

U±
j+ 1

2
(t)
}
→
{

F j+ 1
2
(t)
}
→ {U j(t+ ∆t)}

Semi-discrete FV method:
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Key Point: The method is not necessary well-balanced in the sense that
it will preserve steady states exactly, i.e., K = Const



Flux Globalization Approach

Ut + K(U)x = 0

Semi-discrete FV method:

d

dt
U j(t) = −

F j+ 1
2

(
U−
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2
,U+

j+ 1
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)
−F j− 1
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Key Idea: Reconstruct equilibrium variables W , evolve
conservative variables U !
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{U j(t)} →
{

U±
j+ 1
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Example – Gas dynamics with pipe-wall friction


ρt + qx = 0,

qt +
(
c2ρ+ q2

ρ

)
x

= −µq
ρ
|q|,

ρ(x, t) is the density of the fluid
u(x, t) is the velocity of the fluid
q(x, t) is the momentum
µ > 0 is the friction coefficient (divided by the pipe cross section)
c > 0 is the speed of sound



Gas dynamics with pipe-wall friction

Incorporate the source term into the global flux and solve the resulting
system of conservation

ρt + qx = 0

qt +
(
hu2 + g

2ρ
2
)
x

= −µq
ρ
|q|

⇔

{
ρt + qx = 0
qt +Kx = 0

Equilibrium variables:

q, K := q2

h
+ g

2ρ
2 +R, R :=

x∫
µ
q

ρ
|q|dξ

Steady states: q ≡ Const, K ≡ Const



Flux Globalization Approach

{
ρt + qx = 0
qt +Kx = 0

⇒ U = (ρ, q)>, W = (q,K)>

K := q2

ρ
+ g

2ρ
2 +R, R :=

x∫
µ
q

ρ
|q|dξ

Assume that at time t = tn we have for all j = j`, . . . , jr:

U j = (ρj , qj)>

Algorithm:

{
ρj , qj

}n (1)−−→
{
qj ,Kj

}n (2)−−→
{
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j+ 1

2
,K±

j+ 1
2

}n
(3)−−→

{
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j+ 1

2
, q±
j+ 1

2

}n (4)−−→
{

F j+ 1
2

}n (5)−−→
{
ρj , qj

}n+1



Computaion of Equilibrium Variables

{
ρj , qj

}n (1)−−→
{
qj ,Kj

}n
, j = j`, . . . , jr

Kj :=
q2
j

ρj
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2ρ
2
j +Rj , R(x) := g
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x
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2

µ
q

ρ
|q|dξ
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2
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Numerical Tests

Steady state initial data:

q(x, 0) = q∗ = 0.15 and K(x, 0) = K∗ = 0.4,

in a single pipe x ∈ [0, 1]

Perturbed initial data:

q(x, 0) = q∗ + ηe−100(x−0.5)2
, K(x, 0) = K∗ = 0.4, η > 0

in a single pipe x ∈ [0, 1]

We compare the WB and NWB methods ...



Numerical Test – Steady state initial data

WB:

N q K

100 1.94E-18 7.77E-18
200 9.71E-19 9.71E-18
400 1.66E-18 9.57E-18
800 2.18E-18 1.18E-17

NWB:

N q rate K rate
100 1.29E-06 - 8.81E-07 -
200 3.30E-07 1.9668 2.25E-07 1.9692
400 8.34E-08 1.9843 5.69E-08 1.9834
800 2.09E-08 1.9965 1.43E-08 1.9924



Numerical Test – Perturbed initial data
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Euler Equations with Gravity


ρt + (ρu)x + (ρv)y = 0
(ρu)t + (ρu2 + p)x + (ρuv)y = −ρφx
(ρv)t + (ρuv)x + (ρv2 + p)y = −ρφy
Et + (u(E + p))x + (v(E + p))y = −ρ(uφx + vφy)

ρ is the density
u, v are the x- and y-velocities
E is the total energy
p is the pressure; E = p

γ − 1 + ρ

2(u2 + v2)

φ is the gravitational potential



Euler Equations with Gravity3


ρt + (ρu)x + (ρv)y = 0
(ρu)t + (ρu2 + p)x + (ρuv)y = −ρφx
(ρv)t + (ρuv)x + (ρv2 + p)y = −ρφy
Et + (u(E + p))x + (v(E + p))y = −ρ(uφx + vφy)

Multiply the first (density) equation by φ and add to the last (energy)
equation to obtain ...


ρt + (ρu)x + (ρv)y = 0
(ρu)t + (ρu2 + p)x + (ρuv)y = −ρφx
(ρv)t + (ρuv)x + (ρv2 + p)y = −ρφy
(E + ρφ)t + (u(E + ρφ+ p))x + (v(E + ρφ+ p))y = 0

3Chertock, Cui, Kurganov, Özcan, and Tadmor, 2018.



Steady States


��ZZρt + (ρu)x + (ρv)y = 0

��
�HHH(ρu)t + (ρu2 + p)x + (ρuv)y = −ρφx

�
��HHH(ρv)t + (ρuv)x + (ρv2 + p)y = −ρφy

��
���XXXXX(E + ρφ)t + (u(E + ρφ+ p))x + (v(E + ρφ+ p))y = 0

Plays an important role in modeling model astrophysical and atmospheric
phenomena in many fields including supernova explosions, (solar) climate
modeling and weather forecasting

Steady state solution:

u ≡ 0, v ≡ 0, Kx = px + ρφx ≡ 0, Ly = py + ρφy ≡ 0

K := p+Q, Q(x, y, t) :=
∫ x

ρ(ξ, y, t)φx(ξ, y) dξ

L := p+R, R(x, y, t) :=
∫ y

ρ(x, η, t)φy(x, η) dη



2-D Well-Balanced Scheme

Incorporate the source term into the flux:

K := p+Q, Q(x, y, t) :=
∫ y

ρ(ξ, y, t)φx(ξ, y), dξ

L := p+R, R(x, y, t) :=
∫ y

ρ(x, η, t)φy(x, η), dη


ρ

ρu

ρv

E + ρφ


t

+


ρu

ρu2 +K

ρuv

u(E + ρφ+ p)


x

+


ρv

ρuv

ρv2 + L

v(E + ρφ+ p)


y

=


0
0
0
0


Define
conservative variables: U := (ρ, ρu, ρv, E)T

equilibrium variables: W := (ρ,K,L,E + ρφ)T

Solve by the well-balanced scheme ...



Example — 2-D Isothermal Equilibrium Solution

The ideal gas with γ = 1.4; domain [0, 1]× [0, 1]
The gravitational force is φy = g = 1
The steady-state initial conditions are4

ρ(x, y, 0) = 1.21e−1.21y, p(x, y, 0) = e−1.21y,

u(x, y, 0) ≡ v(x, y, 0) ≡ 0

Solid wall boundary conditions
N ×N ρ ρu ρv E

50 × 50 1.70E-016 0.00E+00 2.43E-016 5.97E-016
100 × 100 5.88E-017 0.00E+00 3.42E-016 5.31E-016
200 × 200 1.60E-016 0.00E+00 2.85E-016 5.33E-016

N ×N ρ ρu ρv E

50 × 50 1.05E-03 0.00E+00 5.72E-05 9.61E-05
100 × 100 4.02E-04 0.00E+00 2.07E-05 4.10E-05
200 × 200 1.63E-04 0.00E+00 7.11E-06 1.57E-05

4Xing and Shu, 2013.



Perturbation

A small initial pressure perturbation:

p(x, y, 0) = e−1.21y + ηe−121((x−0.3)2+(y−0.3)2), η = 10−3

50× 50
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Shallow Water System with Coriolis Force5


ht + (hu)x + (hv)y = 0

(hu)t +
(
hu2 + g

2h
2
)
x

+ (huv)y = −ghBx + fhv

(hv)t + (huv)x +
(
hv2 + g

2h
2
)
x

= −ghBy − fhu

h: water height
u, v: fluid velocity
g: gravitational constant
B ≡ 0 – bottom topography
f – Coriolis parameter

5Chertock, Dudzinski, Kurganov, and Lukáčová-Medviďová, 2018.



Steady States
ht + (hu)x + (hv)y = 0

(hu)t +
(
hu2 + g

2h
2
)
x

+ (huv)y = −ghBx + fhv

(hv)t + (huv)x +
(
hv2 + g

2h
2
)
y

= −ghBy − fhu

“Lake at rest”: u ≡ 0, v ≡ 0, h+B ≡ Const
Geostrophic equlibria (“jets in the rotational frame”) are both stationary
and constant along the streamlines:

u ≡ 0, vy ≡ 0, hy ≡ 0, By ≡ 0, K ≡ Const

v ≡ 0, ux ≡ 0, hx ≡ 0, Bx ≡ 0, L ≡ Const

Here,

K := g(h+B − f

g
v) and L := g(h+B + f

g
u)

are the potential energies defined through the primitives of the Coriolis
force



Example — 2-D Stationary Vortex

h(r, 0) = 1+ε2



5
2(1 + 5ε2)r2

1
10(1 + 5ε2) + 2r − 1

2 −
5
2r

2 + ε2(4 ln(5r) + 7
2 − 20r + 25

2 r
2)

1
5 (1− 10ε+ 4ε2 ln 2),

u(x, y, 0) = −εyΥ(r), v(x, y, 0) = εxΥ(r), Υ(r) :=


5, r <

1
52

r
− 5, 1

5 ≤ r <
2
5

0, r ≥ 2
5 ,

Domain: [−1, 1]× [−1, 1], r :=
√
x2 + y2

Boundary conditions: a zero-order extrapolation in both x- and y-directions6

Parameters: B ≡ 0, f = 1/ε and g = 1/ε2 with ε = 0.05
6Audusse, Klein, Nguyen, and Vater, 2011.





Asymptotic Preserving Methods



Shallow Water System with Coriolis Force


ht + (hu)x + (hv)y = 0

(hu)t +
(
hu2 + g

2h
2
)
x

+ (huv)y = −ghBx + fhv

(hv)t + (huv)x +
(
hv2 + g

2h
2
)
x

= −ghBy − fhu

h: water height
u, v: fluid velocity
g: gravitational constant
B ≡ 0 – bottom topography
f – Coriolis parameter



Dimensional Analysis

Introduce

x̂ := x

`0
, ŷ := y

`0
, ĥ := h

h0
, û := u

w0
, v̂ := v

w0
.

Substituting them into the SWE and dropping the hats in the notations,
we obtain the dimensionless form:

ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 + 1

ε2
h2

2

)
x

+ (huv)y = 1
ε
hv,

(hv)t + (huv)x +
(
hv2 + 1

ε2
h2

2

)
y

= −1
ε
hu,

in which
Fr := w0√

gh0
= ε

is the reference Froude number



Numerical Challenges

Eigenvalues of the flux Jacobian:{
u± 1

ε

√
h, u

}
and

{
v ± 1

ε

√
h, v

}
This leads to the CFL condition

∆texpl ≤ ν·min

 ∆x
max
u,h

{
|u|+ 1

ε

√
h
} , ∆y

max
v,h

{
|v|+ 1

ε

√
h
}
 = O(ε∆min).

where ∆min := min(∆x,∆y)

0 < ν ≤ 1 is the CFL number
Numerical diffusion: O(λmax∆x) = O(ε−1∆x).
We must choose ∆x ≈ ε to control numerical diffusion and the
stability condition becomes

∆t = O(ε2)



Low Froude Number Flows

Low Froude number regime (0 < ε� 1) =⇒ very large propagation
speeds

Explicit methods:

very restrictive time and space dicretization steps, typically
proportional to ε due to the CFL condition;
too computationally expensive and typically impractical.

Implicit schemes:

uniformly stable for 0 < ε < 1;
may be inconsistent with the limit problem;
may provide a wrong solution in the zero Froude number limit.

Goal: to design robust numerical algorithms, whose accuracy and
efficiency is independent of ε



Asymptotic-Preserving (AP) Methods7

Idea:

asymptotic passage from one model to another should be preserved
at the discrete level;
for fixed mesh parameters δ, AP method should automatically
transform into a stable discretization of the limiting model as ε→ 0.

Pδε Pε

Pδ P

δ → 0

ε→ 0 ε→ 0

δ → 0

7Golse, Jin, and Levermore, 1999; Jin, 1999; Klar, 1999.



AP Sheme - Error Estimates Argument8

Assume that Pδε is an r-th order approximation to Pε for fixed ε:

A “classical" numerical scheme

E1 = ‖Pδε − Pε‖ = O(δr/ε)

An AP scheme

E2 = ‖Pδε − Pε‖ ≤ ‖Pδε − Pδ‖︸ ︷︷ ︸
O(ε)

+ ‖Pδ − P‖︸ ︷︷ ︸
O(δr)

+ ‖P − Pε‖︸ ︷︷ ︸
O(ε)

= O(δr + ε)

‖Pδε − Pε‖ = min(E1, E2) = O(δr/2)

uniformly in ε

8Jin, 2012.



Structure Preserving AP Methodology

Steps:

Formulate the passage Pε → P, which leads to a change in the
type, nature or simply expression of the equations which determine
some of the unknowns and their relations.
Discretize Pε into a scheme Pδε in such a way that the various
manipulations, which led from Pε to P in the continuous case can
be performed at the discrete level

Outcome:

The scheme Pδε appears as a perturbation of a scheme Pδ, which is
consistent with the limit problem P
Additional properties (conservation, involution constraint, special
choices of numerical viscosities, etc) can be imposed on Pδε

Remark: We assume that the limit problem P is well identified and
well-posed



Analysis for the Low Froude Number Limit

We plug the formal asymptotic expansions

h = h(0) + εh(1) + ε2h(2) + · · ·
u = u(0) + εu(1) + ε2u(2) + · · ·
v = v(0) + εv(1) + ε2v(2) + · · ·

into the SW system:

ht + (hu)x + (hv)y = 0

(hu)t +
(
hu2 + 1

ε2
h2

2

)
x

+ (huv)y = 1
ε
fhv

(hv)t + (huv)x +
(
hv2 + 1

ε2
h2

2

)
y

= −1
ε
fhu

and then collect the like powers of ε ...



Analysis for the Low Froude Number Limit

The equations for O(ε−2) and O(ε−1) terms imply that

h(0)
x = 0, h(0)

y = 0 (⇒ h(0) ≡ Const), h(1)
x = v(0), h(1)

y = −u(0),

which can be substituted into equations of O(1) terms to obtain the limit
equations:

h
(0)
t + (h(0)u(0))x + (h(0)v(0))y = 0 =⇒ u(0)

x + v(0)
y = 0

(h(0)u(0))t +
[
h(0)(u(0))2

]
x

+ (h(0)u(0)v(0))y + h(0)h(2)
x = h(0)v(1)

(h(0)v(0))t +
[
h(0)(v(0))2

]
y

+ (h(0)u(0)v(0))x + h(0)h(2)
y = −h(0)u(1)

h
(1)
t − h(0)

(
h(1)
xx + h(1)

yy

)
t

= · · ·

h
(2)
t −

(
h(0)v(1) + h(1)v(0)

)
xt

+
(
h(0)u(1) + h(1)u(0)

)
yt

= · · ·

Goal: To develop an AP numerical methods for the SW system, which
yield a consistent approximation of the above limiting equations as ε→ 0



Hyperbolic Flux Splitting9

Key idea: Split the stiff pressure term

We first split the stiff pressure gradient term into two parts, i.e.

1
ε2
h2

2 = 1
ε2
h2

2 −
a(t)h
ε2︸ ︷︷ ︸

non−stiff

+a(t)h
ε2︸ ︷︷ ︸
stiff

We then split the flux terms in the continuity equation by
introducing a weight parameter α so that we can construct the slow
dynamic system as a hyperbolic system:

hu = αhu+ (1− α)hu, hv = αhv + (1− α)hv

9Haack, Jin, and Liu, 2012.



Hyperbolic Flux Splitting10

Key idea: Split the stiff pressure term

ht + α(hu)x + α(hv)y + (1− α)(hu)x + (1− α)(hv)y = 0,

(hu)t +
(
hu2 +

1
2h

2 − a(t)h
ε2

)
x

+ (huv)y + a(t)
ε2 hx = 1

ε
hv,

(hv)t + (huv)x +
(
hv2 +

1
2h

2 − a(t)h
ε2

)
y

+ a(t)
ε2 hy = −1

ε
hu.

This system can be written in the following vector form:

Ut + F̃ (U)x + G̃(U)y︸ ︷︷ ︸
non-stiff terms

+F̂ (U)x + Ĝ(U)y︸ ︷︷ ︸
stiff terms

= S(U)︸ ︷︷ ︸
source terms

How to choose parameters α and a(t)?
10Liu, Chertock, and Kurganov, 2019.



Hyperbolic Flux Splitting

Ut + F̃ (U)x + G̃(U)y︸ ︷︷ ︸
non-stiff terms
nonlinear part

+ F̂ (U)x + Ĝ(U)y︸ ︷︷ ︸
stiff terms

= S(U)︸ ︷︷ ︸
source terms

linear part

Need to ensure: Ut + F̃ (U)x + G̃(U)y = 0 is both nonstiff and
hyperbolic

Eigenvalues of the Jacobians ∂F̃ /∂U and ∂G̃/∂U :{
u±

√
(1− α)u2 + α

h− a(t)
ε2 , u

}
,

{
v ±

√
(1− α)v2 + α

h− a(t)
ε2 , v

}

We then take: α = εs and a(t) = min
(x,y)∈Ω

h(x, y, t), s ≥ 1

Remark. It is safe to take α = ε2



Time Discretization of the Split System

Un+1 = Un −∆tF̃ (U)nx −∆tG̃(U)ny︸ ︷︷ ︸
nonlinear part, explicit

−∆tF̂ (U)n+1
x −∆tĜ(U)n+1

y + ∆tS(U)n+1︸ ︷︷ ︸
linear part, implicit

Nonstiff nonlinear part is treated using the second-order
central-upwind scheme
Stiff linear part reduces to a linear elliptic equation for hn+1 and
straigtforward computations of (hu)n+1 and (hv)n+1

For simplicity of presentation: First-order accurate in time

In practice: We implement a two-stage second-order globally stiffly
accurate IMEX Runge-Kutta scheme ARS(2,2,2) (all the proofs will
apply)



Fully Discrete AP Schemes

Un+1 = Un −∆t
[
F̃ (U)nx + G̃(U)ny

]
︸ ︷︷ ︸

R(U) n

−∆t
[
F̂ (U)n+1

x + Ĝ(U)n+1
y − S(U)n+1

]

We use the notation Rn := (Rh,n, Rhu,n, Rhv,n)> and rewrite the
system

hn+1 = hn + ∆tRh,n −∆t(1− α)
[
(hu)n+1

x + (hv)n+1
y

]
(hu)n+1 = 1

K

[
(hu)n + ∆t

ε
(hv)n + ∆t

(
Rhu,n + ∆t

ε
Rhv,n

)
−a

n∆t
ε2

(
hn+1
x + ∆t

ε
hn+1
y

)]
(hv)n+1 = 1

K

[
(hv)n − ∆t

ε
(hu)n + ∆t

(
Rhv,n − ∆t

ε
Rhu,n

)
−a

n∆t
ε2

(
hn+1
y − ∆t

ε
hn+1
x

)]
where K := 1 + (∆t/ε)2



Fully Discrete AP Schemes

We differentiate equations for (hu)n+1 and (hv)n+1 with respect to
x and y, respectively and substitute them into equation into the first
equation and obtain the following elliptic equation for hn+1:

hn+1 − an(1− α)
K̃

∆hn+1 = hn + ∆tRh,n − ∆t(1− α)
K

[
(hu)nx + (hv)ny

+∆t
ε

(
(hv)nx − (hu)ny

)
+ ∆t

(
Rhu,nx +Rhv,ny

)
+ (∆t)2

ε

(
Rhv,nx −Rhu,ny

)]
where

K̃ := 1 + (ε/∆t)2

Solve for hn+1 and substitute it into the second and third equation
to obtain

(hu)n+1 = . . .

(hv)n+1 = . . .



Stability of the Proposed AP Scheme

Un+1 = Un −∆t
[
F̃ (U)nx + G̃(U)ny

]
︸ ︷︷ ︸

R(U) n

−∆t
[
F̂ (U)n+1

x + Ĝ(U)n+1
y − S(U)n+1

]

The stability of the proposed AP scheme is controlled by the CFL
condition:

∆tAP ≤ ν ·min

 ∆x

max
u,h

{
|u|+

√
(1− α)u2 + αh−a(t)

ε2

} ,
∆y

max
v,h

{
|v|+

√
(1− α)v2 + αh−a(t)

ε2

}
 .

The denominators on the RHS are independent of ε (provided α ∼ εs).
Therefore, the use of large time steps of size ∆tAP = O(∆min), is
sufficient to enforce the stability of the proposed AP scheme.



Proof of Consistency

We consider the asymptotic expansions for the unknowns

h
n = h(0),n + εh(1),n + ε2h(2),n + . . .

un = u(0),n + εu(1),n + ε2u(2),n + . . .

vn = v(0),n + εv(1),n + ε2v(2),n + . . .

an = h(0),n + εa(1),n + ε2a(2),n + . . .

and assume that the discrete analogs of the first four equations are
satisfied at time level t = tn:

h(0),n = h(0), Dxu
(0),n +Dyv

(0),n = 0

v(0),n = Dxh
(1),n u(0),n = −Dyh

(1),n

Goal: To obtain the same relations at time t = tn+1



Proof of Consistency

From the elliptic equation for hn+1, we have[
I − an(1− α)

K̃
∆
]

(hn+1 − h(0),n) = O(ε),

where an(1− α)/K̃ = h(0),n +O(ε).

Matrix I − an(1−α)
K̃

∆ is positive definite and non-singular (with
eigenvalues bounded away from zero independently of ε), therefore

h
n+1 = h(0),n +O(ε)

We also have (hu)
n+1

= O(1) and (hv)
n+1

= O(1), which gives

un+1 = u(0),n+1 +O(ε) and vn+1 = v(0),n+1 +O(ε)



Proof of Consistency

We plug the asymptotic expansions

hn = h(0),n + εh(1),n + ε2h(2),n, hn+1 = h(0),n+1 + εh(1),n+1 + ε2h(2),n+1

un = h(0),n + εu(1),n + ε2u(2),n, un+1 = u(0),n+1 + εu(1),n+1 + ε2u(2),n+1

vn = v(0),n + εv(1),n + ε2v(2),n, vn+1 = v(0),n+1 + εv(1),n+1 + ε2v(2),n+1

into the implicit-explicit scheme and equate the like powers of ε to obtain
the following equations:

O(ε−2) : h(0),n+1h(0),n+1
x = 0

h(0),n+1h(0),n+1
y = 0

O(ε−1) : h(0),n+1h(1),n+1
x + h(0),n+1

x h(1),n+1 = h(0),n+1v(0),n+1

h(0),n+1h(1),n+1
y + h(0),n+1

y h(1),n+1 = −h(0),n+1u(0),n+1

O(1) : . . .



Summary

Theorem. The proposed hyperbolic flux splitting method coupled with
the described fully discrete scheme is asymptotic preserving in the sense
that it provides a consistent and stable discretization of the limiting
system as the Froude number ε→ 0.

Remark. In practice, the fully discrete scheme is both second-order
accurate in space and time as we increase a temporal order of accuracy
to the second one by implementing a two-stage globally stiffly accurate
IMEX Runge-Kutta scheme ARS(2,2,2). The proof holds as well.

Remark. The proposed AP scheme is also asymptotically well-balanced
in the sense that it preserves geostrophic equilibria in the zero Froude
number limit at the discrete level: implies

u = −1
ε
hy, v = 1

ε
hx



Numerical Examples



Example — 2-D Stationary Vortex

h(r, 0) = 1+ε2



5
2(1 + 5ε2)r2

1
10(1 + 5ε2) + 2r − 1

2 −
5
2r

2 + ε2(4 ln(5r) + 7
2 − 20r + 25

2 r
2)

1
5 (1− 10ε+ 4ε2 ln 2),

u(x, y, 0) = −εyΥ(r), v(x, y, 0) = εxΥ(r), Υ(r) :=


5, r <

1
52

r
− 5, 1

5 ≤ r <
2
5

0, r ≥ 2
5 ,

Domain: [−1, 1]× [−1, 1], r :=
√
x2 + y2

Boundary conditions: a zero-order extrapolation in both x- and
y-directions11

11Audusse, Klein, Nguyen, and Vater, 2011.



Experimental order of convergence

L∞-errors for h computed using the AP scheme on several different grids
for ε = 0.1 (left) and 10−3



Comparison of non-AP and AP methods, ε = 1



Comparison of non-AP and AP methods, ε = 0.1



Comparison of non-AP and AP methods, ε = 0.01



Comparison of non-AP and AP methods, CPU times

ε = 1 ε = 0.1 ε = 0.01
Grid AP Explicit AP Explicit AP Explicit

40× 40 0.18 s 0.16 s 0.06 s 1.25 s 0.03 s 10.53 s
80× 80 1.57 s 1.32 s 0.29 s 4.73 s 0.18 s 47.0 s

200× 200 24.11 s 21.36 s 5.36 s 163.36 s 3.37 s 804.15 s



Smaller values: ε = 10−3 and ε = 10−4

Smaller times: 200× 200, larger times: 500× 500



Example — 2-D Traveling Vortex

We take ε = 10−2 and simulate a traveling vortex with the same initial
water depth profile as in Example 1 but the initial velocities are now
modified by adding a constant velocity vector (15, 15)>:

u(x, y, 0) = 15− εyΥ(r), v(x, y, 0) = 15 + εxΥ(r)

Υ(r) :=


5, r ≤ 1

5 ,
2
r
− 5, 1

5 < r ≤ 2
5 ,

0, r ≥ 2
5 ,

where r :=
√
x2 + y2.

Domain: [−1, 1]× [−1, 1], r :=
√
x2 + y2

Boundary conditions: a zero-order extrapolation in both x- and
y-directions

These initial data correspond to a rotating vortex traveling along a
circular path



Comparison of non-AP and AP methods, ε = 0.01
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