
Positivity-preserving high order finite volume HWENO
schemes for compressible Euler equations∗

Xiaofeng Cai†, Xiangxiong Zhang‡ and Jianxian Qiu§

Abstract: In this paper, we present a positivity-preserving high order finite volume Her-

mite weighted essentially non-oscillatory (HWENO) scheme for compressible Euler equations

based on the framework for constructing uniformly high order accurate positivity-preserving

discontinuous Galerkin and finite volume schemes for Euler equations proposed in [20]. The

major advantages of the HWENO schemes is their compactness in the spacial field because

the function and its first derivative are evolved in time and used in the reconstructions.

On the other hand, the HWENO reconstruction tends to be more oscillatory than those

of conventional WENO schemes. Thus positivity preserving techniques are more needed in

HWENO schemes for the sake of stability. Numerical tests will be shown to demonstrate

the robustness and high-resolution of the schemes.

Keywords: Positivity preserving; high order accuracy; Hermite weighted essentially

non-oscillatory scheme; finite volume scheme; compressible Euler equations.

∗Research was supported by NSFC grants 91230110, 11328104, 11571290 and the NSF grant DMS-
1522593.
†School of Mathematical Sciences, Xiamen University, Xiamen, Fujian, 361005, P.R. China. E-mail:

xfcai89@126.com.
‡Department of Mathematics, Purdue University, West Lafayette, IN 47907-2067, USA. E-mail:

zhan1966@purdue.edu.
§School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling &

High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian, 361005, P.R. China. E-mail:
jxqiu@xmu.edu.cn.

1



1 Introduction

When solving gas dynamics equations with conservative Eulerian schemes, high order

schemes can produce numerical solutions with better resolution than first order and sec-

ond order ones. To render high order schemes stable for simulating shock waves, limiters

or nonlinear non-oscillatory reconstructions must be used, e.g., a total-variation-bounded

(TVB) limiter for high order discontinuous Galerkin method [2] and weighted essentially

non-oscillatory (WENO) type schemes such as finite difference WENO schemes [6, 24] and

finite volume Hermite WENO (HWENO) schemes [11, 12, 28]. Even though these schemes

have been demonstrated to perform well for a wide range of problems, in practice they may

still be unstable due to loss of positivity for low density or low pressure problems.

For resolving this difficulty, a series of high order positivity-preserving schemes such as

discontinuous Galerkin method, finite volume and finite difference schemes WENO were

developed recently in [19, 20, 24] following a general methodology as reviewed in [22]. This

method for finite volume schemes can be easily implemented as a post processing step to

limit the high order reconstruction polynomials or high order reconstructed point values

without destroying accuracy and can be easily generalized, for instance, to general equations

of state and Euler system with source terms [21], to controlling the physical entropy in gas

dynamics [27], to unstructured meshes [23], to convection-diffusion equations [25, 26] and to

the shallow water equations [17, 18].

Finite volume HWENO schemes was proposed in [11, 12, 28, 1]. There are quite a

few advantages using a compact numerical stencil: first, it is easier to deal with boundary

conditions and complex geometries; second, for the same formal accuracy, compact stencils

are known to exhibit more resolution of the smaller scales by improving the dispersive and

the dissipative properties of the numerical scheme [15, 8].

However, in practice HWENO schemes are less robust than conventional WENO schemes.

The HWENO schemes are more unstable numerically for low pressure or low density prob-

lems, in which positivity preserving is a crucial property for the sake of stability. For instance,
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the flux limiter in [5] was applied to stabilize the finite difference HWENO schemes [9]. The

method to construct positivity-preserving limiters for finite volume schemes in [19, 20] can

be applied to finite volume HWENO scheme to achieve positivity without losing conser-

vation. The limiter will not destroy the high order accuracy of the HWENO scheme for

smooth solutions without vacuum. However, the positivity-preserving limiter in [19, 20] is

defined for reconstruction polynomials, which are not available in WENO and HWENO re-

constructions. Such polynomials can be obtained by interpolating reconstructed point values

in WENO [19], but the interpolation step is computationally inefficient especially in high

dimensions. A simpler and more efficient implementation of the positivity-preserving limiter

for WENO reconstruction was discussed in [22]. In this paper, we follow [22, 16] to imple-

ment an efficient and robust positivity-preserving limiter for finite volume HWENO schemes.

The HWENO scheme with this simple limiter will be much more robust for compressible

Euler equations.

The paper is organized as follows. In Section 2, we briefly review the finite volume

HWENO schemes in [11, 12, 28]. In Section 3, we introduce positivity-preserving finite

volume HWENO schemes in one dimension and two dimensions for the perfect gas. In

Section 4, numerical tests of the fifth order HWENO schemes for one dimensional Euler

equations and the fourth order finite volume HWENO schemes in two dimensional case are

shown. Concluding remarks are given in Section 5.

2 Description of finite volume Hermite WENO schemes

We briefly review the construction of finite volume HWENO schemes for solving conser-

vation laws {
qt +∇ · F (q) = 0,
q(x, 0) = q0(x),

(2.1)

in [11, 12, 28]. Taking the gradient with respect to the spatial variables in (2.1), we have

(∇q)Tt +∇T (∇ · F (q)) = 0, (2.2)
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thus

(∇q)Tt +∇ · (∇⊗ F (q)) = 0, (2.3)

where ⊗ is a tensor product. For instance, the tensor product of two vectors a = (a1 a2)

and b = (b1 b2) is

a⊗ b = (a1 a2)T (b1 b2) =

(
a1b1 a1b2

a2b1 a2b2

)
. (2.4)

For using a Hermite interpolation procedure, both the function and its derivative are needed

during the evolution in time. The finite volume HWENO schemes are defined for the equa-

tions:

Ut +∇ · F(U) = 0, (2.5)

where U = (q,∇q)T and F(U) =

(
F (q)

∇⊗ F (q)

)
. We integrate the system (2.5) on a

control volume Ωj, which is an interval [xj− 1
2
, xj+ 1

2
] in one dimensional case or a rectangle

[xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
] in two dimensional cases. After integration by parts, we obtain the

integral form of the equation as :

d

dt
UΩj

= − 1

|Ωj|

∫
∂Ωj

F(U) · nds (2.6)

where |Ωj| is the volume of the control volume Ωj and n represents the outward unit nor-

mal vector to the boundary of the control volume ∂Ωj. The line integral in (2.6) can be

approximated by a L-point Gaussian quadrature on each side of ∂Ωj =
⋃S
s=1 ∂Ωjs:∫

∂Ωj

F(U) · nds ≈
S∑
s=1

|∂Ωjs|
L∑
l=1

ωlF(U(Gsl, t)) · n, (2.7)

where Gsl and ωl are Gaussian quadrature points on ∂Ωjs and weights respectively. The flux

F(U(Gsl, t)) · n at Gaussian quadrature point is replaced by a numerical flux (approximate

or exact Riemann solvers). For example, one could use the simple Lax-Friedrichs flux, which

is given by

F(U(Gsl, t)) · n ≈
1

2
[F(U−(Gsl, t)) + F(U+(Gsl, t))] · n− α(U+(Gsl, t)− U−(Gsl, t)), (2.8)

where α is taken as an upper bound for the eigenvalues of the Jacobian along the direction

n, and U− and U+ are the reconstructed values of U at the Gaussian point Gsl in the

4



inside and the outside Ωj. The procedures of finite volume Hermite WENO reconstruction

of U±(Gsl, t) in one-dimensional and two-dimensional cases are given in detail in [11, 28],

respectively. Finally, the semi-discretization HWENO scheme (2.6) can be written in the

following ODE form:

d

dt
UΩj

= L(U)Ωj
. (2.9)

The method of lines ODE (2.9) is then discretized in time by a SSP Runge-Kutta method

in [14]. The third-order version in [14] is used in this paper,

U
(1)

= U
n

+ ∆tL(U
n
),

U
(2)

= 3
4
U
n

+ 1
4
(U

(1)
+ ∆tL(U

(1)
)),

U
n+1

= 1
3
U
n

+ 2
3
(U

(2)
+ ∆tL(U

(2)
)).

(2.10)

3 Positivity-preserving limiters for finite volume HWENO

schemes

We present positivity-preserving limiters for finite volume HWENO schemes based on the

work in [20, 22] for compressible Euler equations and their improvement in [16] for reactive

Euler equations. We apply the method in [20, 22, 16] to (2.1) and leave derivative terms

unchanged, since derivative terms do not affect the positivity in this method.

3.1 Positivity-preserving high order finite volume HWENO schemes
for solving one-dimensional Euler equations

Consider the one dimensional Euler equations for the perfect gas being given by

qt + f(q)x = 0, t > 0, x ∈ R, (3.1)

q =

 ρ
m
E

 , f(q) =

 ρu
ρu2 + p

(E + p)u

 (3.2)

with

m = ρu, E =
1

2
ρu2 + ρe, p = (γ − 1)ρe,

where ρ is the density, u is the velocity, m is the momentum, E is the total energy, p is

the pressure, e is the internal energy, and γ > 1 is a constant (γ = 1.4 for the air). The
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speed of sound is given by c =
√
γp/ρ and the three eigenvalues of the Jacobian f ′(q) are

u− c, u, u+ c.

Let p(q) = (γ− 1)
(
E − 1

2
m2

ρ

)
be the pressure function. It can be easily verified that p is

a concave function of q = (ρ,m,E)T if ρ > 0. For q1 = (ρ1,m1, E1)T and q2 = (ρ2,m2, E2)T ,

Jensen’s inequality implies, for 0 6 s 6 1,

p(sq1 + (1− s)q2) > sp(q1) + (1− s)p(q2), if ρ1 > 0, ρ2 > 0. (3.3)

Define the set of admissible states by

G =

q =

 ρ
m
E

∣∣∣∣∣∣ ρ > 0 and p = (γ − 1)

(
E − 1

2

m2

ρ

)
> 0

 , (3.4)

then G is a convex set.

The time discretization is used in HWENO schemes as the high order strong stability

preserving (SSP) methods which are convex combinations of Euler forward. Due to the

convexity of G, if Euler forward is positivity-preserving, then so are the high order SSP time

discretizations. Thus we only need to discuss the Euler forward in time.

Let ξ = qx. Taking the derivative of (3.1), we obtain

ξt +H(q, ξ)x = 0,

where H(q, ξ) = f ′(q)ξ.

Then the Euler forward temporal discretization for the the semi-discretization HWENO

scheme of (2.9) can be written asq
n+1
j = qnj − ∆t

∆x

[
f̂
(
q−
j+ 1

2

, q+
j+ 1

2

)
− f̂

(
q−
j− 1

2

, q+
j− 1

2

)]
,

ξ
n+1

j = ξ
n

j − ∆t
∆x

[Ĥ(q−
j+ 1

2

, q+
j+ 1

2

; ξ−
j+ 1

2

, ξ+
j+ 1

2

)− Ĥ(q−
j− 1

2

, q+
j− 1

2

; ξ−
j− 1

2

, ξ+
j− 1

2

)],
(3.5)

where qnj is the approximation of the cell average of the exact solution q(x, t) in the cell

Ij =
[
xj− 1

2
, xj+ 1

2

]
at time level n, and q−

j+ 1
2

, q+
j+ 1

2

are the high order approximations of

the point values q
(
xj+ 1

2
, tn
)

within the cells Ij and Ij+1 respectively. These values are

reconstructed from qnj and ξ
n

j by the HWENO reconstruction. We assume that there is a
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vector of degree k polynomials qj(x) = (ρj(x),mj(x), Ej(x))T which are (k + 1)-th order

accurate approximations to smooth exact solutions q(x, t) on Ij, and satisfy that qnj is the

cell average of qj(x) on Ij, q
+
j− 1

2

= qj

(
xj− 1

2

)
and q−

j+ 1
2

= qj

(
xj+ 1

2

)
. The existence of such

polynomials can be established by the interpolation involving q−
j+ 1

2

, q+
j− 1

2

and qnj .

The numerical fluxes f̂(a, b) and Ĥ(a, b; c, d) used in this paper are the following global

Lax-Friedrichs fluxes:

f̂(a, b) = 1
2
[f(a) + f(b)− α(b− a)],

Ĥ(a, b; c, d) = 1
2
[f ′(a)c+ f ′(b)d− α(d− c)].

(3.6)

where α = ‖(|u|+ c)‖∞.

We need the N -point Legendre Gauss-Lobatto quadrature rule on the interval Ij =[
xj− 1

2
, xj+ 1

2

]
, which is exact for the integral of polynomials of degree up to 2N − 3. We

would need to choose N such that 2N − 3 > k. The smallest N = 4 is chosen for satisfying

2N − 3 ≥ 4. Denote these quadrature points on Ij as

Sj = {xj− 1
2

= x̂1
j , x̂

2
j , . . . , x̂

N−1
j , x̂Nj = xj+ 1

2
}. (3.7)

Let ω̂j denote weights in N -point Gauss-Lobatto quadrature for the reference cell [−1
2
, 1

2
],

then the smallest weight for N = 4 is ω̂1 = ω̂4 = 1
12

.

A general framework to construct a high order positivity preserving finite volume scheme

for the Euler equations was introduced in [20], in which a sufficient condition for qn+1
j ∈ G

is that, all the nodal value qj(x̂
α
j ) ∈ G for all j and α under suitable CFL conditions

λ‖(|u|+ c)‖∞ ≤ ω̂1α0, (3.8)

where α0 = 1 for the Lax-Friedrichs flux. The positivity-preserving limiter in [20] can

enforce this sufficient condition without destroying conservation and accuracy. For more

detailed description of such a positivity-preserving method, see [20, 22]. However, neither

the polynomial qj(x) nor the nodal values qj(x̂
α
j ) (α = 2, · · · , N − 1) are available from the

WENO type reconstruction, which poses additional chanllenge to implementing an efficient

limiter. In [22, 16], simpler implementations of the limiter were discussed.
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Following Section 5 in [22], for preserving positivity in the finite volume HWENO scheme

(3.5), we have the following weaker sufficient condition which can be enforced without con-

structing the polynomials qj(x).

THEOREM 1. Let qj(x) = (ρj(x), mj(x), Ej(x))T be the approximation polynomials ap-

proximating q in the HWENO scheme (3.5). For the scheme (3.5), if

qnj − ω̂1q
+
j− 1

2

− ω̂Nq−j+ 1
2

1− 2ω̂1

∈ G, and q±
j± 1

2

∈ G, (3.9)

then qn+1
j ∈ G under the CFL condition λ‖(|u| + c)‖∞ 6 ω̂1α0, where α0 = 1 for the Lax-

Friedrichs flux.

REMARK 1. In HWENO reconstruction, only point values q±
j± 1

2

and q±
j∓ 1

2

are recon-

structed. In Theorem 1, we need the existence of the approximation polynomials qj(x) which

is a high order accurate approximation to q and has cell average qnj and cell end values q+
j− 1

2

,

q−
j+ 1

2

. The existence of such polynomials can be established by interpolation, see [19].

REMARK 2. Notice that ω̂1 = ω̂N and qnj = 1
∆xj

∫
Ij

qj(x) dx =
N∑
α=1

qj(x̂
α
j )ω̂j, thus we have

qnj − ω̂1q
+
j− 1

2

− ω̂Nq−j+ 1
2

1− 2ω̂1

=
N−1∑
α=2

ω̂j
1− 2ω̂1

qj(x̂
α
j ),

which is a convex combination of qj(x
α
j ) (α = 2, · · · , N − 1). By the mean value theorem,

there exist some points x1
j , x

2
j , x

3
j in Ij such that

(ρj(x
1
j),mj(x

2
j), Ej(x

3
j))

T =
N−1∑
α=2

ω̂j
1− 2ω̂1

qj(x̂
α
j ) =

qnj − ω̂1q
+
j− 1

2

− ω̂Nq−j+ 1
2

1− 2ω̂1

.

Even though the points x1
j , x

2
j , x

3
j are three different points, for convenience we will treat

(ρj(x
1
j),mj(x

2
j), Ej(x

3
j))

T as if it is qj(x) evaluated at one point in the following discussion.

For each cell Ij, given qnj ∈ G and nodal values q∓
j± 1

2

constructed in HWENO procedure,

the following limiter can be used to enforce the sufficient condition (3.9).

1. Set up a small number ε = minj{10−13, ρnj , p(q
n
j )}.
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2. In each cell, evaluate θ1 = min
{∣∣∣ ρn

j −ε
ρn

j −ρmin

∣∣∣ , 1} where

ρmin = min{ρ−
j+ 1

2

, ρ+
j− 1

2

, ρj(x
1
j)}, ρj(x

1
j) =

ρnj − ω̂1ρ
+
j− 1

2

− ω̂Nρ−j+ 1
2

1− 2ω̂1

.

3. Modify the density first: set

ρ̂−
j+ 1

2

= θ1(ρ−
j+ 1

2

− ρnj ) + ρnj , ρ̂+
j− 1

2

= θ1(ρ+
j− 1

2

− ρnj ) + ρnj .

Then denote

q̂1
j = q̂−

j+ 1
2

=
(
ρ̂−
j+ 1

2

,m−
j+ 1

2

, E−
j+ 1

2

)T
, q̂2
j = q̂+

j− 1
2

=
(
ρ̂+
j− 1

2

,m+
j− 1

2

, E+
j− 1

2

)T
,

and q̂3
j = (ρ̂j(x

1
j),mj(x

2
j), Ej(x

3
j))

T =
qn

j −bω1bq+

j− 1
2

−bωN bq−
j+ 1

2

1−2bω1
. Here ρ̂j(x) denotes the poly-

nomial ρ̂j(x) = θ1(qj(x)− ρnj ) + ρnj . Notice that we only need to compute three nodal

values of ρ̂j(x).

4. Then modify the pressure: for l = 1, 2, 3, if p(q̂lj) < ε, then solve the following quadratic

equation for tlε ∈ [0, 1],

p[(1− tlε)qnj + tlεq̂
α
j ] = ε. (3.10)

The convexity of the set {(ρ,m,E)T : ρ > 0, p ≥ ε} implies the solution to this

quadratic equation is unique in the interval [0, 1]. If p(q̂lj) > ε, then set tlε = 1. Set

θ2 = min
α=1,2,3

tlε.

5. For modifying the pressure, an easier yet more robust alternative was introduced in

[16]: for l = 1, 2, 3, if p(q̂lj) < ε, set

tlε =
p(qnj )− ε

p(qnj )− p(q̂lj)
. (3.11)

if p(q̂lj) > ε, then set tlε = 1. Set θ2 = min
l=1,2,3

tlε. By Jensen’s inequality on the

concave pressure function, we can see that tlε computed in (3.11) is smaller than the

one computed in (3.10). In other words, (3.10) results in less modification than (3.11).

Nonetheless, both approaches are accurate modifications for smooth solutions without

vacuum.
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6. Compute

q̃−
j+ 1

2

= θ2(q̂−
j+ 1

2

− qnj ) + qnj , q̃+
j− 1

2

= θ2(q̂+
j− 1

2

− qnj ) + qnj . (3.12)

It is straightforward to check that q̃±
j± 1

2

and qnj satisfy the condition (3.9).

7. Use q̃±
j± 1

2

instead of q±
j± 1

2

, in the scheme (3.5) with the CFL condition (3.8), where

‖|u|+ c‖∞ is the maximum of eigenvalues of the Jacobian f ′(q) over the set consisting

of qnj , q̃
−
j+ 1

2

, q̃+
j− 1

2

for all j.

To see why the simplified limiter discussed above is still an accurate modification, we

can compare it to the one in [20] enforcing the stronger condition qj(x̂
α
j ) ∈ G for all α. For

simplicity, we omit the subscript j here. We only discuss the case for enforcing positivity

of pressure since the discussion for density will be similar. Given the cell average q ∈ G

satisfying p[q] ≥ ε and the high order accurate reconstructed point values q+ and q− on the

cell I, we assume the density of q+ and q− are already positive. Let q(x) be a high order

accurate approximation polynomial satisfying that q is its cell average on I and q+ and q−

are its left and right end point values on I. We compare the following two limiters:

1. Let θ̂ = min
α=1,··· ,N

tαε where tαε = 1 if p[q(x̂α)] ≥ ε and tαε ∈ [0, 1] solves the quadratic

equation p[θ(q(x̂α)− q) + q] = ε for the unknown θ ∈ [0, 1] otherwise.

2. Let θ̄ = min
l=1,2,3

tlε where tlε = 1 if p[ql] ≥ ε and tlε ∈ [0, 1] solves the quadratic equation

p[θ(ql − q) + q] = ε for the unknown θ ∈ [0, 1] otherwise. Here q1 = q− = q(x̂N),

q2 = q+ = q(x̂1) and q3 = q−bω1q+−bωN q
−

1−2bω1
.

Define

qθ(x) = θ(q(x)− q) + q, θ ∈ [0, 1].

Then θ = θ̄ is the largest number in [0, 1] such that the following inequalities hold,

p
[
qθ(x̂1)

]
≥ ε, p

[
qθ(x̂N)

]
≥ ε, p

[
q − ω̂1q

θ(x̂1)− ω̂Nqθ(x̂N)

1− 2ω̂1

]
≥ ε. (3.13)
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On the other hand, θ = θ̂ also satisfies (3.13) due to the Jensen’s inequality for the concave

pressure function and the fact that the following convex combination holds for any θ,

q − ω̂1q
θ(x̂1)− ω̂Nqθ(x̂N)

1− 2ω̂1

=
N−1∑
α=2

ω̂j
1− 2ω̂1

qθ(x̂αj ).

Therefore we have shown that θ̄ ≥ θ̂ thus the simplified limiter results in less modification

than the limiter in [20] enforcing the stronger sufficient condition q(x̂α) ∈ G for all α.

3.2 Positivity-preserving limiter for finite volume HWENO schemes
in Two dimensions on Cartesian meshes

In this section section we consider two dimensional Euler equations

qt + f(q)x + g(q)y = 0, t ≥ 0, (x, y) ∈ R2, (3.14)

where

q =


ρ
m
n
E

 , f(q) =


ρu

ρu2 + p
ρuv

(E + p)u

 , g(q) =


ρv
ρuv

ρv2 + p
(E + p)v

 (3.15)

with

m = ρu, n = ρv, E =
1

2
ρu2 +

1

2
ρv2 + ρe, p = (γ − 1)ρe,

where ρ is the density, u is the velocity in x direction, v is the velocity in y direction, m and

n are the momenta, E is the total energy, p is the pressure, e is the internal energy. The

speed of sound is given by c =
√

(γp/ρ). The eigenvalues of the Jacobian f ′(q) are u−c, u, u

and u + c and the eigenvalues of the Jacobian g′(q) are v − c, v, v and v + c. The pressure

function p is concave with respect to q if ρ ≥ 0. Thus the set of admissible states

G =

q =


ρ
m
n
E


∣∣∣∣∣∣∣∣ ρ > 0 and p = (γ − 1)

(
E − 1

2

m2

ρ
− 1

2

n2

ρ

)
> 0


is still convex.

For simplicity we assume we have a uniform rectangular mesh. At time level n, we have a

vector of approximation polynomials of degree k, qij(x, y) = (ρij(x, y),mij(x, y), nij(x, y), Eij(x, y))T
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with the cell average qmij = (ρnij,m
n
ij, n

n
ij, E

n

ij)
T on the (i, j) cell denoted by Iij = [xi− 1

2
, xi+ 1

2
]×

[yj− 1
2
, yj+ 1

2
]. Let ∆x = xi+ 1

2
− xi− 1

2
and ∆y = yj+ 1

2
− yj− 1

2
.

Let ξ = ∂q
∂x

, η = ∂q
∂y

. Taking the derivatives of (3.14), we obtain

ξt +H(q, ξ)x +R(q, ξ)y = 0, (3.16)

ηt +K(q, η)x + S(q, η)y = 0, (3.17)

where H(q, ξ) = f ′(q)ξ,R(q, ξ) = g′(q)ξ,K(q, η) = f ′(q)η,S(q, η) = g′(q)η.

We first integrate the equations (3.14), (3.16) and (3.17) on Iij:

d

dt
qij = − 1

∆x∆y

∫
∂Iij

F · nds, (3.18)

d

dt
ξij = − 1

∆y

∫
∂Iij

H · nds, (3.19)

d

dt
ηij = − 1

∆x

∫
∂Iij

Q · nds, (3.20)

where

qij =
1

∆x∆y

∫
Iij

qdxdy, ξij =
1

∆y

∫
Iij

∂q

∂x
dxdy, ηij =

1

∆x

∫
Iij

∂q

∂y
dxdy

and F = (f, g)T , H = (H,R)T , Q = (K,S)T .

The line integral in (3.18)-(3.20) are approximated by a L-point Gauss quadrature on

each side of ∂Iij =
⋃4
s=1 ∂Iijs,∫

∂Iij

F · nds ≈
4∑
s=1

|∂Iijs|
L∑
l=1

ωlF (q(Gsl, t)) · n, (3.21)

∫
∂Iij

H · nds ≈
4∑
s=1

|∂Iijs|
L∑
l=1

ωlH(q(Gsl, t), ξ(Gsl, t)) · n, (3.22)

∫
∂Iij

Q · nds ≈
4∑
s=1

|∂Iijs|
L∑
l=1

ωlQ(q(Gsl, t), η(Gsl, t)) · n, (3.23)

where ωl (l = 1, · · · , L) denote the Gauss quadrature weights for the reference interval

[−1
2
, 1

2
].

Since we are constructing schemes up to fourth-order accuracy, two-point Gaussian will be

used in each line integration, and F (q(Gsl, t))·n,H(q(Gsl, t), ξ(Gsl, t))·n,Q(q(Gsl, t), η(Gsl, t))·

12



n are replaced by numerical fluxes such as the global Lax-Friedrichs fluxes:

f̂(q−(Gsl, t), q
+(Gsl, t)) =

1

2
[f(q−(Gsl, t))+f(q+(Gsl, t))−α(q+(Gsl, t)−q−(Gsl, t))], (3.24)

Ĥ(q−(Gsl, t), q
+(Gsl, t); ξ

−(Gsl, t), ξ
+(Gsl, t)) =

1

2
[H(q−(Gsl, t), ξ

−(Gsl, t))

+H(q+(Gsl, t), ξ
+(Gsl, t))− α(ξ+(Gsl, t)− ξ−(Gsl, t))], (3.25)

K̂(q−(Gsl, t), q
+(Gsl, t); η

−(Gsl, t), η
+(Gsl, t)) =

1

2
[K(q−(Gsl, t), η

−(Gsl, t))

+K(q+(Gsl, t), η
+(Gsl, t))− α(η+(Gsl, t)− η−(Gsl, t))], (3.26)

where α = max{‖(|u|+c)‖∞, ‖(|v|+c)‖∞} and for Gsl = (xi± 1
2
, yj±

√
3/6), q±(Gsl, t), ξ

±(Gsl, t),

η±(Gsl, t) are the left and right limits of the solutions u, v, w at the cell interface Gsl respec-

tively; and

ĝ(q−(Gsl, t), q
+(Gsl, t)) =

1

2
[g(q−(Gsl, t)) + g(q+(Gsl, t))−α(q+(Gsl, t)− q−(Gsl, t))], (3.27)

R̂(q−(Gsl, t), q
+(Gsl, t); ξ

−(Gsl, t), ξ
+(Gsl, t)) =

1

2
[R(q−(Gsl, t), ξ

−(Gsl, t))

+R(q+(Gsl, t), ξ
+(Gsl, t))− α(ξ+(Gsl, t)− ξ−(Gsl, t))], (3.28)

Ŝ(q−(Gsl, t), q
+(Gsl, t); η

−(Gsl, t), η
+(Gsl, t)) =

1

2
[S(q−(Gsl, t), η

−(Gsl, t))

+S(q+(Gsl, t), η
+(Gsl, t))− α(η+(Gsl, t)− η−(Gsl, t))], (3.29)

where Gsl = (xi±
√

3/6, yj± 1
2
), q±(Gsl, t), ξ

±(Gsl, t), η
±(Gsl, t) are the bottom and top limits of

the solutions u, v, w at the cell interface Gsl respectively. The procedure of reconstruction of

q±(Gsl, t), ξ
±(Gsl, t), η

±(Gsl, t) from qij, ξij, ηij is given in detail in [12, 28].

Let λ1 = ∆t
∆x

and λ2 = ∆t
∆y

, then Euler forward temporal discretization for the the semi-

discretization HWENO scheme of (3.18)-(3.20) associated with approximation polynomials

qij(x, y) = (ρij(x, y),mij(x, y), nij(x, y), Eij(x, y))T becomes

qn+1
ij = qnij − λ1

L∑
β=1

ωβ

[
f̂
(
q−
i+ 1

2
,β
, q+
i+ 1

2
,β

)
− f̂

(
q−
i− 1

2
,β
, q+
i− 1

2
,β

)]
−λ2

L∑
β=1

ωβ

[
ĝ
(
q−
β,j+ 1

2

, q+
β,j+ 1

2

)
− ĝ

(
q−
β,j− 1

2

, q+
β,j− 1

2

)]
,

(3.30)
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ξ
n+1

ij = ξ
n

ij − λ1

L∑
β=1

ωβ

[
Ĥ
(
q−
i+ 1

2
,β
, q+
i+ 1

2
,β

; ξ−
i+ 1

2
,β
, ξ+
i+ 1

2
,β

)
− Ĥ

(
q−
i− 1

2
,β
, q+
i− 1

2
,β

; ξ−
i− 1

2
,β
, ξ+
i− 1

2
,β

)]
−λ2

L∑
β=1

ωβ

[
R̂
(
q−
β,j+ 1

2

, q+
β,j+ 1

2

; ξ−
β,j+ 1

2

, ξ+
β,j+ 1

2

)
− R̂

(
q−
β,j− 1

2

, q+
β,j− 1

2

; ξ−
β,j− 1

2

, ξ+
β,j− 1

2

)]
,

(3.31)

ηn+1
ij = ηnij − λ1

L∑
β=1

ωβ

[
K̂
(
q−
i+ 1

2
,β
, q+
i+ 1

2
,β

; η−
i+ 1

2
,β
, η+
i+ 1

2
,β

)
− K̂

(
q−
i− 1

2
,β
, q+
i− 1

2
,β

; η−
i− 1

2
,β
, η+
i− 1

2
,β

)]
−λ2

L∑
β=1

ωβ

[
Ŝ
(
q−
β,j+ 1

2

, q+
β,j+ 1

2

; η−
β,j+ 1

2

, η+
β,j+ 1

2

)
− Ŝ

(
q−
β,j− 1

2

, q+
β,j− 1

2

; η−
β,j− 1

2

, η+
β,j− 1

2

)]
,

(3.32)

Let µ1 =
∆t
∆x

α
∆t
∆x

α+ ∆t
∆y

α
=

∆t
∆x

∆t
∆x

+ ∆t
∆y

and µ2 =
∆t
∆y

α
∆t
∆x

α+ ∆t
∆y

α
= 1−µ1. The extension of the discussion

in previous subsection to the two-dimensional case is straightforward. Following Theorem 1

in previous subsection and Theorem 10 in [22], we have

THEOREM 2. Let qij(x, y) = (ρij(x, y), mij(x, y), nij(x, y), Eij(x, y))T be the approxima-

tion polynomials in (i, j) cell approximating q in the HWENO scheme (3.30). By the mean

value theorem, there exist some points (x1
i , y

1
j ), (x

2
i , y

2
j ), (x

3
i , y

3
j ), (x

4
i , y

4
j ) in (i, j) cell such that

(ρij(x
1
i , y

1
j ),mij(x

2
i , y

2
j ), nij(x

3
i , y

3
j ), Eij(x

4
i , y

4
j ))

T

=

qnij −
L∑
β=1

ωβω̂1

[
µ1

(
q−
i+ 1

2
,β

+ q+
i− 1

2
,β

)
+ µ2

(
q−
β,j+ 1

2

+ q+
β,j− 1

2

)]
1− 2ω̂1

.

For the scheme (3.30), if

(ρij(x
1
i , y

1
j ),mij(x

2
i , y

2
j ), nij(x

3
i , y

3
j ), Eij(x

4
i , y

4
j ))

T , q±
β,j± 1

2

, q±
i± 1

2
,β
, q±
β,j∓ 1

2

, q±
i∓ 1

2
,β
∈ G, (3.33)

then qn+1
ij ∈ G under the CFL condition (λ1 + λ2) max{‖(|u| + c)‖∞, ‖(|v| + c)‖∞} 6 ω̂1α0,

where α0 = 1 for the Lax-Friedrichs flux.

For each cell (i, j), given qnij ∈ G and nodal values q±
β,j± 1

2

, q±
i± 1

2
,β
, q±
β,j∓ 1

2

, q±
i∓ 1

2
,β

constructed

in HWENO procedure, the following limiter can be used to enforce the sufficient condition

(3.33).
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1. Set up a small number ε = mini,j{10−13, ρnij, p(q
n
ij)}.

2. In each cell, evaluate

θ1 = min

{∣∣∣∣ ρnij − ε
ρnij − ρmin

∣∣∣∣ , 1} , ρmin = min
{
ρ±
β,j± 1

2

, ρ±
i± 1

2
,β
, ρ±

β,j∓ 1
2

, ρ±
i∓ 1

2
,β
, ρij

(
x1
i , y

1
j

)}
(3.34)

3. Modify the density first: set

ρ̂+
β,j− 1

2

= θ1(ρ+
β,j− 1

2

− ρnij) + ρnij,

ρ̂+
i− 1

2
,β

= θ1(ρ+
i− 1

2
,β
− ρnij) + ρnij.

ρ̂−
β,j+ 1

2

= θ1(ρ−
β,j+ 1

2

− ρnij) + ρnij,

ρ̂−
i+ 1

2
,β

= θ1(ρ−
i+ 1

2
,β
− ρnij) + ρnij.

Then denote

q̂1
ij = q̂+

i−
√

3
6
,j− 1

2

=

(
ρ̂+

i−
√

3
6
,j− 1

2

,m+

i−
√

3
6
,j− 1

2

, n+

i−
√

3
6
,j− 1

2

, E+

i−
√

3
6
,j− 1

2

)T
,

q̂2
ij = q̂+

i+
√

3
6
,j− 1

2

=

(
ρ̂+

i+
√

3
6
,j− 1

2

,m+

i+
√

3
6
,j− 1

2

, n+

i+
√

3
6
,j− 1

2

, E+

i+
√

3
6
,j− 1

2

)T
,

q̂3
ij = q̂+

i− 1
2
,j−
√

3
6

=

(
ρ̂+

i− 1
2
,j−
√

3
6

,m+

i− 1
2
,j−
√

3
6

, n+

i− 1
2
,j−
√

3
6

, E+

i− 1
2
,j−
√

3
6

)T
,

q̂4
ij = q̂+

i− 1
2
,j+
√

3
6

=

(
ρ̂+

i− 1
2
,j+
√

3
6

,m+

i− 1
2
,j+
√

3
6

, n+

i− 1
2
,j+
√

3
6

, E+

i− 1
2
,j+
√

3
6

)T
,

q̂5
ij = q̂−

i−
√

3
6
,j+ 1

2

=

(
ρ̂−
i−
√

3
6
,j+ 1

2

,m−
i−
√

3
6
,j+ 1

2

, n−
i−
√

3
6
,j+ 1

2

, E−
i−
√

3
6
,j+ 1

2

)T
,

q̂6
ij = q̂−

i+
√

3
6
,j+ 1

2

=

(
ρ̂−
i+
√

3
6
,j+ 1

2

,m−
i+
√

3
6
,j+ 1

2

, n−
i+
√

3
6
,j+ 1

2

, E−
i+
√

3
6
,j+ 1

2

)T
,

q̂7
ij = q̂−

i+ 1
2
,j−
√

3
6

=

(
ρ̂−
i+ 1

2
,j−
√

3
6

,m−
i+ 1

2
,j−
√

3
6

, n−
i+ 1

2
,j−
√

3
6

, E−
i+ 1

2
,j−
√

3
6

)T
,

q̂8
ij = q̂−

i+ 1
2
,j+
√

3
6

=

(
ρ̂−
i+ 1

2
,j+
√

3
6

,m−
i+ 1

2
,j+
√

3
6

, n−
i+ 1

2
,j+
√

3
6

, E−
i+ 1

2
,j+
√

3
6

)T
,
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and

q̂9
ij = (ρ̂ij(x

1
i , y

1
j ),mij(x

2
i , y

2
j ), nij(x

3
i , y

3
j ), Eij(x

4
i , y

4
j ))

T

=

qnij −
L∑
β=1

ωβω̂1

[
µ1

(
q̂−
i+ 1

2
,β

+ q̂+
i− 1

2
,β

)
+ µ2

(
q̂−
β,j+ 1

2

+ q̂+
β,j− 1

2

)]
1− 2ω̂1

4. Then modify the pressure: for l = 1, 2, · · · , 9, if p(q̂lij) < ε, set

tlε =
p(qnij)− ε

p(qnij)− p(q̂lij)
. (3.35)

if p(q̂lij) > ε, then set tlε = 1. θ2 = min
l=1,2,··· ,9

tlε.

Get

q̃−
β,j+ 1

2

= θ2(q̂−
β,j+ 1

2

− qnij) + qnij, q̃+
β,j− 1

2

= θ2(q̂+
β,j− 1

2

− qnij) + qnij

q̃−
i+ 1

2
,β

= θ2(q̂−
i+ 1

2
,β
− qnij) + qnij, q̃+

i− 1
2
,β

= θ2(q̂+
i− 1

2
,β
− qnij) + qnij

5. Use q̃±
β,j± 1

2

, q̃±
i± 1

2
,β

instead of q±
β,j± 1

2

, q±
i± 1

2
,β
, in the scheme (3.30) with the CFL condition

(λ1 + λ2) max{‖(|u| + c)‖∞, ‖(|v| + c)‖∞} 6 1
12

, where the maximum is taken over

qnij, q̃
±
β,j± 1

2

, q̃±
i± 1

2
,β

for all i, j.

3.3 The algorithm for SSP Runge-Kutta time discretization

By Theorem 1, the fourth order finite volume HWENO scheme is positivity-preserving

under the suitable CFL condition ∆t
∆x
‖|u| + c‖∞ ≤ 1

12
. But this CFL condition should be

satisfied for each time stage of Runge-Kutta thus we need ‖|u| + c‖∞ in each time stage.

Given solutions at time step n, it is hard to accurately estimate ‖|u|+ c‖∞ in the two inner

time stages in the third order SSP Runge-Kutta. On the other hand, the CFL condition

∆t
∆x
‖|u|+c‖∞ ≤ 1

12
is sufficient rather than necessary for the sake of preserving the positivity of

cell averages. To evolve to time step n+1, we can start with a larger CFL (e.g., ∆t
∆x
‖|u|+c‖∞ ≤

1
3

for a fourth order finite volume scheme) in time step n to save computational cost. If

negative cell averages emerge in any of three stage in one step of Runge-Kutta, then return
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to stage one in time step n and restart the computation with the stringent CFL condition.

Such an efficient algorithm was used in [16].

This algorithm for the scheme in Section 3.1 with the third order SSP Runge-Kutta

method (2.10) can be implemented as follows:

1. At time level n, in each cell Ij, given qnj ∈ G and reconstructed point values q−
j+ 1

2

and

q+
j− 1

2

, apply the limiter to obtain q̃−
j+ 1

2

, q̃+
j− 1

2

∈ G.

2. Compute max ‖|u|+ c‖∞ by taking the maximum over qnj , q̃
−
j+ 1

2

and q̃+
j− 1

2

for all j.

3. Set the time step ∆t = a ∆x
max ‖|u|+c‖∞ where a is a linearly stable CFL number for a

fourth order finite volume scheme. For example, we can use a = 1
3

in practice.

4. Compute the first stage, denoted by q
(1)
j .

• If the cell averages q
(1)
j are positive, then proceed to the next step.

• If the cell averages q
(1)
j contain negative density or pressure, then recompute the

first stage with the stringent CFL, ∆t = 1
12

∆x
max ‖|u|+c‖∞ . Notice that Theorem 1

guarantees that the cell averages q
(1)
j will be positive with this CFL.

5. Given q
(1)
j ∈ G and reconstructed point values q

−,(1)

j+ 1
2

and q
+,(1)

j− 1
2

, apply the limiter to

obtain q̃
−,(1)

j+ 1
2

, q̃
+,(1)

j− 1
2

∈ G. Compute the second stage, denoted by q
(2)
j .

• If the cell averages q
(2)
j are positive, then proceed to the next step.

• If the cell averages q
(2)
j contain negative density or pressure, then return to Step 4

and restart the computation with half time step. Notice that even if the time step

is already ∆t = 1
12

∆x
max ‖|u|+c‖∞ in Step 4, there is no guarantee that q

(2)
j should be

positive because the wave speed max ‖|u|+ c‖∞ was computed based on qnj rather

than q
(1)
j .

6. Given q
(2)
j ∈ G and reconstructed point values q

−,(2)

j+ 1
2

and q
+,(2)

j− 1
2

, apply the limiter to

obtain q̃
−,(2)

j+ 1
2

, q̃
+,(2)

j− 1
2

∈ G. Compute qn+1
j .
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• If the cell averages qn+1
j are positive, then computation to time step n+1 is done.

• If the cell averages qn+1
j contain negative density or pressure, then return to Step

4 and restart the computation with half time step.

REMARK 3. Theorem 1 implies that the implementation above will not result in any

endless loop. When time step is small enough such that ∆t ≤ 1
12

∆x
α∗

where α∗ is larger than

or equal to the maximum wave speed in all inner stages, qn+1
j will be positive.

4 Numerical tests for the Ideal Gas

In this section, we perform a detailed comparison of the fifth order finite volume HWENO

scheme with the positivity-preserving limiter (HWENO5) and the fifth order finite volume

WENO scheme with the positivity-preserving limiter (WENO5) in 1D dimensional cases

and show some results of the fourth order finite volume HWENO scheme in two dimensional

case with the positivity-preserving limiter (HWENO4) for several demanding examples. The

HWENO schemes without the positivity-preserving limiter will blow up for most examples

in this section.

EXAMPLE 1. Accuracy test.

Consider the vortex evolution problem [24] for (2.1). The mean flow is ρ = p = u = v = 1.

Add to the mean flow an isentropic vortex perturbation centered at (x0, y0) in (u, v) and

T = p/ρ, no perturbation in S = p/ργ,

(δu, δv) =
ε

2π
e0.5(1−r2)(−y, x), δT =

(γ − 1)ε2

8γπ2
e1−r2

,

where (x, y) = (x− x0, y − y0), r2 = x2 + y2. The exact solution is the passive convection of

the vortex with the mean velocity.

The domain is taken as [−5, 15]× [−5, 15] and (x0, y0) = (5, 5). The boundary condition

is periodic. We set γ = 1.4 and the vortex strength ε = 10.0828 such that the lowest density

and lowest pressure of the exact solution are 7.8×10−15 and 1.7×10−20. We test the accuracy
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of positivity-preserving limiter on the fourth order finite volume HWENO scheme with the

third order SSP Runge-Kutta at T = 0.01 with ∆x = ∆y under CFL = 0.2.

In Table 4.1, we find the finite volume HWENO scheme with positivity-preserving limiter

can ensure the positivity of density ρ and pressure p. To see how many positivity limiters were

actually used in this example, we recorded the number of cells where positivity-preserving

limiter was activated (namely, θ < 1). For each time stage, the percentage of the such cells

is listed as well. We clearly observe the accuracy of the HWENO scheme with limiters is

formally fourth order in both L1 norm and L∞ norm.

Table 4.1: Fourth order finite volume HWENO scheme with the positivity-preserving limiter,
for the vortex evolution problem, T = 0.01, and ∆x = ∆y. ρmin and pmin are minimum
density and pressure of the numerical solution respectively.

N L1 error Order L∞ error Order ρmin pmin limited
20 2.68E-04 - 1.71E-02 - 1.96E-01 1.43E-01 ≤ 22%
40 5.29E-05 2.34 3.42E-03 2.32 1.60E-02 5.29E-03 ≤ 8.31%
80 5.69E-06 3.22 1.09E-03 1.65 8.11E-04 1.23E-04 ≤ 3.95%
160 6.43E-07 3.14 2.07E-04 2.40 3.90E-05 2.00E-06 ≤ 1.93%
320 3.23E-08 4.32 2.23E-05 3.21 1.13E-06 9.97E-08 ≤ 0.94%
640 1.62E-09 4.32 1.05E-06 4.41 6.78E-08 1.99E-9 ≤ 0.47%

EXAMPLE 2. Sedov blast waves.

The Sedov point-blast wave is a typical low density and low pressure problem involving

shocks. The exact solution formula can be found in [13, 7].

The computational domain is taken to be [−2, 2]. The boundary condition is outflow.

For the initial condition, the density is 1, velocity is zero, total energy is 10−13 everywhere

except that the energy in the center cell is the constant E0

∆x
with E0 = 3200000 (emulating a

δ-function at the center). γ = 1.4. The computational results with the positivity-preserving

limiter at T = 0.001 on a mesh size of ∆x = 0.01 are shown in Figure 4.1. For each time

stage, the percentage of cells where positivity limiter was activated is less than 0.5%. By

comparing with WENO5, we can observe that a slightly sharper blast wave is obtained by

using the HWENO5 scheme.
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(a) pressure (b) velocity

(c) density

Figure 4.1: 1D Sedov blast. T=0.001. ∆x = 0.01. HWENO5 and WENO5. The solid line
is the exact solution. Squares: numerical solution of WENO5; Pluses: numerical solution of
HWENO5.

EXAMPLE 3. The extreme one-dimensional double rarefaction problem.

The initial condition is ρL = ρR = 7, uL = −1, uR = 1, pL = pR = 0.2, γ = 1.4. The

computational domain is taken to be [−1, 1]. The boundary condition is outflow.

The exact solution contains vacuum. The results of positivity-preserving fifth order

HWENO schemes and positivity-preserving fifth order WENO schemes at T = 0.6 on a

mesh size of ∆x = 1/200 under CFL = 0.5 are shown in Figure 4.2. For each time stage,

the percentage of cells where positivity limiter applied is less than 0.5%. In the right panel
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of Figure 4.2, we can observe that both schemes preserves positive density and pressure and

capture shocks well.

EXAMPLE 4. A two-dimensional double rarefaction with the initial condition ρL = ρR =

7, uL = −1, uR = 1, vL = vR = 0, pL = pR = 0.2.

The computational domain is [−1, 1]× [−1, 1]. The boundary condition is outflow. The

results of cutting at y = 0 of the problem at T = 0.6 with ∆x = 1/200 are presented. The

results of HWENO4 are very well. The maximum percentage of limited cells is 1%.

EXAMPLE 5. Shock diffraction problem.

The setup is the following: the computational domain is the union of [0, 1]× [6, 11] and

[1, 13] × [0, 11]; the initial condition is a pure right-moving shock of Mach = 5.09, initially

located at x = 0.5 and 6 6 y 6 11, moving into undisturbed air ahead of the shock with a

density of 1.4 and pressure of 1. The boundary conditions are inflow at x = 0, 6 6 y 6 11,

outflow at x = 13, 0 6 y 6 11, 1 6 x 6 13, y = 0 and 0 6 x 6 13, y = 11, and reflective

at the walls 0 6 x 6 1, y = 6 and x = 1, 0 6 y 6 6.λ = 1.4. The density and pressure at

t = 2.3 are presented in Figure 4.4 and Figure 4.5. For each time stage, if the positivity-

preserving finite volume HWENO scheme with ∆x = ∆y = 1
32

applied to solve the problem,

the percentage of the cells that need the usage of the positivity-preserving limiter is less than

1.1%. Such ratio is 0.55% in case of the positivity-preserving finite volume HWENO scheme

with ∆x = ∆y = 1
64

.

The results are comparable to those of positivity-preserving DG method [20], finite vol-

ume WENO scheme [22] and finite difference WENO scheme [24].

5 Conclusions

In this paper, we have proposed the positivity-preserving finite volume HWENO schemes

in both one dimension and two dimension based on a general framework to construct ar-

bitrarily high order schemes which can preserve the positivity of density and pressure for
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conservation laws in [20]. The present schemes keep the essentially non-oscillatory properties

for low density and low pressure problems. Compared to positivity-preserving finite vol-

ume WENO schemes in one-dimensional case, positivity-preserving finite volume HWENO

schemes can produce better resolutions in several examples due to its compactness proper-

ties. Extensions of our HWENO scheme for Euler equations with a source term constitute

our future work.
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(a) density (b) density

(c) pressure (d) pressure

(e) velocity (f) velocity

Figure 4.2: Double rarefaction. T=0.6. left: 1D problem. Right: the zoom. ∆x = 1/200.
HWENO5 and WENO5. The solid line is the exact solution. Squares: numerical solution of
WENO5; Pluses: numerical solution of HWENO5.

26



(a) density (b) pressure

(c) velocity

Figure 4.3: Double rarefaction. T=0.6. Cut at y = 0. ∆x = 1/200. HWENO scheme with
the positive-preserving limiter. The solid line is the exact solution. Symbols are numerical
solutions
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(a) ∆x = ∆y = 1/32 (b) ∆x = ∆y = 1/64

Figure 4.4: Shock diffraction problem. T = 2.3. Density, 20 equally spaced contour lines
from ρ = 0.066227 to ρ = 7.0668.

(a) ∆x = ∆y = 1/32 (b) ∆x = ∆y = 1/64

Figure 4.5: Shock diffraction problem. T = 2.3. Pressure, 40 equally spaced contour lines
from p = 0.091 to p = 37.
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