ON THE MONOTONICITY OF HIGH ORDER DISCRETE
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Abstract. The monotonicity of discrete Laplacian, i.e., inverse positivity of stiffness matrix, im-
plies discrete maximum principle, which is in general not true for high order schemes on unstructured
meshes. But on structured meshes, it is possible to have high order accurate monotone schemes. We
first review previously known high order accurate inverse positive schemes, all of which are fourth
order accurate with proven monotonicity on uniform meshes. Then we discuss the monotonicity of a
fourth order variational difference scheme on quasi-uniform meshes and prove the inverse positivity
of a fifth order accurate variational difference scheme on a uniform mesh.
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1. Introduction. In many applications, monotone discrete Laplacian operators
are desired and useful for ensuring stability such as discrete maximum principle [8] or
positivity-preserving of physically positive quantities. Let A, denote the matrix repre-
sentation of a discrete Laplacian operator, then it is called monotone if (—Ay)~1 > 0,
i.e., the matrix (—Ap)~! has nonnegative entries. In this paper, all inequalities for
matrices are entry-wise inequalities. The simplest second order accurate centered fi-
nite difference u” (z;) ~ "(Ii’l)ﬁz(;;”u(zi“) is monotone because the corresponding
matrix (—Aj,)~! is an M-matrix thus inverse positive. The most general extension of
this result is to state that linear finite element method under a mild mesh constraint
forms an M-matrix thus monotone on unstructured triangular meshes [25].

In general, the discrete maximum principle is not true for high order finite element
methods on unstructured meshes [13]. On the other hand, there exist a few high order
accurate inverse positive schemes on structured meshes. To the best of our knowledge,
the followings schemes for solving a Poisson equation are the only ones proven to be
monotone beyond the second order accuracy and all of them are fourth order accurate:

1. Fourth order compact finite difference schemes, including the classical 9-point
scheme [15, 10, 2] are monotone because the stiffness matrix is an M-matrix.

2. In [3, 5], a fourth order accurate finite difference scheme was constructed.
The stiffness matrix is a product of two M-matrices thus monotone.

3. The Lagrangian P? finite element method on a regular triangular mesh [24]
has a monotone stiffness matrix [20]. On an equilateral triangular mesh, the
discrete maximum principle can also be proven [13]. It can be regarded as a
finite difference scheme at vertices and edge centers, on which superconver-
gence of fourth order accuracy holds.

4. Monotonicity was proven in the simplest finite difference implementation of
Lagrangian Q2 finite element scheme on an uniform rectangular mesh for a
variable coefficient Poisson equation under suitable mesh constraints [18].

All schemes above can be written in the form Su = Mf with S~! > 0and M > 0,
thus (—=Ap)~t = S7*M > 0, where M denotes the mass matrix. The last two methods
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2 L. CROSS AND X. ZHANG

are variational finite difference schemes, i.e., finite difference schemes constructed from
the variational formulation, thus they do not suffer from the drawbacks of the first
two conventional finite difference schemes, such as loss of accuracy on quasi-uniform
meshes, difficulty with other types of boundary conditions, etc.

For proving inverse positivity, the main viable tool in the literature is to use M-
matrices which are inverse positive. All off-diagonal entries of M-matrices must be
non-positive. Except the fourth order compact finite difference, all high order accurate
schemes induce positive off-diagonal entries, destroying M-matrix structure, which is
a major challenge of proving monotonicity. In [5] and [1], and also the appendix in
[18], M-matrix factorizations of the form (—Ap)~! = M; My were shown for special
high order schemes but these M-matrix factorizations seem ad hoc and do not apply
to other schemes or other equations. In [20], Lorenz proposed some matrix entry-wise
inequality for ensuring a matrix to be a product of two M-matrices and applied it
to P? finite element method on uniform regular triangular meshes. In [18], Lorenz’s
condition was applied to Q2 variational difference scheme on uniform meshes.

The main focus of this paper is to discuss Lorenz’s condition for a fourth order
scheme on nonuniform meshes and higher order accurate schemes. We discuss mesh
constraints to preserve monotonicity of Q2 variational finite difference scheme on a
nonuniform mesh. One can of course also discuss P? variational difference scheme on
a nonuniform regular triangular mesh, but there does not seem to be any advantage
of using P2. The scheme by Q2 is easier to implement, see Section 7 in [19].

For higher order scheme, it does not seem possible to apply Lorenz’s condition
directly. Instead, we will demonstrate that Lorenz’s condition can be applied to a few
auxiliary matrices to establish the monotonicity in Q3 variational difference scheme.
To the best of our knowledge, this is the first time that monotonicity can be proven
for a fifth order accurate scheme in two dimensions. For one-dimensional Laplacian,
discrete maximum principle was proven for high order finite element methods [22].
We are able to show the fifth order Q? variational difference scheme in two dimen-
sions can be factored into a product of four M-matrices, whereas existing M-matrix
factorizations for high order schemes involved products of two M-matrices.

The rest of the paper is organized as follows. In Section 2, we briefly review the
conventional monotone high order finite difference schemes. In Section 3, we review
the fourth order P? and Q? variational finite difference schemes. In Section 4, we
review the Lorenz’s condition for proving monotonicity and propose a relaxed version
of Lorenz’s condition. In Section 5, we discuss the monotonicity of ) variational finite
difference scheme on a quasi-uniform mesh. In Section 6, we prove the monotonicity
of @3 variational finite difference scheme on a uniform mesh. Accuracy tests of these
schemes are given in Section 7. Section 8 are concluding remarks.

2. Classical finite difference schemes.

2.1. 9-point scheme. The 9-point scheme was somewhat suggested already in

[12] and discussed in details in [10, 15]. Tt can be extended to higher dimensions [2, 4].

Consider solving the two-dimensional Poisson equations —ug, — uy,, = f with

homogeneous Dirichlet boundary conditions on a rectangular domain Q = (0,1) x
2

(0,1). Let u;,; denote the numerical solutions at a uniform grid (zi,y;) = (75, 77 )-
and f; ; = f(z,y;). For convenience, we introduce two matrices,
Ui—1,5+1 Ui 41 Uit1,54+1 fz‘—l,j+1 fi,j+1 fz'+1,j+1
U= {ui—1; Uy Uiq1,j , = fic1 fij fiv1,j
Ui—1,j—1 Ui 5—-1 Ui41,5—1 fifl,jfl fi,jfl fi+1,j71
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MONOTONICITY OF HIGH ORDER ACCURATE DISCRETE LAPLACIAN 3

Then the 9-point discrete Laplacian for the Poisson equation at a grid point (z;,y;)
can be written as

2.1)
L1 2 - L (-1 10 -1 L0 10
——— (21020 —10):v+——(2 20 2|.v==1(138 1|:F
2 2
12Az2 \ 1 5 Ay \ 1 10 -1 1240 1 0

where : denotes the sum of all entry-wise products in two matrices of the same size.
Under the assumption Ax = Ay = h, it reduces to the following;:

L[l 4 - L0010
(2.2) — (-4 20 —a)iv==|1 8 1]:F
62 \_1 4 1 1230 1 0

The 9-point scheme can also be regarded as a compact finite difference scheme
[11]. There can exist a few or many different compact finite difference approximations
of the same order [16]. For instance, with the fourth order compact finite difference
approximation to Laplacian used in [17], we get the following scheme:

(2.3)

-1 2 -1 -1 -10 -1 1 10 1
1 . . — .
A [-10 20 —10 U+ A2 20 2 |:U=g;(10 100 10):F
-1 2 -1 -1 —10 -1 1 10 1

Both schemes (2.1) and (2.3) are fourth order accurate and they have the same sten-
cil and the same stiffness matrix in the left hand side. We have not observed any
significant difference in numerical performances between these two schemes.

REMARK 1. For solving 2D Laplace equation —Au = 0 with Dirichlet boundary
conditions, the 9-point scheme becomes sixzth order accurate [11].

Nonsingular M-matrices are inverse-positive matrices. There are many equivalent
definitions or characterizations of M-matrices, see [21]. The following is a convenient
sufficient but not necessary characterization of nonsingular M-matrices [18]:

THEOREM 2.1. For a real square matrixz A with positive diagonal entries and non-
positive off-diagonal entries, A is a nonsingular M-matriz if all the row sums of A
are non-negative and at least one row sum is positive.

By condition K35 in [21], a sufficient and necessary characterization is,

THEOREM 2.2. For a real square matrix A with positive diagonal entries and non-
positive off-diagonal entries, A is a nonsingular M-matriz if and only if that there
exists a positive diagonal matriz D such that AD has all positive row sums.

REMARK 2. Non-negative row sum is not a necessary condition for M-matrices.
For instance, the following matrix A is an M-matriz by Theorem 2.2:

10 0 O 01 0 O 1 0 0
A=1|-10 2 -10({,D=]0 2 O0]|,AD=|-1 4 -1
0 0 10 0 0 01 0 0 1

The stiffness matrix in the scheme (2.2) has diagonal entries 62% and offdiagonal

entries —6%, —(;% and 0, thus by Theorem 2.1 it is an M-matrix and the scheme
is monotone. In order for the stiffness matrix in (2.1) and (2.3) to be an M-matrix,
we need all the off-diagonal entries to be nonnegative, which is true under the mesh

; 1 -~ Az
constraints —= < X% < V5.
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4 L. CROSS AND X. ZHANG

2.2. The Bramble and Hubbard’s scheme. In [5], a fourth order accurate
monotone scheme was constructed. Consider solving a one-dimensional problem

(24) - UH = f7 YIS [07 1]’ U(O) = 007u(1) =01,
on a uniform grid #; = -5 (i = 0,1,--- ,n 4 1). The scheme can be written as
—09 + 2u; — ug f —Up_1 + 2Uy — 01 s
— = J1 =
Ax? ’ Ax? "
1 4 5 4 1
Tg%i—2 — 3Ui—1 + Ui — gUit1 + 3Ui+2 93 1
2 - fu 1= 4,9, ,N .
Ax
The matrix vector form of the scheme is ﬁH u = f where
2 -1 U1 f1 (e}
_4 5 _4 1 s f Az?
N T T 12422
2 73 2 T3 12 i
H= o u= = +| o
1 _4 5 _4 1
12 3 2 3 12 o1
1 4 5 4 : —
12 -3 % -3 Unp—1 fn—l 131Az2
-1 2 Up, f'n Ax?

For two-dimensional Laplacian, the scheme is defined similarly. In particular, assume
Ax = Ay = h for a square domain, the stiffness matrix can be written as %(H QI+
I®H) where I is the identity matrix and ® is the Kronecker product. Its monotonicity
was proven in [5].

3. Variational finite difference schemes.

3.1. Finite element method with the simplest quadrature. Consider an
elliptic equation on © = (0,1) x (0,1) with Dirichlet boundary conditions:
(3.1) Lu=-V-(aVu)+cu=f on Q, u=g on 0N
Assume there is a function § € H'(f2) as an extension of g so that glso = g. The
variational form of (3.1) is to find @ = u — g € H}(Q) satisfying

(f,v) = Alg,v), Vv € Hy(Q),

where A(u,v) = [[, aVu - Vodzdy + [, cuvdzdy, (f,v) = [/, fodzdy.

Let h be quadrature point spacing of a regular triangular mesh shown in Figure
1 (or a rectangular mesh shown in Figure 2) and V' C H3(Q) be the continuous
finite element space consisting of piecewise P2 polynomials (or Q? polynomials), then
the most convenient implementation of finite element method is to use the simple
quadrature consisting of vertices and edge centers with equal weights (or 3 x 3 Gauss-
Lobatto quadrature rule) for all the integrals, see Figure 1 for P? method (or Figure 2
for @2 method). Such a numerical scheme can be defined as: find u;, € V{ satisfying

(3.2) A(a, v) =

(3.3) Ap(up,vn) = (f,on)n — An(gr,vn), Yo, € Vg,

where Ay, (up, vp) and (f,v,), denote using simple quadrature for integrals A(uy,, vp,)
and (f,vy,) respectively, and g7 is the piecewise P? (or Q?) Lagrangian interpolation

This manuscript is for review purposes only.
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(a) The quadrature points and a finite (b) The corresponding finite differ-
element mesh for P2 ence grid

F1G. 1. An illustration of Lagrangian P? element and the simple quadrature using vertices and
edge centers.

(a) The quadrature points and a finite (b) The corresponding finite differ-
element mesh ence grid

FIG. 2. An illustration of Lagrangian Q2 element and the 3 x 3 Gauss-Lobatto quadrature.

polynomial at the quadrature points shown in Figure 1 for P? method (or Figure 2
for Q% method) of the following function:

o (U i (2,) € (0,1) x (0, 1),
o) {g(fc,y), if (x,y) € 9.

Then @, = up + gr is the numerical solution for the problem (3.1). Notice that
(3.3) is not a straightforward approximation to (3.2) since g is never used. When the
numerical solution is represented by a linear combination of Lagrangian interpolation
polynomials at the grid points, it can be rewritten as a finite difference scheme. We
also call it a variational difference scheme since it is derived from the variational form.

3.2. The P? variational difference scheme derived. For Laplacian Lu =
—Au, the scheme (3.3) on a uniform regular triangular mesh can be given as [24]:

0 -1 0
1
(3.4a) 7 -1 4 —1|:U=f;, if(z;y;)isan edge center;
0 -1 0
1 -4 1
1
(3.4b) o2 -4 12 —4):U=0, if(z;,y;)is a vertex.
1 -4 1

This manuscript is for review purposes only.



6 L. CROSS AND X. ZHANG

Notice that the stiffness matrix is not an M-matrix due to the positive off-diagonal
entries in (3.4b) and its inverse positivity was proven in [20].

Since the simple quadrature is exact for integrating only quadratic polynomials
on triangles, it is not obvious why the variational difference scheme (3.4) is fourth
order accurate. With such a quadrature on two adjacent triangles forming a rectangle
in a regular triangular mesh, we obtain a quadrature on the rectangle, see Figure 3.
For a reference square [—1,1] x [—1,1], the quadrature weights are 2 and % for an

3
edge center and the cell center respectively.

%_,o

Fia. 3. The simple quadrature on two triangles give a quadrature on a square.

LEMMA 3.1. The quadrature on a square [—1,1] x [—1,1] using only four edge
centers with weight % and one cell center with weight % is exact for P® polynomials.

Proof. Since the quadrature is exact for integrating P? polynomials on either
triangle in Figure 3, it suffices to show that it is exact for integrating basis polynomials
of degree three, i.e., 2%y, zy?, =3 and y>. It is straightforward to verify that both
exact integrals and quadrature of these four polynomials on the square are zero. 0O

Therefore, with Bramble-Hilbert Lemma (see Exercise 3.1.1 and Theorem 4.1.3
in [9]), we can show that the quadrature rule is fourth order accurate if we regard the
regular triangular mesh in Figure 3 (a) as a rectangular mesh.

The standard L?(2)-norm estimate for the finite element method with quadrature
(3.3) using Lagrangian P? elements is third order accurate for smooth exact solutions
[9]. On the other hand, superconvergence of function values in finite element method
without quadrature can be proven [6, 23], e.g., the errors at vertices and edge centers
are fourth order accurate on triangular meshes for function values if using P? basis,
see also [14]. Tt can be shown that using such fourth order accurate quadrature will
not affect the fourth order superconvergence even for a general variable coefficient
elliptic problem, see [19]. Notice that the scheme can also be given on a nonuniform
mesh and its fourth order accuracy still holds on a quasi uniform mesh since it is also
a finite element method.

3.3. Q? variational difference scheme. The scheme (3.3) with Lagrangian Q*
basis is fourth order accurate [19] and monotone on a uniform mesh under suitable
mesh constraints [18]. In the next section, we will discuss its monotonicity for the
Laplacian operator on quasi-uniform meshes.

Consider a uniform grid (z;,y,) for a rectangular domain [0,1] x [0,1] where
z; =1h,1=0,1,...,n+1land y; = jh,j=0,1,...,n+1, h= H—H,wherenmustbe
odd. Let u;; denote the numerical solution at (z;,y;). Let u denote an abstract vector
consisting of u;; for 4,5 = 1,2,--- ,n. Let U denote an abstract vector consisting of
ugj for 4,7 =10,1,2,--- ,n,n+ 1. Let f denote an abstract vector consisting of fij for
i,7 = 1,2,--- ,n and the boundary condition g at the boundary grid points. Then
the matrix vector representation of (3.3) is Su = Mf where S is the stiffness matrix
and M is the lumped mass matrix. For convenience, after inverting the mass matrix,

This manuscript is for review purposes only.
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with the boundary conditions, the whole scheme can be represented in a matrix vector
form Lpua = f. For Laplacian Lu = —Au, Lpa = f on a uniform mesh is given as
(3.5)

TUim1j — Ui+ AU Ui — Uit

(Lpta);j == 3 = fij, if (zi,y;) is a cell center,
h
= —Ui—1 .+ 2Ui 5 — Wi Ui j—o — SUj i 14u; ;i — 8u; ; W;
(Lhﬁ)i,j = Ly T h;’] Gy + =L 2 ER R 4}7;] a1 Y2 = fij»
if (x;,y;) is an edge center for an edge parallel to the y-axis,
- U'72"_SU'71"+14U‘7'_SU' 11._‘_“. 2. _Uj"71+2u‘,"_U'1‘ 1
(Lhu)i,j — i J i J 4h;] i+1,j5 12, + 1,7 h; J 1,5+ _ ij7

if (;,y;) is an edge center for an edge parallel to the x-axis,
71/i72,j - 87141',1’]' + 14“’7;]' - S’ILH,L]' + /U/i+2,]' + 71,1'7]',2 - 871,1',]',1 + 1471,7”] - STLi.j+1 + 7l/i7j+2 _ f )
4h? 4h? “
if (x;,y;) is a knot,

(lf/hﬁ)itj =

(Lpw)ij == ui; = gi; if (z;,9;) is a boundary point.

If ignoring the denominator h2, then the stencil can be represented as:

1
4
-1 -2
cell center —1 4 —1 knots i -2 7 =2 i
-1 -2
1
1
-1
edge center (edge parallel to y-axis) % -2 % -2 %
-1
1
4
-2
edge center (edge parallel to z-axis) —1 % -1
-2
1
4
(a) Quadrature points and a finite ele- (b) The corresponding finite differ-
ment mesh. ence grid.

F1G. 4. An illustration of a mesh for Q% element and the 4 X 4 Gauss-Lobatto quadrature.

3.4. @3 variational difference scheme. In (3.3), if using Lagrangian Q3 basis
with 4 x 4 Gauss-Lobatto quadrature, we get a fifth order accurate scheme [19]. The

This manuscript is for review purposes only.
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8 L. CROSS AND X. ZHANG

F1G. 5. Three adjacent 1D cells for P3 elements using 4-point Gauss-Lobatto quadrature.

4-point Gauss-Lobatto quadrature for the reference interval [—1,1] has quadrature

points [—1 — é \/05 ]. Thus on an uniform rectangular mesh, the corresponding finite
difference grid consisting of quadrature points is not exactly uniform, see Figure 4.
Now consider a uniform mesh for a one-dimensional problem and assume each
cell has length h, see Figure 5. There are two quadrature points inside each interval,
and we refer to them as the left interior point and the right interior point. The @3
variational difference scheme for one-dimension problem (2.4) is given as Lju = f:

(3.6)

. 4 15v/5 + 25 15v/5 — 25 1 )
(Lpm); == e |:13ui - T(ui,l + Uit1) + T(ui,g + Uit2) — Z(ui,g + uit3)| = fi,x; is a knot;
_ 4 3Vh+5 -5 15v/5 — 25
(Lpu); == 2 [7 \/;+ wi—1 + du; + 7111:“ + fTuwg} = fi, m; is the left interior point;

5 3v6+5
Uj—p — =U;j—1 + 5“1‘ —

8 2 4

o 4 [15v5—25
(thl)i = ﬁ |:7

ui+1} = fi, if x; is the right interior point.
(Z/hfl)o = 1Ug = 0g, (Ehﬁ)TH»l = Up41 = 01.
The explicit scheme in two dimensions will be given in Section 6.

4. Lorenz’s condition for monotonicity.

4.1. Discrete maximum principle. For a finite difference scheme, assume
there are N grid points in the domain Q and N9 boundary grid points on 9€2. Define

u=(ur - un) W =@? - W) a=(uw - oun wd - ud,)" |}

A finite difference scheme can be written as

N N?
La(@); = Y bijuj + ) bl =fi, 1<i<N,
j=1 j=1

The matrix form is

Lhﬁ ;

Il
al
~
=
Il
e
e =
-5
N———
“gz
Il
=2
S =
N———
T
Il
N\
R =
N———

The discrete maximum principle is

(4.1) Lp(0); <0,1<i< N = Max u; < max{(),mlaxu?}

which implies
Lp(@); =0,1<i<N=|u;| <max|uf|

The following result was proven in [8]:

THEOREM 4.1. A finite difference operator Ly, satisfies the discrete mazimum
principle (4.1) if L,:l > 0 and all row sums of Ly are non-negative.

This manuscript is for review purposes only.
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With the same Lj, as defined in the previous section, it suffices to have E;l >0, see
[18]:

_THEOREM 4.2. If E,:l > 0, then i;l > 0 thus L,:l > 0. Moreover, if row sums
of Ly, are non-negative, then the finite difference operator Ly satisfies the discrete
mazimum principle.

Let 1 be an abstract vector of the same shape as @ with all ones. For the Q2
or @ variational difference scheme, we have that (L,1);; = 1 if (z;,y;) € 9Q and
(Lp1);; = 0 if (z4,y;) € Q, which implies the row sums of Lj, are non-negative. Thus
from now on, we only need to discuss the monotonicity of the matrix Ly,.

4.2. Lorenz’s sufficient condition for monotonicity.

DEFINITION 1. Let N = {1,2,...,n}. For N1,Na C N, we say a matriz A of
size n X n connects N1 with Ny if

(4.2) Yo ENl,H’L'T GNQ,Hil,...,irfl eN st Qi iy, 750, k=1,---,r

If perceiving A as a directed graph adjacency matriz of vertices labeled by N, then
(4.2) simply means that there exists a directed path from any vertex in Ny to at least
one vertex in No. In particular, if N1 = (), then any matriz A connects N1 with N>.

Given a square matrix A and a column vector x, we define
NY(Ax) = {i: (Ax); = 0}, NT(Ax) = {i: (Ax); > 0}.

Given a matrix A = [a;;] € R™*", define its diagonal, off-diagonal, positive and
negative off-diagonal parts as n X n matrices Ag, Ay, AT, A7:

Ad)ij = , Ag=A—- Ay,
(Aa)iy {0, it i ¢

(Af)y = 0 20 TET s,
0, otherwise.

The following two results were proven in [20]. See also [18] for a detailed proof.

THEOREM 4.3. If A < MiMs--- ML where My, -+, My are nonsingular M-
matrices and L, < 0, and there exists a nonzero vector € > 0 such that one of the
matrices My, -+, My, L connects N°(Ae) with N+ (Ae). Then M, 'M; ' -- - M;'A
is an M-matriz, thus A is a product of k + 1 nonsingular M-matrices and A~! > 0.

THEOREM 4.4 (Lorenz’s condition). If A, has a decomposition: A = A*+ A% =
(af;) + (aj;) with A®> <0 and A* <0, such that

(4.3a)

Ay + A? is a nonsingular M-matriz,

(4.3b)

AT < AZA;AS or equivalently Ya;; > 0 with © # j,a;; < Z afka,;klazj,
k=1
(4.3c)
Je € R™\ {0},e > 0 with Ae > 0 s.t. A* or A® connects N°(Ae) with N (Ae).

Then A is a product of two nonsingular M-matrices thus A~ > 0.

This manuscript is for review purposes only.
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10 L. CROSS AND X. ZHANG

COROLLARY 4.5. The matriz L in Theorem .53 must be an M-matrix.

Proof. Let M~ = M, "M, ",...M; ", following the proof of Theorem 7 in [18],
then M~1'Ae > cAe for some positive number ¢. Then Ae > 0 = M~'A4e > 0. Now
sincee >0, M 'A< L=0<(L—-M'Ae= M~1Ae < Le thus Le > 0.

Assume L connects N°(A4e) with N (A4e). Since M~1Ae < Le, N(Le) C
N?(Ae) and Nt (Ae) C Nt (Le), so L also connects N°(Le) with N (Le).

Assume M; connects NV(Ae) with N (Ae), following the proof of Theorem 7
in [18], we have M ~tAe > 0. Now L trivially connects N°(Le) with N'*(Le) since
Le> M~'Ae = Le >0 and N°(Le) = 0.

Then Theorem 6 in [18] applies to show L is an M-matrix. O

In practice, the condition (4.3¢c) can be difficult to verify. For variational difference

schemes, the vector e can be taken as 1 consisting of all ones, then the condition (4.3c)
can be simplified. The following theorem was proven in [18].

THEOREM 4.6. Let A denote the matrixz representation of the variational differ-
ence scheme (3.3) with Q? basis solving —V - (aV)u + cu = f. Assume A, has a
decomposition A; = A* + A® with A* <0 and A* < 0. Then A~! > 0 if the following
are satisfied:

1. (Ad + Az)l # 0 and (Ad + Az)l >0,

2. AT < AZAM A%

3. For c(x,y) > 0, either A* or A® has the same sparsity pattern as A, . If
c(x,y) > 0, then this condition can be removed.

4.3. A relaxed Lorenz’s condition. In practice, both (4.3a) and (4.3b) impose
mesh constraints for the 2 variational difference scheme on non-uniform meshes. The
condition (4.3a) can be relaxed as the following:

THEOREM 4.7 (A relaxed Lorenz’s condition). If A, has a decomposition: A, =
A%+ A° = (af;) + (af;) with A* <0 and A* <0, and there exists a diagonal matriz
Ag- > Ag such that

(4.4a)
AL+ A® is a nonsingular M-matriz,
(4.4b)
Af < AZAGMAS,
(4.4c)
Je € R™\ {0},e > 0 with Ae >0 s.t. A* or A® connects N°(Ae) with N'"(Ae).

Then A is a product of two nonsingular M-matrices thus A= > 0.

Proof. Tt is straightforward that A = Ag + AT + A% + A5 < Ag + A% + A% +
APAGNA® = (Ags + A% (T + AL A®). By (4.4c), either Ag« +A® or I+ A7 A® connects
N?(Ae) with N+ (Ae). By applying Theorem 4.3 for the case k = 1, My = Ag- + A?
and L =1 + A;}As, we get A1 > 0. 0

REMARK 3. Since Aq < Ag~, only (4.4a) is more relazed than (4.3a), and (4.4Db)

is more stringent than (4.3b). However, we will show in next section that it is possible
to construct Ag- such that (4.3b) and (4.4b) impose identical mesh constraints.

With Theorem 2.1, combining Theorem 4.7 and Theorem 4.6, we have:

THEOREM 4.8. Let A denote the matrixz representation of the variational differ-
ence scheme (3.3) with Q? basis solving =V - (aV)u + cu = f. Assume A, has a
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decomposition A; = A* + A® with A®* < 0 and A* < 0 and there exists a diagonal
matriz Ag- > Ag. Then A=! > 0 if the following are satisfied:
1. (Agr + A*)1 # 0 and (Ag- + A*)1 > 0;
2. AT < AZAM A%,
3. For c(x,y) > 0, either A* or A® has the same sparsity pattern as A, . If
c(x,y) > 0, then this condition can be removed.

5. Monotonicity of Q2 variational difference scheme on quasi-uniform
meshes. The discussion in this section can be easily extended to more general cases
such as Lu = —Au + cu and Neumann boundary conditions. For simplicity, we only
discuss the Laplacian case Lu = —Aw and Dirichlet boundary conditions.

Consider a grid (z;,y;) (4,7 =0,1,...,n+1) for a rectangular domain [0, 1] x [0, 1]
where n must be odd and 7, j = 0,n+1 correspond to boundary points. Let u;; denote
the numerical solution at (x;,y;). Let G denote an abstract vector consisting of u;;
for i,7 = 0,1,2,--- ,n,n + 1. Let f denote an abstract vector consisting of fij for
i,7 = 1,2,--- ,n and the boundary condition g at the boundary grid points. Then
the matrix vector representation of (3.3) with Q? basis is Lt = f.

The focus of this section is to show E;l > 0 under suitable mesh constraints for
quasi-uniform meshes. Moreover, it is straightforward to verify that (Lj1); ; = 0 for
interior points (z;,y;) and (Lp1);; = 1 for boundary points (x;,y;). Thus by Section
4.1, the scheme also satisfies the discrete maximum principle.

For simplicity, in the rest of this section we use A to denote the matrix L;, and let
A be the linear operator corresponding to the matrix A. For convenience, we can also
regard the abstract vector u as a matrix of size (n+2) x (n+2). Then by our notation,
the mapping A : R("+2)x(n+2) 5 R(n+2)x(n+2) ig given as A(1); ; := (Lp1)i ;-

N
|2 @
(e} [¢] 8] [ ]
ha1 ha I (4) (3)
> ¢ > °
(<] 'S o (<] [°]
hp—1
p

(a) Mesh length definitions for (b) The four distinct point types.

four adjacent Q? elements.

Fi1G. 6. A non-uniform mesh for Q2% variational difference scheme. Each edge in a cell has
length 2h.

5.1. The scheme in two dimensions. For boundary points (x;,y;) € 0L, the
scheme is A(1); ; := u; j = g;,;. The scheme for interior grid points (z;,y;) € 2 on
a non-uniform mesh can be given on four distinct types of points shown in Figure 6
(b). For simplicity, from now on, we will use edge center (2) to denote an interior
edge center for an edge parallel to the y-axis, and edge center (3) to denote an interior
edge center for an edge parallel to the x-axis. The scheme at an interior grid point is
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343 given as A(fl)@j = fivj with

(5.1)
_ 2h2 + 2h} 1 1 1 1
344 A1) IZTh%ui,j - <hgui+1,j + hfguiq,j + hfgui,jﬂ + hfgui,jq
345 if (z;,y;) is a cell center;
Th? 4+ 4hyhe 1 4 4
346 A(a i = b Ui — Uq i — Ui—1.7
@iy 2haha 1h2 7 ha(ha+ha 1) 7 he_i(ha + ha1)

R T S N
o B2 T I T o e 1) T 2he (B + o) 2
348 if (2;,y;) is edge center (2);

o Ad@) Th2 + dhyhy 4 4 4
34¢ i = i — Ui jp] — —————— Uy j_

! 2hphy1h2 7 (4 ho1) TN by (e + 1) !
350 i . i _i_; _|_ 1 ..
v hZ it hZ Yl 2hy (hy + hb—l)ul’ﬁ_2 2hp—1(hy + hbfl)Ul’]_%
351 if (2;,y;) is edge center (3);
_ Thoha—1 + Thyhy_1 4 4
352 i = ii— | U1 i1
A = o " |l ae) 0 oy )
4 4

353 e it | uis

) ho(hy +ho—1) 7 (b + ho1) T T 2ha(he + haoy) T

1 1 1
354 + Ui+ = U jyo T Ui 2,
2ha1(ha+ha1) T 2hy(hy+hyo1) T 2y + hyr)

356 if (z,y;) is an interior knot. |
357 For a uniform mesh h, = hq—1 = hy = hy—1 = h, the scheme reduces to (3.5).

358 5.2. The Decomposition of A, . Next, by the same notations defined in Sec-
359 tion 4.2, we will decompose the matrix A = Ag + A, + AT and A, = A* + A% to
360 verify Theorem 4.6. We will use A, AT, A% and A° to denote linear operators for
361 corresponding matrices. First, for the diagonal part we have

362 Aqg(Q); ; = u; 4, if (x;,y;) is a boundary point;
363 Aq(); ; = %um, if (z;,y;) is a cell center;
allp
364 Ag(n); j = Wum, if (z;,y;) is edge center (2);
365 Ag(a); ; = Wuim if (z;,y;) is edge center (3);
;2(; Aq(); ; = 7h§:j;;j;ﬁ:ﬁiﬁlui7j, if (z,y;) is an interior knot.

368 Notice that for a boundary point (z;,y;) € 09 we have A(); ; = Aq(Q);; = u; j, thus
369 for off-diagonal parts, we only need to look at the interior grid points. For positive
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off-diagonal entries, we have

Af(@);; =0, if (z;,y;) is a cell center;

1 1
H(u 3 By —— 7 i i—9.i d t 2)-
'Aa (U) J Zh/a(ha + ha—l)u 20 + 2ha—1(ha + ha—l)u 2 cdee conter ( )’
1 1
+(u i — a1 Ui, i d t 3):
Az (@i 2hy (hy, + hb—l)u g2t 2hp 1 (hy + hb—l)u 42, edge center (3);
1 1 1
) s —— o . R Ry
A (i =g et hac) "9 ¥ By 1 Ba) "2 T Dy + o) 9

1
+ Ui, 5—2,
2hy_1(hy + hy_1) 2

if (z;,y;) is an interior knot.

Then we perform a decomposition A, = A*+ A®, which depends on two constants
0<er<land 0 < ey <1.

_ 1 1 1 1 . .
A*(Q); ; = — e <h2ui+1’j toglio1g T atige + hzui,j_1> , if (z4,y;) is a cell center;
a a b b

A* () < ! U + ) { 1 u + 4 }

ij = €| 73U, FUij-1 ) —€ | T Wit Ui-1|,

? AR TR T 2 b (he + ham1) T haoi(Ba + haer)
if (z;,y;) is edge center (2);

i,j = — €1 hguz+1,y hguz—m €2 hb(hb—khbq)uw“ hbfl(hb'i‘hbfl)Ul’]_l )

if (z;,y;) is edge center (3);
L 4 4
A (U)LJ e |:h;a(h/a + ha—l)uz+1)] + ha—l(hu, + ha—l)u,bil"7
+ 1 + 4 ] if ( ) is an interior knot
——u; ——————u;j-1|, if (x;,y;) is an interior knot.
ho(hy +ho—) 77T hpy(hy + hy—1) Y |

Notice that A* defined above has exactly the same sparsity pattern as A, for 0 <
€1 <land 0 <ey <1. Let A* = A, — A® then A® <0.

5.3. Mesh constraints for AZAglAS > Af. Inorder to verify AZAglA“" > AT,
we only need to discuss nonzero entries in the output of A} () since AZA; 'A% > 0.
First consider the case that (z;,y;) is an interior knot. Figure 7 (a) shows the
positive coefficients in the output of A7 (@);; at a knot (z;,y;). Figure 7 (b) shows
the stencil of A (1);;. Thus A*(Q) acting as an operator on [A;'A%](@) at a knot is:

1
hu(hafl + ha)

A7 A% (W) 41 +

1
hafl(hafl + ha)

[AZ A% (@) 1 | -

AP AL A7) () = —dez A7 A (@) + A7 A ()i

1
+7
hy(hy—1 + hs)

1
hy—1(hp—1 + hy)

In the expression above, the output of the operator A%(@1);; are at interior edge
centers as shown in Figure 7 (b). Hence [A;".A%] will act on these edge centers with
the mesh lengths corresponding to Figure 6. Carefully considering the mesh lengths
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® ‘(:L'n Yj) ® r\. u

(a) Four red dots denote non- (b) Stencil of A*(@);,;. (c) Stencil of AZAglAs(ﬁ)@j.
zero entry locations in AZ (@);,

F1G. 7. Stencil of operators at an interior knot (x;,y;). The four red dots are the locations/en-
tries where AF (@);,; are nonzero. Gray nodes in (c) represent positive entries that can be discarded
for the purposes of verifying (4.4b). The mesh is illustrated as a uniform one only for simplicity.

and operations of Agl at these points gives:

1 2hyhy_1h2
z 1 481(+ bllb—11tg S(
ii=—4 i1
[A d A ](u) 5J €2 |:hu(ha—1 + hq) 7h3 + 4hbhb_1 (u) +1,7
1 2hphy—1h?_ 1 2hghq—1h}
+ Tl a1 As(l_l)i_Lj-l- ala17b As(ﬁ)i,j_;,_l

ha—l(ha—l + ha) 7h3 1 + 4hbhb 1
1 2haha— 1hb 1
hb 1(hy—1 + hy) Thi_| 4+ 4haha_s

hb(hb—l + hb) 7h% 4+ 4dhohg_1

()i - 1} , if (@;,y;) is an interior knot.

Next consider the effect of A®*(u) operator which has the same sparsity pattern as
A#(@). Figure 7 (c) shows the stencil of [A*A;A%](@); ; for an interior knot. Recall
that A* <0, A° <0, and A 1'> 0, thus we have AZAglAS > 0. So we only need to
compare the outputs of [Az.A 1AS]( )i,; and AT (@); ; at nonzero entries of A7 (@), ;,
i.e., the four red dots in Figure 7 (a) and Figure 7 (c).
Thus we only need coefficients of w;y9 j,ui—2;, Ui j+2, and u; j_o in the final
expression of [A*A; ' A%](u); j, which are found to be
) 1 2hyhy 1 h2 1
ha(ha— 1+h ) Th2+4hyhy_1 h2
) 2hphy 1ha 1 1
71(ha 1+ha) Th2 _ +4hphy_1 B2 _|
) 2haha_1h? 1
)

Ui4-2,5 + 462(1

Uj—2,5 - 462 1-— €1

hb(hb 1+hb) 7h +4hohg_—1 h
2hqhg— lhb 11
hy— 1(hb 1+hy) ThE_ +4haha_1 hI_|

(
Uj, 542 - 462(1 €1
(1 €1

Uj,j—2 : 462

In order to maintain A} < AzAglAs, by comparing to the coefficients of u;14 ; for

+ (i i . strai _2hheor 5 1 Gy traints
AT (@), we obtain a mesh constraint 4ea(1 — )7h2 TiahohT = 3. Similar constraints

are obtained by comparing other coefficients at u; jr2 and u;—2 ;. Define
6(61, 62) = 462(1 — 61).

Then the following constraints are sufficient for A} (@) to be controlled by A% A *A* (w)f]
at an interior knot:

max{hZ, hi |}, hphp_1 > %max{lf R |}

7
. ala—1 2>

-4

This manuscript is for review purposes only.



415
416
417
418

419

420

421

423

126
127

428

429

130

431

432

133

oL
TW

436
437
438
439

440
441
442
143
144

MONOTONICITY OF HIGH ORDER ACCURATE DISCRETE LAPLACIAN 15

Second, we need to discuss the case when (z;,y;) is an interior edge center. With-
out loss of generality, assume (x;,y;) is an interior edge center of an edge paral-
lel to the y-axis. Then similar to the interior knot case, the output coefficients of
[A* A7 A%](1); ; at the relevant non-zero entries of A} (@); ; are:

. . 4 (1 _ ) 1 hgh% 1
Uit2,5 © €2 1) h(ha—1+ha) 202 +2h% B2
U;—2.4 ¢ 462(1 — 61) L hi_lhi L
1=2,] ha—1(ha—1+ha) 2h2_ +2h2 A2 |

. . . _ h2 n2
By comparing with coefficients of A7 (@), ;, we get hﬁiﬁhﬁ > 7, m > 3.
To ensure A7 (@) is controlled by A*A; ' A%(@) at edge centers, it suffices to have:
(5.2b)

1 1
min{hg, ha—1} > g/mmax{hb,hb_l}, min{hy, hp—1} > wmmam‘{hu,ha_l}.

Note that A} (1), ; = 0 if (2;,y;) is a cell center. Since A*A;'A%(@) > 0, there
is no mesh constraint to enforce the inequality at cell centers.

5.4. Mesh constraints for A; + A® being an M-matrix. Let B = Ay + A*.
Then B(1); ; = 1 for a boundary point (z;,y;). For interior points, we have:

11 11 2h2 + 2h2 2h2 + 2hj
B(l)l,j = —€1 <h‘21 + hic% + Fg + hg) Th% = (1 — el)Th%’ Cell Center;
11 [ 4 4 Th? + 4hoha_1
B(1 i = — — — | — b a'ta
(L)ig = =€ (hg + h§> e P ha_l(hﬁha_l)} Shaha 112
2 8
=(1— — 1— —€)—m—— 2):
( 61)h§ +( 762)2haha71’ edge center (2);
1 1 [ 4 4 Th? + 4hphp_1
B()ij=—e (5 +:5) - + + 8
(L)iy ‘1 (hg h§> 2\ ho(ho + ho—1) o1 (hy + hb—l)] 2hyphy_1h?2
2 8 7
—(l—e)=+(1—ce)—') ed ter (3);
( El)hg +( 762)2hbhb_17 edge center (3);
B(1) [ 1 + 1 + 1 + 1
.
! 2 ha(ha + ha—1) = ha—1(hg +ha—1)  he(he +he—1)  he—1(he + ho—1)
Thoho 1 + Thalta—1 _ (1- §e )7hbhb_l + Thaha interior knot
2hoha—rhohy—1 T 2hgha_1hyhy—y '

Notice that larger values of ¢ give better mesh constraints in (5.2). And we have
SUDPg< e, ep<1 £(€1,€2) = SUPg(, (,<14€2(1 — €1) = 4. In order to apply Theorem 2.1
for A; + A* be an M-matrix, we need [A4 + A*](1) > 0. This is true if and only if
e1 <1 and e < £, which only give SUPg <, <1,0<e,< 1 L(€1,€2) = 3.5.

5.5. Improved mesh constraints by the relaxed Lorenz’s condition. To
get a better mesh constraint, the constraint on e¢; can be relaxed so that the value
of £(e1,€2) can be improved. One observation from Section 5.3 is that the value of
Aq(@); ; for (z;,y;) being a knot is not used for verifying A} < A#A;'A* (for both
interior knots and edge centers). To this end, we define a new diagonal matrix Ay,
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145  which is different from A4 only at the interior knots.

446 Ag-(0); j = u; ; = Ag(a); j, if (x;,y;) is a boundary point;
2h2 4 2h?

147 Ag-(); 5 = Wum = Aq(0); ;, 1if (x;,y;) is a cell center;
Th? + dhghg_

448 Ag«(@); j = Mum‘ = A4(a);;, edge center (2);

J Qhaha_lh%
7h(21 + 4hphy_1 w
thhb_lhg -

, _ 8hphp—1 + 8hgha—1
450 Ag=(0); 1 =
451 @ (Wi 2hgha—1hyhy—1

449 Ag+(0); ; = = Aq(1); ;, edge center (3);

u;; # Ag(@); 4, if (x;,y;) is an interior knot.

452 Since the values of Ag(@); ; for (z;,y;) being a knot is not involved in Section 5.3,
153 the same discussion in Section 5.3 also holds for verifying A} < AZAJ}AS. Namely,
454 under mesh constraints (5.2), we also have A} < A*A;' A

455 Let B* = Ay« + A?, then the row sums of B* are:

156 B*(1);; =1, if (z;,y;) is a boundary point;

157 B (1) = —€ (hlg + hig + hli + hlg) zhih?;;hg =(1- el)w,cell center;
158 B*(1);; = —€ (hlg + hl§> — €2 :ha(ha jlr ) + ha,l(ha4+ ha1)] + 7h§hthih“1};%_l
459 =(1- 61)h2l27 +(1- %62)m, edge center (2);

2
160 B*(1)i; = —e (hlg + h1§> — € Tl i ) + hb—1<hb4+ hb1>:| 7h5h:hjhi?%_l
461 =(1- 61)% +(1- %eg)ﬁ, edge center (3);

4 4 4 4

162 B*(1);; = —
(Vi = €2 [ha(ha Fha) | hei(he Fhasy) | T+ hey) | e (i F o)
8hyhy—1 + 8hahe—1 8hyhp—1 + 8hghe—1

463 =(1- ,  interior knot.

161 Dt oy g gy OOT kR

465 Now [Ag- + A*](1);; > 0 at cell centers and knots is true if and only if ¢ <1
166 and ey < 1.

167 Next, we will show that the mesh constraints (5.2) with 0 < ¢; < % and €5 = 1

468 are sufficient to ensure [Ag- + A*](1);; > 0 at edge centers. We have 0 < ¢ <
469 %,62 =1=2</{< 4= TLL > %. The mesh constraints (5.2) imply that

- 7 2 112
470 hahafl 2 mhb Z Zhb7 thus

fT% haha—l

2 8 7 2 1 1 1[4 1
o (lma) st (- ce) e = (1 =€) g — 2 = = > 0.
L -l ge) g = a)m 5 T g [ } =

473 Similarly, (1 — 61)% +(1- %eg)m > 0 also holds.

Therefore, for constants 0 < ¢; < 3 and €3 = 1, we have [Ag- + A%](1) > 0. In
5  particular, we have a larger ¢ compared to constraints from Ag.
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5.6. The main result. We have shown that for two constants 0 < €1 < % and
€ = 1, under mesh constraints (5.2), the matrices A4+, A*, A® constructed above
satisfy (Agq- + A%)1 >0 and A} < A7A'AS.

For any fixed e; > 0 and e; = 1, A* also has the same sparsity pattern as A.
Thus if ¢ in (5.2) is replaced by SUPg<c, <1 ep=1 l(€e1,€2) = 4, Theorem 4.8 still applies
to conclude that A=1 > 0.

THEOREM 5.1. The Q? wvariational difference scheme (5.1) has a monotone ma-
trix Ly, thus satisfies discrete mazimum principle under the following mesh constraints:

7 7

hoha1 > Emax{hf,hf_l}, hyhp—1 > Emam{hi,hi_l},

(5.3)
1 1

min{hg, ho—1} > \/gmax{hb, hy—1}, min{hp, hy—1} > \/;max{ha, ha-1,}

where hg, hq_1 are mesh sizes for x-axis and hy, hy_1 are mesh sizes for y-variable in
four adjacent rectangular cells as shown in Figure 6.

REMARK 4. The following global constraint is sufficient to ensure (5.3):

<7m§g7

(54) = h, — 25

OJ‘[\D
N[ Ot
>

where hy,, and hy, are any two grid spacings in a non-uniform grid generated from a
non-uniform rectangular mesh for Q> elements.

REMARK 5. For Q! finite element method solving —Au = f to satisfy discrete
mazimum principle on non-uniform rectangular meshes [7], the mesh constraints are

(5.5) haha—1 > %max{h%,h%_l} hohp—1 > %max{hi,hi_l}.

5.7. Necessity of Mesh Constraints. Even though the mesh constraints de-
rived above are only sufficient conditions, in practice a mesh constraint is still neces-
sary for the inverse positivity to hold. Consider a non-uniform Q2 mesh with 5 x 5
cells on the domain [0, 1] x [0, 1], which has a 9 x 9 grid for the interior of the domain.
Let the mesh on both axes be the same and let the four outer-most cells for each
dimension be identical with length 2h. Then the middle cell has size 2h’ x 21’ with
W =1 —2h. Let the ratio 4'/h increase gradually from h//h =1 (a uniform mesh)
until the minimum value of the inverse of the matrix becomes negative. Increasing by
values of 0.05, we obtain the first negative entry of E;l at h'/h = 5.35 with h = 0.0535
and A" = 0.2861 shown in Figure 8 (a). Figure 8 (b) shows how the minimum entry
of L; ! decreases as h'/h increases.

6. Monotonicity of Q3 variational difference scheme on a uniform mesh.
Even though Lorenz’s condition can be nicely verified for the Q2 scheme, it is very
difficult to apply Lorenz’s condition to higher order schemes due to their much more
complicated structure. In particular, even for Q3 scheme, simple decomposition of
A7 = A* + A° such that A} < A*A;'A* is difficult to show. Instead, we propose to
apply Lorenz’s theorems to a few simpler intermediate matrices. To be specific, let
A = A3 be the matrix representation of the scheme, and let Ag = M7 be an M-matrix.
Then we construct matrices A; and L; such that

Ay < AoLg, Ay <ALy, Az <AL,
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(a) A non-uniform mesh with 5 x 5 cells on
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tive. The minimum value of Z;l is —6.14F —8.
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b) A plot of the minimum value of L7Yash'/h
h
increases.

F1G. 8. Necessity of mesh constraints for inverse positivity [_/;1 > 0 where Ly, is the matriz in
Q? variational difference scheme on non-uniform meshes.

with the constraints that 4;1 > 0 and Ag = M; connects N°(A4;1) with N (4;1) for

all A;. By Theorem

A1 < AQLO =MLy = Al = MMy = A2 < MiMsl, = A2 = MMy M;

4.3, then we have

= A3 < M1M2M3L2 = A= A3 = M1M2M3M4.

The matrices A; and L; satisfying constraints above are not unique.

6.1. One-dimensional scheme. We first demonstrate the main idea for the
one-dimensional case, for which we only need to construct matrices such that A; <

AoL(), A < AlLl.

Let Lj, denote the coefficient matrix in (3.6), then consider A = %Eh. For
convenience, we will perceive the matrix A as a linear operator A. Notice that the
coefficients for two interior points are symmetric in (3.6), thus we will only show

stencil for the left interior point for simplicity:

h2
A at boundary point zg or ;41 : =
1 15v5-25 —15\5-25
A at knot : ——
at kno 1 S <
—-3V5-5 5
A at interior point : ff 5 — 5

where bolded entries indicate the coeflicient for the operator output location z;.

—15v5 — 25

15v/5 — 25

3v5—5

4

)

8

8

For all the matrices defined below, they will have symmetric structure at two
interior points, thus for simplicity we will only show the stencil of the corresponding
linear operators for the left interior point. We first define three matrices A, Ag, and
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A; at boundary :

A; at knot :

Aj at interior point:
Ap at boundary :
A at knot:

Ay at interior point:

Zy at boundary :
Z at knot:

Zy at interior point:

2
15v5 — —
o BVE-25 oo o V625
8 8
—— 48 -2 0
h2
4
0 0 -7 15 -7 0 O
148 10
2 2
0
0 0 0 0 0 0 O
1
0 0 —24- 0
+2

Then we define Lo = I + (Ao)ngo where I is the identity matrix and (Ag)q denotes
the diagonal part of Ay. By considering composition of two operators Ag and Lg, we
get the matrix product AygLg. Due to the definition of Zy, AgLy still has the same

stencil as above:

AoLg at boundary :
AoLy at knot: 0

AoLg at interior point:
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It is straightforward to see A; < AgLg. By Theorem 2.1, A is an M-matrix, thus
we set My = Ag. Also it is easy to see that A;(1) > 0 thus NY(A4;1) is an empty

set.

So Ap trivially connects NY(A4;1) with N T(A4;1).

By Theorem 4.3, we have

Al < AoLO = M1L0 = A1 = MMy where My is an M-matrix.
Let (A1)4 denote the diagonal part of A;. Then define L; = I + (Al)ngl using

the following Z:

Z, at boundary: 0

Z, at interior point:

Ziatknot: 0 0 0O O O O O
11 1

And the matrix A;L; still have the same stencil and symmetry:

2

A1 L1 at boundary:

ALy at knot: ’165£+275

A1L1 at interior point:

A direct comparison verifies that A < A1L; = M{M>L,.
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Also it is easy to

see that A(1); = 0 if x; is not a boundary point. The operator Ay has a three-point
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stencil at interior grid points, thus the directed graph defined by the adjacency matrix
Ap has a directed path starting from any interior grid point to any other point, see
Figure 9. So M; = Ap connects N(A1) with N *(A1). By Theorem 4.3, we have

A< ALy = MiMsLy = A = MMMz where M3 is an M-matrix. Therefore,
A7t = M7 MM > 0.

Fi1c. 9. The directed graph defined by matriz My for the finite difference grid shown in Figure 5.

T

o (o] (o] (o]
(a) Three point types defining the stencil: (b) The directed graph defined by the matrix
knot (black), edge point (blue), interior point M.
(green).

FiG. 10. An illustration of a Q3 mesh with 2 x 2 cells.

6.2. Two-dimensional case. Due to symmetry, the stencil of the scheme can
be defined at three different types of points, see Figure 10 (a). Let each rectangular
cell have size h x h and denote Q? scheme by Lyt = f. Let A = hTZI_,h. Then for a
boundary point (x;,y;) € 0Q, A(1);; = %21111']‘. And the stencil of A at interior grid
points is given as

This manuscript is for review purposes only.
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Next we list the definition of matrices A; and Z; by the corresponding linear
operators A; and Z;. For convenience, we will only list the stencil at interior grid
points. For the domain boundary points (z;,y;) € 09, all A; matrices will have the

same value as A: A;(a);; = h;uij. And Z;(u);; = 0 for (z;,y;) € 00 The matrix

L; is defined as L; = I + (A;);'Z;
given by:

A, at knot: 0 15v5=25

|

A; at edge point: 0 —

ol
Jun
<

This

1 =0,1,2. The matrices and their products are

—15V5-25 —15v/5-25
8 26 8
—15v5-25
8
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Too Aj; at interior point:

15v6-25
5 0

ol
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Zyat knot: 0 0
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By Theorem 2.1, Ay is an M-matrix, thus we set M; = Ay. Notice that the matrix
My = Ag has a 5-point stencil and the directed graph defined by Mj is given in Figure
10 (b), in which there is a directed path starting from any interior grid point to any

other point. For convenience, let A3 = A. Then we have Ax(1) >0 (k =0,1,2,3).
Moreover, Ag(1);; > 0 (k= 0,1,2,3) for domain boundary point (z;,y,;) € Q. The
directed graph defined by M, easily implies that M; connects N°(A4;1) with N7 (4;1)

for all  =0,1,2,3.

By straightforward comparison, we can verify that Ay < AgLg, A2 < A1L1,A <

AsLs. By Theorem 4.3, we have

A1 < AQLO =MLy = Al = MMy = A2 < MiMsL, = A2 = MMy M;

= A< MiMyMsLy = A= MyMyMsM, = A~1 > 0.

This manuscript is for review purposes only.



591
592
593
594

595

596

597
598

599

600

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

622

623
624

625

MONOTONICITY OF HIGH ORDER ACCURATE DISCRETE LAPLACIAN 25

7. Numerical Tests.

7.1. Efficient implementation. For all schemes discussed in this paper, except
the P? variational difference scheme, the stiffness matrix can be efficiently inverted
by an eigenvector method, very similar to the inversion of 5-point discrete Laplacian
by Fast Fourier Transform (FFT). We demonstrate it for the 9-point scheme on a
N, x N, grid. For instance, the stiffness matrix in the scheme (2.2) can be written as

1
e
where ® is the Kronecker product, I, is the identity matrix of size N, x N, and H,

and H, are symmetric tridiagonal matricies of size N x N, and N, x IV, respectively,
with H defined as

H,® H, — 361, ® I,],

4 1
1 4 1
1

Let H = SAS~! be the eigenvalue decomposition of H, then we also have the eigen-
value decomposition of stiffness matrix
1 1 _ _
_W[HI ® H, — 361, ®1,] = —@(Sw ® 8y)(Ae ® Ay — 361, ® I,)(S, ' @ S,7).
Therefore, the stiffness matrix can be efficiently inverted by the eigenvector method,

e.g., Section 7.4 in [19]. Moreover, for a matrix H of size n x n, its m-th eigenvector is
[sin(mwn%rl) - sin(mr )] " and corresponding eigenvalue is 4+2 cos(mﬂ%ﬂ).
Thus multiplication of S and S~! can be implemented through FFT.

The stiffness matrix in the Q¥ variational difference scheme also has a kron struc-
ture [19]. But such a kron structure does not seem possible for (3.4). For Q?/Q? and
Bramble-Hubbard schemes, the eigenvectors for the small matrices H, and H, can

be computed numerically.

7.2. Accuracy tests. We show some accuracy tests of the schemes mentioned
in this paper for solving —Awu = f on a square (0,1) x (0,1) with Dirichlet boundary
conditions. Quasi-uniform meshes were generated by setting each pair of consecutive
finite element cells along the axis to have a fixed ratio h:i - = 1.01. We will simply
refer to the classical 9-point scheme (2.1) as 9-point scheme, and refer to its variant
(2.3) as compact finite difference. The schemes are tested for the following very
smooth solutions:

1. The Laplace equation —Au = 0 with Dirichlet boundary conditions and
u(z,y) = log((x +1)* + (y + 1)*) + sin(y)e”.
2. Poisson equation —Awu = f with homogeneous Dirichlet boundary condition:

f(z,y) = 13n%sin(3my)sin(2rz) + 2y(1 —y) + 22(1 — )
u(z,y) = sin(3ry)sin(2nz) + zy(1 — z)(1 — y)

(7.1)

3. Poisson equation —Awu = f with nonhomogeneous Dirichlet boundary condi-
tion:

f = 74n%cos(5mx)cos(Tmy) — 8

(7.2) 5 o
u = cos(bmzx)cos(Tmy) + x° +y
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The errors of fourth order accurate schemes on uniform grids are listed in Table
1, Table 2 and Table 3. The errors of @Q? and P? variational difference scheme on
quasi uniform rectangular meshes are listed in Table 4. The errors of Q? variational
difference scheme on uniform rectangular meshes are listed in Table 5. For the Laplace
equation, 9-point scheme (2.1) and compact finite difference (2.3) are the same scheme
and they are indeed sixth order accurate, see Remark 1.

TABLE 1

Accuracy test on uniform meshes for —Au = 0.

@Q? variational difference P? variational difference 9-point scheme (2.1)
Finite Difference Grid
12 error | order | I error | order | [? error | order | I°° error | order | {? error | order | I error | order
Tx7 1.04E-5 - 2.50E-5 - 2.05E-5 - 3.89E-5 - 1.50E-9 - 3.52E-9 -
15 x 15 6.91E-7 | 3.92 | 1.81E-6 | 3.78 1.38E-6 | 3.89 | 2.83E-6 | 3.78 | 2.35E-11 | 5.99 | 5.51E-11 | 6.00
31 x 31 4.42E-08 | 3.96 | 1.26E-7 | 3.83 | 8.93E-08 | 3.95 | 2.05E-7 | 3.78 | 3.98E-13 | 5.88 | 8.89E-13 | 5.95
63 x 63 2.79E-9 3.98 | 8.56E-9 | 3.88 5.65E-9 | 3.98 | 1.41E-8 | 3.85 | 1.32E-13 | 1.58 | 2.37E-13 | 1.90
compact finite difference (2.3) Bramble-Hubbard scheme
Finite Difference Grid
2 error | order | [ error | order | [% error | order | [* error | order
TxT7 1.50E-9 - 3.52E-9 5.04E-5 - 6.97E-5 -
15 x 15 2.35E-11 | 5.99 | 5.51E-11 | 6.00 3.75E-6 3.74 | 5.34E-06 | 3.70
31 x 31 3.98E-13 | 5.88 | 8.89E-13 | 5.95 2.52E-7 3.89 3.86E-7 3.78
63 x 63 1.32E-13 | 1.58 | 2.37E-13 | 1.90 | 1.63E-08 | 3.95 | 2.77E-8 | 3.80
TABLE 2
Accuracy test on uniform meshes for (7.1).
Q? variational difference P? variational difference 9-point scheme (2.1)
Finite Difference Grid
12 error | order | [ error | order | [ error | order | I error | order | [? error | order | [* error | order
TxT7 2.22e-02 4.90e-02 4.50e-02 - 1.67e-01 - 2.22¢-04 4.45e-04
15 x 15 1.31e-03 | 4.08 | 3.03e-03 | 4.01 | 2.49¢-03 | 4.17 | 9.42¢-03 | 4.15 | 5.63e-06 | 5.30 | 1.12e-05 | 5.30
31 x 31 8.04e-05 | 4.02 | 1.88e-04 | 4.01 | 1.50e-04 | 4.05 | 5.69¢-04 | 4.04 | 2.32e-07 | 4.59 | 4.65e-07 | 4.59
63 x 63 5.00e-06 | 4.00 | 1.17e-05 | 4.00 | 9.30e-06 | 4.01 | 3.52e-05 | 4.01 | 1.27e-08 | 4.19 | 2.54e-08 | 4.19
compact finite difference (2.3) Bramble-Hubbard scheme
Finite Difference Grid
12 error | order | I* error | order | I2 error | order | [ error | order
7TxT 3.18E-3 - 6.36E-3 3.74E-2 - 8.62E-2 -
15 x 15 1.91E-4 | 4.05 | 3.82E-4 | 4.05 | 2.36E-3 | 3.98 | 5.28E-3 | 4.02
31 x 31 1.18E-5 | 4.01 2.36E-5 | 4.01 | 1.01E-4 | 4.54 2.11E-4 | 4.64
63 x 63 7.38E-7 | 4.00 | 1.47E-6 | 4.00 | 4.17E-6 | 4.60 | 7.89E-6 | 4.74

This manuscript is for review purposes only.




MONOTONICITY OF HIGH ORDER ACCURATE DISCRETE LAPLACIAN

TABLE 3

Accuracy test on uniform meshes for (7.2).

27

Q? variational difference P? variational difference 9-point scheme (2.1)
Finite Difference Grid
12 error | order | [ error | order | {2 error | order | [ error | order | I error | order | [ error | order
TxT 3.62E-1 - 1.10E-0 - 9.68E-1 - 2.59E-0 - 2.48E-2 - 5.69E-2 -
15 x 15 3.75E-2 | 3.26 | 9.68E-2 | 3.50 | 7.81E-2 | 3.63 | 3.00E-1 | 3.11 | 2.61E-4 | 6.56 | 6.46E-4 | 6.45
31 x 31 2.44E-3 | 3.94 | 7.18E-3 | 3.75 | 4.70E-3 | 4.05 1.84E-2 | 4.02 | 3.65E-5 | 2.84 | 8.97E-5 | 2.85
63 x 63 1.54E-4 | 3.98 | 5.50E-4 | 3.70 | 2.89E-4 | 4.02 | 1.11E-3 | 4.04 | 2.55E-6 | 3.83 | 6.57E-6 | 3.77

Finite Difference Grid

compact finite difference (2.3)

Bramble-Hubbard scheme

12 error | order | I* error | order | I2 error | order | [ error | order
7T 9.88E-2 - 2.26E-1 - 3.14E-1 - 8.23E-1 -
15 x 15 540E-3 | 4.19 | 1.33E-2 | 4.08 | 1.76E-2 | 4.15 | 6.16E-2 | 3.73
31 x 31 3.22E-4 | 4.06 791E-4 | 4.07 | 3.38E-3 | 2.37 1.15E-2 2.41
63 x 63 1.98E-5 | 4.01 | 5.11E-5 | 3.95 | 3.04E-4 | 3.47 | 1.20E-3 | 3.32

8. Concluding remarks. We reviewed four existing high order monotone dis-
crete Laplacian. By verifying a relaxed Lorenz’s condition, we have discussed suitable
mesh constraints, under which the fourth order accurate Q? variational difference on
quasi-uniform meshes is monotone. The fifth order accurate Q3 variational difference
scheme on a uniform mesh is proven be a product of four M-matrices thus inverse

positive.
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TABLE 4
Accuracy test on quasi-uniform meshes.

@Q? variational difference | P? variational difference
Finite Difference Grid | Ratio htl,,
1% error order 1> error order
test on —Au =0

TxT7 1.01 2.66E-5 - 3.98E-5 -
15 x 15 1.01 1.97E-6 3.74 3.17E-6 3.65
31 x 31 1.01 1.54E-7 3.67 2.57E-7 3.62
63 x 63 1.01 1.37E-8 3.49 2.7T4E-8 3.22

test on (7.1)

TxT 1.01 4.92E-2 - 1.69E-1 -
15 x 15 1.01 3.19E-3 3.94 9.90E-3 4.10
31 x 31 1.01 2.29E-4 3.79 6.72E-4 3.87
63 x 63 1.01 1.80E-5 3.67 5.34E-5 3.65

test on (7.2)

TxT7 1.01 1.20E-0 - 2.95E-0 -
15 x 15 1.01 1.03E-1 3.54 3.56E-1 3.05
31 x 31 1.01 9.10E-3 3.50 2.48E-2 3.84
63 x 63 1.01 9.64E-4 3.23 1.80E-3 3.77

TABLE 5
Accuracy test of Q3 variational difference scheme on uniform meshes.

@® Finite Element Mesh | Finite Difference Grid | ;2 error | order | 1% error | order
test on —Au = f
2x2 5x5 1.89E-4 - 4.71E-4 -
4 x4 11 x 11 6.88E-8 4.78 2.46E-7 4.26
8x8 23 x 23 2.23E-9 | 4.88 | 9.90E-9 | 4.64
16 x 16 47 x 47 7.61E-11 | 4.94 | 3.98E-10 | 4.64
32 x 32 95 x 95 2.44E-12 | 4.96 | 1.41E-11 | 4.82
test on (7.1)
2x2 5x5 3.28E-2 - 5.53E-2 -
4x4 11 x 11 1.58E-3 | 4.38 | 3.51E-3 | 3.98
8x8 23 x 23 481E-5 | 5.03 1.13E-4 | 4.96
16 x 16 47 x 47 1.48E-6 | 5.03 | 3.52E-6 | 5.00
test on (7.2)
2x2 5x5 1.18E0 - 2.61E0 -
4x4 11 x 11 6.08E-2 | 4.28 1.45E-1 | 4.17
8x8 23 x 23 2.87E-3 | 440 | 7.10E-3 | 4.35
16 x 16 47 x 47 9.82E-5 4.87 2.41E-4 4.88
32 % 32 95 x 95 3.12E-6 | 4.97 | 7T.60E-6 | 4.99
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