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Abstract. The monotonicity of discrete Laplacian, i.e., inverse positivity of stiffness matrix, im-4
plies discrete maximum principle, which is in general not true for high order schemes on unstructured5
meshes. But on structured meshes, it is possible to have high order accurate monotone schemes. We6
first review previously known high order accurate inverse positive schemes, all of which are fourth7
order accurate with proven monotonicity on uniform meshes. Then we discuss the monotonicity of a8
fourth order variational difference scheme on quasi-uniform meshes and prove the inverse positivity9
of a fifth order accurate variational difference scheme on a uniform mesh.10
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1. Introduction. In many applications, monotone discrete Laplacian operators14

are desired and useful for ensuring stability such as discrete maximum principle [8] or15

positivity-preserving of physically positive quantities. Let ∆h denote the matrix repre-16

sentation of a discrete Laplacian operator, then it is called monotone if (−∆h)−1 ≥ 0,17

i.e., the matrix (−∆h)−1 has nonnegative entries. In this paper, all inequalities for18

matrices are entry-wise inequalities. The simplest second order accurate centered fi-19

nite difference u′′(xi) ≈ u(xi−1)−2u(xi)+u(xi+1)
∆x2 is monotone because the corresponding20

matrix (−∆h)−1 is an M-matrix thus inverse positive. The most general extension of21

this result is to state that linear finite element method under a mild mesh constraint22

forms an M-matrix thus monotone on unstructured triangular meshes [25].23

In general, the discrete maximum principle is not true for high order finite element24

methods on unstructured meshes [13]. On the other hand, there exist a few high order25

accurate inverse positive schemes on structured meshes. To the best of our knowledge,26

the followings schemes for solving a Poisson equation are the only ones proven to be27

monotone beyond the second order accuracy and all of them are fourth order accurate:28

1. Fourth order compact finite difference schemes, including the classical 9-point29

scheme [15, 10, 2] are monotone because the stiffness matrix is an M-matrix.30

2. In [3, 5], a fourth order accurate finite difference scheme was constructed.31

The stiffness matrix is a product of two M-matrices thus monotone.32

3. The Lagrangian P 2 finite element method on a regular triangular mesh [24]33

has a monotone stiffness matrix [20]. On an equilateral triangular mesh, the34

discrete maximum principle can also be proven [13]. It can be regarded as a35

finite difference scheme at vertices and edge centers, on which superconver-36

gence of fourth order accuracy holds.37

4. Monotonicity was proven in the simplest finite difference implementation of38

Lagrangian Q2 finite element scheme on an uniform rectangular mesh for a39

variable coefficient Poisson equation under suitable mesh constraints [18].40

All schemes above can be written in the form Su = M f with S−1 ≥ 0 and M ≥ 0,41

thus (−∆h)−1 = S−1M ≥ 0, whereM denotes the mass matrix. The last two methods42
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2 L. CROSS AND X. ZHANG

are variational finite difference schemes, i.e., finite difference schemes constructed from43

the variational formulation, thus they do not suffer from the drawbacks of the first44

two conventional finite difference schemes, such as loss of accuracy on quasi-uniform45

meshes, difficulty with other types of boundary conditions, etc.46

For proving inverse positivity, the main viable tool in the literature is to use M-47

matrices which are inverse positive. All off-diagonal entries of M-matrices must be48

non-positive. Except the fourth order compact finite difference, all high order accurate49

schemes induce positive off-diagonal entries, destroying M-matrix structure, which is50

a major challenge of proving monotonicity. In [5] and [1], and also the appendix in51

[18], M-matrix factorizations of the form (−∆h)−1 = M1M2 were shown for special52

high order schemes but these M-matrix factorizations seem ad hoc and do not apply53

to other schemes or other equations. In [20], Lorenz proposed some matrix entry-wise54

inequality for ensuring a matrix to be a product of two M-matrices and applied it55

to P 2 finite element method on uniform regular triangular meshes. In [18], Lorenz’s56

condition was applied to Q2 variational difference scheme on uniform meshes.57

The main focus of this paper is to discuss Lorenz’s condition for a fourth order58

scheme on nonuniform meshes and higher order accurate schemes. We discuss mesh59

constraints to preserve monotonicity of Q2 variational finite difference scheme on a60

nonuniform mesh. One can of course also discuss P 2 variational difference scheme on61

a nonuniform regular triangular mesh, but there does not seem to be any advantage62

of using P 2. The scheme by Q2 is easier to implement, see Section 7 in [19].63

For higher order scheme, it does not seem possible to apply Lorenz’s condition64

directly. Instead, we will demonstrate that Lorenz’s condition can be applied to a few65

auxiliary matrices to establish the monotonicity in Q3 variational difference scheme.66

To the best of our knowledge, this is the first time that monotonicity can be proven67

for a fifth order accurate scheme in two dimensions. For one-dimensional Laplacian,68

discrete maximum principle was proven for high order finite element methods [22].69

We are able to show the fifth order Q3 variational difference scheme in two dimen-70

sions can be factored into a product of four M-matrices, whereas existing M-matrix71

factorizations for high order schemes involved products of two M-matrices.72

The rest of the paper is organized as follows. In Section 2, we briefly review the73

conventional monotone high order finite difference schemes. In Section 3, we review74

the fourth order P 2 and Q2 variational finite difference schemes. In Section 4, we75

review the Lorenz’s condition for proving monotonicity and propose a relaxed version76

of Lorenz’s condition. In Section 5, we discuss the monotonicity of Q2 variational finite77

difference scheme on a quasi-uniform mesh. In Section 6, we prove the monotonicity78

of Q3 variational finite difference scheme on a uniform mesh. Accuracy tests of these79

schemes are given in Section 7. Section 8 are concluding remarks.80

2. Classical finite difference schemes.81

2.1. 9-point scheme. The 9-point scheme was somewhat suggested already in82

[12] and discussed in details in [10, 15]. It can be extended to higher dimensions [2, 4].83

Consider solving the two-dimensional Poisson equations −uxx − uyy = f with84

homogeneous Dirichlet boundary conditions on a rectangular domain Ω = (0, 1) ×85

(0, 1). Let ui,j denote the numerical solutions at a uniform grid (xi, yj) = ( i
Nx ,

j
Ny ),86

and fi,j = f(xi, yj). For convenience, we introduce two matrices,87

U =

ui−1,j+1 ui,j+1 ui+1,j+1

ui−1,j ui,j ui+1,j

ui−1,j−1 ui,j−1 ui+1,j−1

 , F =

fi−1,j+1 fi,j+1 fi+1,j+1

fi−1,j fi,j fi+1,j

fi−1,j−1 fi,j−1 fi+1,j−1

 .88
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Then the 9-point discrete Laplacian for the Poisson equation at a grid point (xi, yj)89

can be written as90

(2.1)

1

12∆x2

 −1 2 −1
−10 20 −10
−1 2 −1

 : U +
1

12∆y2

−1 −10 −1
2 20 2
−1 −10 −1

 : U =
1

12

0 1 0
1 8 1
0 1 0

 : F.91

where : denotes the sum of all entry-wise products in two matrices of the same size.92

Under the assumption ∆x = ∆y = h, it reduces to the following:93

(2.2)
1

6h2

−1 −4 −1
−4 20 −4
−1 −4 −1

 : U =
1

12

0 1 0
1 8 1
0 1 0

 : F.94

The 9-point scheme can also be regarded as a compact finite difference scheme95

[11]. There can exist a few or many different compact finite difference approximations96

of the same order [16]. For instance, with the fourth order compact finite difference97

approximation to Laplacian used in [17], we get the following scheme:98

(2.3)

1
12∆x2

 −1 2 −1
−10 20 −10
−1 2 −1

 : U + 1
12∆y2

−1 −10 −1
2 20 2
−1 −10 −1

 : U = 1
144

 1 10 1
10 100 10
1 10 1

 : F.99

Both schemes (2.1) and (2.3) are fourth order accurate and they have the same sten-100

cil and the same stiffness matrix in the left hand side. We have not observed any101

significant difference in numerical performances between these two schemes.102

Remark 1. For solving 2D Laplace equation −∆u = 0 with Dirichlet boundary103

conditions, the 9-point scheme becomes sixth order accurate [11].104

Nonsingular M-matrices are inverse-positive matrices. There are many equivalent105

definitions or characterizations of M-matrices, see [21]. The following is a convenient106

sufficient but not necessary characterization of nonsingular M-matrices [18]:107

Theorem 2.1. For a real square matrix A with positive diagonal entries and non-108

positive off-diagonal entries, A is a nonsingular M-matrix if all the row sums of A109

are non-negative and at least one row sum is positive.110

By condition K35 in [21], a sufficient and necessary characterization is,111

Theorem 2.2. For a real square matrix A with positive diagonal entries and non-112

positive off-diagonal entries, A is a nonsingular M-matrix if and only if that there113

exists a positive diagonal matrix D such that AD has all positive row sums.114

Remark 2. Non-negative row sum is not a necessary condition for M-matrices.
For instance, the following matrix A is an M-matrix by Theorem 2.2:

A =

 10 0 0
−10 2 −10

0 0 10

 , D =

0.1 0 0
0 2 0
0 0 0.1

 , AD =

 1 0 0
−1 4 −1
0 0 1

 .
The stiffness matrix in the scheme (2.2) has diagonal entries 20

6h2 and offdiagonal115

entries − 1
6h2 , − 4

6h2 and 0, thus by Theorem 2.1 it is an M-matrix and the scheme116

is monotone. In order for the stiffness matrix in (2.1) and (2.3) to be an M-matrix,117

we need all the off-diagonal entries to be nonnegative, which is true under the mesh118

constraints 1√
5
≤ ∆x

∆y ≤
√

5.119
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2.2. The Bramble and Hubbard’s scheme. In [5], a fourth order accurate120

monotone scheme was constructed. Consider solving a one-dimensional problem121

(2.4) − u′′ = f, x ∈ [0, 1], u(0) = σ0, u(1) = σ1,122

on a uniform grid xi = i
n+1 (i = 0, 1, · · · , n+ 1). The scheme can be written as123

−σ0 + 2u1 − u2

∆x2
= f1,

−un−1 + 2un − σ1

∆x2
= fn124

125
1
12ui−2 − 4

3ui−1 + 5
2ui − 4

3ui+1 + 1
12ui+2

∆x2
= fi, i = 2, 3, · · · , n− 1.126

The matrix vector form of the scheme is 1
∆x2Hu = f̃ where127

H =



2 −1
− 4

3
5
2 − 4

3
1
12

1
12 − 4

3
5
2 − 4

3
1
12

. . .
. . .

. . .
. . .

. . .
1
12 − 4

3
5
2 − 4

3
1
12

1
12 − 4

3
5
2 − 4

3
−1 2


,u =



u1

u2

...

un−1

un


, f̃ =



f1

f2

...

fn−1

fn


+



σ0

∆x2

− σ0

12∆x2

0

− σ1

12∆x2

σ1

∆x2


.128

For two-dimensional Laplacian, the scheme is defined similarly. In particular, assume129

∆x = ∆y = h for a square domain, the stiffness matrix can be written as 1
h2 (H ⊗ I +130

I⊗H) where I is the identity matrix and ⊗ is the Kronecker product. Its monotonicity131

was proven in [5].132

3. Variational finite difference schemes.133

3.1. Finite element method with the simplest quadrature. Consider an134

elliptic equation on Ω = (0, 1)× (0, 1) with Dirichlet boundary conditions:135

(3.1) Lu ≡ −∇ · (a∇u) + cu = f on Ω, u = g on ∂Ω.136

Assume there is a function ḡ ∈ H1(Ω) as an extension of g so that ḡ|∂Ω = g. The137

variational form of (3.1) is to find ũ = u− ḡ ∈ H1
0 (Ω) satisfying138

(3.2) A(ũ, v) = (f, v)−A(ḡ, v), ∀v ∈ H1
0 (Ω),139

where A(u, v) =
∫∫

Ω
a∇u · ∇vdxdy +

∫∫
Ω
cuvdxdy, (f, v) =

∫∫
Ω
fvdxdy.140

Let h be quadrature point spacing of a regular triangular mesh shown in Figure141

1 (or a rectangular mesh shown in Figure 2) and V h0 ⊆ H1
0 (Ω) be the continuous142

finite element space consisting of piecewise P 2 polynomials (or Q2 polynomials), then143

the most convenient implementation of finite element method is to use the simple144

quadrature consisting of vertices and edge centers with equal weights (or 3×3 Gauss-145

Lobatto quadrature rule) for all the integrals, see Figure 1 for P 2 method (or Figure 2146

for Q2 method). Such a numerical scheme can be defined as: find uh ∈ V h0 satisfying147

(3.3) Ah(uh, vh) = 〈f, vh〉h −Ah(gI , vh), ∀vh ∈ V h0 ,148

where Ah(uh, vh) and 〈f, vh〉h denote using simple quadrature for integrals A(uh, vh)149

and (f, vh) respectively, and gI is the piecewise P 2 (or Q2) Lagrangian interpolation150
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(a) The quadrature points and a finite
element mesh for P 2

(b) The corresponding finite differ-
ence grid

Fig. 1. An illustration of Lagrangian P 2 element and the simple quadrature using vertices and
edge centers.

(a) The quadrature points and a finite
element mesh

(b) The corresponding finite differ-
ence grid

Fig. 2. An illustration of Lagrangian Q2 element and the 3× 3 Gauss-Lobatto quadrature.

polynomial at the quadrature points shown in Figure 1 for P 2 method (or Figure 2151

for Q2 method) of the following function:152

g(x, y) =

{
0, if (x, y) ∈ (0, 1)× (0, 1),

g(x, y), if (x, y) ∈ ∂Ω.
153

Then ūh = uh + gI is the numerical solution for the problem (3.1). Notice that154

(3.3) is not a straightforward approximation to (3.2) since ḡ is never used. When the155

numerical solution is represented by a linear combination of Lagrangian interpolation156

polynomials at the grid points, it can be rewritten as a finite difference scheme. We157

also call it a variational difference scheme since it is derived from the variational form.158

3.2. The P 2 variational difference scheme derived. For Laplacian Lu =159

−∆u, the scheme (3.3) on a uniform regular triangular mesh can be given as [24]:160

(3.4a)
1

h2

 0 −1 0
−1 4 −1
0 −1 0

 : U = fi,j , if (xi, yj) is an edge center;161

(3.4b)
1

9h2

 1 −4 1
−4 12 −4
1 −4 1

 : U = 0, if (xi, yj) is a vertex.162
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Notice that the stiffness matrix is not an M-matrix due to the positive off-diagonal163

entries in (3.4b) and its inverse positivity was proven in [20].164

Since the simple quadrature is exact for integrating only quadratic polynomials165

on triangles, it is not obvious why the variational difference scheme (3.4) is fourth166

order accurate. With such a quadrature on two adjacent triangles forming a rectangle167

in a regular triangular mesh, we obtain a quadrature on the rectangle, see Figure 3.168

For a reference square [−1, 1] × [−1, 1], the quadrature weights are 2
3 and 4

3 for an169

edge center and the cell center respectively.170

Fig. 3. The simple quadrature on two triangles give a quadrature on a square.

Lemma 3.1. The quadrature on a square [−1, 1] × [−1, 1] using only four edge171

centers with weight 2
3 and one cell center with weight 4

3 is exact for P 3 polynomials.172

Proof. Since the quadrature is exact for integrating P 2 polynomials on either173

triangle in Figure 3, it suffices to show that it is exact for integrating basis polynomials174

of degree three, i.e., x2y, xy2, x3 and y3. It is straightforward to verify that both175

exact integrals and quadrature of these four polynomials on the square are zero.176

Therefore, with Bramble-Hilbert Lemma (see Exercise 3.1.1 and Theorem 4.1.3177

in [9]), we can show that the quadrature rule is fourth order accurate if we regard the178

regular triangular mesh in Figure 3 (a) as a rectangular mesh.179

The standard L2(Ω)-norm estimate for the finite element method with quadrature180

(3.3) using Lagrangian P 2 elements is third order accurate for smooth exact solutions181

[9]. On the other hand, superconvergence of function values in finite element method182

without quadrature can be proven [6, 23], e.g., the errors at vertices and edge centers183

are fourth order accurate on triangular meshes for function values if using P 2 basis,184

see also [14]. It can be shown that using such fourth order accurate quadrature will185

not affect the fourth order superconvergence even for a general variable coefficient186

elliptic problem, see [19]. Notice that the scheme can also be given on a nonuniform187

mesh and its fourth order accuracy still holds on a quasi uniform mesh since it is also188

a finite element method.189

3.3. Q2 variational difference scheme. The scheme (3.3) with Lagrangian Q2190

basis is fourth order accurate [19] and monotone on a uniform mesh under suitable191

mesh constraints [18]. In the next section, we will discuss its monotonicity for the192

Laplacian operator on quasi-uniform meshes.193

Consider a uniform grid (xi, yj) for a rectangular domain [0, 1] × [0, 1] where194

xi = ih, i = 0, 1, . . . , n+ 1 and yj = jh, j = 0, 1, . . . , n+ 1, h = 1
n+1 , where n must be195

odd. Let uij denote the numerical solution at (xi, yj). Let u denote an abstract vector196

consisting of uij for i, j = 1, 2, · · · , n. Let ū denote an abstract vector consisting of197

uij for i, j = 0, 1, 2, · · · , n, n+ 1. Let f̄ denote an abstract vector consisting of fij for198

i, j = 1, 2, · · · , n and the boundary condition g at the boundary grid points. Then199

the matrix vector representation of (3.3) is Sū = M f where S is the stiffness matrix200

and M is the lumped mass matrix. For convenience, after inverting the mass matrix,201
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with the boundary conditions, the whole scheme can be represented in a matrix vector202

form L̄hū = f̄ . For Laplacian Lu = −∆u, L̄hū = f̄ on a uniform mesh is given as203

(3.5)

(L̄hū)i,j :=
−ui−1,j − ui+1,j + 4ui,j − ui,j+1 − ui+1,j

h2
= fi,j , if (xi, yj) is a cell center,

(L̄hū)i,j :=
−ui−1,j + 2ui,j − ui+1,j

h2
+
ui,j−2 − 8ui,j−1 + 14ui,j − 8ui,j+1 + ui,j+2

4h2
= fi,j ,

if (xi, yj) is an edge center for an edge parallel to the y-axis,

(L̄hū)i,j :=
ui−2,j − 8ui−1,j + 14ui,j − 8ui+1,j + ui+2,j

4h2
+
−ui,j−1 + 2ui,j − ui,j+1

h2
= fi,j ,

if (xi, yj) is an edge center for an edge parallel to the x-axis,

(L̄hū)i,j :=
ui−2,j − 8ui−1,j + 14ui,j − 8ui+1,j + ui+2,j

4h2
+
ui,j−2 − 8ui,j−1 + 14ui,j − 8ui,j+1 + ui,j+2

4h2
= fi,j ,

if (xi, yj) is a knot,

(L̄hū)i,j := ui,j = gi,j if (xi, yj) is a boundary point.

204

If ignoring the denominator h2, then the stencil can be represented as:205

cell center
−1

−1 4 −1
−1

knots

1
4
−2

1
4 −2 7 −2 1

4
−2
1
4

206

207

edge center (edge parallel to y-axis)
−1

1
4 −2 11

2 −2 1
4

−1
208

209

edge center (edge parallel to x-axis)

1
4
−2

−1 11
2 −1
−2
1
4

210

(a) Quadrature points and a finite ele-
ment mesh.

(b) The corresponding finite differ-
ence grid.

Fig. 4. An illustration of a mesh for Q3 element and the 4× 4 Gauss-Lobatto quadrature.

3.4. Q3 variational difference scheme. In (3.3), if using Lagrangian Q3 basis211

with 4× 4 Gauss-Lobatto quadrature, we get a fifth order accurate scheme [19]. The212
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8 L. CROSS AND X. ZHANG

Fig. 5. Three adjacent 1D cells for P 3 elements using 4-point Gauss-Lobatto quadrature.

4-point Gauss-Lobatto quadrature for the reference interval [−1, 1] has quadrature213

points [−1−
√

5
5

√
5

5 1]. Thus on an uniform rectangular mesh, the corresponding finite214

difference grid consisting of quadrature points is not exactly uniform, see Figure 4.215

Now consider a uniform mesh for a one-dimensional problem and assume each216

cell has length h, see Figure 5. There are two quadrature points inside each interval,217

and we refer to them as the left interior point and the right interior point. The Q3218

variational difference scheme for one-dimension problem (2.4) is given as L̄hū = f̄ :219

(3.6)

(L̄hū)i :=
4

h2

[
13ui −

15
√

5 + 25

8
(ui−1 + ui+1) +

15
√

5− 25

8
(ui−2 + ui+2)− 1

4
(ui−3 + ui+3)

]
= fi, xi is a knot;

(L̄hū)i :=
4

h2

[
−3
√

5 + 5

4
ui−1 + 5ui +

−5

2
ui+1 +

15
√

5− 25

8
ui+2

]
= fi, xi is the left interior point;

(L̄hū)i :=
4

h2

[
15
√

5− 25

8
ui−2 −

5

2
ui−1 + 5ui −

3
√

5 + 5

4
ui+1

]
= fi, if xi is the right interior point.

(L̄hū)0 := u0 = σ0, (L̄hū)n+1 := un+1 = σ1.

220

The explicit scheme in two dimensions will be given in Section 6.221

4. Lorenz’s condition for monotonicity.222

4.1. Discrete maximum principle. For a finite difference scheme, assume
there are N grid points in the domain Ω and N∂ boundary grid points on ∂Ω. Define

u =
(
u1 · · · uN

)T
,u∂ =

(
u∂1 · · · u∂N∂

)T
, ũ =

(
u1 · · · uN u∂1 · · · u∂N∂

)T
.

A finite difference scheme can be written as223

Lh(ũ)i =

N∑
j=1

bijuj +

N∂∑
j=1

b∂iju
∂
j =fi, 1 ≤ i ≤ N,224

u∂i =gi, 1 ≤ i ≤ N∂ .225226

The matrix form is227

L̃hũ = f̃ , L̃h =

(
Lh B∂

0 I

)
, ũ =

(
u
u∂

)
, f̃ =

(
f
g

)
.228

The discrete maximum principle is229

(4.1) Lh(ũ)i ≤ 0, 1 ≤ i ≤ N =⇒ max
i
ui ≤ max{0,max

i
u∂i }230

which implies231

Lh(ũ)i = 0, 1 ≤ i ≤ N =⇒ |ui| ≤ max
i
|u∂i |.232

The following result was proven in [8]:233

Theorem 4.1. A finite difference operator Lh satisfies the discrete maximum234

principle (4.1) if L̃−1
h ≥ 0 and all row sums of L̃h are non-negative.235
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With the same L̄h as defined in the previous section, it suffices to have L̄−1
h ≥ 0, see236

[18]:237

Theorem 4.2. If L̄−1
h ≥ 0, then L̃−1

h ≥ 0 thus L−1
h ≥ 0. Moreover, if row sums238

of L̄h are non-negative, then the finite difference operator Lh satisfies the discrete239

maximum principle.240

Let 1 be an abstract vector of the same shape as ū with all ones. For the Q2241

or Q3 variational difference scheme, we have that (L̄h1)i,j = 1 if (xi, yj) ∈ ∂Ω and242

(L̄h1)i,j = 0 if (xi, yj) ∈ Ω, which implies the row sums of L̄h are non-negative. Thus243

from now on, we only need to discuss the monotonicity of the matrix L̄h.244

4.2. Lorenz’s sufficient condition for monotonicity.245

Definition 1. Let N = {1, 2, . . . , n}. For N1,N2 ⊂ N , we say a matrix A of246

size n× n connects N1 with N2 if247

(4.2) ∀i0 ∈ N1,∃ir ∈ N2,∃i1, . . . , ir−1 ∈ N s.t. aik−1ik 6= 0, k = 1, · · · , r.248

If perceiving A as a directed graph adjacency matrix of vertices labeled by N , then249

(4.2) simply means that there exists a directed path from any vertex in N1 to at least250

one vertex in N2. In particular, if N1 = ∅, then any matrix A connects N1 with N2.251

Given a square matrix A and a column vector x, we define252

N 0(Ax) = {i : (Ax)i = 0}, N+(Ax) = {i : (Ax)i > 0}.253

Given a matrix A = [aij ] ∈ Rn×n, define its diagonal, off-diagonal, positive and254

negative off-diagonal parts as n× n matrices Ad, Aa, A+
a , A−a :255

(Ad)ij =

{
aii, if i = j

0, if i 6= j
, Aa = A−Ad,256

257

(A+
a )ij =

{
aij , if aij > 0, i 6= j

0, otherwise.
, A−a = Aa −A+

a .258

The following two results were proven in [20]. See also [18] for a detailed proof.259

Theorem 4.3. If A ≤ M1M2 · · ·MkL where M1, · · · ,Mk are nonsingular M-260

matrices and La ≤ 0, and there exists a nonzero vector e ≥ 0 such that one of the261

matrices M1, · · · ,Mk, L connects N 0(Ae) with N+(Ae). Then M−1
k M−1

k−1 · · ·M−1
1 A262

is an M-matrix, thus A is a product of k + 1 nonsingular M-matrices and A−1 ≥ 0.263

Theorem 4.4 (Lorenz’s condition). If A−a has a decomposition: A−a = Az+As =264

(azij) + (asij) with As ≤ 0 and Az ≤ 0, such that265

Ad +Az is a nonsingular M-matrix,

(4.3a)

266

A+
a ≤ AzA−1

d As or equivalently ∀aij > 0 with i 6= j, aij ≤
n∑
k=1

azika
−1
kk a

s
kj ,

(4.3b)

267

∃e ∈ Rn \ {0}, e ≥ 0 with Ae ≥ 0 s.t. Az or As connects N 0(Ae) with N+(Ae).

(4.3c)

268269

Then A is a product of two nonsingular M-matrices thus A−1 ≥ 0.270
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Corollary 4.5. The matrix L in Theorem 4.3 must be an M-matrix.271

Proof. Let M−1 = M−1
k M−1

k−1...M
−1
1 , following the proof of Theorem 7 in [18],272

then M−1Ae ≥ cAe for some positive number c. Then Ae ≥ 0⇒ M−1Ae ≥ 0. Now273

since e ≥ 0, M−1A ≤ L⇒ 0 ≤ (L−M−1A)e⇒M−1Ae ≤ Le thus Le ≥ 0.274

Assume L connects N 0(Ae) with N+(Ae). Since M−1Ae ≤ Le, N 0(Le) ⊆275

N 0(Ae) and N+(Ae) ⊆ N+(Le), so L also connects N 0(Le) with N+(Le).276

Assume Mi connects N 0(Ae) with N+(Ae), following the proof of Theorem 7277

in [18], we have M−1Ae > 0. Now L trivially connects N 0(Le) with N+(Le) since278

Le ≥M−1Ae⇒ Le > 0 and N 0(Le) = ∅.279

Then Theorem 6 in [18] applies to show L is an M-matrix.280

In practice, the condition (4.3c) can be difficult to verify. For variational difference281

schemes, the vector e can be taken as 1 consisting of all ones, then the condition (4.3c)282

can be simplified. The following theorem was proven in [18].283

Theorem 4.6. Let A denote the matrix representation of the variational differ-284

ence scheme (3.3) with Q2 basis solving −∇ · (a∇)u + cu = f . Assume A−a has a285

decomposition A−a = Az +As with As ≤ 0 and Az ≤ 0. Then A−1 ≥ 0 if the following286

are satisfied:287

1. (Ad +Az)1 6= 0 and (Ad +Az)1 ≥ 0;288

2. A+
a ≤ AzA−1

d As;289

3. For c(x, y) ≥ 0, either Az or As has the same sparsity pattern as A−a . If290

c(x, y) > 0, then this condition can be removed.291

4.3. A relaxed Lorenz’s condition. In practice, both (4.3a) and (4.3b) impose292

mesh constraints for the Q2 variational difference scheme on non-uniform meshes. The293

condition (4.3a) can be relaxed as the following:294

Theorem 4.7 (A relaxed Lorenz’s condition). If A−a has a decomposition: A−a =295

Az + As = (azij) + (asij) with As ≤ 0 and Az ≤ 0, and there exists a diagonal matrix296

Ad∗ ≥ Ad such that297

A∗d +Az is a nonsingular M-matrix,

(4.4a)

298

A+
a ≤ AzA−1

d∗ A
s,

(4.4b)

299

∃e ∈ Rn \ {0}, e ≥ 0 with Ae ≥ 0 s.t. Az or As connects N 0(Ae) with N+(Ae).

(4.4c)

300301

Then A is a product of two nonsingular M-matrices thus A−1 ≥ 0.302

Proof. It is straightforward that A = Ad + A+
a + Az + As ≤ Ad∗ + Az + As +303

AzA−1
d∗ A

s = (Ad∗ +Az)(I+A−1
d∗ A

s). By (4.4c), either Ad∗ +Az or I+A−1
d∗ A

s connects304

N 0(Ae) with N+(Ae). By applying Theorem 4.3 for the case k = 1, M1 = Ad∗ +Az305

and L = I +A−1
d∗ A

s, we get A−1 ≥ 0.306

Remark 3. Since Ad ≤ Ad∗ , only (4.4a) is more relaxed than (4.3a), and (4.4b)307

is more stringent than (4.3b). However, we will show in next section that it is possible308

to construct Ad∗ such that (4.3b) and (4.4b) impose identical mesh constraints.309

With Theorem 2.1, combining Theorem 4.7 and Theorem 4.6, we have:310

Theorem 4.8. Let A denote the matrix representation of the variational differ-311

ence scheme (3.3) with Q2 basis solving −∇ · (a∇)u + cu = f . Assume A−a has a312
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decomposition A−a = Az + As with As ≤ 0 and Az ≤ 0 and there exists a diagonal313

matrix Ad∗ ≥ Ad. Then A−1 ≥ 0 if the following are satisfied:314

1. (Ad∗ +Az)1 6= 0 and (Ad∗ +Az)1 ≥ 0;315

2. A+
a ≤ AzA−1

d∗ A
s;316

3. For c(x, y) ≥ 0, either Az or As has the same sparsity pattern as A−a . If317

c(x, y) > 0, then this condition can be removed.318

5. Monotonicity of Q2 variational difference scheme on quasi-uniform319

meshes. The discussion in this section can be easily extended to more general cases320

such as Lu = −∆u+ cu and Neumann boundary conditions. For simplicity, we only321

discuss the Laplacian case Lu = −∆u and Dirichlet boundary conditions.322

Consider a grid (xi, yj) (i, j = 0, 1, . . . , n+1) for a rectangular domain [0, 1]×[0, 1]323

where n must be odd and i, j = 0, n+1 correspond to boundary points. Let uij denote324

the numerical solution at (xi, yj). Let ū denote an abstract vector consisting of uij325

for i, j = 0, 1, 2, · · · , n, n + 1. Let f̄ denote an abstract vector consisting of fij for326

i, j = 1, 2, · · · , n and the boundary condition g at the boundary grid points. Then327

the matrix vector representation of (3.3) with Q2 basis is L̄hū = f̄ .328

The focus of this section is to show L̄−1
h ≥ 0 under suitable mesh constraints for329

quasi-uniform meshes. Moreover, it is straightforward to verify that (L̄h1)i,j = 0 for330

interior points (xi, yj) and (L̄h1)i,j = 1 for boundary points (xi, yj). Thus by Section331

4.1, the scheme also satisfies the discrete maximum principle.332

For simplicity, in the rest of this section we use A to denote the matrix L̄h and let333

A be the linear operator corresponding to the matrix A. For convenience, we can also334

regard the abstract vector ū as a matrix of size (n+2)×(n+2). Then by our notation,335

the mapping A : R(n+2)×(n+2) → R(n+2)×(n+2) is given as A(ū)i,j := (L̄hū)i,j .336

ha−1

hb

ha

hb−1

(a) Mesh length definitions for
four adjacent Q2 elements.

(4)

(2)

(3)

(1)

(b) The four distinct point types.

Fig. 6. A non-uniform mesh for Q2 variational difference scheme. Each edge in a cell has
length 2h.

5.1. The scheme in two dimensions. For boundary points (xi, yj) ∈ ∂Ω, the337

scheme is A(ū)i,j := ui,j = gi,j . The scheme for interior grid points (xi, yj) ∈ Ω on338

a non-uniform mesh can be given on four distinct types of points shown in Figure 6339

(b). For simplicity, from now on, we will use edge center (2) to denote an interior340

edge center for an edge parallel to the y-axis, and edge center (3) to denote an interior341

edge center for an edge parallel to the x-axis. The scheme at an interior grid point is342

This manuscript is for review purposes only.



12 L. CROSS AND X. ZHANG

given as A(ū)i,j = fi,j with343

A(ū)i,j :=
2h2

a + 2h2
b

h2
ah

2
b

ui,j −
(

1

h2
a

ui+1,j +
1

h2
a

ui−1,j +
1

h2
b

ui,j+1 +
1

h2
b

ui,j−1

)(5.1)

344

if (xi, yj) is a cell center;345

A(ū)i,j :=
7h2

b + 4haha−1

2haha−1h2
b

ui,j −
4

ha(ha + ha−1)
ui+1,j −

4

ha−1(ha + ha−1)
ui−1,j346

− 1

h2
b

ui,j+1 −
1

h2
b

ui,j−1 +
1

2ha(ha + ha−1)
ui+2,j +

1

2ha−1(ha + ha−1)
ui−2,j ,347

if (xi, yj) is edge center (2);348

A(ū)i,j :=
7h2

a + 4hbhb−1

2hbhb−1h2
a

ui,j −
4

hb(hb + hb−1)
ui,j+1 −

4

hb−1(hb + hb−1)
ui,j−1349

− 1

h2
a

ui+1,j −
1

h2
a

ui−1,j +
1

2hb(hb + hb−1)
ui,j+2 +

1

2hb−1(hb + hb−1)
ui,j−2,350

if (xi, yj) is edge center (3);351

A(ū)i,j :=
7haha−1 + 7hbhb−1

2haha−1hbhb−1
ui,j −

[
4

ha(ha + ha−1)
ui+1,j +

4

ha−1(ha + ha−1)
ui−1,j352

+
4

hb(hb + hb−1)
ui,j+1 +

4

hb−1(hb + hb−1)
ui,j−1

]
+

1

2ha(ha + ha−1)
ui+2,j353

+
1

2ha−1(ha + ha−1)
ui−2,j +

1

2hb(hb + hb−1)
ui,j+2 +

1

2hb−1(hb + hb−1)
ui,j−2,354

if (xi, yj) is an interior knot.355356

For a uniform mesh ha = ha−1 = hb = hb−1 = h, the scheme reduces to (3.5).357

5.2. The Decomposition of A−a . Next, by the same notations defined in Sec-358

tion 4.2, we will decompose the matrix A = Ad + A−a + A+
a and A−a = Az + As to359

verify Theorem 4.6. We will use A−a , A+
a , Az and As to denote linear operators for360

corresponding matrices. First, for the diagonal part we have361

Ad(ū)i,j = ui,j , if (xi, yj) is a boundary point;362

Ad(ū)i,j =
2h2

a + 2h2
b

h2
ah

2
b

ui,j , if (xi, yj) is a cell center;363

Ad(ū)i,j =
7h2

b + 4haha−1

2haha−1h2
b

ui,j , if (xi, yj) is edge center (2);364

Ad(ū)i,j =
7h2

a + 4hbhb−1

2hbhb−1h2
a

ui,j , if (xi, yj) is edge center (3);365

Ad(ū)i,j =
7hbhb−1 + 7haha−1

2haha−1hbhb−1
ui,j , if (xi, yj) is an interior knot.366

367

Notice that for a boundary point (xi, yj) ∈ ∂Ω we have A(ū)i,j = Ad(ū)i,j = ui,j , thus368

for off-diagonal parts, we only need to look at the interior grid points. For positive369
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off-diagonal entries, we have370

A+
a (ū)i,j =0, if (xi, yj) is a cell center;371

A+
a (ū)i,j =

1

2ha(ha + ha−1)
ui+2,j +

1

2ha−1(ha + ha−1)
ui−2,j , edge center (2);372

A+
a (ū)i,j =

1

2hb(hb + hb−1)
ui,j+2 +

1

2hb−1(hb + hb−1)
ui,j−2, edge center (3);373

A+
a (ū)i,j =

1

2ha(ha + ha−1)
ui+2,j +

1

2ha−1(ha + ha−1)
ui−2,j +

1

2hb(hb + hb−1)
ui,j+2374

+
1

2hb−1(hb + hb−1)
ui,j−2, if (xi, yj) is an interior knot.375

376

Then we perform a decomposition A−a = Az+As, which depends on two constants377

0 < ε1 ≤ 1 and 0 < ε2 ≤ 1.378

Az(ū)i,j =− ε1
(

1

h2
a

ui+1,j +
1

h2
a

ui−1,j +
1

h2
b

ui,j+1 +
1

h2
b

ui,j−1

)
, if (xi, yj) is a cell center;379

Az(ū)i,j =− ε1
(

1

h2
b

ui,j+1 +
1

h2
b

ui,j−1

)
− ε2

[
4

ha(ha + ha−1)
ui+1,j +

4

ha−1(ha + ha−1)
ui−1,j

]
,380

if (xi, yj) is edge center (2);381

Az(ū)i,j =− ε1
(

1

h2
a

ui+1,j +
1

h2
a

ui−1,j

)
− ε2

[
4

hb(hb + hb−1)
ui,j+1 +

4

hb−1(hb + hb−1)
ui,j−1

]
,382

if (xi, yj) is edge center (3);383

Az(ū)i,j =− ε2
[

4

ha(ha + ha−1)
ui+1,j +

4

ha−1(ha + ha−1)
ui−1,j384

+
4

hb(hb + hb−1)
ui,j+1 +

4

hb−1(hb + hb−1)
ui,j−1

]
, if (xi, yj) is an interior knot.385

386

Notice that Az defined above has exactly the same sparsity pattern as A−a for 0 <387

ε1 ≤ 1 and 0 < ε2 ≤ 1. Let As = A−a −Az then As ≤ 0.388

5.3. Mesh constraints for AzA−1
d As ≥ A+

a . In order to verify AzA−1
d As ≥ A+

a ,389

we only need to discuss nonzero entries in the output of A+
a (ū) since AzA−1

d As ≥ 0.390

First consider the case that (xi, yj) is an interior knot. Figure 7 (a) shows the391

positive coefficients in the output of A+
a (ū)ij at a knot (xi, yj). Figure 7 (b) shows392

the stencil of Az(ū)ij . Thus Az(ū) acting as an operator on [A−1
d As](ū) at a knot is:393

[AzA−1
d As](ū)i,j = −4ε2

[
1

ha(ha−1 + ha)
[A−1

d As](ū)i+1,j +
1

ha−1(ha−1 + ha)
[A−1

d As](ū)i−1,j

+
1

hb(hb−1 + hb)
[A−1

d As](ū)i,j+1 +
1

hb−1(hb−1 + hb)
[A−1

d As](ū)i,j−1

]
.

394

In the expression above, the output of the operator Az(ū)ij are at interior edge395

centers as shown in Figure 7 (b). Hence [A−1
d As] will act on these edge centers with396

the mesh lengths corresponding to Figure 6. Carefully considering the mesh lengths397
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(xi, yj)

(a) Four red dots denote non-
zero entry locations in A+

a (ū)i,j

(b) Stencil of Az(ū)i,j . (c) Stencil of AzA−1
d A

s(ū)i,j .

Fig. 7. Stencil of operators at an interior knot (xi, yj). The four red dots are the locations/en-

tries where A+
a (ū)i,j are nonzero. Gray nodes in (c) represent positive entries that can be discarded

for the purposes of verifying (4.4b). The mesh is illustrated as a uniform one only for simplicity.

and operations of A−1
d at these points gives:398

[AzA−1
d As](ū)i,j = −4ε2

[
1

ha(ha−1 + ha)

2hbhb−1h
2
a

7h2
a + 4hbhb−1

As(ū)i+1,j

+
1

ha−1(ha−1 + ha)

2hbhb−1h
2
a−1

7h2
a−1 + 4hbhb−1

As(ū)i−1,j +
1

hb(hb−1 + hb)

2haha−1h
2
b

7h2
b + 4haha−1

As(ū)i,j+1

+
1

hb−1(hb−1 + hb)

2haha−1h
2
b−1

7h2
b−1 + 4haha−1

As(ū)i,j−1

]
, if (xi, yj) is an interior knot.

399

Next consider the effect of As(ū) operator which has the same sparsity pattern as400

Az(ū). Figure 7 (c) shows the stencil of [AzA−1
d As](ū)i,j for an interior knot. Recall401

that Az ≤ 0, As ≤ 0, and A−1
d ≥ 0, thus we have AzA−1

d As ≥ 0. So we only need to402

compare the outputs of [AzA−1
d As](ū)i,j and A+

a (ū)i,j at nonzero entries of A+
a (ū)i,j ,403

i.e., the four red dots in Figure 7 (a) and Figure 7 (c).404

Thus we only need coefficients of ui+2,j , ui−2,j , ui,j+2, and ui,j−2 in the final405

expression of [AzA−1
d As](u)i,j , which are found to be406

ui+2,j : 4ε2(1− ε1) 1
ha(ha−1+ha)

2hbhb−1h
2
a

7h2
a+4hbhb−1

1
h2
a

407

ui−2,j : 4ε2(1− ε1) 1
ha−1(ha−1+ha)

2hbhb−1h
2
a−1

7h2
a−1+4hbhb−1

1
h2
a−1

408

ui,j+2 : 4ε2(1− ε1) 1
hb(hb−1+hb)

2haha−1h
2
b

7h2
b+4haha−1

1
h2
b

409

ui,j−2 : 4ε2(1− ε1) 1
hb−1(hb−1+hb)

2haha−1h
2
b−1

7h2
b−1+4haha−1

1
h2
b−1

410

411

In order to maintain A+
a ≤ AzA−1

d As, by comparing to the coefficients of ui+2,j for

A+
a (ū), we obtain a mesh constraint 4ε2(1 − ε1) 2hbhb−1

7h2
a+4hbhb−1

≥ 1
2 . Similar constraints

are obtained by comparing other coefficients at ui,j∓2 and ui−2,j . Define

`(ε1, ε2) = 4ε2(1− ε1).

Then the following constraints are sufficient forA+
a (ū) to be controlled byAzA−1

d As(ū)412

at an interior knot:413

(5.2a) haha−1 ≥
7

4`− 4
max{h2

b , h
2
b−1}, hbhb−1 ≥

7

4`− 4
max{h2

a, h
2
a−1}.414
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Second, we need to discuss the case when (xi, yj) is an interior edge center. With-415

out loss of generality, assume (xi, yj) is an interior edge center of an edge paral-416

lel to the y-axis. Then similar to the interior knot case, the output coefficients of417

[AzA−1
d As](ū)i,j at the relevant non-zero entries of A+

a (ū)i,j are:418

ui+2,j : 4ε2(1− ε1) 1
ha(ha−1+ha)

h2
ah

2
b

2h2
a+2h2

b

1
h2
a

419

ui−2,j : 4ε2(1− ε1) 1
ha−1(ha−1+ha)

h2
a−1h

2
b

2h2
a−1+2h2

b

1
h2
a−1

420

By comparing with coefficients of A+
a (ū)i,j , we get

h2
b

h2
a+h2

b
≥ 1

` ,
h2
b

h2
a−1+h2

b
≥ 1

` .421

To ensure A+
a (ū) is controlled by AzA−1

d As(ū) at edge centers, it suffices to have:422

(5.2b)

min{ha, ha−1} ≥
√

1

`− 1
max{hb, hb−1}, min{hb, hb−1} ≥

√
1

`− 1
max{ha, ha−1}.423

Note that A+
a (ū)i,j = 0 if (xi, yj) is a cell center. Since AzA−1

d As(ū) ≥ 0, there424

is no mesh constraint to enforce the inequality at cell centers.425

5.4. Mesh constraints for Ad +Az being an M-matrix. Let B = Ad +Az.426

Then B(1)i,j = 1 for a boundary point (xi, yj). For interior points, we have:427

B(1)i,j = −ε1
(

1

h2
a

+
1

h2
a

+
1

h2
b

+
1

h2
b

)
+

2h2
a + 2h2

b

h2
ah

2
b

= (1− ε1)
2h2

a + 2h2
b

h2
ah

2
b

, cell center;428

B(1)i,j = −ε1
(

1

h2
b

+
1

h2
b

)
− ε2

[
4

ha(ha + ha−1)
+

4

ha−1(ha + ha−1)

]
+

7h2
b + 4haha−1

2haha−1h2
b

429

= (1− ε1)
2

h2
b

+ (1− 8

7
ε2)

7

2haha−1
, edge center (2);430

B(1)i,j = −ε1
(

1

h2
a

+
1

h2
a

)
− ε2

[
4

hb(hb + hb−1)
+

4

hb−1(hb + hb−1)

]
+

7h2
a + 4hbhb−1

2hbhb−1h2
a

431

= (1− ε1)
2

h2
a

+ (1− 8

7
ε2)

7

2hbhb−1
, edge center (3);432

B(1)i,j = −ε2
[

4

ha(ha + ha−1)
+

4

ha−1(ha + ha−1)
+

4

hb(hb + hb−1)
+

4

hb−1(hb + hb−1)

]
433

+
7hbhb−1 + 7haha−1

2haha−1hbhb−1
= (1− 8

7
ε2)

7hbhb−1 + 7haha−1

2haha−1hbhb−1
, interior knot.434

435

Notice that larger values of ` give better mesh constraints in (5.2). And we have436

sup0<ε1,ε2≤1 `(ε1, ε2) = sup0<ε1,ε2≤1 4ε2(1 − ε1) = 4. In order to apply Theorem 2.1437

for Ad + Az be an M-matrix, we need [Ad + Az](1) ≥ 0. This is true if and only if438

ε1 ≤ 1 and ε2 ≤ 7
8 , which only give sup0<ε1≤1,0<ε2≤ 7

8
`(ε1, ε2) = 3.5.439

5.5. Improved mesh constraints by the relaxed Lorenz’s condition. To440

get a better mesh constraint, the constraint on ε2 can be relaxed so that the value441

of `(ε1, ε2) can be improved. One observation from Section 5.3 is that the value of442

Ad(ū)i,j for (xi, yj) being a knot is not used for verifying A+
a ≤ AzA−1

d As (for both443

interior knots and edge centers). To this end, we define a new diagonal matrix Ad∗ ,444
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which is different from Ad only at the interior knots.445

Ad∗(ū)i,j = ui,j = Ad(ū)i,j , if (xi, yj) is a boundary point;446

Ad∗(ū)i,j =
2h2

a + 2h2
b

h2
ah

2
b

ui,j = Ad(ū)i,j , if (xi, yj) is a cell center;447

Ad∗(ū)i,j =
7h2

b + 4haha−1

2haha−1h2
b

ui,j = Ad(ū)i,j , edge center (2);448

Ad∗(ū)i,j =
7h2

a + 4hbhb−1

2hbhb−1h2
a

ui,j = Ad(ū)i,j , edge center (3);449

Ad∗(ū)i,j =
8hbhb−1 + 8haha−1

2haha−1hbhb−1
ui,j 6= Ad(ū)i,j , if (xi, yj) is an interior knot.450

451

Since the values of Ad(ū)i,j for (xi, yj) being a knot is not involved in Section 5.3,452

the same discussion in Section 5.3 also holds for verifying A+
a ≤ AzA−1

d∗ A
s. Namely,453

under mesh constraints (5.2), we also have A+
a ≤ AzA−1

d∗ A
s.454

Let B∗ = Ad∗ +Az, then the row sums of B∗ are:455

B∗(1)i,j = 1, if (xi, yj) is a boundary point;456

B∗(1)i,j = −ε1
(

1

h2
a

+
1

h2
a

+
1

h2
b

+
1

h2
b

)
+

2h2
a + 2h2

b

h2
ah

2
b

= (1− ε1)
2h2

a + 2h2
b

h2
ah

2
b

, cell center;457

B∗(1)i,j = −ε1
(

1

h2
b

+
1

h2
b

)
− ε2

[
4

ha(ha + ha−1)
+

4

ha−1(ha + ha−1)

]
+

7h2
b + 4haha−1

2haha−1h2
b

458

= (1− ε1)
2

h2
b

+ (1− 8

7
ε2)

7

2haha−1
, edge center (2);459

B∗(1)i,j = −ε1
(

1

h2
a

+
1

h2
a

)
− ε2

[
4

hb(hb + hb−1)
+

4

hb−1(hb + hb−1)

]
+

7h2
a + 4hbhb−1

2hbhb−1h2
a

460

= (1− ε1)
2

h2
a

+ (1− 8

7
ε2)

7

2hbhb−1
, edge center (3);461

B∗(1)i,j = −ε2
[

4

ha(ha + ha−1)
+

4

ha−1(ha + ha−1)
+

4

hb(hb + hb−1)
+

4

hb−1(hb + hb−1)

]
462

+
8hbhb−1 + 8haha−1

2haha−1hbhb−1
= (1− ε2)

8hbhb−1 + 8haha−1

2haha−1hbhb−1
, interior knot.463

464

Now [Ad∗ + Az](1)i,j ≥ 0 at cell centers and knots is true if and only if ε1 ≤ 1465

and ε2 ≤ 1.466

Next, we will show that the mesh constraints (5.2) with 0 < ε1 ≤ 1
2 and ε2 = 1467

are sufficient to ensure [Ad∗ + Az](1)i,j ≥ 0 at edge centers. We have 0 < ε1 ≤468
1
2 , ε2 = 1 =⇒ 2 ≤ ` < 4 =⇒ 7

4`−4 ≥ 1
` . The mesh constraints (5.2) imply that469

haha−1 ≥ 7
4`−4h

2
b ≥ 1

`h
2
b , thus470

(1− ε1)
2

h2
b

+ (1− 8

7
ε2)

7

2haha−1
= (1− ε1)

2

h2
b

− 1

2

1

haha−1
=

1

2

[
`

h2
b

− 1

haha−1

]
≥ 0.471

472

Similarly, (1− ε1) 2
h2
a

+ (1− 8
7ε2) 7

2hbhb−1
≥ 0 also holds.473

Therefore, for constants 0 < ε1 ≤ 1
2 and ε2 = 1, we have [Ad∗ + Az](1) ≥ 0. In474

particular, we have a larger ` compared to constraints from Ad.475
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5.6. The main result. We have shown that for two constants 0 < ε1 ≤ 1
2 and476

ε2 = 1, under mesh constraints (5.2), the matrices Ad∗ , Az, As constructed above477

satisfy (Ad∗ +Az)1 ≥ 0 and A+
a ≤ AzA−1

d∗ A
s.478

For any fixed ε1 > 0 and ε2 = 1, Az also has the same sparsity pattern as A.479

Thus if ` in (5.2) is replaced by sup0<ε1≤ 1
2 ,ε2=1 `(ε1, ε2) = 4, Theorem 4.8 still applies480

to conclude that A−1 ≥ 0.481

Theorem 5.1. The Q2 variational difference scheme (5.1) has a monotone ma-482

trix L̄h thus satisfies discrete maximum principle under the following mesh constraints:483

(5.3)

haha−1 ≥
7

12
max{h2

b , h
2
b−1}, hbhb−1 ≥

7

12
max{h2

a, h
2
a−1},

min{ha, ha−1} ≥
√

1

3
max{hb, hb−1}, min{hb, hb−1} ≥

√
1

3
max{ha, ha−1, }

484

where ha, ha−1 are mesh sizes for x-axis and hb, hb−1 are mesh sizes for y-variable in485

four adjacent rectangular cells as shown in Figure 6.486

Remark 4. The following global constraint is sufficient to ensure (5.3):487

25

32
≤ hm
hn
≤ 32

25
,(5.4)488

489

where hm and hn are any two grid spacings in a non-uniform grid generated from a490

non-uniform rectangular mesh for Q2 elements.491

Remark 5. For Q1 finite element method solving −∆u = f to satisfy discrete492

maximum principle on non-uniform rectangular meshes [7], the mesh constraints are493

(5.5) haha−1 ≥
1

2
max{h2

b , h
2
b−1} hbhb−1 ≥

1

2
max{h2

a, h
2
a−1}.494

5.7. Necessity of Mesh Constraints. Even though the mesh constraints de-495

rived above are only sufficient conditions, in practice a mesh constraint is still neces-496

sary for the inverse positivity to hold. Consider a non-uniform Q2 mesh with 5 × 5497

cells on the domain [0, 1]× [0, 1], which has a 9×9 grid for the interior of the domain.498

Let the mesh on both axes be the same and let the four outer-most cells for each499

dimension be identical with length 2h. Then the middle cell has size 2h′ × 2h′ with500

h′ = 1
2 − 2h. Let the ratio h′/h increase gradually from h′/h = 1 (a uniform mesh)501

until the minimum value of the inverse of the matrix becomes negative. Increasing by502

values of 0.05, we obtain the first negative entry of L̄−1
h at h′/h = 5.35 with h = 0.0535503

and h′ = 0.2861 shown in Figure 8 (a). Figure 8 (b) shows how the minimum entry504

of L̄−1
h decreases as h′/h increases.505

6. Monotonicity of Q3 variational difference scheme on a uniform mesh.506

Even though Lorenz’s condition can be nicely verified for the Q2 scheme, it is very507

difficult to apply Lorenz’s condition to higher order schemes due to their much more508

complicated structure. In particular, even for Q3 scheme, simple decomposition of509

A−a = Az +As such that A+
a ≤ AzA−1

d As is difficult to show. Instead, we propose to510

apply Lorenz’s theorems to a few simpler intermediate matrices. To be specific, let511

A = A3 be the matrix representation of the scheme, and let A0 = M1 be an M-matrix.512

Then we construct matrices Ai and Li such that513

A1 ≤ A0L0, A2 ≤ A1L1, A3 ≤ A2L2,514
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18 L. CROSS AND X. ZHANG

(a) A non-uniform mesh with 5 × 5 cells on
which the C0 −Q2 scheme is not inverse posi-
tive. The minimum value of L̄−1

h is −6.14E−8.

(b) A plot of the minimum value of L̄−1
h as h′/h

increases.

Fig. 8. Necessity of mesh constraints for inverse positivity L̄−1
h ≥ 0 where L̄h is the matrix in

Q2 variational difference scheme on non-uniform meshes.

with the constraints that Ai1 ≥ 0 and A0 = M1 connects N 0(Ai1) with N+(Ai1) for
all Ai. By Theorem 4.3, then we have

A1 ≤ A0L0 = M1L0 ⇒ A1 = M1M2 ⇒ A2 ≤M1M2L1 ⇒ A2 = M1M2M3

⇒ A3 ≤M1M2M3L2 ⇒ A = A3 = M1M2M3M4.

The matrices Ai and Li satisfying constraints above are not unique.515

6.1. One-dimensional scheme. We first demonstrate the main idea for the516

one-dimensional case, for which we only need to construct matrices such that A1 ≤517

A0L0, A ≤ A1L1.518

Let L̄h denote the coefficient matrix in (3.6), then consider A = h2

4 L̄h. For519

convenience, we will perceive the matrix A as a linear operator A. Notice that the520

coefficients for two interior points are symmetric in (3.6), thus we will only show521

stencil for the left interior point for simplicity:522

A at boundary point x0 or xn+1 :
h2

4
523

A at knot : −1

4

15
√

5− 25

8

−15
√

5− 25

8
13

−15
√

5− 25

8

15
√

5− 25

8
− 1

4
524

A at interior point :
−3
√

5− 5

4
5 − 5

2

3
√

5− 5

4
,525526

where bolded entries indicate the coefficient for the operator output location xi.527

For all the matrices defined below, they will have symmetric structure at two528

interior points, thus for simplicity we will only show the stencil of the corresponding529

linear operators for the left interior point. We first define three matrices A1, A0, and530
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Z0.531

A1 at boundary :
h2

4
532

A1 at knot : 0
15
√

5− 25

8
− 7 13 − 7

15
√

5− 25

8
0533

A1 at interior point: − 1

2
4.8 − 2 0534

A0 at boundary :
h2

4
535

A0 at knot: 0 0 − 7 15 − 7 0 0536

A0 at interior point: − 1

2
4.8 − 1

2
0537

Z0 at boundary : 0538

Z0 at knot: 0 0 0 0 0 0 0539

Z0 at interior point: 0 0 − 2 +
1

2
0540

541

Then we define L0 = I + (A0)−1
d Z0 where I is the identity matrix and (A0)d denotes542

the diagonal part of A0. By considering composition of two operators A0 and L0, we543

get the matrix product A0L0. Due to the definition of Z0, A0L0 still has the same544

stencil as above:545

A0L0 at boundary :
h2

4
546

A0L0 at knot: 0
35

16
− 7 15 − 7

35

16
0547

A0L0 at interior point: − 1

2
4.8 +

5

32
− 2 0548

549

It is straightforward to see A1 ≤ A0L0. By Theorem 2.1, A0 is an M-matrix, thus550

we set M1 = A0. Also it is easy to see that A1(1) > 0 thus N 0(A11) is an empty551

set. So A0 trivially connects N 0(A11) with N+(A11). By Theorem 4.3, we have552

A1 ≤ A0L0 = M1L0 ⇒ A1 = M1M2 where M2 is an M-matrix.553

Let (A1)d denote the diagonal part of A1. Then define L1 = I + (A1)−1
d Z1 using554

the following Z1:555

Z1 at boundary: 0556

Z1 at knot: 0 0 0 0 0 0 0557

Z1 at interior point: − 11

10
0 − 1

2
0558

559

And the matrix A1L1 still have the same stencil and symmetry:560

A1L1 at boundary:
h2

4
561

A1L1 at knot: −165
√

5+275
384

15
√

5−25
8 + 35

48 −7 + −75
√

5+125
384 13 + 2(77

48 ) −7 + −75
√

5+125
384

15
√

5−25
8 + 35

48
−165

√
5+275

384562

A1L1 at interior point: − 8

5
4.8 +

5

24
− 5

2

11

24
563564

A direct comparison verifies that A ≤ A1L1 = M1M2L1. Also it is easy to565

see that A(1)i = 0 if xi is not a boundary point. The operator A0 has a three-point566
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stencil at interior grid points, thus the directed graph defined by the adjacency matrix567

A0 has a directed path starting from any interior grid point to any other point, see568

Figure 9. So M1 = A0 connects N 0(A1) with N+(A1). By Theorem 4.3, we have569

A ≤ A1L1 = M1M2L1 ⇒ A = M1M2M3 where M3 is an M-matrix. Therefore,570

A−1 = M−1
3 M−1

2 M−1
1 ≥ 0.571

Fig. 9. The directed graph defined by matrix M1 for the finite difference grid shown in Figure 5.

(a) Three point types defining the stencil:
knot (black), edge point (blue), interior point
(green).

(b) The directed graph defined by the matrix
M1.

Fig. 10. An illustration of a Q3 mesh with 2× 2 cells.

6.2. Two-dimensional case. Due to symmetry, the stencil of the scheme can572

be defined at three different types of points, see Figure 10 (a). Let each rectangular573

cell have size h × h and denote Q3 scheme by L̄hū = f̄ . Let A = h2

4 L̄h. Then for a574

boundary point (xi, yj) ∈ ∂Ω, A(ū)ij = h2

4 uij . And the stencil of A at interior grid575

points is given as576
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− 1
4

15
√

5−25
8

−15
√

5−25
8

A at knot: − 1
4

15
√

5−25
8

−15
√

5−25
8 26 −15

√
5−25

8
15
√

5−25
8 − 1

4

−15
√

5−25
8

15
√

5−25
8

− 1
4

− 1
4

15
√

5−25
8

−15
√

5−25
8

A at edge point: 3
√

5−5
4 − 5

2 18 −3
√

5−5
4

−15
√

5−25
8

15
√

5−25
8

− 1
4

3
√

5−5
4

− 5
2

A at interior point: 3
√

5−5
4 − 5

2 10 −3
√

5−5
4

−3
√

5−5
4

Next we list the definition of matrices Ai and Zi by the corresponding linear577

operators Ai and Zi. For convenience, we will only list the stencil at interior grid578

points. For the domain boundary points (xi, yj) ∈ ∂Ω, all Ai matrices will have the579

same value as A: Ai(ū)ij = h2

4 uij . And Zi(ū)ij = 0 for (xi, yj) ∈ ∂Ω. The matrix580

Li is defined as Li = I + (Ai)
−1
d Zi, i = 0, 1, 2. The matrices and their products are581

given by:582

0

15
√

5−25
8

−15
√

5−25
8

A1 at knot: 0 15
√

5−25
8

−15
√

5−25
8 26 −15

√
5−25

8
15
√

5−25
8 0

−15
√

5−25
8

15
√

5−25
8

0
0

0

−7

A1 at edge point: 0 − 5
2 17 − 1

100

−7

0

0

0

− 1
2

A1 at interior point: 0 − 1
2 10 − 1

2

− 1
2
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0

0

−15
√

5−25
8

A0 at knot: 0 0 −15
√

5−25
8 30 −15

√
5−25

8 0 0

−15
√

5−25
8

0

0
0

0

−7

A0 at edge point: 0 − 1
100 17 − 1

100

−7

0

0

0

− 1
2

A0 at interior point: 0 − 1
2 10 − 1

2

− 1
2

0

0

0

Z0 at knot : 0 0 0 0 0 0 0

0

0

0
0

0

0

Z0 at edge point: 0 − 5
2+ 1

100 0 0

0

0

0

0

0

Z0 at interior point: 0 0 0 0

0

0

747
√

5+1245
2720

−15
√

5−25
8

A0L0 at knot: 0 747
√

5+1245
2720

−15
√

5−25
8 30 −15

√
5−25

8
747
√

5+1245
2720 0

−15
√

5−25
8

747
√

5+1245
2720

0
0

0

−7

A0L0 at edge point: 0 − 5
2 17 + 249

170000 − 1
100

−7

0

0

0

− 1
2

249
3400

A0L0 at interior point: 0 − 1
2 10 − 1

2

249
3400 − 1

2
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− 1
4

15
√

5−25
8

−15
√

5−25
8

A2 at knot: − 1
4

15
√

5−25
8

−15
√

5−25
8 26 −15

√
5−25

8
15
√

5−25
8 − 1

4

−15
√

5−25
8

15
√

5−25
8

− 1
4

0

15
√

5−25
8

1
4

−7

A2 at edge point: 3
√

5−5
4 − 5

2 17 −3
√

5−5
4

−7

15
√

5−25
8

1
4

0

0

− 5
2 − 5

14

A2 at interior point: 0 − 5
2 10 − 1

2

− 5
14 − 1

2

0

0

0

Z1 at knot : 0 0 0 0 0 0 0

0

0

0
0

0

0

Z1 at edge point: 0 0 0 −3
√

5−5
4 + 1

100

0

0

0

0

− 5
2+ 1

2 − 5
14

Z1 at interior point: 0 − 5
2+ 1

2 0 0

− 5
14 0

3
√

5−505
2720

15
√

5−25
8

−15
√

5−25
8

A1L1 at knot: 3
√

5−505
2720

15
√

5−25
8

−15
√

5−25
8 26 + 4(747

√
5+1745

2720 ) −15
√

5−25
8

15
√

5−25
8

3
√

5−505
2720

−15
√

5−25
8

15
√

5−25
8

3
√

5−505
2720

0

7
5

1
4

7
5 −7

A1L1 at edge point: 75
√

5+124
680 − 5

2 + 2( 1
4 ) 17 −3

√
5−5

4

7
5 −7

7
5

1
4

0

1
56 0

1
56 2( 1

10 ) − 5
2 − 5

14

A1L1 interior point: 0 − 5
2 10 + 2( 1

10 ) − 1
2+ 1

56

− 5
14 − 1

2+ 1
56 2( 75

√
5+124

3400 )
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0

0

0

Z2 at knot: 0 0 0 0 0 0 0

0

0

0
0

0

0

Z2 at edge point: 0 0 0 0

0

0

0

0

0

Z2 at interior point: 0 0 0 −2

−2

− 1
4

15
√

5−25
8

−15
√

5−25
8

A2L2 at knot : − 1
4

15
√

5−25
8

−15
√

5−25
8 26 −15

√
5−25

8
15
√

5−25
8 − 1

4

−15
√

5−25
8

15
√

5−25
8

− 1
4

−3
√

5+5
8

15
√

5−25
8

1
4 + −3

√
5+5

8

−7 7
5

A2L2 at edge point: 3
√

5−5
4 − 5

2 17 + 2(7
5 ) −3

√
5−5

4

−7 7
5

15
√

5−25
8

1
4 + −3

√
5+5

8

−3
√

5+5
8

0 1
2

0 0 − 5
2 − 5

14 + 1
2

A2L2 at interior point: 1
2 − 5

2 10 −2− 1
2

− 5
14 + 1

2 −2− 1
2 0

By Theorem 2.1, A0 is an M-matrix, thus we set M1 = A0. Notice that the matrix583

M1 = A0 has a 5-point stencil and the directed graph defined by M1 is given in Figure584

10 (b), in which there is a directed path starting from any interior grid point to any585

other point. For convenience, let A3 = A. Then we have Ak(1) ≥ 0 (k = 0, 1, 2, 3).586

Moreover, Ak(1)ij > 0 (k = 0, 1, 2, 3) for domain boundary point (xi, yj) ∈ ∂Ω. The587

directed graph defined by M1 easily implies that M1 connects N 0(Ai1) with N+(Ai1)588

for all i = 0, 1, 2, 3.589

By straightforward comparison, we can verify that A1 ≤ A0L0, A2 ≤ A1L1, A ≤
A2L2. By Theorem 4.3, we have

A1 ≤ A0L0 = M1L0 ⇒ A1 = M1M2 ⇒ A2 ≤M1M2L1 ⇒ A2 = M1M2M3

⇒ A ≤M1M2M3L2 ⇒ A = M1M2M3M4 ⇒ A−1 ≥ 0.
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7. Numerical Tests.590

7.1. Efficient implementation. For all schemes discussed in this paper, except591

the P 2 variational difference scheme, the stiffness matrix can be efficiently inverted592

by an eigenvector method, very similar to the inversion of 5-point discrete Laplacian593

by Fast Fourier Transform (FFT). We demonstrate it for the 9-point scheme on a594

Nx×Ny grid. For instance, the stiffness matrix in the scheme (2.2) can be written as595

− 1

6h2
[Hx ⊗Hy − 36Ix ⊗ Iy],596

where ⊗ is the Kronecker product, Ix is the identity matrix of size Nx ×Nx and Hx597

and Hy are symmetric tridiagonal matricies of size Nx×Nx and Ny×Ny respectively,598

with H defined as599

H =



4 1
1 4 1

1 4 1
. . .

. . .
. . .

1 4 1
1 4


.600

Let H = SΛS−1 be the eigenvalue decomposition of H, then we also have the eigen-601

value decomposition of stiffness matrix602

− 1

6h2
[Hx ⊗Hy − 36Ix ⊗ Iy] = − 1

6h2
(Sx ⊗ Sy)(Λx ⊗ Λy − 36Ix ⊗ Iy)(S−1

x ⊗ S−1
y ).603

Therefore, the stiffness matrix can be efficiently inverted by the eigenvector method,604

e.g., Section 7.4 in [19]. Moreover, for a matrix H of size n×n, its m-th eigenvector is605 [
sin(mπ 1

n+1 ) · · · sin(mπ n
n+1 )

]T
and corresponding eigenvalue is 4+2 cos(mπ 1

n+1 ).606

Thus multiplication of S and S−1 can be implemented through FFT.607

The stiffness matrix in the Qk variational difference scheme also has a kron struc-608

ture [19]. But such a kron structure does not seem possible for (3.4). For Q2/Q3 and609

Bramble-Hubbard schemes, the eigenvectors for the small matrices Hx and Hy can610

be computed numerically.611

7.2. Accuracy tests. We show some accuracy tests of the schemes mentioned612

in this paper for solving −∆u = f on a square (0, 1)× (0, 1) with Dirichlet boundary613

conditions. Quasi-uniform meshes were generated by setting each pair of consecutive614

finite element cells along the axis to have a fixed ratio hk

hk−1
= 1.01. We will simply615

refer to the classical 9-point scheme (2.1) as 9-point scheme, and refer to its variant616

(2.3) as compact finite difference. The schemes are tested for the following very617

smooth solutions:618

1. The Laplace equation −∆u = 0 with Dirichlet boundary conditions and619

u(x, y) = log((x+ 1)2 + (y + 1)2) + sin(y)ex.620

2. Poisson equation −∆u = f with homogeneous Dirichlet boundary condition:621

(7.1)
f(x, y) = 13π2sin(3πy)sin(2πx) + 2y(1− y) + 2x(1− x)

u(x, y) = sin(3πy)sin(2πx) + xy(1− x)(1− y)
622

3. Poisson equation −∆u = f with nonhomogeneous Dirichlet boundary condi-623

tion:624

(7.2)
f = 74π2cos(5πx)cos(7πy)− 8

u = cos(5πx)cos(7πy) + x2 + y2
625
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The errors of fourth order accurate schemes on uniform grids are listed in Table626

1, Table 2 and Table 3. The errors of Q2 and P 2 variational difference scheme on627

quasi uniform rectangular meshes are listed in Table 4. The errors of Q3 variational628

difference scheme on uniform rectangular meshes are listed in Table 5. For the Laplace629

equation, 9-point scheme (2.1) and compact finite difference (2.3) are the same scheme630

and they are indeed sixth order accurate, see Remark 1.631

Table 1
Accuracy test on uniform meshes for −∆u = 0.

Finite Difference Grid
Q2 variational difference P 2 variational difference 9-point scheme (2.1)

l2 error order l∞ error order l2 error order l∞ error order l2 error order l∞ error order

7× 7 1.04E-5 - 2.50E-5 - 2.05E-5 - 3.89E-5 - 1.50E-9 - 3.52E-9 -

15× 15 6.91E-7 3.92 1.81E-6 3.78 1.38E-6 3.89 2.83E-6 3.78 2.35E-11 5.99 5.51E-11 6.00

31× 31 4.42E-08 3.96 1.26E-7 3.83 8.93E-08 3.95 2.05E-7 3.78 3.98E-13 5.88 8.89E-13 5.95

63× 63 2.79E-9 3.98 8.56E-9 3.88 5.65E-9 3.98 1.41E-8 3.85 1.32E-13 1.58 2.37E-13 1.90

Finite Difference Grid
compact finite difference (2.3) Bramble-Hubbard scheme

l2 error order l∞ error order l2 error order l∞ error order

7× 7 1.50E-9 - 3.52E-9 - 5.04E-5 - 6.97E-5 -

15× 15 2.35E-11 5.99 5.51E-11 6.00 3.75E-6 3.74 5.34E-06 3.70

31× 31 3.98E-13 5.88 8.89E-13 5.95 2.52E-7 3.89 3.86E-7 3.78

63× 63 1.32E-13 1.58 2.37E-13 1.90 1.63E-08 3.95 2.77E-8 3.80

Table 2
Accuracy test on uniform meshes for (7.1).

Finite Difference Grid
Q2 variational difference P 2 variational difference 9-point scheme (2.1)

l2 error order l∞ error order l2 error order l∞ error order l2 error order l∞ error order

7× 7 2.22e-02 - 4.90e-02 - 4.50e-02 - 1.67e-01 - 2.22e-04 - 4.45e-04 -

15× 15 1.31e-03 4.08 3.03e-03 4.01 2.49e-03 4.17 9.42e-03 4.15 5.63e-06 5.30 1.12e-05 5.30

31× 31 8.04e-05 4.02 1.88e-04 4.01 1.50e-04 4.05 5.69e-04 4.04 2.32e-07 4.59 4.65e-07 4.59

63× 63 5.00e-06 4.00 1.17e-05 4.00 9.30e-06 4.01 3.52e-05 4.01 1.27e-08 4.19 2.54e-08 4.19

Finite Difference Grid
compact finite difference (2.3) Bramble-Hubbard scheme

l2 error order l∞ error order l2 error order l∞ error order

7× 7 3.18E-3 - 6.36E-3 - 3.74E-2 - 8.62E-2 -

15× 15 1.91E-4 4.05 3.82E-4 4.05 2.36E-3 3.98 5.28E-3 4.02

31× 31 1.18E-5 4.01 2.36E-5 4.01 1.01E-4 4.54 2.11E-4 4.64

63× 63 7.38E-7 4.00 1.47E-6 4.00 4.17E-6 4.60 7.89E-6 4.74
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Table 3
Accuracy test on uniform meshes for (7.2).

Finite Difference Grid
Q2 variational difference P 2 variational difference 9-point scheme (2.1)

l2 error order l∞ error order l2 error order l∞ error order l2 error order l∞ error order

7× 7 3.62E-1 - 1.10E-0 - 9.68E-1 - 2.59E-0 - 2.48E-2 - 5.69E-2 -

15× 15 3.75E-2 3.26 9.68E-2 3.50 7.81E-2 3.63 3.00E-1 3.11 2.61E-4 6.56 6.46E-4 6.45

31× 31 2.44E-3 3.94 7.18E-3 3.75 4.70E-3 4.05 1.84E-2 4.02 3.65E-5 2.84 8.97E-5 2.85

63× 63 1.54E-4 3.98 5.50E-4 3.70 2.89E-4 4.02 1.11E-3 4.04 2.55E-6 3.83 6.57E-6 3.77

Finite Difference Grid
compact finite difference (2.3) Bramble-Hubbard scheme

l2 error order l∞ error order l2 error order l∞ error order

7× 7 9.88E-2 - 2.26E-1 - 3.14E-1 - 8.23E-1 -

15× 15 5.40E-3 4.19 1.33E-2 4.08 1.76E-2 4.15 6.16E-2 3.73

31× 31 3.22E-4 4.06 7.91E-4 4.07 3.38E-3 2.37 1.15E-2 2.41

63× 63 1.98E-5 4.01 5.11E-5 3.95 3.04E-4 3.47 1.20E-3 3.32

8. Concluding remarks. We reviewed four existing high order monotone dis-632

crete Laplacian. By verifying a relaxed Lorenz’s condition, we have discussed suitable633

mesh constraints, under which the fourth order accurate Q2 variational difference on634

quasi-uniform meshes is monotone. The fifth order accurate Q3 variational difference635

scheme on a uniform mesh is proven be a product of four M-matrices thus inverse636

positive.637
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Table 4
Accuracy test on quasi-uniform meshes.

Finite Difference Grid Ratio hi

hi−1

Q2 variational difference P 2 variational difference

l∞ error order l∞ error order

test on −∆u = 0

7× 7 1.01 2.66E-5 - 3.98E-5 -

15× 15 1.01 1.97E-6 3.74 3.17E-6 3.65

31× 31 1.01 1.54E-7 3.67 2.57E-7 3.62

63× 63 1.01 1.37E-8 3.49 2.74E-8 3.22

test on (7.1)

7× 7 1.01 4.92E-2 - 1.69E-1 -

15× 15 1.01 3.19E-3 3.94 9.90E-3 4.10

31× 31 1.01 2.29E-4 3.79 6.72E-4 3.87

63× 63 1.01 1.80E-5 3.67 5.34E-5 3.65

test on (7.2)

7× 7 1.01 1.20E-0 - 2.95E-0 -

15× 15 1.01 1.03E-1 3.54 3.56E-1 3.05

31× 31 1.01 9.10E-3 3.50 2.48E-2 3.84

63× 63 1.01 9.64E-4 3.23 1.80E-3 3.77

Table 5
Accuracy test of Q3 variational difference scheme on uniform meshes.

Q3 Finite Element Mesh Finite Difference Grid l2 error order l∞ error order

test on −∆u = f

2× 2 5× 5 1.89E-4 - 4.71E-4 -

4× 4 11× 11 6.88E-8 4.78 2.46E-7 4.26

8× 8 23× 23 2.23E-9 4.88 9.90E-9 4.64

16× 16 47× 47 7.61E-11 4.94 3.98E-10 4.64

32× 32 95× 95 2.44E-12 4.96 1.41E-11 4.82

test on (7.1)

2× 2 5× 5 3.28E-2 - 5.53E-2 -

4× 4 11× 11 1.58E-3 4.38 3.51E-3 3.98

8× 8 23× 23 4.81E-5 5.03 1.13E-4 4.96

16× 16 47× 47 1.48E-6 5.03 3.52E-6 5.00

test on (7.2)

2× 2 5× 5 1.18E0 - 2.61E0 -

4× 4 11× 11 6.08E-2 4.28 1.45E-1 4.17

8× 8 23× 23 2.87E-3 4.40 7.10E-3 4.35

16× 16 47× 47 9.82E-5 4.87 2.41E-4 4.88

32× 32 95× 95 3.12E-6 4.97 7.60E-6 4.99
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[13] W. Höhn and H. D. Mittelmann, Some remarks on the discrete maximum-principle for finite666
elements of higher order, Computing, 27 (1981), pp. 145–154.667

[14] Y. Huang and J. Xu, Superconvergence of quadratic finite elements on mildly structured grids,668
Mathematics of computation, 77 (2008), pp. 1253–1268.669

[15] V. I. Krylov and L. V. Kantorovitch, Approximate methods of higher analysis, P. Noord-670
hoff, 1958.671

[16] S. K. Lele, Compact finite difference schemes with spectral-like resolution, Journal of compu-672
tational physics, 103 (1992), pp. 16–42.673

[17] H. Li, S. Xie, and X. Zhang, A high order accurate bound-preserving compact finite difference674
scheme for scalar convection diffusion equations, SIAM Journal on Numerical Analysis,675
56 (2018), pp. 3308–3345.676

[18] H. Li and X. Zhang, On the monotonicity and discrete maximum principle of the finite dif-677
ference implementation of C0-Q2 finite element method, Numerische Mathematik, (2020),678
pp. 1–36.679

[19] H. Li and X. Zhang, Superconvergence of high order finite difference schemes based on varia-680
tional formulation for elliptic equations, Journal of Scientific Computing, 82 (2020), p. 36.681

[20] J. Lorenz, Zur inversmonotonie diskreter probleme, Numerische Mathematik, 27 (1977),682
pp. 227–238.683

[21] R. J. Plemmons, M-matrix characterizations. I—-nonsingular M-matrices, Linear Algebra and684
its Applications, 18 (1977), pp. 175–188.685
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