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Abstract

We construct a local Lax-Friedrichs type positivity-preserving flux for compress-
ible Navier-Stokes equations, which can be easily extended to high dimensions
for generic forms of equations of state, shear stress tensor and heat flux. With
this positivity-preserving flux, any finite volume type schemes including discon-
tinuous Galerkin (DG) schemes with strong stability preserving Runge-Kutta
time discretizations satisfy a weak positivity property. With a simple and effi-
cient positivity-preserving limiter, high order explicit Runge-Kutta DG schemes
are rendered preserving the positivity of density and internal energy without los-
ing local conservation or high order accuracy. Numerical tests suggest that the
positivity-preserving flux and the positivity-preserving limiter do not induce ex-
cessive artificial viscosity, and the high order positivity-preserving DG schemes
without other limiters can produce satisfying nomn-oscillatory solutions when
the nonlinear diffusion in compressible Navier-Stokes equations is accurately
resolved.

Keywords: discontinuous Galerkin method, high order accuracy, gas
dynamics, compressible Navier-Stokes, positivity-preserving, high speed flows

1. Introduction

1.1. Gas dynamics equations in conservative form

The compressible viscous fluid dynamics equations without external forces
in conservative form can be written as

U;+V-F*=V.F. (1)

The conservative variables are U = (p, pu, pv, pw, E)t = (p, put, E)t where p is
the density, u = (u,v,w)! denotes the velocity, F is the total energy and the
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superscript ¢t denotes transpose of a vector. The advection and diffusion fluxes
are

pu 0
F'=[pu@u+pl| Fl= T
(E + p)u u-7-—q

where p is pressure, I is the unit tensor, the shear stress tensor is

and q denotes the heat diffusion flux. The total energy can be written as
E = ip|lul|? + pe where e denotes the internal energy. The relations between
conserved variables U and temperature 1" and pressure p are given by equations
of state (EOS).

With the Newtonian approximation, the shear stress tensor is given by 7 =
n(Vu + (Vu)') + (n — 2n)(V - u)ll with coefficient of shear viscosity 7 and
the coefficient of bulk viscosity 7,. The shear viscosity coefficient 7 strongly
depends on the temperature T, e.g., Sutherland formula n = ﬁlc‘f/TT for a wide
range of temperature. The dependence of 1 on pressure p cannot be neglected
for high temperatures. The Stokes hypothesis states that 7, = 0, which can be
used for monatomic gases however no longer holds for polyatomic gases [1].

With Fourier’s heat conduction law, the heat flux is given by q = —kVT
where the thermal conductivity coefficient x is proportional to 7 in molecular
theory. Assuming the specific heat at constant pressure c, is a constant, the
dimensionless quantity Prandtl number Pr = % is a constant.

For simplicity, we will use the dimensionless form of equations for ideal gases
as an example in this paper. Assuming 7, = 0, the dimensionless stress tensor
is given by 7 = 5= (Vu+ (Vu)! — 2(V-u)I) where Re is the Reynolds number.

€

For a calorically ideal gas one has p = (7 — 1)pe and T'= = where the specific

heat capacity ¢, and ratio of specific heats v = Z—P are constants.

The following two-dimensional dimensionless cf)mpressible Navier-Stokes equa-

tions for ideal gases in [2] is considered here as an example even though the key
discussions throughout this paper do not rely on the specific definitions of shear
stress tensor, heat flux and pressure function:
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and

4 2
Tyx = gux - gvyv
Try = Tyz = Uy + Vg,
4 2
Tyy = §Uy — gux (2d)

In this paper, we will use v = 1.4 and Pr = 0.72 for air.

1.2. Objective and motivation

For numerical schemes solving gas dynamics equations (1), it is imperative
to preserve positivity of density and pressure (or internal energy). Not only is
positivity-preserving needed for physically meaningful numerical solutions, but
more importantly it is also well known to be critical for the sake of robustness
of numerical computation.

For the ideal gas equation of state (2c), the eigen-values of % contains
the sound speed \/yp/p. With the presence of negative density or pressure,
eigen-values of %LUG become imaginary thus the linearized compressible Euler
system is no longer hyperbolic, which implies ill-posedness of the initial value
problem of (1). In practice, emergence of negative density or pressure may eas-
ily result in blow-ups in numerical simulations by high order schemes. In some
demanding problems involving low density or low pressure, e.g., high Mach
number astrophysical jets, even popular robust high resolution and high or-
der schemes including Monotonic Upstream-Centered Scheme for Conservation
Laws (MUSCL) type schemes (without special positivity treatment) and clas-
sical Weighted Essentially Non-Oscillatory (WENO) schemes may blow up due
to emergence of negative pressure [3].

The simplest ad-hoc approach of truncating negative values to zero or small
positive ones may work in certain problems. But in a lot of other problems,
especially high speed flows with presence of low pressure, the brutal truncation
will eventually result in blow-ups because total mass or total energy is increased
every time a negative density or pressure value is set to zero. In other words,
both conservation and positivity must be satisfied for robustness. For example,
a conservative finite volume scheme solving (1) satisfies the global conservation
(up to proper boundary conditions) >, pi' = >, ﬁ:.”'l, where p}' denotes the cell
average of density on the i-th cell at time level n. If the scheme is positivity-
preserving, then [p?| = p! for any n and i. Thus global conservation and
positivity imply L'-stability: 3. |p?| = 3, [p | Similarly, we can have L'-
stability for total energy.

Towards robustness, it is desired to construct conservative schemes that
are positivity-preserving of density and pressure (or internal energy). We will
consider a general equation of state which satisfies p > 0 <= e > 0. Then we
will focus on the positivity of internal energy instead of pressure because the
internal energy has the same definition (2b) for any equation of state. We define



the set of admissible states as

P 1
G=qU=[pu]:p>0, /)6(U)=E—§p|\u||2 >0. . (3)
E

It is straightforward to check that the eigenvalues of the Hessian matrix 8‘9—[; pe
are nonpositive if and only p > 0. Thus pe is a concave function with respect to
U and it satisfies a Jensen’s inequality: VU1, Uy € G,VA1, A2 > 0, A1 + A2 =1,

pe(/\1U1 + )\QUQ) Z )xlpe(Ul) + )\Qpe(UQ). (4)

Therefore, G is a convex set.

The main objective in this paper is to construct conservative positivity-
preserving high order accurate schemes solving (1), which is in general a difficult
problem.

1.8. Positivity-preserving high order schemes for compressible Euler equations

Quite a few first order finite volume schemes are positivity-preserving for
compressible Euler equations with EOS (2¢), including the Godunov scheme,
the Lax-Friedrichs scheme [4], and the HLLE [5, 6] schemes and kinetic schemes
[7, 8]. Roughly speaking, to prove the positivity in Godunov and HLLE schemes,
one must take advantage of the exact solution for Riemann problems, which is
not available for a generic EOS. On the other hand, the positivity-preserving
property of the Lax-Friedrichs scheme is an algebraic fact [9, 10]. Thus it is
straightforward to show that the Lax-Friedrichs scheme is positivity-preserving
for compressible Euler equations with a generic EOS [11].
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Figure 1: An illustration of the weak monotonicity/positivity of third order finite volume
and discontinuous Galerkin schemes using quadratic polynomials on 1D, 2D rectangular and
triangular cells. Red points are quadrature points for computing the line integral of numerical
fluzes along the cell boundary. Red points and blues points form a special quadrature and
they are the points in the weak monotonicity/positivity.

To construct positivity-preserving higher order accurate schemes, there are
a handful of efforts in the literature, e.g., [4, 12, 13, 14, 15, 16]. One of the
most successful approaches is the methodology proposed in [17, 10, 18, 19]. The
details of this approach will be reviewed later. Here we first take a look at



the critical feature of this methodology, which is an intrinsic weak positivity
property of arbitrarily high order finite volume and discontinuous Galerkin (DG)
spatial discretizations. Let K be a polygonal cell with edges ¢; (i = 1,--- , E)
in a two-dimensional mesh. Consider a high order finite volume scheme solving
two-dimensional equations U; + V - F* = 0 on the cell K with forward Euler
time discretization,

E
—n+1 —n At — —n At —
U =U;, — — Fe.nds=U, — — Fe.nd 5
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where ﬁ?( is the cell average on K at time step n, n is the unit outward normal
vector to 0K, | K| denotes the area of K and Fo nisa positivity-preserving flux.
Positivity-preserving fluxes are those which make first order schemes positivity-
preserving , e.g., Godunov, Lax-Friedrichs and HLLE fluxes, etc. For simplicity,
we only consider a local Lax-Friedrichs flux for F® in this paper,

1

Fe-n(U-,U%)| = [(FY(U) +FY(UY) n—a(UT -UT)],  (6)
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where U~ and U™t denote the approximations to U on 0K from interior of K

and exterior of K respectively, and «; = max %LU‘ with the maximum being

taken over all U~, U™ along e;. Here %—%L| denotes the largest magnitude of
OF®

the eigenvalues of the Jacobian matrix %, which is equal to the wave speed

[u-n|+ , /’y% for the ideal gas EOS (2¢).
The positivity property holds for the first order Lax-Friedrichs scheme under

a CFL condition At% max %| < 2 where |0K| denotes the length of the

boundary 0K. In the high order scheme (5), ﬁ’;{H is not a monotone function
of independent degree freedoms such as p% and the boundary values of p%
along 0K for any positive At, but under a suitable CFL condition ﬁ?{"’l is a
monotone function with respect to certain dependent degree of freedoms, e.g.,
some redundant point values of reconstruction or approximation polynomials
illustrated in Figure 1. We call this property weak monotonicity, which was
first explored in [17] for scalar conservation laws. Via Jensen’s inequality (4),
the weak monotonicity can be extended to weak positivity for pressure and
internal energy: if the same set of point values as illustrated in Figure 1 for
the conserved variable vector U belong to the set of admissible states G, then
ﬁnKH € G in the scheme (5) using approximation polynomials of degree k under
the CFL constraint

1
K|~ NN -1)

where N = [(k + 3)/2], i.e., N is smallest integer satisfying 2N — 3 > k, and
a= % for rectangular cells and a = % for triangular cells in a two-dimensional
case.

The weak positivity property implies that we only need to filter or limit
negative point values as illustrated in Figure 1 to ensure the positivity of cell

At Vi, (7)



averages in forward Euler, which makes construction of a conservative positivity-
preserving high order scheme possible. A simple efficient scaling limiter can be
used to modify negative point values to small positive ones without changing
cell averages. For smooth solutions with a uniform positive lower bound on
pressure p > m > 0, high order local truncation errors in spatial discretiza-
tion of this limiter, can be rigorously justified. High order time accuracy can
be achieved by Strong Stability Preserving (SSP) Runge-Kutta and multistep
time discretizations [20], which are convex combinations of formal forward Euler
schemes thus preserve the positivity if forward Euler is positivity-preserving.

In a nutshell, the key difference of the approach in [17, 10, 18] from all
other positivity-preserving methods is the weak positivity, which allows not
only rigorous justification of high order accuracy, but also easy constructions of
explicit schemes with any order of accuracy, easy extensions to three dimensions
[21] and general shapes of computational cells [22].

1.4. From Euler to Navier-Stokes: monotonicity in discrete Laplacian

To extend positivity-preserving schemes for Euler system to Navier-Stokes
system, we only need to focus on the pressure or internal energy since the
mass conservation equations in two systems are the same. However, it is much
more difficult to guarantee positivity of the internal energy in compressible
Navier-Stokes system. Positivity-preserving discretizations must be used for
the nonlinear diffusion operator.

Consider a simple toy model u; = wu,,. The simplest finite difference scheme
solving it is ul ™" = ul + 2L (u' | — 2u? 4+ ul,,). For that the right hand side
of this scheme is a monotone function of uj' and w}, if % < 3, we call the
second order accurate central difference % a monotone approxima-
tion to wug,. By Taylor expansion, it is straightforward to prove that higher
order accurate linear finite difference approximating the second order derivative
cannot be monotone. In Appendix A, we will show that the second order central
difference is positivity-preserving for the one-dimensional form of (2). However,
it is difficult to extend positivity of this scheme to high dimensions since finite
difference approximations for mixed second order derivatives are much more
complicated.

In other words, it is already nontrivial to preserve the positivity of inter-
nal energy for second order schemes without losing conservation of total en-
ergy in high dimensions. There are few such results in the literature. In [23],
an unconditionally stable staggered pressure correction second order accurate
positivity-preserving implicit scheme was constructed for (2). The positivity in
this scheme is heavily dependent upon the monotonicity of second order discrete
Laplacian and the specific form of shear stress tensor (2d).

It is interesting to explore any weak monotonicity in diffusion discretizations.
Unfortunately, weak monotonicity holds only up to second order accuracy for
any linear finite volume scheme and most DG schemes [24], see Appendix D. Sur-
prisingly, it is still possible to construct a third order linear DG scheme satisfying
the weak monotonicity. With special parameters, the direct DG (DDG) method,



which is a generalized version of interior penalty DG method, indeed satisfies a
weak monotonicity up to third order accuracy [25, 26, 27, 28]. However, if we
use Taylor expansion to examine the local truncation error in the numerical flux
of this scheme, only second order accuracy is obtained. Nonetheless, third order
error estimate in the semi-discrete DDG scheme can be proven [29, 30, 31]. This
phenomenon of inconsistency between the orders of local truncation error and
actual error in DG methods is referred as supraconvergence [32], different from
superconvergence. To fully understand how the second order errors are canceled
out, we need the error estimate for the fully discretized scheme, which is not
available. On the other hand, the supraconvergence in DDG method satisfying
the weak monotonicity does not seem to reach beyond third order accuracy. One
possible approach to construct positivity-preserving schemes for Navier-Stokes
is to take advantage of the weak monotonicity in DDG. However, it is still quite
difficult to extend the weak monotonicity to weak positivity of internal energy
in high dimensions.

1.5. A different perspective: a positivity-preserving flux for nonlinear diffusion

In all approaches mentioned in the previous subsection, we regard V - F% as
a diffusion term when seeking monotonicity. Unfortunately, monotonicity and
the weak monotonicity hold for finite difference, finite volume and most DG
discretizations approximating Laplacian only up to second order accuracy. On
the other hand, we can regard F = F® — F¢ as a single flux and formally treat
V - F as a convection. This is perhaps a more natural perspective since the
system (1) is derived from integral equations in the first place: [| e UrdV =
- ox F -nds. A finite volume scheme with forward Euler approximating this
integral equation takes the form,

—n—+1 —-—n At
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fF nisa positivity-preserving flux, then (8) would satisfy the same weak posi-
tivity of pressure as for (5). The major challenge now boils down to construction
of a positivity-preserving flux F n

In this paper, we introduce a simple positivity-preserving flux for the non-
linear diffusion in the Navier-Stokes system, for which the design is inspired
by the positivity-preserving property of the Lax-Friedrichs flux for Euler equa-
tions. Recall that the local Lax-Friedrichs flux (6) is positivity-preserving with

a; = max (|u~n| + 4 /7%) for the ideal gas EOS (2c). For a generic EOS,

2 el s .
we can use ; > max (\u ‘n|+ 1/&) to ensure positivity of internal energy,

which will be reviewed.

Since the shear stress tensor and heat flux in the diffusion flux F¢ are depen-
dent on the derivatives of conserved variables U, we introduce an auxiliary vari-
able S as an approximation to VU. Now consider the following Lax-Friedrichs



type flux for the diffusion in Navier-Stokes equations,

— 1

F?.n(U",S™,U",8T) :75KFdanS’)+FdﬂIﬂS+»»an@(U+A—U’ﬂ,
(9a)

where ; is a nonnegative number. We will show that this flux is positivity-

preserving if
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(VPla-nP +2p%rnlP +pla-nl),  (9b)

where the maximum is taken over U~,S~, U™, ST along e;. Here a positivity-

preserving flux F? - n means that a first order finite volume scheme with such
a flux for solving the formal diffusion system U, = V - F¢(U,S) is positivity-
preserving.

Then we have a positivity-preserving flux in (8): Fn=Fin_ Fln
w/he\re Fo . nis any positivity-preserving flux for compressible Euler system and
F¢ . nis given in (9). Another slightly different positivity-preserving flux will be
introduced in Section 2.4. Following the results in [10, 18], it becomes straight-
forward to show exactly the same weak positivity as illustrated in Figure 1 holds
for (8) thus it is straightforward to construct positivity-preserving arbitrarily
high order finite volume and DG schemes for (1).

1.6. Positivity-preserving DG schemes for compressible Navier-Stokes equations

In this paper, we discuss the construction of positivity-preserving DG schemes.
For solving the compressible Navier-Stokes system (1), there are quite a few DG
type schemes, e.g., the pioneering work by Bassi and Rebay [33, 34], the scheme
by Baumann and Oden [35], Compact DG [36], correction procedure via recon-
struction (CPR) [37, 38], Hybrid DG [39] and Embedded DG [40], etc. The
major differences among these DG methods include how to approximate the
derivatives of the solution and the choice of numerical fluxes, which are derived
from various perspectives.

As a demonstration, we focus on one of the most popular approaches in [33].
For the derivatives of U, an auxiliary variable S = VU is introduced. After
multiplying the following system by test functions and integration by parts on
a polygonal cell K,

S-VU=0
U, +V-FYU)-V-FY(U,8) =0’

we obtain the following general form of a DG scheme,
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where Uy, and S; are vectors of polynomials of degree k£ on K and ¢; and

1, are the polynomial of degree k test functions. The advection flux Foonis
the same ones as mentioned above, e.g., the local Lax-Friedrichs flux. Central

—

fluxes were used for the other two fluxes in [33], F¢-n(U~,S~, Ut ST) =
3 [F4(U~,87) +F4U*,S")] -n and

Un(U~,U") = %(U‘ +U')n, (11)

where — and + denote the approximations on K from interior of K and exterior
of K respectively.
To render this high order DG scheme satisfying the weak positivity property,

we can simply replace the central flux F¢ - n by (9). Compared to the central
flux, the extra term 33(U* —U~) in (9) contributes to the DG scheme (10)
as an interior penalty term. In other words, we can add a nonlinear penalty
defined by (9b) to the DG scheme in [33] so that it satisfies a weak positivity
property under some CFL constraint. A slightly different positivity-preserving
flux discussed in Section 2.4 can also be used to achieve the weak positivity

property.

1.7. CFL constraints, implementation, and numerical performance

For the positivity-preserving flux (6) and (9) solving (1) with a generic EOS,
the following time step constraint is a sufficient condition to ensure the weak
positivity in a high order finite volume scheme (8),

Bl < =
T4 max {a;, 5;} a

At SNV 1)

Vi, (12)

where a = % for rectangular cells and a = % for triangular cells.

To better understand (12), consider DG schemes solving a very smooth so-
lution of one-dimensional form of (2). The linear stability on a simplified model
up = éum would require At = O(Re Az?) for an explicit scheme where Az
denotes the mesh size in the spatial discretization, whereas (12) roughly re-
duces to At = O(Az). When shocks are present, (12) are roughly around
At = O(ReAx?). The inconsistency between the linear stability CFL and a
nonlinear stability CFL (12) for smooth solutions implies that we also need to
enforce the linear stability CFL beyond a positivity induced CFL. After all,
the weak positivity property is a very weak stability, i.e., only cell averages are
guaranteed to be positive in one time step in (8).

Numerical tests suggest that the linear stability CFL constraint At = O(Re Az?)
must be satisfied. Otherwise errors may grow exponentially even though the L'
stability for density and total energy is still valid. There is no contradiction
since stability itself does not guarantee convergence for nonlinear equations. In
this paper, we only pursue nonlinear stability by enforcing positivity of density
and internal energy in high order schemes for Navier-Stokes equations. Another
approach towards nonlinear stability of high order schemes is to enforce entropy



bounds [41, 42, 43]. For convergence of high order schemes, entropy inequalities
should be considered, which is in general a much harder problem than stability.
Nonetheless, positivity is the first step towards entropy stability and entropy
inequalities.

On the other hand, (7) and (12) should be not strictly enforced in Runge-
Kutta time discretizations for several reasons:

1. The constraint (12) is hardly a necessary condition for ﬁ}}“ € G in (8)
in practice.

2. It is very difficult to accurately predict wave speeds for all stages in a
Runge-Kutta time discretization. For example, to enforce (7), we need to
estimate max(|u| + \/vp/p) in all inner stages before computing them in
a high order Runge-Kutta time discretization. Similar difficulty arises in
(12).

3. Artificial stiffness may arise in low density or low pressure problems. For
instance, if density and internal energy are numerically close to zero, it is

difficult to accurately evaluate the sound speed , /7% due to the round-

off errors. The wave speed computed in a low density region might be
significantly larger than the actual one, which results in a much smaller
time step numerically computed by (7) than a necessary time step for
positivity. Similar difficulty arises in (12) due to the presence of density
and internal energy in the denominator in (9b).

Instead, we can enforce the time step constraint (12) only when larger time

steps give ﬁ}“ ¢ G. For each time step of Runge-Kutta discretization, we can
start with a usually used time step for explicit schemes, e.g., At = O(Re Ax?).
If density or internal energy of the cell average becomes negative, then we restart
the computation with a smaller time step, e.g., a time step halved. The suf-
ficiency of CFL (12) for the weak positivity excludes the possibility of endless
loops. This ad hoc implementation was used in [44] for Euler equations with
chemical reactions and works well in practice.

To implement an explicit positivity-preserving high order DG scheme for (1),
we can do the following simple modifications to the scheme in [33],

1. Use SSP Runge-Kutta time discretizations.

2. Use a positivity-preserving flux for the advection, e.g., (6). Use the
positivity-preserving flux (9) for the nonlinear diffusion. In other words,
add an interior penalty term to the scheme in [33] with nonlinear penalty
parameter defined by (9b).

3. Add a simple limiter to filter negative point values at quadrature points,
e.g., Gauss quadrature, for computing all integrals in the DG scheme (10).
We emphasize that we do not use the quadrature in Figure 1 to compute
any integral in the actual implementation. The blue points in Figure 1
are highly redundant in high dimensions and are not used explicitly in the
implementation.

4. Time stepping will be discussed in detail in Section 5.3.
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(a) Without other limiters. Re = co. (b) With TVB limiter. Re = oo.

Figure 2: Mach 10 shock passing a sharp corner. The DG scheme with positivity-preserving
local Lax-Friedrichs flux (6), the positivity-preserving limiter, and the third order SSP Runge-

Kutta on unstructured triangular meshes solving compressible Euler equations with ideal gas
EOS. The mesh size is g5. P? basis.
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(a) Without other limiters. Re = 100. (b) Without other limiters. Re = 1000.

Figure 3: Mach 10 shock passing a sharp corner. The DG scheme with positivity-preserving
fluxes (6) and (9), the positivity-preserving limiter, and the third order SSP Runge-Kutta on

unstructured triangular meshes solving Navier-Stokes equations (2). The mesh size is L
basis.
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To have a glance at the numerical performance of the high order DG scheme
implemented as above, we consider the problem of Mach 10 shock diffracted at
a sharp corner in [18]. This is quite a representative test problem since shocks,
low density/pressure and fine structures from Kelvin-Helmholtz instability are
all involved. See Figure 2 for the results of compressible Euler equations. The
positivity-preserving RKDG scheme may produce oscillations, which is not a
surprise because only positivity is guaranteed. To reduce oscillations, other type
of limiters towards a non-oscillatory property should be used. For instance, a
TVB limiter was used in [18]. We emphasize that other types of high order
accurate limiters without the positivity-preserving limiter cannot stabilize the
DG scheme for this low pressure problem. On the other hand, we can observe
that the TVB limiter also smears out some interesting features such as roll-
ups due to the Kelvin-Helmholtz instability, which is an indication of excessive
numerical viscosity of the TVB limiter. For compressible Euler equations, the
RKDG scheme with only the positivity-preserving limiter may produce excessive
oscillations affecting the shock locations on finer mesh or with higher order basis
for this problem. WENO type limiters [45, 46, 47] are less diffusive thus more
suitable for reducing oscillations with a better resolution.

However, a very interesting observation is that no other limiters are
needed to reduce oscillations for positivity-preserving DG scheme
solving Navier-Stokes equations. See Figure 3 for results of DG with only
the positivity-preserving limiter solving compressible Navier-Stokes equations
(2). In Figure 2 (a), we can see that the local Lax-Friedrichs flux for advection
and positivity-preserving limiter do not contribute excessive artificial viscosity.
In Figure 3 (a), the main source of additional artificial viscosity is the extra
term 23(UT — U~) in (9). On the other hand, the result for higher Reynolds
number in Figure 3 (b) is a strong evidence that the flux (9) does not contribute
excessive artificial viscosity either. With these observations and numerical evi-
dence, we may conclude that the physical nonlinear diffusion starts to smooth
out the numerical oscillations in high order positivity-preserving DG schemes
when it is accurately resolved.

1.8. Contributions and organization of the paper

The main contributions of this paper include the construction of positivity-
preserving flux (9) for the nonlinear diffusion in (1) and the construction and im-
plementation of the very first high order schemes for compressible Navier-Stokes
equations (1) in two dimensions, which can preserve positivity of internal energy
without losing the conservation of total energy. For implementing positivity-
preserving DG schemes, it is straightforward to add a nonlinear penalty term
and the positivity-preserving limiter to the DG scheme in [33]. The interior
penalty plays an essential role in stabilizing DG method solving diffusion prob-
lems. We have revealed how it may affect the nonlinear stability in terms of the
positivity-preserving property for compressible Navier-Stokes equations.

An interesting and important observation is that only the positivity-preserving
limiter is needed for high order DG schemes to produce non-oscillatory solutions

12



for compressible Navier-Stokes equations (2) even when strong shocks are in-
volved, which is not the case for compressible Euler equations.

The high order positivity-preserving scheme in this paper has the following
advantages and features:

e The construction of the positivity-preserving flux (9) depends on neither
the specific form of the shear stress tensor 7, heat flux q and equations of
state nor how the derivatives VU are approximated in a scheme.

e Extensions to arbitrarily high order polynomial basis, multiple dimensions
and unstructured meshes are straightforward.

e The full scheme is explicit with the time step constraint At = O(Re Az?)
thus it is more suitable for high Reynolds number flows.

e For compressible Navier-Stokes equations, only positivity-preserving fluxes
and the positivity-preserving limiter are needed to stabilize the high order
DG scheme producing non-oscillatory solutions. Numerical evidence sug-
gests that the proposed high order positivity-preserving DG scheme does
not produce excessive artificial viscosity.

The paper is organized as follows: we review the weak positivity property
of high order finite volume schemes solving compressible Euler equations in
one dimension then introduce two positivity-preserving fluxes for compressible
Navier-Stokes equations in one dimension in Section 2. We discuss the weak pos-
itivity property of high order finite volume schemes with a positivity-preserving
flux for compressible Navier-Stokes equations in two dimensions in Section 3.
For compressible Euler equations, the CFL condition for triangular cells derived
in Section 3 is slightly better than the one in [18]. Then we review the positivity-
preserving limiter and an efficient implementation in Section 4. We emphasize
that all the discussions in Sections 2, 3 and 4 apply to any finite volume type
scheme including the scheme satisfied by cell averages in DG methods. Imple-
mentation details for DG schemes are discussed in Section 5. Numerical tests
are given in Section 6. Section 7 consists of concluding remarks.

2. The weak positivity of high order schemes in one dimension

We will first review the positivity-preserving flux and the weak positivity for
high order finite volume schemes solving compressible Euler equations. Then we
construct two positivity-preserving fluxes for compressible Navier-Stokes equa-
tions and discuss the weak positivity for high order finite volume schemes.

2.1. The positivity of first order schemes for compressible Fuler equations

For the one dimensional compressible Euler system U; + F*(U), = 0 with
U = (p,pu, E)! and the flux function in one dimension defined by F¢ =

13



(pu, pu® + p, (E + p)u)t, we first consider a first order finite volume scheme

onacell Ij = [z;_ 1,2, 1] with cell size Az,
n+1 n At a n n n n
S [F (U7, U, — Fe(Ur_ 1,Uj)} ,
with the local Lax-Friedrichs flux defined by
a n n 1 a n a n n n
FH (U}, Ujy) = 5 [F(UD) + F(UY,) — a0 (U, —07)), (19)

where U7 is the approximation to the average of U on I; at time level n and
o1 is a positive number dependent upon U} and U7 ;. With the assumption
U7, U7, € G, we want to find a proper Q1 and a CFL condition so that

U?H € (G. The scheme can be rewritten as

1 At 1 At 1 At
n+1l __ n n 71 a n
Y= (1_ %37z 2%t Az )U T %A, <UJ“ yF(U
1 At o C cagaon
50 (U Lar P j_l)). (14)

By Lemma 6 in Appendix B, if we set a; 1 > e (|u\ + /252 e), e.g.,

i+

1= U;Ln%%( <|u| + 4 /’yg) for the ideal gas EOS (2¢) with v > 0, then we

have U7, —1 Fa(Uyﬂ) €G,and U7, + aj_j%Fa(U;Ll) € G. Under the

CFL condltlon L max; o i1 <L U”Jrl in (14) is a convex combination of
three vectors in G thus U;H’l €G.

2.2. The weak positivity of high order schemes for compressible Euler equations

Consider a (k + 1)-th order finite volume type scheme with reconstruction
polynomials or approximation polynomials of degree k. For one dimensional
compressible Euler system with forward Euler time discretization on I, it takes
the form,

n+1 —n At

U :U.——[ﬁ(ui U

a +
! A Fi(U,_ .U,

J+2) )| (153)

_1
2

where ﬁrf is the cell average on I; at time level n, U7 1 and UJr 1 are approxi-

mations to the point value of U at x; 1 and time level n from the left and from
the right respectively. The local Lax Friedrichs flux is

Ta + a a + . + 71—
F (UJ é’UJ+2) 2 F (UJ )tF (U ) j+ 2(U3+2 Uj+%) )
(15b)
p?
Q1> —I?i}(+l |u| + 3% | (15¢)
i+37 T+t

14
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Let N = [(k+3)/2], i.e., N is smallest integer satisfying 2N — 3 > k. We
consider an N-point Legendre Gauss-Lobatto quadrature rule on the interval
I; = [xj_%,xj+%], which is exact for integrals of polynomials of degree up to
2N — 3. Denote these quadrature points on I; as

Sj ={z; ;—x;,f?,~-~,ij_l,ﬁs\éy:xj+%}. (16)

N

Let &, be the quadrature weights for the interval [—3, 1] such that Y &, = 1.
p=1

Let P;(z) be the reconstruction or approximation polynomials of degree k in

the high order scheme (15a) on I; with cell average ﬁ? and nodal values U~

Ji+3
and U+ 1 at two cell ends, then

2

—=n 1 N ~ ~
U; = E/ P;(z)dz = w0, P; (@) = w0, P; (] )—|—w1U 1 —|—wNU
I;

(17)
By plugging (17) into the scheme (15a), we obtain

O =@y ) (U 30, @ - g a1 T
1At 1At 1At e
+ON — 5 A, %) ( 1 T A OF a0 F (Uj+;)>
1 At R
+530 ,,%(U.%jta LF9( 7)
1 At + —1 a
+aapet (Ul — gy P (U,))
N-—1
+ Y B,P;E). (18)

n=2

Let @ denote the smallest weight in ‘Dm i.e., 0 =W, = Wy. For Gauss-Lobatto
quadrature with N points, @ = N(N - Notlce the fact that Ata < @ if and

only if 0 < 1 At (0 - éﬁ‘t a)~! < a7l for positive numbers % a and @. By

Lemma 6 in Appendlx B, under the CFL COHdlthIl maxj a1 < @, we have

S U++é €G=U_, + ;j%F(U;_%),UL% ]le(U+ ,) €G,
1 At 1 At
+ + + ~ T ) 1xpa +
Uj_% GG:>UJ,_% + 2—Az(w1 5 AL a]") F (U ) G,
_ -1 At 1 At e

Moreover, (18) is a convex combination under the same CFL condition. Thus
we get the weak positivity for the high order scheme (15),

15



Theorem 1. A sufficient condition for U e G in the scheme (15) with
reconstruction or approximation polynomzals of degree k is

UL, €G and Py@)eG (n=2,--,N-1), Vj (19)
under the CFL condition
At 1
Az Yty =Y T NN 1) R 2

Remark 1. If using Zu 5 wMPJ(Ey) (1-&—Wy) Zg;; %PJ(@‘) =

(1-2w) Zg 21 lw’é@P (%) in (18), we obtain a weaker sufficient condition than

(19) for Uj ' € G in the scheme (15),

N— ~

+ (A)
Uji%EG and Z

) eaq, Vi, (21)

under the same CFL constraint (20).

2.8. A positivity-preserving flux for the nonlinear diffusion

It is straightforward to construct a first order positivity-preserving scheme
for the one-dimensional form of (2) since mixed second order derivatives do
not appear in the one-dimensional equations. As a matter of fact, the sim-
plest second order finite difference scheme is positivity-preserving for the one-
dimensional compressible Navier-Stokes equations, see Appendix A. However,
it is difficult to extend such a result to two dimensions due to the mixed second
order derivatives. In this subsection, we introduce a simple positivity-preserving
flux for the diffusion flux F¢ which can be easily extended to high dimensions.

We first formally consider the diffusion system U; — F¢(U,S), = 0 with
S = U, and the flux function in one dimension defined by F¢ = (0,7, ur — ¢)*.
Let S7 denote the approximation U, on I; at time step n. Consider a first
order finite volume scheme on I,

n At n d n
Uyt = U7 + T [FUUSL 87, U, .87 = FUUT ST, U787

Consider a Lax-Friedrichs type flux defined by
d n n n n 1 n n n n n
F4(U},87,U7,,,87,) = [Fd(U S7) + FI(U}, 1, S}4y) + Biv1(Ufy, — Uj )] )

(22a)
where 3,1 is positive number dependent upon U7, 8%, U}, | and S} ;. With
the assumption U7, U7, € G, we want to find a proper ﬁﬁ% and a CFL

condition so that U}LH € G. By Lemma 6 in Appendix B, if we set

(\/p q* + 2p2e|r|? +pIQ\) (22b)

Bir1 >
It T unse UJJr1 J+12pe
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then we have U, +B i1 Fd(U;l+17 S

?.1) € G,and U;’_l—ﬁjf_léFd(Un

j=b

S? )€
G. The scheme can be rewrltten as
1 At 1 At 1 At
n+1 __ n n —1 d n n
ot = (1- 304 - 26j+%Ax> U7+ 5Pt g (Ui + 70T (U0, 8520)
1 At (

58y (U — 8L FU7 .87 )).

Under the CFL condition % max; ﬁj+% <1, U?H in the scheme above is a
convex combination of three vectors in G thus U?H € G.

For the compressible Navier-Stokes equations U; +F*(U), —F4(U,S), =0
it is straightforward to construct a first order positivity-preserving scheme,

1 o At
n+1 __ n a n n n n
Uit =2 (Uj - [F (Uy,Up,,) - Fa(U 1,Uj)D

s U7.87)] ).
where Fé is any positivity-preserving flux for Euler system, e..g, Godunov and
HLLE fluxes, and F¢ is the flux constructed above. The right hand side of
this scheme is an average of the two formal schemes for U; + F¢(U), = 0 and
U; — F4(U), = 0. If Fe is (13) and F9 is (22), then the positivity-preserving

. . A 1 .
CFL constraints are £% max aji1. B4 < g forallj.

1 n A d n n n n n
T3 <Uj +2Fm [Fd(Ujvsjan+lvsj+1) Fi (U1,

2.4. Another positivity-preserving flux for compressible Navier-Stokes equations
By treating two fluxes F¢ and F¢ separately, we surely overlook the in-
teraction of two fluxes, which may give more information thus possibly better
CFL constraints. To this end, consider the following finite volume scheme for
the compressible Navier-Stokes equations in the form U; + F(U, S), = 0 with

F =F* - F,
At

Ut = Uy - 2 [F(U7LS), U7, ST - B(US

Consider a Lax-Friedrichs type flux defined by

1077

Jj—1

F(U}.8], ULy, 81) = 5 [F(UJS)) + F(UL 1, S30) — By (U - U]

(23)
where 5j+% is a positive number dependent upon U7} ,S%, U%,, and S7 ;.
With the assumption U7, U7, € G, we want to find a proper BjJr% and a CFL

condition so that U;-’H € GG. The scheme can be rewritten as

1 1 At 1 At
+1_ n n
Yi ( 2" zAx_25j+5Ax)Uj+2ﬁj+5Ax( o = 6,0 F (U0, 8,0))
+is
2

At
By xe (U + 6,1, F(UL ST_)) (24)
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By Lemma 6 in Appendix B, if we set

—pl2
Pits > vy s 6 s [I [+ (\/pq +2p%|r — +pq|)}

Jj+1Y5+1
then we have U7, — 4! L F( JH,S?H) € G,and Uj_;+5 F(US 87 ) €
G. Under the CFL condltlon L max; Bivr < 1, U"+1 in (24) is a convex

combination of three vectors in G thus U;“”l € G.

Jj=b

2.5. The weak positivity of high order schemes for compressible Navier-Stokes
equations

Consider a (k + 1)-th order finite volume type scheme for one dimensional

compressible Navier-Stokes system with forward Euler time discretization on 3,

Tl og & [ﬁ(U—

- + U~ - + +
j i Ar S,,Uf .S F(U l,S];%,Ujf%,sjié),

Gty Titg Tty a+2)7 i3
(25a)
where F is a positivity- preservmg flux. We can use elther F=Fo— 1':71 with any
p051t1V1ty preserving flux Fe for the Euler system and Fd as defined in (22a), o
the flux F as as defined in (23). For simplicity, we only discuss the latter one,

=~ 1
- - + V- - + +
F(Uj+%7sj+%7U]+17S]+2) §|:F(U+17S )+F(U+1as+é) ﬂj+%(U]+%
(25b)
Bjry > max [Iu + 27 (\/,0 q> +2p%e|T — p|? +P|Q)]
j+%’sj+%’ i+5 i+ pre
(25¢)

Plugging the cell average decomposition (17) into the scheme (25a), we ob-
tain

1 1A L 1AL 1A et
Ui =@ iy <Ua';+2m~(”1 sag -8 FU 8 )
1At 