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ABSTRACT

Conventional high-order discontinuous Galerkin schemes suffer from interface errors
caused by the misalignment between straight-sided elements and curved material inter-
faces. We develop a novel discontinuous Galerkin scheme to reduce the errors. Our new
scheme use the correct normal vectors to the curved interfaces, while the conventional
scheme uses the normal vectors to the element edge. We modify the numerical fluxes to
account for the curved interface. Our numerical modeling examples demonstrate that
our new discontinuous Galerkin scheme gives errors with much smaller magnitudes
compared with the conventional scheme, although both schemes have second-order
convergence. Moreover, our method significantly suppresses the spurious diffractions
seen in the results obtained using the conventional scheme. The computational cost
of our scheme is similar to that of the conventional scheme. Our new discontinuous
Galerkin scheme is thus particularly useful for large-scale scalar-wave modeling involv-
ing complex subsurface structures.

INTRODUCTION

Discontinuous Galerkin (DG) finite element methods have been developed for a wide range
of problems since their inception in the 1970’s (e.g., Reed and Hill, 1973; Cockburn and Shu,
1989; Hesthaven and Warburton, 2007). In contrast to classical continuous finite element
methods, the solution of DG methods can be discontinuous across element interfaces. The
weak coupling between elements makes the mass matrix local to the cell, and thus DG
schemes are compact since communication only with immediate neighbors is needed. DG
methods are among attractive choices for handling complicated geometries and allowing
hanging nodes in the mesh. DG methods have gained popularity for seismic modeling since
the work of Käser and Dumbser (2006).

For simulations of waves propagating in piece-wise constant media, DG methods with
an interface-fitting triangular mesh can capture material discontinuity more accurately than
methods based on unstructured meshes. However, the errors caused by misalignment be-
tween straight-sided elements and curved interfaces remain an issue. When triangular
meshes are used to fit curved boundaries, any continuous finite element method for el-
liptic equations is at most second-order accurate for the solution and 1.5-order accurate for
the gradient of the solution (Strang and Berger, 1971; Thomée, 1973). DG methods using
high-order polynomial bases for hyperbolic equations are at most second-order accurate for
the solution (e.g., Bassi and Rebay, 1997). In the presence of curved material interfaces,
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the same accuracy reduction holds for wave-propagation modeling if we assume homoge-
neous media on each element (Toulorge et al., 2008; Wang, 2010; Fahs, 2011). In seismic
modeling, the interface errors may lead to spurious diffractions in the calculated wavefield,
particularly when the element size is comparable to the wavelength. The wave energy of the
spurious diffractions is much smaller than that of the primary reflections, but is comparable
to that of the multiple reflections.

Although the overall error is dominated by the second-order interface error on fine
meshes, choosing the order of the polynomial basis depends on the problem (e.g., model,
data frequency spectrum, etc.), the available computational resources, and the desired mod-
eling quality. For example, Käser and Dumbser (2006) developed arbitrary high-order
polynomial bases, and used up to 10th-order polynomial for the Lamb’s problem. Etienne
et al. (2010) advocated low-order polynomial bases for very complex media. In general, very
high-order polynomial bases are popular when a coarse mesh is used, because the dispersion
error usually causes more harm than the interface error in seismic imaging and inversion. In
fact, finite-difference methods with second-order accuracy in time and high-order accuracy
in space are widely used, although the interface error is at most first order (Symes and
Vdovina, 2009).

To reduce errors caused by curved geometries, curved elements have been developed
(e.g., Monk and Wang, 1999; Barucq et al., 2014). For the optimal order of convergence,
the standard approach is using curvilinear elements (Gordon and Hall, 1973) to represent
curved interfaces. The curvilinear elements are constructed using isoparametric coordinate
transforms. Every curvilinear element has its own mass matrix needed to be factored
and stored, leading to prohibitive computer-memory requirement when a large number of
curvilinear elements are used to fit complex interfaces. Although the computer-memory
requirement is mitigated by the low-storage curvilinear DG method (Warburton, 2013),
significant extra efforts are needed for implementation. In this paper, we aim to develop a
simpler algorithm to reduce the interface errors.

Krivodonova and Berger (2006) introduced a simple way to approximate curvilinear
boundaries and reduce the boundary errors for gas dynamics problems using the correct
representation of the normal vectors to the interface geometry. This approach avoids the
use of curvilinear elements. However, we observed from our numerical experiments that
extending this approach to interface problems leads to almost the same results as the con-
ventional DG scheme.

We present a simple correction to the DG methods on triangles to reduce errors due to
piece-wise segment approximation of curved interfaces. We not only use the correct normal
vectors to the curved interfaces, but also modify the numerical fluxes evaluation points. We
demonstrate the effectiveness of our simple correction using numerical modeling of scalar-
wave propagation in media with curved interfaces. Our examples demonstrate that our new
DG scheme gives errors with much smaller magnitudes compared with the conventional DG
scheme, although both schemes have second-order convergence. Our method is certainly
not as accurate as curvilinear elements, but the advantage of our method is its simplicity,
especially for problems involving multiple complex interfaces.
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DISCONTINUOUS GALERKIN METHODS

Let x = (x, z) denote the spatial variables. The scalar-wave equation for pressure p and
velocity v = (vx, vz) is given by

ρ(x)
∂v

∂t
+∇p = 0,

1

κ(x)
pt +∇ · v = s(x, t),

(1)

where ρ is density and κ is bulk modulus. We only consider models composed of piece-wise
constant media. The wave speed is c =

√
κ/ρ. The point source is given by s(x, t) =

f(t)δ(x− xs), where xs is the source location and f(t) is the source time function. We can
rewrite equation 1 as

wt + A(x, z)wx + B(x, z)wz = [0, 0, κf(t)δ(x− xs)]
T , (2)

where w = [vx, vz, p]
T and

A =

 0 0 1/ρ
0 0 0
κ 0 0

 , B =

 0 0 0
0 0 1/ρ
0 κ 0

 . (3)

For an interface-fitting triangular mesh, we set ρ and κ as constants on each triangle K.
Multiplying equation 2 by a smooth test function u compactly supported in K and taking
an integral over K, after integration by parts, we obtain∫

K
wtu dV −

∫
K

(
∂u

∂x
A +

∂u

∂z
B

)
w dV +

∫
∂K

uF ds = s(t)u(xs), (4)

where s(t) = [0, 0, κ(xs)f(t)]T , the flux F = (nxA+nzB)w, and n = (nx, nz) is the outward
unit normal vector to the boundary ∂K of the triangle.

In DG methods, we seek piece-wise polynomials wh satisfying the following weak for-
mulation for any piece-wise polynomial test function uh:

d

dt

∫
K
whuh dV −

∫
K

(
∂uh
∂x

A +
∂uh
∂z

B

)
wh dV +

∫
∂K

uhF̂ds = s(t)uh(xs), (5)

where the numerical flux F̂ = (nxA + nzB)w∗. Here w∗ is an approximation to the values
of w on the boundary, since wh is discontinuous across the boundary ∂K. For instance,
w∗ can be taken as the exact solution of the 1D Riemann problem in the direction normal
to each edge of K (Wang, 2010). We denote the three edges of K by eiK , i = 1, 2, 3, with
outward unit normal vector ni. Let Ki denote the neighboring triangle along eiK and wK

denote the polynomial defined on K. Then the numerical flux term
∫
∂K uhF̂ds can be

written as∫
∂K

uhF̂ds =
3∑
i=1

∫
eiK

uhF̂ds =
3∑
i=1

∫
eiK

uh(nixA + nizB)w∗[wint(K),wext(K),ni] ds, (6)

where wint(K) = wK and wext(K) = wKi for each edge eiK are the approximation values
from inside and outside of K, respectively. For each edge eiK , let vint(K) = vint(K) · ni and
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vext(K) = vext(K) ·ni denote the normal velocities, then w∗[wint(K),wext(K),ni] denotes the
exact solution of the following 1D Riemann problem:

ρ(ξ)
∂v

∂t
+ pξ = 0,

1

κ(ξ)
pt + vξ = 0,

(v(ξ, 0), p(ξ, 0)) =

{
(vint(K), pint(K)), ξ < 0

(vext(K), pext(K)), ξ > 0
,

(ρ, κ) =

{
(ρK , κK), ξ < 0
(ρKi , κKi), ξ > 0

.

(7)

Applying integration by parts to equation 5, we obtain the equivalent strong formulation
of the DG scheme:∫

K

(
∂wh

∂t
+ A

∂wh

∂x
+ B

∂wh

∂z

)
uh dV +

3∑
i=1

∫
eiK

uh(F̂− F)ds = s(t)uh(xs). (8)

The time evolution is solved by the fourth-order low-storage Runge-Kutta method (Hes-
thaven and Warburton, 2007).

A SIMPLE ACCURATE INTERFACE TREATMENT

We assume edge e1
K of triangle K approximates the curved interface, see Figure 1a for

an illustration. We briefly review how to compute flux terms before introducing a simple
geometrical correction to the flux term

∫
e1K
uh(F̂ − F)ds on this edge in equation 8. For

convenience, we denote the integrand uh(F̂− F) as a function of x ∈ e1
K :

G(x,n1) = uh(x)(n1
xAK + n1

zBK)(w∗[wK(x),wK1(x),n1]−wK(x)). (9)

n1

e1K

K

K1

K2 K3

a

b bb

b

b b

b b

K

x3 x4x2

x̄2

x̄3
x̄4

x̄1 x̄5

b

Figure 1: An illustration of (a) an element near the curved interface and (b) the projection
of the quadrature points to the interface. The red curve is the material interface.
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The line integral is computed by quadratures. We assume the polynomial degree of
wh is N , and we use the α-optimized nodal distribution points of triangle K to represent
degrees of freedoms of all polynomials as discussed in Hesthaven and Warburton (2007).
Then the line integral can be written as∫

e1K

uh(F̂− F)ds =
N+1∑
j=1

G(xj ,n
1)ωj , (10)

where xj (j = 1, · · · , N + 1) are the nodal points of K lying on edge e1
K , and ωj denotes

the corresponding weight with
∑N+1

j=1 ωj equal to the length of the edge e1
K .

We observe the following geometrical corrections to equation 10 reduce interface errors:

1. Find the projection points of xj on the curve, denoted as x̄j . See Figure 1b for an
illustration.

2. Find a vector normal to the curve at the projection points x̄j . For instance, we can
use x̄j − xj . The outward unit normal vector is denoted by n(x̄j).

3. Replace G(xj ,n
1) by G(x̄j ,n(x̄j)) in equation 10, i.e.,

∫
e1K

uh(F̂− F)ds =
N+1∑
j=1

G(x̄j ,n(x̄j))ωj . (11)

Let Γ denote the curve in Figure 1a. In the last step of this correction, notice that
N+1∑
j=1

G(x̄j ,n(x̄j))ωj in equation 11 is not a high-order accurate approximation of the inte-

gral
∫
Γ

uh(F̂ − F)ds =
∫
Γ

G(x,n)ds, because the arc length of the curve Γ is not included.

Intuitively, the correction would be more accurate if we replaced
∫
e1K
uh(F̂− F)ds in equa-

tion 11 with an accurate approximation of
∫
Γ

uh(F̂ − F)ds. However, the function (F̂ − F)

becomes zero on the interface curve Γ if wK and wK1 are equal to the exact solution
in equation 9. Thus,

∫
Γ

uh(F̂ − F)ds can be regarded as a penalty term approximating

zero. When replacing the numerical solution wK and wK1 with the exact solution in equa-

tion 9,
N+1∑
j=1

G(x̄j ,n(x̄j))ωj in equation 11 is also zero, but
∫
e1K
uh(F̂−F)ds is second-order

away from zero. Thus,
N+1∑
j=1

G(x̄j ,n(x̄j))ωj is a good approximation to the penalty term∫
Γ

uh(F̂ − F)ds from the point of view of the local truncation error, which explains why

this correction may reduce interface errors. In our numerical tests, we did not observe
any meaningful improvement by including the arc length in equation 11. Therefore, we
recommend using the simple correction without involving the arc length.

We apply this correction for all edges approximating the curve. Our correction strategy is
different from the one in Krivodonova and Berger (2006). Their method is developed for the
solid wall boundary condition in gas dynamics problems. To extend the method to interface
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problems, one may replace the normal vector in the flux term
∫
eiK
uhF̂ds in equation 6

with the correct normal vector to the interface geometry. However, our numerical tests
suggest that such correction may not be consistent with the wave equation. A consistent
correction is using the correct normal vector in the term

∫
eiK
uh(F̂ − F)ds in equation 8.

Our numerical tests show that this correction hardly changes the modeling results obtained
using the conventional DG scheme.

For highly curved interfaces, we have to locally refine the mesh such that the mesh size
is sufficiently smaller than the radius of curvature. When the mesh size approaches zero,
we obtain the asymptotic convergence rate of second order. For a given radius of curvature,
it is very difficult to quantitatively analyze the maximum allowed mesh size for numerical
stability and accuracy. Such analyses are out of the scope of this paper.

NUMERICAL EXAMPLES

We compare the accuracy of our simple geometrical correction with that of the conventional
DG scheme. We do not show the results obtained using the method of Krivodonova and
Berger (2006), because they are almost the same as those of the conventional DG scheme
in all our numerical examples. In the first set of examples, the maximum errors of both
methods are exactly the same within three significant figures. In the second set of examples,
there is no visible difference between the common-shot gathers obtained using both methods.

Media with circular interfaces

We consider scattering of a plane wave by a cylinder with given analytical solution to test
the accuracy of the geometrical correction. The cylinder is assumed to have a radius of
r0 = 0.6. Outside the cylinder, i.e.,

√
x2 + z2 = r < r0, the density is constant ρ1 and the

bulk modulus is constant κ1. For r ≥ r0, the density and bulk modulus are constants ρ2

and κ2, respectively. The source term s(x, t) = 0 in equation 1. Assume the cylinder is
illuminated by a plane wave of the form

pinc = exp (−i(k1x− ωt)), uinc = exp (−i(k1x− ωt)), vinc = 0, (12)

where k1 = ω
√
ρ1/κ1. Then the problem has an exact solution given as follows (Cai and

Deng, 2003):

p(x, z, t) = p(r, θ, t) = eiωt

{ ∑∞
n=−∞C

tot
n Jn(k2r)e

inθ, r ≤ r0∑∞
n=−∞(i−nJn(k1r) + Cscatn Hn(k1r))e

inθ, r > r0
, (13)

where (r, θ) = (
√
x2 + z2, arctan(z/x)) represent the polar coordinates, Jn and Hn represent

the nth order Bessel function of the first kind and the Hankel function of the second kind,
respectively, and k2 = ω

√
ρ2/κ2. The expansion coefficients are given as

Ctotn = i−n
k1
ρ1
J ′n(k1r0)Hn(k1r0)− k1

ρ1
H ′n(k1r0)Jn(k1r0)

k2
ρ2
J ′n(k2r0)Hn(k1r0)− k1

ρ1
H ′n(k1r0)Jn(k2r0)

, (14)

and

Cscatn = i−n
k1
ρ1
J ′n(k1r0)Jn(k2r0)− k2

ρ2
J ′n(k2r0)Jn(k1r0)

k2
ρ2
J ′n(k2r0)Hn(k1r0)− k1

ρ1
H ′n(k1r0)Jn(k2r0)

. (15)
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Plug the pressure into equation 1, then we can obtain the expressions for the velocity.

The computational domain is [−1.5, 1.5]× [−1.5, 1.5] and we use PML of width 0.25 to
terminate the computation at the boundaries. We set ω = 2π and use the real part the
analytical solution to test the accuracy of DG schemes. The final time is set as T = 0.4
and we monitor the maximum error over the nodal points of each triangle inside the square
[−0.8, 0.8]× [−0.8, 0.8] to exclude possible errors due to the PML. Mesh1 and Mesh2 used in
the numerical tests are shown in Figure 2. Mesh3 is a straightforward refinement of Mesh2.
We consider two cases with different velocity contrasts. One is with ρ1 = κ1 = ρ2 = 1 and
κ2 = 1/2.25 such that the velocity contrast is 1 : 1.5. We take ρ1 = κ1 = ρ2 = 1 and
κ2 = 1/25 for the other case such that the velocity contrast is 1 : 5.

a b

Figure 2: (a) Mesh1 and (b) Mesh2 for DG modeling. Both meshes fit the circular material
interface indicated by red lines.

The errors for the low contrast case are listed in Table 1 and the errors for the high
contrast case are listed in Table 2. In Table 1, the error of the conventional DG scheme
decreases significantly when the order of the polynomial basis is increased from N = 2 to
N = 3 on Mesh1. When the order of the polynomial basis is further increased, the overall
errors are almost unchanged on Mesh1. This is because the interface error dominates, and
the conventional high-order DG scheme is not able to reduce the interface error without grid
refinement. We can see that the simple geometrical correction reduces the error magnitude
in both Tables 1 and 2. Even though there is an apparent reduction of the order of
convergence for Mesh2 in the low contrast case, the convergence rate for the further refined
Mesh3 is approximately second order for both DG schemes with polynomials of degree
N ≥ 2.

For comparison, we list the errors of the curvilinear element method in Table 3. In
general, the curvilinear element method gives smaller errors and faster convergence rates
than our modified DG method. However, in some cases, the errors of the two methods are
similar. For example, in the case of velocity contrast 1 : 1.5, the error of our method with
the polynomial of degree N = 2 is 3.57E-3 on Mesh1, while the error of the curvilinear
element method with the same N is 3.37E-3 on Mesh1. In the case of velocity contrast
1 : 5, the errors of our method with polynomials of degrees N = 2 and N = 3 are almost
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the same as those of the curvilinear element method with the same mesh. Thus, for some
problems and certain given error thresholds, the performance of our DG method is similar
to that of the curvilinear element method.

Conventional DG Modified DG

N Mesh1 Mesh2 order Mesh3 order Mesh1 Mesh2 order Mesh3 order

2 7.13E-3 1.41E-3 2.33 3.03E-4 2.22 3.57E-3 4.78E-4 2.89 6.64E-5 2.85

3 4.11E-3 1.03E-3 1.99 2.58E-4 2.00 4.57E-4 9.94E-5 2.20 2.27E-5 2.13

4 4.11E-3 1.03E-3 2.00 2.58E-4 2.00 3.30E-4 8.36E-5 1.98 1.94E-5 2.11

5 4.12E-3 1.03E-3 2.00 2.58E-4 2.00 2.59E-4 7.02E-5 1.88 1.75E-5 2.00

6 4.12E-3 1.03E-3 2.00 2.58E-4 2.00 2.34E-4 6.38E-5 1.88 1.59E-5 2.00

7 4.13E-3 1.03E-3 2.00 2.58E-4 2.00 2.01E-4 5.66E-5 1.83 1.43E-5 1.98

Table 1: Errors for DG schemes with polynomials of degree N . The interface geometry is
a circle, and the velocity contrast is 1 : 1.5. Our new DG scheme gives errors with much
smaller magnitudes compared with the conventional DG scheme, although both schemes
have second-order convergence.

Conventional DG Modified DG

N Mesh1 Mesh2 order Mesh3 order Mesh1 Mesh2 order Mesh3 order

2 1.12E-1 1.42E-2 2.98 2.39E-3 2.57 1.01E-1 1.18E-2 3.09 1.65E-3 2.84

3 2.38E-2 4.03E-3 2.56 9.98E-4 2.01 1.51E-2 1.05E-3 3.84 2.48E-4 2.08

4 1.62E-2 3.98E-3 2.02 9.95E-4 2.00 3.88E-3 8.81E-4 2.14 2.24E-4 1.97

5 1.62E-2 3.98E-3 2.02 9.96E-4 2.00 3.24E-3 8.03E-4 2.01 1.95E-4 2.04

6 1.62E-2 3.98E-3 2.02 9.96E-4 2.00 2.70E-3 6.93E-4 1.96 1.83E-4 1.92

7 1.62E-2 3.98E-3 2.03 9.96E-4 2.00 2.40E-3 6.23E-4 1.95 1.67E-4 1.90

Table 2: Errors for DG schemes with polynomials of degree N . The interface geometry is
a circle, and the velocity contrast is 1 : 5. Our new DG scheme gives much smaller errors
than the conventional DG scheme.

Dome model

We consider a 2D dome model illustrated in Figure 3a where the density is constant every-
where. It is similar to the one used by Wang (2010). A Ricker-wavelet source with a central
frequency of 25 Hz is located at (3300 m, 40 m). All 400 receivers lie uniformly on the line
from (2300 m, 40 m) to (4300 m, 40 m).

We test DG methods with polynomial of degree 8 on the mesh shown in Figure 3b. This
high polynomial order is necessary to ensure that there is no visible dispersion error in the
modeled wavefields. Along the curved interface, the length of the edges of the triangles
ranges from 35 m to 42 m, which is around the minimum wavelength. The conventional
DG scheme on triangles produce spurious diffractions on this relatively coarse mesh due to
the piece-wise segment approximation to the curve. In Figure 4a, we observe nonphysical
scattering generated near the curved interface. We then apply the simple geometrical correc-
tion to the conventional DG scheme. The numerical diffractions are significantly suppressed
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Velocity contrast 1 : 1.5 Velocity contrast 1 : 5

N Mesh1 Mesh2 order Mesh3 order Mesh1 Mesh2 order Mesh3 order

2 3.37E-3 4.72E-4 2.99 5.96E-5 2.99 9.99E-2 1.18E-2 3.07 1.65E-3 2.84

3 1.88E-4 1.37E-5 3.78 8.88E-7 3.95 1.51E-2 1.00E-3 3.91 6.84E-5 3.87

4 7.02E-6 2.24E-7 4.97 7.03E-9 4.99 1.95E-3 5.92E-5 5.04 2.08E-6 4.83

5 1.68E-7 3.41E-9 5.62 5.60E-11 5.93 1.61E-4 2.99E-6 5.75 5.09E-8 5.88

6 1.54E-7 3.70E-11 12.01 8.95E-13 5.37 1.62E-5 1.30E-7 6.96 1.13E-9 6.85

7 1.22E-7 1.44E-11 13.04 6.84E-14 7.72 9.54E-7 4.26E-9 7.80 1.83E-11 7.86

Table 3: Errors for DG schemes using curvilinear elements with polynomials of degree N .
The interface geometry is a circle. In general, the curvilinear element method gives smaller
errors and faster convergence rates than our modified DG method. However, in some cases,
the errors of the two methods are similar.

a b

Figure 3: (a) A 2D dome model; (b) the interface-fitting triangular mesh used for modeling.
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(Figure 4b). The spurious diffractions generated by the conventional DG scheme also ap-
pear in the common-shot gather shown in Figure 5a. The spurious diffractions are almost
invisible in the common-shot gather obtained using our geometrical correction (Figure 5b).
Figure 6 displays traces obtained using both schemes at the receiver with an offset of 250 m.
The reference trace is obtained using the conventional DG scheme with polynomial of de-
gree 9 on a refined mesh. The trace obtained using our geometrical correction matches well
with the reference one, while the conventional DG scheme gives spurious oscillations. The
computational cost of our scheme is much smaller than that of the conventional DG scheme
on the refined mesh.

a b

Figure 4: Snapshots of the pressure wavefield at T = 0.7 s obtained using (a) the conven-
tional DG scheme and (b) our DG scheme with simple geometrical correction. The snapshot
in panel (a) contains spurious diffractions caused by interface error. Our geometrical cor-
rection significantly suppresses the spurious diffractions in panel (b).
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Figure 5: Common-shot gather obtained using (a) the conventional DG scheme and (b) our
DG scheme with simple geometrical correction. The spurious diffractions in panel (a) are
almost invisible in panel (b).
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Figure 6: Traces obtained using the conventional DG scheme (green symbols) and our DG
scheme (red symbols) at the receiver with an offset of 250 m. The blue curve shows the
reference trace. The trace obtained using our DG scheme matches well with the reference
one, while the conventional DG scheme gives spurious oscillations.
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CONCLUSIONS

We have developed a novel discontinuous Galerkin scheme for modeling scalar-wave propa-
gation in media with curved interfaces. As the conventional discontinuous Galerkin scheme,
our scheme is based on straight-sided triangular elements. To account for curved interfaces,
we use the correct normal vectors and modify the numerical fluxes. Numerical exam-
ples demonstrate that our new discontinuous Galerkin scheme gives much smaller errors
compared with the conventional scheme, although both schemes have second-order conver-
gence. For the dome model, the conventional scheme generates spurious diffractions caused
by interface errors, while our scheme significantly suppresses the spurious diffractions. Our
scheme gives a wavefield similar to that obtained using the conventional scheme on a refined
mesh, but with a much smaller computational cost than the latter. Our new discontinuous
Galerkin scheme is thus particularly useful for large-scale scalar-wave modeling involving
complex subsurface structures.
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