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A HIGH ORDER ACCURATE BOUND-PRESERVING COMPACT
FINITE DIFFERENCE SCHEME FOR TWO-DIMENSIONAL
INCOMPRESSIBLE FLOW

HAO LI AND XIANGXIONG ZHANG *

Abstract. For solving two-dimensional incompressible flow in the vorticity form by the fourth-
order compact finite difference scheme and explicit strong stability preserving (SSP) temporal dis-
cretizations, we show that the simple bound-preserving limiter in [5] can enforce the strict bounds
of the vorticity, if the velocity field satisfies a discrete divergence free constraint. For reducing
oscillations, a modified TVB limiter adapted from [2] is constructed without affecting the bound-
preserving property. This bound-preserving finite difference method can be used for any passive
convection equation with a divergence free velocity field.
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1. Introduction. In this paper, we are interested in constructing high order
compact finite difference schemes solving the following two-dimensional time-dependentfi
incompressible Euler equation in vorticity and stream-function formulation

(1.1a) wi + (uw)y + (vw), =0,
(1.1b) Y= Aw,
(11C) <ua ’U> = <7wya¢m>7

with periodic boundary conditions and suitable initial conditions. In the above for-
mulation, w is the vorticity, v is the stream function, (u,v) is the velocity and Re is
the Reynolds number.

For simplicity, we only focus on the incompressible Euler equation (1.1). With
explicit time discretizations, the extension of high order accurate bound-preserving
compact finite difference scheme to Navier-Stokes equation

(1.2) wi + (uw)z + (vw)y = éAw

would be straightforward following the approach in [5].
The equation (1.1c) implies the incompressbilility condition

(1.3) Uy + vy = 0.

Due to (1.3), (1.1a) is equivalent to

(1.4) Wi + Uwy + vwy =0

for which the initial value problem satisfies a bound-preserving property:

minw(z,y,0) =m < w(z,y,t) < M = maxw(z,y,0).
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2 H. LI AND X. ZHANG

If solving (1.4) directly, it is usually easier to construct a bound-preserving scheme.
For the sake of conservation, it is desired to solve the conservative form equation
(1.1a). The divergence free constraint (1.3) is one of the main difficulties in solving
incompressible flows. In order to enforce the bound-preserving property for (1.1a)
without losing accuracy, the incompressibility condition must be properly used since
the bound-preserving property may not hold for (1.1a) without (1.3), see [9, 8, 10].

Even though the bound-preserving property and the global conservation imply
certain nonlinear stability, in practice a bound-preserving high order accurate compact
finite difference scheme can still produce excessive oscillations for a pure convection
problem. Thus an additional limiter for reducing oscillations is often needed, e.g., the
total variation bounded (TVB) limiter discussed in [2]. One of the main focuses of
this paper is to design suitable TVB type limiters, without losing bound-preserving
property. Notice that the TVB limiter for a compact finite difference scheme is de-
signed in a quite different way from those for discontinuous Galerkin method, thus it
is nontrivial to have a bound-preserving TVB limiter for the compact finite difference
schemes.

The paper is organized as follows. Section 2 is a review of the compact finite dif-
ference method and a simple bound-preserving limiter for scalar convection-diffusion
equations. In Section 3, we show that the compact finite difference scheme can be
rendered bound-preserving if the velocity field satisfies a discrete divergence free con-
dition. We discuss the bound-preserving property of a TVB limiter in Section 4.
Numerical tests are shown in Section 5. Concluding remarks are given in Section 6.

2. Review of compact finite difference method. In this section we review
the compact finite difference method and a bound-preserving limiter in [5].

2.1. A fourth-order accurate compact finite difference scheme. Consider
a smooth function f(z) on the interval [0,1]. Let z; = % (i = 1,---,N) be the
uniform grid points on the interval [0,1]. A fourth-order accurate compact finite
difference approximation to derivatives on the interval [0, 1] is given as:

fiv1 — fi1

1
é(fi/Jrl +4f] + fi_1) =" or, T O(Az?),
(2.1) 1 " 17 " fi+1 — 2fi—1 + fi—l 4
E(fiJrl +4f' + fil4) = Ag2 +O(Az"),

where f;, fland f!’ are point values of a function f(z), its derivative f’(z) and its

second order derivative f”(z) at uniform grid points z; (i = 1,--- , N) respectively.
Let f be a column vector with numbers f1, fo, -+, fy as entries. Let Wy, Wy, D,
and D,, denote four linear operators as follows:
(2.2)
4 1 1 f1 0 1 -1 f
) 1 4 1 fa ) -1 0 1 fa
WleE . . : ,Dmfzi . . . :
1 4 1 fy-1 -1 0 1 fy-1
1 1 4 In 1 -1 0 In
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COMPACT FD FOR INCOMPRESSIBLE FLOW 3

(2.3)
10 1 1 f1 -2 1 1 fi
R o 1 -2 1 fo
W2f—ﬁ T, . . : 7szf— . . T :
1 10 1|/ fva 1 =2 1 || fva
1 1 10 f 1 1 -2 f

If f(z) is periodic with with period 1, the fourth-order compact finite difference
approximation (2.1) to the first order derivative and second order derivative can be
denoted as

1 1
Wit = —D,f ' = — D, f,
! Az e Azx?
which can be explicitly written as
1 1
= —W D, f, t'=—W,'D,,f
Az 1 ’ Az2 2 ’

where Wfl and Wy ! are the inverse operators. For convenience, by abusing notations
we let W~ 1 f; denote the i-th entry of the vector Wi f.

2.2. High order time discretizations. For time discretizations, we use the
strong stability preserving (SSP) Runge-Kutta and multistep methods, which are
convex combinations of formal forward FEuler steps. Thus we only need to discuss the
bound-preserving for one forward Euler step since convex combination can preserve
the bounds.

For the numerical tests in this paper, we use a third order explicit SSP Runge-Kuttall
method SSPRK(3,3), see [3], which is widely known as the Shu-Osher method, with
SSP coefficient C' = 1 and effective SSP coefficient C.yy = %. For solving u; = F(u),
it is given by

n
)

u? = oM 4 d@tFum),

u) =y

43 — zum n i(u@) + Pu®)),

1 2
u = Zu® 4 2w 4 Fu®)).
S0 + 2 W@ + Fu®))

2.3. A three-point stencil bound-preserving limiter. In this subsection,
we review the three-point stencil bound-preserving limiter in [5]. Given a sequence of
periodic point values u; (i = 1,--- ,N), ug := un, un41 := u; and constant a > 2,
assume all local weighted averages are in the range [m, M]:

m < m(uiq +au; +uip1) <M, i=1,---,N, a>2.

We separate the point values {u;,i = 1,---,N} into two classes of subsets
consisting of consecutive point values. In the following discussion, a set refers to
a set of consecutive point values wy, w41, Upro, s Um—1,Uy. For any set S =
{ui, Ug41, 5 Um—1, Um }, we call the first point value u; and the last point value
Uy, as boundary points, and call the other point values ui41,--- ,Um—1 as interior
points. A set of class I is defined as a set satisfying the following:
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4 H. LI AND X. ZHANG

1. It contains at least four point values.
2. Both boundary points are in [m, M] and all interior points are out of range.
3. It contains both undershoot and overshoot points.

Notice that in a set of class I, at least one undershoot point is next to an over-

shoot point. For given point values u;,7 = 1,--- , N, suppose all the sets of class I
are 51 = {um17um1+17' o 7un1}’ Sy = {umzv T ’unz}v e, Sk = {umK7 T 7unK}’
where my < mo < -+ < Upyy -

A set of class II consists of point values between S; and S; ;1 and two boundary
points uy, and upy,, . Namely they are Ty = {uy,u2, -+ ;um, }, Tt = {tn,, - s Umy }
To ={Unyy s Ums sy Tie = {Ung, -+ ,un}. For periodic data u;, we can combine
Tk and Tp to define T = {Un,c,+ , UN, UL, + 5 Uy |-

In the sets of class I, the undershoot and the overshoot are neighbors. In the
sets of class II, the undershoot and the overshoot are separated, i.e., an overshoot is
not next to any undershoot. As a matter of fact, in the numerical tests, the sets of
class I are hardly encountered. Here we include them in the discussion for the sake of
completeness. When there are no sets of class I, all point values form a single set of
class II.

This manuscript is for review purposes only.
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Algorithm 2.1 A bound-preserving limiter for periodic data u; satisfying @; € [m, M|

Require: the input u; satisfies @t; = a—}rz(ui_l +au; + uiq1) € [m, M], a > 2. Let uy,
un+1 denote uy, uy respectively.

Ensure: the output satisfies v; € [m, M],i=1,---,N and Zi\;l v = Zf\il Uj.
1: Step 0: First set v; =u;, i =1,--- , N. Let vy, vy41 denote vy, v1 respectively.

2: Step I: Find all the sets of class I Sy,---, Sk (all local saw-tooth profiles) and
all the sets of class II T, ,Tk.

3: Step II: For each T} (=1, -+, K),
4: for all index 4 in T; do
5: if u; < m then
6: Vi—1 < Vj—1 — (uifl—(::)jrl;(:ji)jl—mﬁr (m — Ui)+
7 Vit < Vip1 — (uiflf(:;)-:l;(ysi):1*m)+ (m — ’Uzi)+
8: Vi < m
9: end if
10: if u; > M then
M—u;_
11: Vi—1 < Vi—1 + (JVI—ui(_l)+1—Li-(1\1/I)iu,1+1)+ (u; — M) 4
M —wu;
12: Vi1 £ Vig1 ¥ (M—uri(71)+i(+f\l4)iui+1)+ (u; — M)+
13: v; —— M
14: end if
15: end for

16: Step III: for each saw-tooth profile S = {tm,, - ,un;} (j =1,---, K), let Ny
and N; be the numbers of undershoot and overshoot points in S; respectively.
17: Set Uj = an V;.

1:mJ

18: fori:mj+1,---7nj—1d0
19: if u; > M then

20: v; < M.

21:  end if

22: if u; < m then

23: Vi < m.

24:  end if

25: end for

26: Set V; = N1 M + Nom + v, + Up; -

27: Set Aj = vy, +Vn, + NuM — (N1 + 2)m, Bj = (Ng + 2)M — vy, — vy, — Nom.
28: if V; —U; > 0 then
29: for i =m; ,---,n; do
30: Ui%Ui—m%ﬁ(w—Uj)
31: end for
32: else
33: fori=m;,---,n; do
34: UZ‘(—U,'%-MB_]_W(U]'—VJ‘)
35:  end for
36: end if
119 The algorithm 2.1 can enforce @; € [m, M] without losing conservation [5]:
120 THEOREM 1. Assume periodic data u;(i = 1,--- | N) satisfies u; = Q%_Q(ui_l +
121 au; + uip1) € [m, M] for some fized a > 2 and all i = 1,--- | N with ug := uy and
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6 H. LI AND X. ZHANG

N N
UNt1 = Uy, then the output of Algorithm 2.1 satisfies > v; = > u; and v; € [m, M],

i=1 i=1
Vi.

For the two-dimensional case, the same limiter can be used in a dimension by
dimension fashion to enforce u;; € [m, M].

3. A bound-preserving scheme for the two-dimensional incompressible
flow. In this section we first show the fourth-order compact finite difference with
forward Euler time discretization satisfies the weak monotonicity [5], thus it is bound-
preserving with a naturally constructed discrete divergence-free velocity field.

For simplicity, we only consider a periodic boundary condition on a square [0, 1] x
[0,1]. Let (x;,y;) = (Niz, N%,) (¢=1,---,Ng,j = 1,---,Ny) be the uniform grid
points on the domain [0, 1] x [0,1]. All notation in this paper is consistent with those
in [5].

3.1. Weak monotonicity and bound-preserving. Let \; = ﬁ—; and Ao =
ﬁ—;, the fourth-order compact finite difference scheme with the forward Euler method
for (1.1a) can be given as
(3.1) Wit = Wiy = MW De(u™ o w™)]ij — Ao [W,' Dy (u™ 0 w™)];;.

With the same notation as in [5], the weighted average in two dimensions can be
denoted as

(32) W= WMlew.
Then the scheme (3.1) is equivalent to

(I)Z-+1 = OT)ZLJ» -\ [leDw(u" o w")]” - )\Q[Wley(Vn o w")}u

(3.3)
1 1 4 1 A -1 0 1 A 1 4 1
1 2
1 4 1 -1 0 1 -1 -4 -1
where o denotes the matrix Hadamard product, and
WUi—1,54+1  Uij+1  Uitl,j+1 Vi—1,j4+1  Vij+1  Vigl,j+1
U= |uwi-1;  wij Wiy |,V =(vieng vy vipg |
Uj—1,5—-1 Ui j—1  Ujpl,5-1 Vi—1,5—1 Vij—1 Vitl1,5-1
Wi—1,541 Wij+1 Wit j+1
Q=|wi-1j;  wWij Wit
Wi—1,j—1 Wij—1 Wit1,j-1
+1

It is straightforward to verify the weak monotonicity, i.e., (szj is a monotonically
increasing function with respect to all point values w;; involved in (3.3) under the
CFL condition

At L At o1

Emi?xmij‘ + Afymi?x|vij| <3
However, the monotonicity is sufficient for bound-preserving w;‘j“ € [m, M], only if
the following consistency condition holds:

n+1 _

(3.4) wis =m = m, wp;=M= QZH =M.

j
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COMPACT FD FOR INCOMPRESSIBLE FLOW 7
Plugging w;; =m in (3.3), we get

ot = (1 — A (Wi, Do), — Ao (Wleyv”)iJ) .

ij
Thus the consistency (3.4) holds only if the velocity (u™,v™) satisfies:

1 1
(35) Ewalyu" + EDyWvan =0.

Therefore we have the following bound-preserving result:

THEOREM 2. If the wvelocity (u™,v™) satisfies the discrete divergence free con-
straint (3.5) and Wiy € [m, M], then under the CFL constraint

the scheme (3.3) satisfies @fj""l € [m, M].

3.2. A discrete divergence free velocity field. In the following discussion,
we may discard the superscript n for convenience assuming everything discussed is at
time step n.

Note that (3.5) is a discrete divergence free constraint and we can construct a
fourth-order accurate velocity field satisfying (3.5). Given w;;, we first compute ;;
by a fourth-order compact finite difference scheme for the Poisson equation (1.1b).
The detail of the Poisson solvers including the fast Poisson solver is given in the
appendices.

With the fourth-order compact finite difference we have

1 1
(36) —IyDyT = leu, EDI‘II = WMV,
where
Y11 P12 e Y1,N,
a1 P22 e Y2 N,
v = : : g :
YN, ~11 YN,~12 - YN,—1,N,
Yot YNe2 o YN, /g,

Since the two finite difference operators D, and D, commute, it is straightforward to
verify that the velocity field computed by (3.6) satisfies (3.5).

3.3. A fourth-order accurate bound-preserving scheme. For the Euler
equations (1.1), the following implementation of the fourth-order compact finite dif-
ference with forward Euler time discretization scheme can preserve the bounds:

1. Given wj; € [m, M], solve the Poisson equation (1.1b) by the fourth-order
accurate compact finite difference scheme to obtain point values of the stream
function ;;.

2. Construct u and v by (3.6).

Obtain (DZH € [m, M] by scheme (3.3).

. Apply the limiting procedure in Section 2.3 to obtain (,ui"j'*'1 € [m, M].

=
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8 H. LI AND X. ZHANG

For high order SSP time discretizations, we should use the same implementation above
for each time stage or time step.

For the Navier-Stokes equations (1.2), with puy = % and po = AA—;z, the scheme
can be written as
w?jH =wi; — MWD (u™ o w™)ij — )\Q[nylDy(v" ow")];
(3.7) B M2
Re

+ o Waa Daatw +

—1 n
Wy Dyywi;,

In a manner similar to (3.2), we define
(38) W= WQmWQyw,

with Wy = Wyi,Wy, and Wy := Wy, Wy,. Due to definition (3.2) and the fact
operators Wi and Wy commute, i.e. WiWy = WoW7, we have

i) = Wngw = W1W2UJ = (Z
Then scheme (3.7) is equivalent to

A2

- - A
@n—i-l =W L [Wngny(u" o w")]ij [W2W1IDy(lln o w")}ij

AT D
(39) M1 H2
+ ﬂWl Wgmewi"j + ﬁ WiWs, Dyyw?j .

Following the discussion in Section 3.1 and the discussion for the two-dimensional
convection-diffusion in [5], we have the following result:

THEOREM 3. If the welocity (u",v") satisfies the constraint (3.5) and wj; €
[m, M), then under the CFL constraint

At N At <3
ReAz? = ReAy? — 24’

t 1
Hﬁx|v;’j| < 5

At | n|+A
— max |ujs| + —
i 7 Ay

Az

the scheme (3.9) satisfies O™ € [m, M].

Given @ij, we can recover point values w;; by obtaining first w;; = W~ lcf;ij then
wij = W{ld)ij. Given point values w;; satisfying w;; € [m, M| for any ¢ and j, we can
use the limiter in Algorithm 2.1 in a dimension by dimension fashion several times to
enforce w;; € [m, M]:

1. Given @;; € [m, M], compute &;; = W, '@;; and apply the limiting Algorithm
2.1 with @ = 4 in both z-direction and y-direction to ensure w;; € [m, M].

2. Given w;; € [m, M|, compute w;; = W;ldij and apply the limiting algorithm
Algorithm 2.1 with ¢ = 10 in both z-direction and y-direction to ensure
wij € [m, M]

4. A TVB limiter for the two-dimensional incompressible flow. To have
nonlinear stability and eliminate oscillations for shocks, a TVBM (total variation
bounded in the means) limiter was introduced for the compact finite difference scheme
solving scalar convection equations in [2]. In this section, we will modify this limiter
for the incompressible flow so that it does not affect the bound-preserving property.
Thus we can use both the TVB limiter and the bound-preserving limiter in Algorithm
2.1 to preserve bounds while reducing oscillations. For simplicity, we only consider
the numerical scheme for the incompressible Euler equations (1.1). In this section, we
may discard the superscript n if a variable is defined at time step n.

This manuscript is for review purposes only.
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4.1. The TVB limiter. The scheme (3.3) can be written in a conservative form:

(1) e = = Al — ),y )= Ael(w)y — (o)),
involving a numerical flux (ulu)zr 1 and (vlu)? j+1 as local functions of u},, vy, and
wpy- The numerical flux is defined as
- ()i y 5 = 3 (Wiy(uow)ly + Wiy (wowlisny),

| ()i 513 = 5 (Wie(v o)l + Wia(v o)l nn).

Similarly we denote

R 1

Uiplj = 9 ((leu)ij + (leu)i_l,_Lj) )
(4.3) .

%iiet = 5 ((Wav)iy + Waav), 1) -

The limiting is defined in a dimension by dimension manner. For the flux splitting,
it is done as in one-dimension. Consider a splitting of u satisfying

(4.4) ut >0, u <0.

The simplest such splitting is the Lax-Friedrichs splitting

1

:l:

um =-(uta), a= max |u(z,y)|
2( ) (@)e [u(z, y)|

Then we have

u=u" +u, uw= u+w+u_w,

and we write the flux (uw),;, 1 ; and 4,1 ; as
27 ?

~ + ~ —

. B . o =
(uw)iqL%,j = (UW)H%,]' + (uw)H»%J'v Uit dj = Uip1 + ip1

where (qu) and 4 - are obtained by adding superscripts + to u;; in (4.2) and

+
i+3,] i+3.7

(4.3) respectively, i.e.

()35 = (Way (0 0 @)l + Wiy (0™ o)1),

. 1
“i%,j T2 <(W1y“i)z‘j + (le“i)m,j) ’

where ut = (uzij) With a dummy index j referring y value, we first take the differ-
ences between the high-order numerical flux and the first-order upwind flux

~ + ~ + A - R
_ + 5
(4.5) d(uw);ys ;= (uw); 1 ; — U1 Wi duw); 1 ;= Uity Pivlg — (uw);y 1 ;-
Limit them by
- +m) . . )
(4.6) dluw)iy gy =m (d(“w)i%vj’ ufyy ;8500 ”j—%dAin’j) ’
' - —(m) e

d(uw)l-+%,j =m (d(uw)H%J, ui+%’jA+w”, ui+%7jA+wz+1J) ,

This manuscript is for review purposes only.



10 H. LI AND X. ZHANG

240 where AT v;; = viy1,; — v is the forward difference operator in the z direction, and
241 m is the standard minmod function

N _f smini<i<k |as|, if sign(ar) = --- = sign(ax) = s,
242 (4.7) m(ay,...,a) = { 0. otherwise.
243 As mentioned in [2], the limiting defined in (4.6) maintains the formal accuracy

244 of the compact schemes in smooth regions of the solution with the assumption
245 (48) (Dij = (WlmwlyW)ij = Wij + 0O (A.’EQ) forw € 02.

246 Under the assumption (4.8), by simple Taylor expansion,

A+ 1
(4.9) )iy y 5 =500y oeisba+ O (Aa%),
247 . k
ulf+%’in(ij :ui%,jwzﬂ-ij + O (A:cz) , k=i—1,4,1+1.

Hence in smooth regions away from critical points of w, for sufficiently small Az, the
minmod function (4.7) will pick the first argument, yielding

+

P = d(uw)i+%7j.

d(uw)H%J

248 Since the accuracy may degenerate to first-order at critical points, as a remedy, the
249 modified minmod function [7, 1] is introduced

ai, if |a1| < PAx?,

20 (4.10) m(ar, ..., ax) = { m(ai,...,ar), otherwise,

251 where P is a positive constant independent of Ax and m is the standard minmod
252 function (4.7). See more detailed discussion in [2].

253 Then we obtain the limited numerical fluxes as
~  +(m) _ ~  H(m) - =(m) - ~ —(m)
254 (4.11) (uw)H%,j :u;_%,jwij —|—d(uw)i+%7j, uw)H_%J :ui+%,jwi+1,j—d(uw)i+%7j.
255 and
~  (m) ~  H(m) ~ —(m)
256 (4.12) (uw)H%’j = (uw)H%’j + (uw)H%,j
257 The flux in the y-direction can be defined analogously.

5
258 The following result was proven in [2]:

LEMMA 4.1. For any n and At such that 0 < nAt < T, scheme (4.1) with fluz
(4.12) satisfies a mazimum principle in the means:

—n—+1

max |wf | < max |w]
] ]

)

under the CFL condition

[max (u+) + max (—u_)] ﬁ + [max (v+) + max (—U_)] 2—; <

N |

Ax

259  where the maximum is taken in min, u; < u < max; ; uy, ming j vy < v < max; ; vy I

This manuscript is for review purposes only.
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260 4.2. The bound-preserving property of the nonlinear scheme with mod-

261 ified flux. The compact finite difference scheme with the TVB limiter in the last
262 section is

T ) o) ()
263 (4.13) wij“ =W — A\ ((Uw)iJr;,j = (uw),_ 1 > A2 <( )u+1 - <”"J)m’é> ’

264  where the numerical flux (ulu)ij_g i (ulu)i?j_ 1 is the modified flux approximating
265 (4.2).
266 THEOREM 4. If wii € [m, M], under the CFL condition
267 (4.14) A <1 ’
267 (4. max — max
Hi o 72 = 24

268 the nonlinear scheme (4.13) satisfies

269 @it e [m, M].

270 Proof. We have
(4.15)

. . -~ (m) -~ (m) ~ (m) ~ (m)
wij+1 = wij — )\1 <(uw)i+§,j — (uw)i%’j) — )\2 ((vw)m#; — (Uw>i,j§)

1/, - +m) . N - —(m)
=3 ((%‘j - SAl(uw)iJr%,j) + (@55 — 81 (uw )H )+ (@ + 8)‘1(“‘*))1'7%,3') + (@j; + 8)‘1(%")2;%,;')

[\
J
|

8
+(m) n ~ L —(m) n ~ +(m) n ~ L —(m)
+ (Wi — 8)\2(1)0.))1 i+l 1) + (@0 — SAQ(vw)MJF%) + (@0 + 8)\2(vw)i7j_%) + (@ + 8)\2(fuw)i7j_%) .

272 Under the CFL condition (4.14), we will prove that the eight terms satisfy the
273 following bounds

wi — 8\ (qu)HT) € _m s\t . om, M — 8 \a ]

ij 1)t 4. Wit Yird
Wi 78/\1(uw);_( )] € |m-— 8)\1u+1 m, M — 8)\1u M} ,
~ +(m
7 + 8\ (uw); (%)j € [m 48Xl , m M+ 8\ ) ]
) L 11— 2

@ + 8)\1(u@);(z)j € |m+8Ai_, m, M+ 8\, M} :
274 (4.16) R +(;) - >

GJ%_S)\Q(U&J)Z-J_‘_% € m—8)\213,+,+lm7M—8)\2@, ) %M_ ,

n ~  —(m) 1

Wi 78)\2(vw)ij+; € |m — 80 41 M — 8)\21;7 1M

n +(m) R . T

Wiy + 8/\2(vw) _1 € |m+ 8)\2Ui7j7%m, M+ 8)\2112.7].7%M ,

Bl + 8a(w), ) € [m+ 8ot ym, M+ 80, M].

L =3 J T3 |

275 For (4.16), by taking the sum of the lower bounds and upper bounds and multi-
276 plying them by %, we obtain
277 (4.17) @it € m —mOi;, M — MOyj],
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with
O :Al(ﬁwé,j - ’ai—%,j) - )‘Q(ﬂi,j-l—% - ’ai,j—%)

)\1 )\2
(4.18) =5 (Wya)iyr; — Wiyw)i-15)) + o (WiyV)ijer = (Wiyv)ij-1))

At

Z?(DZWM,U + D, W1,v) = 0.
Therefore, we conclude @fj"'l € [m, M].
We only discuss the first two term in (4.16) since the proof for the rest is similar.

By the definition of the modified minmod function (4.10) and (4.11), we have

.+ (m) o+ . .~ o+ )

(419) (uw)i_i_%’j € [mln{(uw)i+%,j,u;:%’jwij},max{(uw)i_i_%’j,u;:%’jwij}} ,
’ A —(m) . A _ ~ = _ _

(uw)i_‘_%’j € [mln{(uw)i+%)j,ul+%’jwi+17j},max{(uw)i+%)j,uH%’jwiH,j}} .

We notice that under CFL condition (4.14),

i+3.,4

(4.20) & — 8\ (uw); @, @l — 8 (uw)

—~n +
i+l Wi — 8Aug

L
3]
are all monotonically increasing functions with respect to variables Wi k=i—1,i,i+
1. Due to the flux splitting (4.4),

(4.21) Wij = 8A\ug 1 Wik

is also a monotonically increasing function with respect to variables wij, k=1 -
1,4,3+ 1,i + 2. Therefore, with the assumption w}; € [m, M], we obtain
(4.22)

~ —+ . .
Wiy — 8)\1(uw)i+%’j, Wi — 8)\1u;_%7j@?j € [m — 8)\111;%7],m7 M — 8)\1ui++%7jM} ,
Wy = M () y g @l — 8N, @l € [m =8\, m, M~ 8ha, M|,
with (4.19) , which implies the first two terms of (4.16). |

REMARK 1. We remark here the above proof is independent of the second and
third arguments of the minmod function (4.10). Therefore, the proof hold for other
limiters with different second and third arguments in the same minmod function
(4.10).

REMARK 2. The TVB limiter in this paper is designed to modify the convection
flux only thus it also applies to the Navier-Stokes equation. Moreover, under suitable

CFL condition, the full scheme with TVB limiter can still preserve 5);}“ € [m, M)]
with wi; € [m, M].

4.3. An alternative TVB limiter. Another TVB limiter can be defined by
replacing (4.6) with

~ t(m) At _ _
d(uw);y 1 ; =m (d(uw)iJr%,j? Af(uf, s @), Ai(uj_%iji—l,j)) :
(4.23) R o
d(“‘”)w%,j =m (d(uw)i+%7j7 A:(“;_%,jwi,j)a A$(U;+%7j@i+l,j)) .

All the other procedures in the limiter are exactly the same as in Section 4.1. The
limiter does not affect the bound-preserving property due to the arguments in Remark
1.
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COMPACT FD FOR INCOMPRESSIBLE FLOW 13

5. Numerical Tests. In this subsection, we test the fourth-order compact finite
difference scheme with both the bound-preserving and the TVB limiter for the two-
dimensional incompressible flow.

In the numerical test, we refer to the bound-preserving limiter as BP, the TVB
limiter in Section 4.1 as TVBI1, and the TVB limiter in section 4.3 as TVB2. The
parameter in the minmod function used in TVB limiters is denoted as P. In all the
following numerical tests, we use SSPRK(3,3) as mentioned in section 2.2.

5.1. Accuracy Test. For the Euler Equation (1.1) with periodic boundary con-
dition and initial data w(z,y,0) = —2sin(2z) sin(y) on the domain [0, 27] x [0, 27], the
exact solution is w(x,y,t) = —2sin(2z) sin(y). We test the accuracy of the proposed
scheme on this solution. The errors for P = 300 are given in Table 1, and we observe
the designed order of accuracy for this special steady state solution.

Table 1: Incompressible Euler equations. Fourth-order compact FD for vorticity,
t = 0.5. With BP and TVBI1 limiters, P =300.

N x N L? error order | L™ error order

32 x 32 3.16E-3 - 1.00E-3 -

64 x 64 1.86E-4  4.09 5.90E-5 4.09
128 x 128 | 1.14E-5  4.02 3.63E-6 4.02
256 x 256 | 7.13E-7  4.01 2.67E-7 4.00

5.2. Double Shear Layer Problem. We test the scheme for the double shear
layer problem on the domain [0, 27] x [0, 2] with a periodic boundary condition. The
initial condition is

bcos(x) — Lsech?((y — 5)/p), y <

J— y -
w(a:,y,O) - { 5005(33) + ;S@Chz((%‘- - y)/p),y >

o

with § = 0.05 and p = w/15. The vorticity w at time 7' = 6 and T' = 8 are shown in
Figure 1, Figure 2 and Figure 3. With both the bound-preserving limiter and TVB
limiter, the numerical solutions are ensured to be in the range [—§ — %, 0+ %] The
TVB limiter can also reduce oscillations.

5.3. Vortex Patch Problem.. We test the limiters for the vortex patch prob-
lem in the domain [0, 27] X [0,27] with a periodic boundary condition. The initial
condition is

~1, (o) €[5 5] < 5.5
w(:r,y,O) = ]-7 (xﬂy) € [%’ 777] X [Tﬂ—’ Tﬂ]’
0, otherwise.

Numerical solutions for incompressible Euler are shown in Figure 4, Figure 5, Figure
6 and Figure 7. We can observe that the solutions generated by the compact finite
difference scheme with only the bound-preserving limiter are still highly oscillatory
for the Euler equation without the TVB limiter.

Notice that the oscillations in Figure 4 suggest that the artificial viscosity induced
by the bound-preserving limiter is quite low.

6. Concluding Remarks. We have proven that a simple limiter can preserve
bounds for the fourth-order compact finite difference method solving the two dimen-
sional incompressible Euler equation, with a discrete divergence-free velocity field.
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We also prove that the TVB limiter modified from [2] does not affect the bound-
preserving property of @w. With both the TVB limiter and the bound-preserving
limiter, the numerical solutions of high order compact finite difference scheme can be
rendered non-oscillatory and strictly bound-preserving.

For the sixth-order and eighth-order compact finite difference method for con-
vection problem with weak monotonicty in [5], the divergence-free velocity can be
constructed accordingly, which gives a higher order bound-preserving scheme for the
incompressible flow by applying Algorithm 2.1 for several times. The TVB limiting
procedure in Section 4.1 can also be defined with a similar result as Theorem 4.
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(e) T = 6, with TVB1, P=300.

(f) T = 6, with BP and TVB1, P=300.

Fig. 1: Double shear layer problem. Fourth-order compact finite difference with SSP
Runge-Kutta method on a 160 x 160 mesh solving the incompressible Euler equation
(1.1) at T = 6. The time step is At = 57—1——Ax.

24 maxg |ug|
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(e) T = 8, with TVB1, P=300. (f) T = 8, with BP and TVBI1, P=300.

Fig. 2: Double shear layer problem. Fourth-order compact finite difference with SSP
Runge-Kutta method on a 160 x 160 mesh solving the incompressible Euler equation
(1.1) at T = 8. The time step is At = 57———Axz.

24 maxg |ug|
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(e) T = 6, with BP and TVB2, P=300. (f) T = 8, with BP and TVB2, P=300.

Fig. 3: Double shear layer problem. Fourth-order compact finite difference with SSP
Runge-Kutta method on a 160 x 160 mesh solving the incompressible Euler equation
(1.1) at T'=6 and T' = 8. The time step is At = L Az.

24 maxg [ug|
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0.5
0
-0.5
(a) T'= 5, with no limiter.
°
i&oo %r?
o e © T ;@m%
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E %o %0 a7 Sjz g I A S o, SF smm
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o 5 °
05 05 °©
o
o o
OOQOOD
1F %jo@&g@ s e
T P
diagonal diagonal
(¢) T = 5, with no limiter. (d) T =5, with BP.

Fig. 4: A fourth-order accurate compact finite difference scheme for the incompressible
Euler equation at T'= 5 on a 160 x 160 mesh. The time step is At = mA;ﬂ.
The second row is the cut along the diagonal of the two-dimensional array.
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diagonal diagonal

(¢) T =5, with TVB1, P = 10. (d) T =5, with BP and TVBI1, P = 10.

Fig. 5: A fourth-order accurate compact finite difference scheme for the incompressible
Euler equation at 7' =5 on a 160 x 160 mesh. The time step is At = Ax.

24 max |ug|
The second row is the cut along the diagonal of the two-dimensional array.
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(a) T'= 10, with no limiter.

o o]
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0 1 2 4 5 7 8 0 1 2 3 4 5 6 7 8
diagonal diagonal
(c) T = 10, with no limiter. (d) T = 10, with BP.

Fig. 6: A fourth-order accurate compact finite difference scheme for the incompressible
Euler equation at 7' =5 on a 160 x 160 mesh. The time step is At = m
The second row is the cut along the diagonal of the two-dimensional array.

Azx.
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diagonal
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(c) T = 10, with TVBI1, P = 10. (d) T = 10, with BP and TVB1, P = 10.

Fig. 7: A fourth-order accurate compact finite difference scheme for the incompressible
Euler equation at T'= 10 on a 160 x 160 mesh. The time step is At = Ax.

12 max |ug]
The second row is the cut along the diagonal of the two-dimensional array.
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Appendix A: Comparison With The Nine-point Discrete Laplacian.
Consider solving the two-dimensional Poisson equations ug, + uyy = f with either
homogeneous Dirichlet boundary conditions or periodic boundary conditions on a
rectangular domain. Let u be a N, x Ny matrix with entries u; ; denoting the numer-
ical solutions at a uniform grid (z;,y;) = (55, NLU) Let f be a N, x N, matrix with
entries f; j = f(z;,y;). The fourth order Compac;c finite difference method in Section
2 for Uy, + uyy = f can be written as:

1 1
—1 —1 _
(6.1) AL? Wor Dagu + —Ayz W5, Dyyu = f(u).
For convenience, we introduce two matrices,
Uis141 Ui+l Witl,j+1 fictj+1 Jfij+1 firig41
U= i1y  wiy  wivy | F={ficag  fiy  fidr
Ui—1,5—1 Ui j—1 Ui41,5—1 fz‘—1,j—1 fi,j—l fz'+1,j—1

Notice that the scheme (6.1) is equivalent to

1 1
EWZyDa:xu + TyQWZnyyu = W2xW2yf(u)a
which can be written as
(6.2)
1 1 -2 1 1 1 10 1 1 1 10 1
— 110 -20 10| :U+———= -2 —-20 —-2):U=-—1[10 100 10
2 2
LAz \1 9 RAY¥ 1 10 1 i\ 10 1

where : denotes the sum of all entrywise products in two matrices of the same size.
In particular, if Az = Ay = h, the scheme above reduces to

L[t 4 L /1 101
— (4 —20 4|:v=—1{10 100 10|:F
2

L T Ma\y 49

Recall that the classical nine-point discrete Laplacian [4] for the Poisson equation can
be written as

(6.3)
. 1 -2 1 . 1 10 1 L [0 10
10 =20 10| :U4+——|-2 —20 —2|:v==1{1 8 1|:F
2 2 ?
128z \ 5 Ay \ 1 19 1 1230 1 0

which reduces to the following under the assumption Az = Ay = h,

L[4 L f01 0
— |4 —20 4|:v==1|1 8 1|:F
2

62 \1 4 1 1230 1 0

Both schemes (6.2) and (6.3) are fourth order accurate and they have the same stencil
in the left hand side. As to which scheme produces smaller errors, it seems to be
problem dependent, see Figure 8. Figure 8 shows the errors of two schemes (6.2) and
(6.3) using uniform grids with Az = %Ay for solving the Poisson equation u,s +tyy =
f on a rectangle [0, 1] x [0, 2] with Dirichlet boundary conditions. For solution 1, we
have u(x,y) = sin(wz) sin(ry) + 2z, for solution 2, we have u(z,y) = sin(wz) sin(ry) +
dztyt.
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(a) Solution 1.

Number of grid points in x-direction

(b) Solution 2.

Fig. 8: Error comparison.

Appendix B: M-matrices And A Discrete Maximum Principle. Consider
solving the heat equation u; = gz, + uyy with a periodic boundary condition. It is
well known that a discrete maximum principle is satisfied under certain time step
constraints if the spatial discretization is the nine-point discrete Laplacian or the
compact scheme (6.1) with backward Euler and Crank-Nicolson time discretizations.
For simplicity, we only consider the compact scheme (6.1) and the discussion for the
nine-point discrete Laplacian is similar. Assume Ax = Ay = h. For backward Euler,
the scheme can be written as

1 10 1 Ar (10401

771 | 10 100 10 :(U”“—U"):m 4 =20 4|0t

1 10 1 1 4 1

thus

1 10 1 A (141 1 10 1
— (10 100 10]:U0"*"'—=—=1(4 —-20 4|:0"'=—110 100 10]:U™

2

i\ 0 1 6% \1 4 1 A\ 0 1

Let A and B denote the matrices corresponding to the operator in the left hand side
and right hand side above respectively, then the scheme can be written as

+1 _
Autt! = Bu’n’

and A is a M-Matrix (diagonally dominant, positive diagonal entries and non-positive
off diagonal entries) under the following constraint which allows very large time steps:

At _ 5

= >

h? — 48
The inverses of M-Matrices have non-negative entries, e.g., see [6]. Thus A~! has
non-negative entries. Moreover, it is straightforward to check that Ae = e where

e=(11 1)T. Thus A~ 'e = e, which implies the sum of each row of A~ is
1 thus each row of A~! multiplying any vector V is a convex combination of entries
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of V. It is also obvious that each entry of B is non-negative and the sum of each row
of B is 1. Therefore, u™*! = A~ Bu™ satisfies a discrete maximum principle:

n

min u;’;

<"t < maxu®..
; = Yy = LAl ty
J i,

For the second order accurate Crank-Nicolson time discretization, the scheme can
be written as

1 10 1

41
At Untl 4 pn
(10 100 10) @ —umy = 2[4 —20 4 %
1 10 1 1 4 1
thus
110 11000 110 At . éo 411 . yntt
P — 3 — : =
Ma\y 9 1) 120 \; 4
1 10 1 A 141
— |10 100 10]+ 4 —20 4||:0m
2
MA\y 19 1 R

Let the matrix-vector form of the scheme above be Au™*! = Bu™. Then for A to be
an M-Matrix, we only need % > 25—4. However, for B to have non-negative entries,
we need % < 1—52 Thus the Crank-Nicolson method can ensure a discrete maximum

principle if the time step satisfies,
5 5
—h* < At < K2
24— T 12

Appendix C: Fast Poisson Solvers.

Dirichlet boundary conditions. Consider solving the Poisson equation u,, +
Uyy = f(z,y) on a rectangular domain [0, L,| x [0, L,] with homogeneous Dirichlet
boundary conditions. Assume we use the grid z; = iAz, i = 0,--- , N, + 1 with

uniform spacing Az = NL—fH for the z-variable and y; = jAy, j = 0,--- ,Ny + 1

with uniform spacing Ay = for y-variable. Let u be a N, x N, matrix such

that its (¢,7) entry u; ; is the numerical solution at interior grid points (z;,y;). Let
F be a (N, +2) x (Ny + 2) matrix with entries f(z;,y;) for i =0,---, N, +1 and
j=0, N, +1.
To obtain the matrix representation of the operator in (6.2) and (6.3), we consider
two operators:
e Kronecker product of two matrices: if A is m xn and B is p X ¢, then A® B

is mp X nq give by
allB s alnB
A®B= : :
amB - amnB
e For a m x n matrix X, vec(X) denotes a column vector of size mn made of
the columns of X stacked atop one another from left to right.

The following properties will be used:
1. (A® B)(C® D) = AC ® BD.
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124 2. (A Bl =A"1e B L
425 3. (BT ® A)vec(X) = vec(AXB).
426 We define two tridiagonal square matrices of size N, x N,:
-2 1 10 1
1 -2 1 1 10 1
1 -2 1 1 1 10 1
127 Dy, = , Wag —
2 12 -
1 -2 1 1 10 1
1 -2 1 10

128 Let W, denote a N, X (N, + 2) tridiagonal matrix of the following form:

1 10 1
1 10 1

1
2 (6.4 L=
129 (6.4) Wy 13

1 10 1
130 The matrices Dy,, Wa, and Wgy are similarly defined.
431 Then the scheme (6.2) can be written in a matrix-vector form:

132 A%meuwg; + A%ﬂngupjy = Wo, FV,,,
133 or equivalently,
134 (6.5) (Wgy ® ﬁDm + %Dyy ® W2m> vec(u) = (Wa, ® Wgy) vec(F).
x Ay
Let hy, = [h1, ho,--- ,hy,|T with h; = ﬁ, and sin(mrh,) denote a column vec-

tor of size N, with its i-th entry being sin(mmh;). Then sin(mrh,) are the eigen-

vectors of D,, and Wa, with the associated eigenvalues being 2 cos( N’??L) — 2 and

% + %cos(N”ZL) respectively for m =1,--- | N,. Let

Sy = [sin(mhy),sin(27h,), - - -, sin(N,7h,)]
135  be the N, x N, eigenvector matrix, then S, is a symmetric matrix. Let A, denote

436 a diagonal matrix with diagonal entries 2 cos( N’”L) — 2 and Ag, denote a diagonal

437 matrix with diagonal entries % + %COS(NTL), then we have D, = S,;A1,S, ! and
138 Wap = SpMo,S; 1, thus

439 Way ® Doy = (SyM2yS; ") @ (S2A125, 1) = (Sy @ So)(Aay @ Arg) (S, @ 5.

440 The scheme can be written as
1 1

441 (SyQaSgg)(Ax2 A

Aoy @A, + Ay ®A2w)(5y_1 ® S 1) vec(u) = (Wa, @ Wa,) vec(F).

142 Let A be a N, x N, matrix with A; ; being equal to

1 i mm 1 mm gm
443 ——s —) =1 -1
Y 3A (COS(NE + 1) ) (COS(Ny + 1) * 5>+3Ay2 (COS(N_T + 1) + 5) (COS(Ny + 1) ) I
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then vec(A) are precisely the diagonal entries of the diagonal matrix A%L,ZAQ@, QA1 +
A%JQAM! ® Aoy, then the scheme above is equivalent to

Su(Ao (S; uS;1))S, = Wa FTW,,,
where the symmetry of S matrices is used. The solution is given by
1/ 1 _
(6.6) u= 5, {(S; (War 7,5, '] /A}S,.

where ./ denotes the entrywise division for two matrices of the same size.

Since the multiplication of the matrices S and S~! can be implemented by the
Discrete Sine Transform, (6.6) gives a fast Poisson solver.

For nonhomogeneous Dirichlet boundary conditions, the fourth order accurate
compact finite difference scheme can also be written in the form of (6.5):

1 1 -
EDWJ + A—yszy ® WQI) vec(u) = vec(F),

(6.7) (Wzy 02y
where F consists of both F and the Dirichlet boundary conditions. Thus the scheme
can still be efficiently implemented by the Discrete Sine Transform.

Periodic boundary conditions. For periodic boundary conditions on a rect-
angular domain, we should consider the uniform grid z; = iAxz, i = 1,--- , N, with
Az = ﬁ,—j and y; = jAy, j = 1,--- , Ny with uniform spacing Ay = 1%’ then the
fourth order accurate compact finite difference scheme can still be written in the
form of (6.5) with the Dy, Dy, Wa, and Wh, matrices being redefined as circulant
matrices:

-2 1 1 10 1 1
1 -2 1 1 10 1
1 -2 1 1 1 10 1
D:vm = 5 r = 75
Wa 5
1 -2 1 1 10 1
1 1 -2 1 1 10

The Discrete Fourier Matrix is the eigenvector matrix for any circulant matrices,
and the corresponding eigenvalues are for D,, and Wy, are 2(305(";72”) — 2 and

1cos(B25)+3 form =0,1,2,+-+ , No—1. The matrix Wgy®ﬁDm+ﬁDyy®Wgw
is singular because its first eigenvalue Ay ; is zero. Nonetheless, the scheme can still be
implemented by solving (6.6) with Fast Fourier Transform. For the zero eigenvalue,

we can simply reset the division by eigenvalue zero to zero. Since the eigenvector

for eigenvalue zero is e = (1 1 - l)T, and the columns of the Discrete Fourier
Matrix are orthogonal to one another, resetting the division by eigenvalue zero to zero
simply means that we obtain a numerical solution satisfying >, > iy = 0. And
this is also the least square solution to the singular linear system.

Neumann boundary conditions. For Dirichlet and periodic boundary condi-
tions, we can invert the matrix coefficient matrix in (6.5) using eigenvectors of much
smaller matrices W5, and D,, due to the fact that Wy, — 1—12Dm is the identity matrix
Id. Here we discuss how to achieve a fourth order accurate boundary approximation
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COMPACT FD FOR INCOMPRESSIBLE FLOW 27
for Neumann boundary conditions by keeping Ws, — ﬁDm = Id. We first consider
a one-dimensional problem with homogeneous Neumann boundary conditions:

u'(z) = f(x),z € [0, L],

u'(0) =u/(L;) = 0.
Assume we use the uniform grid z; = iAx, i =0,--- , N, + 1 with Az = NLil. The
two boundary point values ug and uy,+1 can be expressed in terms of interior point
values through boundary conditions. For approximating the boundary conditions, we
can apply the fourth order one-sided difference at x = 0:

W (0) ~ —25u(0) + 48u(Ax) — 36u(2Ax) + 16u(3Ax) — 3u(4Ax)
~ 12Ax

which implies the finite difference approximation:

. 48u1 — 36us + 16us — 3uy
= o5 .

]
Define two column vectors:

]T

’ f:[f(xo)vf(xl)v ,f(wa),f($N1+1)]T,

then a fourth order accurate compact finite difference scheme can be written as

u=[u,ug, - ,un

x

b

A2 Dxxjxu = W2zf7

where Wy, is the same as in (6.4), and D, is a matrix of size N, x (N, +2) and I,
is a matrix of size (N, 4+ 2) x N,:

48 36 16 3
25 25 25 25
1 -2 1
_ 1 -2 1 1
Dzm— 7Iz:
1 -2 1 1
3 1 36 48
25 25 25 25

Now consider solving the Poisson equation vy, +u,, = f(z,y) on arectangular domain
[0, L,] x [0, L] with homogeneous Neumann boundary conditions. Assume we use the

grid z; = iAz, i =0,--- , N, + 1 with Az = ¥25 and y; = jAy, j =0,--- , N, + 1

with uniform spacing Ay = sz_l. Let u be a N, x N, matrix such that wu,; is
the numerical solution at (z;,y;) and F be a (N, 4+ 2) x (IV, + 2) matrix with entries
flzi,y;) =0,--- ,Ny+1,j=0,---,N,+1). Then a fourth order accurate compact

finite difference scheme can be written as
1 1
Ax? Ay?

— —T — —T — T

Dyplpul] Wy, + Wol,ull D, = Wa,FW,,.

Let Dyy = Doyl and Wa,, = W2I£ then the scheme can be written as (6.5).
Notice that Wo, — 1—12Dm = (Wap — ﬁDm)IgE is still the identity matrix thus

Ws, and D,, still have the same eigenvectors. Let S be the eigenvector matrix

and A; and A be diagonal matrices with eigenvalues, then the scheme can still be
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implemented as (6.6). The eigenvectors S and the eigenvalues can be obtained by
computing eigenvalue problems for two small matrices Dy, of size N, x N, and D,
of size Ny x N,. If such a Poisson problem needs to be solved in each time step
in a time-dependent problem such as the incompressible flow equations, then this is
an efficient Poisson solver because S and A can be computed before time evolution
without considering eigenvalue problems for any matrix of size Ny N, X NyN,,.
For nonhomogeneous Neumann boundary conditions, the point values of v along
the boundary should be expressed in terms of interior ones as follows:
1. First obtain the point values except the two cell ends (i.e., corner points of
the rectangular domain) for each of the four boundary line segments. For
instance, if the left boundary condition is %(0, y) = g(y), then we obtain

481,617]' — 361,L27j + 16’1L37j — SU47J' + 12A$g(yj)

, N,
25

y-

Ug,j = j=1,---,

2. Second, obtain the approximation at four corners using the point values along

the boundary. For instance, if the bottom boundary condition is %Z(x, 0) =

h(zx), then

48u1,0 — 361L2,0 + 161L3,0 — 3U470 + 12Ayh(0)
25

Ug,0 =

The scheme can still be written as (6.7) with F consisting of F and the nonhomoge-
neous boundary conditions. Notice that the matrix in (6.7) is singular thus we need to
reset the division by eigenvalue zero to zero, which however no longer means that the
obtained solution satisfies 3, >~ u;,; = 0 since the eigenvectors are not necessarily or-
thogonal to one another. See Figure 9 for the accuracy test of the fourth order compact
finite difference scheme using uniform grids with Az = %Ay for solving the Poisson
equation uz, + uy, = f on a rectangle [0,1] x [0,2] with nonhomogeneous Neumann
boundary conditions. The exact solution is u(z,y) = cos(rx) cos(3my) + sin(ry) + 2.
Since the solutions to Neumann boundary conditions are unique up to any constant,
when computing errors, we need to add a constant N%EN%, > i w(®i,y;) —wi 5] to each

entry of u.
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Fig. 9: Accuracy test for Neumann boundary condition.
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