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Abstract

For smooth optimization problems with a Hermitian positive semidefinite fixed-
rank constraint, we consider three existing approaches including the simple
Burer–Monteiro method, and Riemannian optimization over quotient geometry
and the embedded geometry. These three methods can be all represented via
quotient geometry with three Riemannian metrics gi(·, ·) (i = 1, 2, 3). By tak-
ing the nonlinear conjugate gradient method (CG) as an example, we show that
CG in the factor-based Burer–Monteiro approach is equivalent to Riemannian
CG on the quotient geometry with the Bures-Wasserstein metric g1. Riemannian
CG on the quotient geometry with the metric g3 is equivalent to Riemannian
CG on the embedded geometry. For comparing the three approaches, we analyze
the condition number of the Riemannian Hessian near a minimizer under the
three different metrics. Under certain assumptions, the condition number from
the Bures-Wasserstein metric g1 is significantly worse than the other two metrics.
Numerical experiments show that the Burer–Monteiro CG method has obviously
slower asymptotic convergence rate either when the minimizer has a large condi-
tion number or when it is rank deficient, which is consistent with the condition
number analysis.

Keywords: Riemannian optimization, Hermitian PSD fixed-rank matrices, embedded
manifold, quotient manifold, Burer–Monteiro, conjugate gradient, Riemannian Hessian,
Bures-Wasserstein metric
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1 Introduction

1.1 The Hermitian PSD low-rank constraints

In this paper, we are interested in algorithms for minimizing a real-valued function f
with a Hermitian positive semidefinite (PSD) low-rank constraint

minimize
X

f(X)

subject to X ∈ Hn,p+

, (1)

where Hn,p+ denotes the set of n-by-n Hermitian PSD matrices of fixed rank p � n.
Even though X ∈ Hn,p+ is a nonconvex constraint, in practice (1) is often used for
approximating solutions to a minimization with a convex PSD constraint:

minimize
X∈Cn×n

f(X)

subject to X < 0
. (2)

There are many applications of PSD constraints. They arise in semidefinite program-
ming serving as covariance matrices in statistics and kernels in machine learning, etc.
See [1] and [2] for some of these applications. If the solution of (2) is of low rank and
O(n2) complexity is too large for storage or computation, it is preferable to consider
a low-rank representation of PSD matrices. For example, real symmetric PSD fixed-
rank matrices were used in [3, 4]. Since X ∈ Hn,p+ has a low-rank structure, they can
be represented in a low-rank compact form on the order of O(np), which is smaller
than the O(n2) storage when directly using X ∈ Cn×n. In many applications, the
cost function in (2) takes the form f(X) = 1

2‖A(X) − b‖2F where A is a linear oper-
ator and the norm is the Frobenius norm, and f(X) can be evaluated efficiently by
O(pn log n) flops for X ∈ Hn,p+ , e.g., the PhaseLift problem [5, 6] and the interferom-
etry recovery problem [7, 8]. For some of these problems, solving (1) may lead to a
good approximate solution to (2) with compact storage and computational cost.

1.2 The real inner product and induced gradient

Since f(X) is real-valued, f(X) does not have a complex derivative. In this paper,
all linear spaces of complex matrices will therefore be regarded as vector spaces over
R. For any real vector space E , the inner product on E is denoted by 〈·, ·〉E . For
A,B ∈ Rm×n, the Hilbert–Schmidt inner product is 〈A,B〉Rm×n = tr(ATB). Let <(A)
and =(A) represent the real and imaginary parts of a complex matrix A ∈ Cm×n. The
real inner product for Cm×n is

〈A,B〉Cm×n := <(tr(A∗B)), A,B ∈ Cm×n, (3)
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where ∗ is the conjugate transpose. With the real inner product (3) for the real vector
space Cm×n, the gradient of f(X) is

∇f(X) =
∂f(X)

∂<(X)
+ i

∂f(X)

∂=(X)
∈ Cm×n. (4)

See [9] for a derivation of (4). For f(X) = 1
2‖A(X) − b‖2F with a linear operator A,

(4) becomes ∇f(X) = A∗(A(X) − b), where A∗ is the adjoint operator of A. See [9,
Appendix A] for details.

1.3 Three different methodologies

We consider three methods for solving (1). The first approach, often called the Burer–
Monteiro method [10, 11], is to solve

min
Y ∈Cn×p

F (Y ) := f(Y Y ∗). (5)

As shown in [9, Appendix A], the chain rule gives ∇F (Y ) = 2∇f(Y Y ∗)Y ∈ Cn×p.
Thus the gradient descent method simply takes the form of

Yn+1 = Yn − τ∇F (Yn) = Yn − τ2∇f(YnY
∗
n )Yn,

which is one of the simplest low-rank algorithms. The nonlinear conjugate gradient
and quasi-Newton type methods, like L-BFGS [7], can also be easily used for (5).

The second approach is to consider a quotient manifold. Notice that F (Y ) =
F (Y O) for any unitary matrix O ∈ Op = {O ∈ Cp×p : O∗O = OO∗ = I}. To remove
the ambiguity from Op, it is natural to consider the quotient manifold Cn×p∗ /Op, see
[1, 12–15], where Cn×p∗ = {X ∈ Cn×p : rank(X) = p} denotes the noncompact Stiefel
manifold.

Another natural approach is to consider Riemannian optimization algorithms on
Hn,p+ as an embedded manifold in the Euclidean space Cn×n [16–18]. We shall regard
Hn,p+ ⊂ Cn×n as a manifold over R since f(X) is real-valued.

1.4 Main results: a unified representation and analysis of three
methods using quotient geometry

Even though the unconstrained Burer–Monteiro method is quite straightforward to
use, its performance is sometimes observed to be inferior to Riemannian optimization
on embedded and quotient geometries. To compare these three methods, we will first
show that it is possible to equivalently rewrite both the Burer–Monteiro approach and
embedded manifold approach as Riemannian optimization over the quotient manifold
Cn×p∗ /Op with suitable metrics, retractions and vector transports.

It is common to explore different metrics in Riemannian optimization [2, 19, 20].
For any Y ∈ Cn×p∗ , A,B ∈ Cn×p, we consider metrics giY (·, ·) for the total space Cn×p∗ :

g1
Y (A,B) = 〈A,B〉Cn×p = <(tr(A∗B))
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g2
Y (A,B) = 〈AY ∗, BY ∗〉Cn×n = <(tr((Y ∗Y )A∗B))

g3
Y (A,B) = 〈Y A∗ +AY ∗, Y B∗ +BY ∗〉Cn×n

+
〈
Y Skew

(
(Y ∗Y )−1Y ∗A

)
Y ∗, Y Skew

(
(Y ∗Y )−1Y ∗B

)
Y ∗
〉
Cn×n ,

where Skew(X) = (X − X∗)/2. Then the submersion Cn×p∗ −→ Cn×p∗ /Op induces
three metrics gi for the quotient manifold.

The first metric g1 is also called the Bures-Wasserstein metric [1, 21]. Even though
the simple Burer–Monteiro approach does not involve any manifold explicitly, we will
prove that the gradient descent and nonlinear conjugate gradient methods for solving
the Burer–Monteiro formulation (5) are exactly equivalent to the Riemannian gra-
dient descent and Riemannian conjugate gradient methods on the quotient manifold
Cn×p∗ /Op, with the Bures-Wasserstein metric and a particular retraction and vector
transport.

The second metric g2 is a popular metric for the quotient manifold, see [15].
For the third metric, we will prove that the Riemannian gradient descent and the

Riemannian conjugate gradient methods using the embedded geometry of Hn,p+ are
equivalent to a Riemannian gradient descent and a Riemannian conjugate gradient
algorithms on the quotient manifold Cn×p∗ /Op with the metric g3 and a specific vector
transport.

It is well known that the condition number of the Hessian of the cost function is
closely related to the asymptotic performance of optimization methods, see e.g., [22].
We will analyze and compare the condition numbers of the Riemannian Hessian using
these three different metrics by estimating their Rayleigh quotient.

1.5 Related work

The Burer–Monteiro approach for the PSD constraint has been popular in applications
due to its simplicity. For instance, an L-BFGS method for (5) was used for solving
convex recovery from interferometric measurements in [8]. It is straightforward to
verify that (1.3) with p = 1 and a suitable step size τ for the PhaseLift problem [5]
is precisely the Wirtinger flow algorithm [6]. In [11], it was shown that first-order
and second-order optimality conditions of the nonconvex Burer–Monteiro approach
are sufficient to find the global minimizer of the convex semidefinite program under
certain assumptions.

The quotient geometry of Hermitian PSD matrices of fixed rank for the metric
g2
Y has been studied in [14, 15]. The quotient geometry with metric g2

Y in this paper
is exactly the same one as the one in [14, 15]. As we will show in Section 2.3.2,
the Bures-Wasserstein metric g1 for low-rank PSD matrices is consistent with the
Bures-Wasserstein metric for Hermitian positive-definite matrices [23–25].

The geometry of real symmetric PSD matrices of fixed rank Sn,p+ has also been
studied intensively in the literature. Its embedded geometry was studied in [16] and
its quotient geometry was studied in [1, 12, 13]. Riemannian optimization based on
the embedded geometry has been well studied in [17] for real matrices of fixed rank,
which can be easily extended to real symmetric PSD matrices of fixed rank [16]. As
expected, Section 2.2 is its natural extensions to Hermitian PSD matrices of fixed
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rank. This is not surprising, but it is not a straightforward result either, because such
a natural extension holds only when using the real inner product (3) and its associated
derivatives.

It is not uncommon to explore different metrics of a manifold for Riemannian
optimization [19, 20]. Comparison between embedded geometry and quotient geometry
for low-rank matrices was considered in [26]. In [2], a new embedded geometry and
complete geodesics for real PSD fixed-rank matrices were, for example, obtained from
a special quotient metric.

1.6 Contributions

In this paper, for simplicity, we only focus on the nonlinear conjugate gradient method.
The first major contribution is the equivalence between the CG method for the

unconstrained Burer–Monteiro formulation (5) and the CG method on (Cn×p∗ /Op, g1)
for solving (1). Thus, the convergence of the simple Burer–Monteiro optimization algo-
rithms can be understood in the context of Riemannian optimization on the quotient
manifold with the Bures-Wasserstein metric.

Second, we will show that a Riemannian conjugate gradient method on the embed-
ded manifold Hn,p+ for solving (1) is equivalent to a Riemannian conjugate gradient

method on the quotient manifold (Cn×p∗ /Op, g3). This is unnecessary for implementa-
tion, but it allows a comparison of metrics for studying the comparison of algorithms
using the embedded geometry and algorithms using the quotient geometry.

Finally, for the sake of understanding the differences among the three methodolo-
gies, we will analyze the condition number of the Riemannian Hessian on the quotient
manifold (Cn×p∗ /Op, gi) near the minimizer, which is another contribution. Our analy-
sis is also consistent with empirical observation of the performance of different methods
in numerical tests.

1.7 Organization of the paper

The rest of the paper is organized as follows. In Section 2, we review some known
results for embedded and quotient geometries of Hn,p+ . In Section 3, we outline the
Riemannian Conjugate Gradient (RCG) methods on different geometries and discuss
equivalences among them, with implementation details given in Section 3.3. In Section
4, we analyze and compare the Rayleigh quotient bounds of the Riemannian Hessian on
(Cn×p∗ /Op, gi) for the three metrics. Numerical tests are given in Section 5. Concluding
remarks are given in Section 6.

2 The embedded and quotient geometries of Hn,p
+

In this section, we review the embedded and quotient geometries of Hn,p+ . All results
in this section are natural extensions of well known results for the embedded and
quotient geometries of Rn,p+ , the manifold of real PSD matrices of fixed rank p. Some
of these extensions are not entirely obvious, thus we outline the results in this paper,
while all detailed proof can be found in [9].
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2.1 Notation

Let Cm×n denote all complex matrices of size m × n. For a matrix X ∈ Cm×n, X∗

denotes its conjugate transpose and X denotes its complex conjugate. If X is real, X∗

becomes the matrix transpose and is denoted by XT . We define

Herm(X) :=
X +X∗

2
, Skew(X) :=

X −X∗

2
.

Let p ≤ n and define

Cn×p∗ = {X ∈ Cn×p : rank(X) = p},
Hn,p+ = {X ∈ Cn×n : X∗ = X,X < 0, rank(X) = p},
Sn,p+ = {X ∈ Rn×n : XT = X,X < 0, rank(X) = p},
Op = {O ∈ Cp×p : O∗O = OO∗ = I}.

Let <(X) and =(X) denote the real part and imaginary part of X respectively so
that X = <(X) + i=(X). Let Ip be the identity matrix of size p-by-p. For any n-by-p
matrix Z, Z⊥ denotes the n-by-(n− p) matrix such that Z∗⊥Z⊥ = In−p and Z∗⊥Z = 0.

Let Diag(m,n) be the set of all m-by-n diagonal matrices. Let diag(M) be the n-
by-1 vector that is the diagonal of the n-by-n matrix M . Given a vector v, Diag(v)
is a square matrix with its i-th diagonal entry equal to vi. Given a matrix A, tr(A)
denotes the trace of A and Aij denotes the (i, j)-th entry of A.

For any X ∈ Hn,p+ , its eigenvalues coincide with its singular values. The compact
singular value decomposition (SVD) of X is denoted by X = UΣU∗, where U ∈ Cn×p
satisfies U∗U = I and Σ = Diag(σ) with σ = (σ1, · · · , σp)T and σ1 ≥ · · · ≥ σp > 0. In
the rest of the paper, U and Σ are reserved for denoting the compact SVD of X ∈ Hn,p+ .

In this paper, all manifolds of complex matrices are viewed as manifolds over R.
Given a Euclidean space E , the inner product on E is denoted by 〈., .〉E . Specifically,
〈A,B〉Rm×n = tr(ATB) for A,B ∈ Rm×n and 〈A,B〉Cm×n = <(tr(A∗B)) for A,B ∈
Cm×n denotes the canonical inner product on Rm×n and Cm×n, respectively.

2.2 Embedded geometry of Hn,p
+

The results in this subsection are natural extensions of results for Sn,p+ in [16]. Such an
extension is not entirely obvious since Hn,p+ is treated as a real manifold and the real
inner product (3) is not the complex Hilbert–Schmidt inner product. Nonetheless, all
proofs can be done following [16]. Useful formulae in this subsection are summarized
in Table 1.

2.2.1 Tangent space

We first point out that Hn,p+ is a smooth embedded submanifold of Cn×n.
Theorem 2.1. Regard Cn×n as a real vector space over R of dimension 2n2. Then
Hn,p+ is a smooth embedded submanifold of Cn×n of dimension 2np− p2.
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Embedded Manifold Hn,p
+

Riemannian metric gEX(ξX , ηX) = <(tr(ξ∗XηX))

Riemannian gradient grad f(X) = P tX(∇f(X))

Projection to tangent space P tX(Z) =
[
U U⊥

] [U∗ Z+Z∗

2 U U∗ Z+Z∗

2 U⊥
U∗⊥

Z+Z∗

2 U 0

][
U∗

U∗⊥

]
Retraction RX(ηX) = PHn,p+

(X + ηX)

Vector transport TηX ξX = P tRX(ηX)ξX

Riemannian Hessian
Hess f(X)[ξX ] = P tX(∇2f(X)[ξX ])

+ P pX

(
∇f(X)(X†ξpX)∗ + (ξpXX

†)∗∇f(X)
)

Table 1 Useful formulae for the embedded manifold Hn,p+ ⊂ Cn×n.

Proof. The proof can be found in [9, Theorem 3.1]. Similar results for the case of Sn,p+

can be found in See [27, Prop. 2.1] and [28, Chap. 5].

The next result characterizes the tangent space.
Theorem 2.2. Let X = UΣU∗ ∈ Hn,p+ . Then the tangent space of Hn,p+ at X is

TXHn,p+ =

{[
U U⊥

] [H K∗

K 0

] [
U∗

U∗⊥

]}
, H = H∗ ∈ Cp×p,K ∈ C(n−p)×p.

Proof. The proof follows from the differentiation of a curve in Hn,p+ and a counting on
dimensionality, which can be found in [9, Theorem 3.2]. Similar result for the case of
fix-rank real matrices can be found in [17, Prop. 2.1].

2.2.2 Riemannian gradient

The Riemannian metric of the embedded manifold at X ∈ Hn,p+ is induced from the
Euclidean inner product on Cn×n,

gX(ζ1, ζ2) = 〈ζ1, ζ2〉Cn×n = <(tr(ζ∗1 ζ2)), ζ1, ζ2 ∈ TXHn,p+ . (6)

Let f(X) be a smooth real-valued function for X ∈ Cn×n with its gradient ∇f(X)
given in (4). The Riemannian gradient of f at X ∈ Hn,p+ , denoted by grad f(X), is
the projection of ∇f(X) onto TXHn,p+ ; see [29, Sect. 3.6.1],

grad f(X) = P tX(∇f(X)),

where P tX denotes the orthogonal projection onto TXHn,p+ . In order to get a closed-
form expression of P tX , we should characterize the normal space to Hn,p+ at X, denoted
by (TXHn,p+ )⊥ or NXHn,p+ , which is the orthogonal complement of TXHn,p+ in Cn×n,

NXHn,p+ := {ξX ∈ TXCn×n : 〈ξX , ηX〉Cn×n = 0 for all ηX ∈ TXHn,p+ }.
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Lemma 2.3. The normal space NXHn,p+ at X = UΣU∗ ∈ Hn,p+ is given by

NXHn,p+ =

{[
U U⊥

] [Ω −L∗
L M

] [
U∗

U∗⊥

]}
, (7)

where Ω = −Ω∗ ∈ Cp×p, M ∈ C(n−p)×(n−p), and L ∈ C(n−p)×p.

Proof. It suffices to check that NXHn,p+ is indeed perpendicular to TXHn,p+ and a
counting on dimensionality. The complete proof can be found in [9, Lemma 3.4].

The orthogonal projection from Cn×n onto TXHn,p+ is given as follows:
Proposition 2.4. Let X = Y Y ∗ = UΣU∗ be the compact SVD for X ∈ Hn,p+ with

Y ∈ Cn×p∗ . Let Z ∈ Cn×n. Then the operator P tX defined below is the orthogonal
projection onto TXHn,p+ :

P tX(Z) =
1

2

(
PY (Z + Z∗)PY + P⊥Y (Z + Z∗)PY + PY (Z + Z∗)P⊥Y

)
=

1

2

(
PU (Z + Z∗)PU + P⊥U (Z + Z∗)PU + PU (Z + Z∗)P⊥U

)
(8)

=
[
U U⊥

] [U∗ (Z+Z∗)
2 U U∗ (Z+Z∗)

2 U⊥
U∗⊥

(Z+Z∗)
2 U 0

][
U∗

U∗⊥

]
,

where PY = Y (Y ∗Y )−1Y ∗, P⊥Y = I−PY = PY⊥ , PU = UU∗ and P⊥U = I−PU = PU⊥ .

Proof. It suffices to check that P tX(Z) is indeed a tangent vector and Z − P tX(Z) is
a normal vector. The complete proof can be found in [9, Theorem 3.5]. Similar result
for the case of fix-rank real matrices can be found in [17, Eq. 2.5].

Remark 2.5. To facilitate later reference in notation, we write P tX = P sX + P pX as
the sum of two operators:

P sX : Z 7→ PU
Z + Z∗

2
PU , (9a)

P pX : Z 7→ PU⊥
Z + Z∗

2
PU + PU

Z + Z∗

2
PU⊥ . (9b)

2.2.3 A retraction by projection to the embedded manifold

A retraction is essentially a first-order approximation to the exponential map; see [29,
Def. 4.1.1]. By [30, Prop. 3.2 and 3.3], the truncated SVD RX(Z) := PHn,p+

(X +Z) =∑p
i=1 σi(X + Z)viv

∗
i is a retraction on Hn,p+ , where vi is the singular vector of X + Z

corresponding to the i-th largest singular value σi(X + Z). We remark that such a
retraction can be compactly implemented; see Section 3.3 and [9] for implementation
details.
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2.2.4 Vector transport

The vector transport is a mapping that transports a tangent vector from one tangent
space to another tangent space; see [29, Def. 8.1.1]. Let ξX , ηX ∈ TXHn,p+ and let R
be a retraction on Hn,p+ . By [29, Sect. 8.1.3], the projection of one tangent vector onto
another tangent space is a vector transport,

TηX ξX := P tRX(ηX)ξX , (10)

where P tZ is the projection operator onto TZHn,p+ . Namely, we first apply retraction
to X + ηX to arrive at a new point on the manifold, then we project the old tangent
vector ξX onto the tangent space at that new point.

2.2.5 Riemannian Hessian operator

For a real-valued function f(X) defined on the Euclidean space Cn×n, the Hessian
∇2f(X) is defined in the sense of the Fréchet derivative; see [9, Appendix A]. The Rie-
mannian Hessian Hess f(X) (see [29, Def. 5.5.1]) is a linear mapping of TxM to TxM
satisfying Hess f(x)[ξx] = ∇ξxgrad f for all ξx in TxM, where ∇ is the Riemannian
connection on M. The following proposition shows the connection between Rieman-
nian Hessian and ∇2f(X). The proof follows similar ideas as in [4, Prop. 5.10] and
[31, Prop. 2.3] where a second-order retraction based on a simple power expansion is
constructed. We will leave the outline of the proof in Appendix A.
Proposition 2.6. Let f(X) be a real-valued function defined on Hn,p+ . Let X ∈ Hn,p+

and ξX ∈ TXHn,p+ . Then the Riemannian Hessian operator of f at X is given by

Hess f(X)[ξX ] = P tX(∇2f(X)[ξX ]) + P pX
(
∇f(X)(X†ξpX)∗ + (ξpXX

†)∗∇f(X)
)

where ξsX = P sX(ξX) and ξpX = P pX(ξX) and P tX and P pX are defined in (9).

2.3 The quotient geometry of Cn×p
∗ /Op using three

Riemannian metrics

The manifold Hn,p+ can also be viewed as a quotient set Cn×p∗ /Op since any X ∈ Hn,p+

can be written as X = Y Y ∗ with Y ∈ Cn×p∗ . We define an equivalence relation on
Cn×p∗ through the smooth Lie group action of Op on the manifold Cn×p∗ :

Cn×p∗ ×Op → Cn×p∗
(Y,O) 7→ Y O.

This action defines an equivalence relation on Cn×p∗ by setting Y1 ∼ Y2 if there exists
an O ∈ Op such that Y1 = Y2O. Hence we have constructed a quotient space Cn×p∗ /Op
that removes this ambiguity. The set Cn×p∗ is called the total space of Cn×p∗ /Op.

Denote the natural projection as

π : Cn×p∗ → Cn×p∗ /Op.

9



For any Y ∈ Cn×p∗ , π(Y ) is an element in Cn×p∗ /Op. We denote the equivalence class
containing Y as

[Y ] = π−1(π(Y )) = {Y O|O ∈ Op} .
With the one-to-one correspondence between X = Y Y ∗ ∈ Hn,p+ and π(Y ) ∈

Cn×p∗ /Op, define h(π(Y )) = f(Y Y ∗), then (1) is equivalent to

minimize
π(Y )

h(π(Y ))

subject to π(Y ) ∈ Cn×p∗ /Op
. (11)

Define
β : Cn×p∗ → Hn,p+

Y 7→ Y Y ∗.

Then β is invariant under the equivalence relation ∼ and induces a unique function
β̃ on Cn×p∗ /Op, called the projection of β, such that β = β̃ ◦ π; see [29, Sect. 3.4.2].

One can easily check that β̃ is a bijection. For any real-valued function f defined
on Hn,p+ , there is a real-valued function F defined on Cn×p∗ that induces f : for any
X = Y Y ∗ ∈ Hn,p+ , F (Y ) := f ◦ β(Y ) = f(Y Y ∗). This is summarized in the diagram
below:

Cn×p∗

Cn×p∗ /Op Hn,p+ R

β:=β̃◦π
π

β̃ f

The next theorem shows that Cn×p∗ /Op is a smooth manifold, and the proof follows
from general results of smooth manifolds; see [32, Corollary 21.6; Theorem 21.10].
Theorem 2.7. The quotient space Cn×p∗ /Op is a quotient manifold over R of dimen-
sion 2np− p2 and has a unique smooth structure such that the natural projection π is
a smooth submersion.

The next theorem shows that Hn,p+ and Cn×p∗ /Op are essentially the same in the
sense that there is a diffeomorphism between them.
Theorem 2.8. The quotient manifold Cn×p∗ /Op is diffeomorphic to Hn,p+ under β̃.

Proof. Similar result of the real case has been shown in [1, Prop. A.7]; and the proof
of this theorem follows the same technique therein. The complete proof can be found
in [9, Theorem 4.2].

We list some useful formulae of quotient manifold in Table 2.

2.3.1 Vertical space, three Riemannian metrics and horizontal space

The equivalence class [Y ] is an embedded submanifold of Cn×p∗ ([29, Prop. 3.4.4]). The
tangent space of [Y ] at Y is therefore a subspace of TY Cn×p∗ called the vertical space
at Y and is denoted by VY . The following proposition characterizes VY .
Proposition 2.9. The vertical space at Y ∈ [Y ] = {Y O|O ∈ Op}, which is the tangent
space of [Y ] at Y ,

VY =
{
Y Ω|Ω∗ = −Ω,Ω ∈ Cp×p

}
.
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Quotient manifold Cn×p∗ /Op
Riemannian Metric

giπ(Y )(ξπ(Y ), ηπ(Y ))

g1 = <(tr(ξ
∗
Y ηY ))

is the Bures-Wasserstein metric
g2 = <(tr((Y ∗Y )ξ

∗
Y ηY ))

g3 = gEY Y ∗ (Y ξ
∗
Y + ξY Y

∗, Y η∗Y + ηY Y
∗)

corresponds to Embedded Geometry

Horizontal lift of

Riemannian

gradient

gradh(π(Y ))Y

2∇f(Y Y ∗)Y 2∇f(Y Y ∗)Y (Y ∗Y )−1

(
I −

1

2
Y (Y ∗Y )−1Y ∗

)
∇f(Y Y ∗)Y (Y ∗Y )−1

Projection to

horizontal

space

PH
1

Y (A) = A− Y Ω, where Ω solves

ΩY ∗Y + Y ∗Y Ω = Y ∗A−A∗Y
PH

i

Y (A) = Y Herm
(
(Y ∗Y )−1Y ∗A

)
+ Y⊥Y

∗
⊥A

Retraction Rπ(Y )(τηπ(Y )) = π(Y + τηY )

Vector

Transport

(
Tηπ(Y )

ξπ(Y )

)
Y+ηY

= PH
i

Y+ηY
(ξY )

Riemannian

Hessian
See (22) See (23) See (24)

Table 2 Some useful formulae for Cn×p∗ /Op.

Proof. The proof is given in [9, Prop. 4.3]. Similar result for the real case can be found
in [21].

A Riemannian metric g is a smoothly varying inner product defined on the tangent
space. That is, gY (·, ·) is an inner product on TY Cn×p∗ . Once we choose a Rieman-
nian metric g for Cn×p∗ , we can obtain the orthogonal complement in TY Cn×p∗ of VY
with respect to the metric. In other words, we choose the horizontal distribution as
orthogonal complement w.r.t. Riemannian metric, see [29, Sect. 3.5.8]. This orthogo-
nal complement to VY is called horizontal space at Y and is denoted by HY . We thus
have

TY Cn×p∗ = HY ⊕ VY . (12)

Once we have the horizontal space, there exists a unique vector ξ̄Y ∈ HY that
satisfies Dπ(Y )[ξ̄Y ] = ξπ(Y ) for each ξπ(Y ) ∈ Tπ(Y )Cn×p∗ /Op. This ξ̄Y is called the
horizontal lift of ξπ(Y ) at Y . In the rest of the paper, we use bar notation above any

tangent bundle ξ on quotient manifold to denote that ξ is a horizontal distribution.
There exist more than one choice of Riemannian metric on Cn×p∗ . Different Rie-

mannian metrics do not affect the vertical space, but generally result in different
horizontal spaces. One of the main focuses of this paper is to examine how three differ-
ent Riemannian metrics affect the convergence behavior of Riemannian optimization
algorithms.

2.3.2 The Bures-Wasserstein metric

The most straightforward choice of a Riemannian metric on Cn×p∗ is the canonical
Euclidean inner product on Cn×p defined by

g1
Y (A,B) := 〈A,B〉Cn×p = <(tr(A∗B)), ∀A,B ∈ TY Cn×p∗ = Cn×p.

The metric g1 is also called the Bures-Wasserstein metric [21, Sect. 2] for the quo-
tient manifold Cn×p∗ /Op. On the other hand, the following metric in Definition 2.1 for
Hermitian positive-definite matrices Hn,n+ [23–25] is also called the Bures-Wasserstein
metric.
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Notice that it is not clear whether Definition 2.1 can also apply to a low-rank
matrix X ∈ Hn,p+ . In this subsection, we show how the metric g1 can be used to
generalize Definition 2.1 to Definition 2.2, which defines the Bures-Wasserstein metric
in the low-rank caseHn,p+ . This non-trivial generalization is presented as Theorem 2.10.
Although the theorem is not the primary focus of this paper, it is of interest to see how
g1 connects the Bures-Wasserstein metric on the quotient manifold to its counterpart
on the embedded manifold.
Definition 2.1 (The Bures-Wasserstein metric for Hn,n+ ). Let X ∈ Hn,n+ and A,B ∈
TXHn,n+ . Then

gBW
X (A,B) :=

1

2
〈LX(A), B〉 ,

where LX(A) = M solves the following Lyapunov equation

XM +MX = A (13)

which has a unique solution provided X is Hermitian positive-definite.
Definition 2.2 (The Bures-Wasserstein metric on Hn,p+ ). Let A,B ∈ TY Y ∗Hn,p+ , then
by the 1-to-1 correspondence between TY Y ∗Hn,p+ and the horizontal space H1

Y , there
exist unique ξY , ηY ∈ H1

Y such that A = Y ξ∗Y + ξY Y
∗ and B = Y η∗Y + ηY Y

∗. We
define the Bures-Wasserstein metric at the low-rank X = Y Y ∗ as

gBW
Y Y ∗ (A,B) := g1

Y (ξY , ηY ).

Theorem 2.10 (Equivalence of the two Bures-Wasserstein metrics). If p = n, then
the Definition 2.2 reduces to the Definition 2.1.

Proof. We first claim that for any A,B ∈ TXHn,p+ with X = Y Y ∗, there is a unique
solution M ∈ TXHn,p+ satisfying both

Y ∗XMY + Y ∗MXY = Y ∗AY (14)

and

gBW
Y Y ∗ (A,B) =

1

2
〈M,B〉Cn×n . (15)

Then for the case p = n, Y is invertible, thus (14) is equivalent to the Lyapunov
equation (13). Therefore, the Definition 2.2 indeed reduces to the Definition 2.1 when
p = n.

Now we prove the claim above. Let ξY = Y (Y ∗Y )−1S + Y⊥K ∈ H1
Y with S∗ = S

be the unique horizontal vector such that A = Y ξ∗Y + ξY Y
∗. Let Y = UR where U

has size n-by-p with orthonormal columns and R is an p-by-p invertible matrix. Thus
(14) is equivalent to

RR∗(U∗MU) + (U∗MU)RR∗ = RSR−1 + (R∗)−1SR∗. (16)

Since RR∗ is positive definite, (16) has a unique solution in U∗MU ; see [1], which can
be written explicitly:

U∗MU = (R∗)−1SR−1. (17)

12



Thus M =
[
U Y⊥

] [(R∗)−1SR−1 K∗M
KM 0

] [
U∗

Y ∗⊥

]
, where KM is to be determined by the

additional equation (15). With B = Y η∗Y + ηY Y
∗ we have,

1

2
〈M,B〉Cn×n =

1

2
〈M,Y η∗Y 〉Cn×n +

1

2
〈M,ηY Y

∗〉Cn×n = 〈MY, ηY 〉Cn×p .

Thus in order for (15) to hold, M needs to satisfy MY = ξY . Recall that ξY =
Y (Y ∗Y )−1S+Y⊥K = U(R∗)−1S+Y⊥K. Thus KM needs to satisfy Y⊥KMR = Y⊥K,
which gives the unique KM = KR−1.

Proposition 2.11. Under metric g1, the horizontal space at Y satisfies

H1
Y =

{
Z ∈ Cn×p : Y ∗Z = Z∗Y

}
=
{
Y (Y ∗Y )−1S + Y⊥K|S∗ = S, S ∈ Cp×p,K ∈ C(n−p)×p

}
,

where Y⊥ has orthonormal columns.

Proof. The result of real case can be found in [21] but the proof was omitted. For
completeness, we outline the proof here. Z ∈ Cn×p belongs to H1

Y if and only
if Z is orthogonal to VY under the metric g1

Y , i.e., g1
Y (Z, Y Ω) = 〈Z, Y Ω〉Cn×p =

〈Y ∗Z,Ω〉Cn×p = 0,∀Ω = −Ω∗. This is equivalent to Y ∗Z = Z∗Y . The second equality
can be obtained by writing any Z ∈ H1

Y as Z = Y (Y ∗Y )−1S + Y⊥K as Y (Y ∗Y )−1

and Y⊥ forms a basis for the column space of Cn×p, and verify that S = S∗

2.3.3 The second quotient metric

Another Riemannian metric used in [14, 15] is defined by

g2
Y (A,B) := 〈AY ∗, BY ∗〉Cn×n = <(tr((Y ∗Y )A∗B)), ∀A,B ∈ TY Cn×p∗ = Cn×p.

Proposition 2.12. Under metric g2, the horizontal space at Y satisfies

H2
Y =

{
Z ∈ Cn×p : (Y ∗Y )−1Y ∗Z = Z∗Y (Y ∗Y )−1

}
=
{
Y S + Y⊥K|S∗ = S, S ∈ Cp×p,K ∈ C(n−p)×p

}
.

Proof. The same result was given in [15] but the proof was omitted. The proof follows
the same idea used in proving Proposition 2.11.

2.3.4 The third quotient metric

The third Riemannian metric for Cn×p∗ is motivated by the Riemannian metric of Hn,p+

and the diffeomorphism between Cn×p∗ /Op and Hn,p+ . We know that β is a submersion.

Every tangent vector of Hn,p+ corresponds to a tangent vector of Cn×p∗ . We can use the
Riemannian metric of Hn,p+ and the correspondence of tangent vectors between Hn,p+
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and Cn×p∗ to define a Riemannian metric for Cn×p∗ . A natural first attempt would be
to use

gY (A,B) := 〈Dβ(Y )[A],Dβ(Y )[B]〉Cn×n = 〈Y A∗ +AY ∗, Y B∗ +BY ∗〉Cn×n ,

which is, however, not a Riemannian metric because it is not positive-definite. To see
this, notice that ker(Dβ(Y )[·]) = VY . Consider C 6= 0 ∈ VY , then g3

Y (C,C) = 0. To
modify this definition for g3, we can use the Riemannian metric g2 and the decom-
position TY Cn×p∗ = H2

Y ⊕ VY , by which A ∈ TY Cn×p∗ can be uniquely decomposed
as

A = AV +AH
2

,

where AV ∈ VY and AH
2 ∈ H2

Y . Now define g3 as

g3
Y (A,B) :=

〈
Dβ(Y )[AH

2

],Dβ(Y )[BH
2

]
〉
Cn×n

+ g2
Y

(
AV , BV

)
= 〈Dβ(Y )[A],Dβ(Y )[B]〉Cn×n +

〈
PVY (A)Y ∗, PVY (B)Y ∗

〉
Cn×n ,

= 〈Y A∗ +AY ∗, Y B∗ +BY ∗〉Cn×n +
〈
PVY (A)Y ∗, PVY (B)Y ∗

〉
Cn×n

where PVY is the projection of any tangent vector of Cn×p∗ to the vertical space VY .
It is straightforward to verify that g3 defined above is now a Riemannian metric.
With the definition (3), the properties tr(UV ) = tr(V U) for two matrices U, V and
<(tr(C + C∗)) = 2<(tr(C)), we have

∀A,B ∈ AH
2

, g3
Y (A,B) = 〈Y A∗ +AY ∗, Y B∗ +BY ∗〉Cn×n = 2 〈AY ∗Y + Y A∗Y,B〉Cn×p .

(18)
Proposition 2.13. Under metric g3, the horizontal space at Y is the same set as
H2
Y . That is,

H3
Y =

{
Z ∈ Cn×p : (Y ∗Y )−1Y ∗Z = Z∗Y (Y ∗Y )−1

}
=
{
Y S + Y⊥K|S∗ = S, S ∈ Cp×p,K ∈ C(n−p)×p

}
.

Proof. The proof follows the same idea used in proving Proposition 2.11.

2.3.5 Projections onto vertical space and horizontal space

Due to the direct sum property (12), for our choices of HiY , there exist projection
operators for any A ∈ TY Cn×p∗ to HiY as

A = PVY (A) + PH
i

Y (A).

It is straightforward to verify the following formulae for projection operators PVY
and PH

i

Y . Similar results can be found in [1, 15] with proof omitted. To verify these

formulae, we can rewrite them as PVY (A) = Y Ω and PH
i

Y (A) = A−Y Ω, and then solve
for Ω by the definition of HiY .
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Proposition 2.14. If we use g1 as our Riemannian metric on Cn×p∗ , then the
orthogonal projections of any A ∈ Cn×p to VY and H1

Y are

PVY (A) = Y Ω, PH
1

Y (A) = A− Y Ω,

where Ω is the skew-symmetric matrix that solves the Lyapunov equation

ΩY ∗Y + Y ∗Y Ω = Y ∗A−A∗Y.

Proposition 2.15. If we use g2 as our Riemannian metric on Cn×p∗ , then the
orthogonal projection of any A ∈ Cn×p to vertical space VY satisfies

PVY (A) = Y

(
(Y ∗Y )−1Y ∗A−A∗Y (Y ∗Y )−1

2

)
= Y Skew

(
(Y ∗Y )−1Y ∗A

)
,

and the orthogonal projection of any A ∈ Cn×p to the horizontal space H2
Y is

PH
2

Y (A) = A− PVY (A)

= Y

(
(Y ∗Y )−1Y ∗A+A∗Y (Y ∗Y )−1

2

)
+ Y⊥Y

∗
⊥A

= Y Herm
(
(Y ∗Y )−1Y ∗A

)
+ Y⊥Y

∗
⊥A.

Proposition 2.16. If we use g3 as our Riemannian metric on Cn×p∗ , then the
orthogonal projection of any A ∈ Cn×p to vertical space VY satifies

PVY (A) = Y

(
(Y ∗Y )−1Y ∗A−A∗Y (Y ∗Y )−1

2

)
= Y Skew((Y ∗Y )−1Y ∗A),

and the orthogonal projection of any A ∈ Cn×p to the horizontal space H3
Y is

PH
3

Y (A) = A− PVY (A)

= Y

(
(Y ∗Y )−1Y ∗A+A∗Y (Y ∗Y )−1

2

)
+ Y⊥Y

∗
⊥A

= Y Herm
(
(Y ∗Y )−1Y ∗A

)
+ Y⊥Y

∗
⊥A.

2.3.6 Cn×p
∗ /Op as Riemannian quotient manifold

First we show in the following lemma the relationship between the horizontal lifts of
the quotient tangent vector ξπ(Y ) lifted at different representatives in [Y ].

Lemma 2.17. Let η be a vector field on Cn×p∗ /Op, and let η̄ be the horizontal lift of
η. Then for each Y ∈ Cn×p∗ , we have

η̄Y O = η̄YO

for all O ∈ Op.
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Proof. [1, Prop. A.8] gives a proof based on metric g1 but it is for real case; and [15,
Lemma 5.1] proves the result for metric g2. The proof for complex case with all three
metrics gi can be found in [9, Lemma 4.13].

Recall from [29, Sect. 3.6.2] that if the expression gY (ξ̄Y , ζ̄Y ) does not depend
on the choice of Y ∈ [Y ] for every π(Y ) ∈ Cn×p∗ /Op and every ξπ(Y ), ζπ(Y ) ∈
Tπ(Y )Cn×p∗ /Op, then

gπ(Y )(ξπ(Y ), ζπ(Y )) := gY (ξ̄Y , ζ̄Y ) (19)

defines a Riemannian metric on the quotient manifold Cn×p∗ /Op. By Lemma 2.17,
it is straightforward to verify that each Riemannian metric gi on Cn×p∗ induces a
Riemannian metric on Cn×p∗ /Op. The quotient manifold Cn×p∗ /Op endowed with a
Riemannian metric defined in (19) is called a Riemannian quotient manifold. By abuse
of notation, we use gi for denoting Riemannian metrics on both total space Cn×p∗ and
quotient space Cn×p∗ /Op.

2.3.7 Riemannian gradient

Given a smooth real-valued function f on Hn,p+ , recall that a corresponding cost

function h is defined on Cn×p∗ /Op satisfying (11). The next theorem shows that the
horizontal lift of gradh(π(Y )) can be obtained from the Riemannian gradient of F .
Its proof can be found in [29, Sect. 3.6.2].
Theorem 2.18. The horizontal lift of the Riemannian gradient of h at π(Y ) is the
Riemannian gradient of F at Y . That is,

gradh(π(Y ))Y = gradF (Y ).

Therefore, gradF (Y ) is always in HY .
The next proposition summarizes the expression of gradF (Y ) under different met-

rics. The proof is by simple calculation and definition of each metric, which can be
found in [9].
Proposition 2.19. Let f be a smooth real-valued function defined on Hn,p+ and let

F : Cn×p∗ → R : Y 7→ f(Y Y ∗). Assume Y Y ∗ = X. Then

gradF (Y ) =


2∇f(Y Y ∗)Y, if using metric g1

2∇f(Y Y ∗)Y (Y ∗Y )−1, if using metric g2(
I − 1

2
Y (Y ∗Y )−1Y ∗

)
∇f(Y Y ∗)Y (Y ∗Y )−1 if using metric g3

where ∇f denotes the gradient (4).

2.3.8 Retraction

The retraction on the quotient manifold Cn×p∗ /Op can be defined using the retraction
on the total space Cn×p∗ . For any A ∈ TY Cn×p∗ and a step size τ > 0,

RY (τA) := Y + τA,
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is a retraction on Cn×p∗ if Y + τA remains full rank, which is ensured for small enough
τ . Then Lemma 2.17 indicates that R satisfies the conditions of [29, Prop. 4.1.3], which
implies that

Rπ(Y )(τηπ(Y )) := π(RY (τηY )) = π(Y + τηY ) (20)

defines a retraction on the quotient manifold Cn×p∗ /Op for a small enough step size
τ > 0.

2.3.9 Vector transport

A vector transport on Cn×p∗ /Op is projection to horizontal space; see [29, Sect. 8.1.2]:(
Tηπ(Y )

ξπ(Y )

)
Y+ηY

:= PHY+ηY
(ξY ). (21)

It can be shown that this vector transport is actually the differential of the retraction
R defined in (20). Denote Y2 = Y1 + ηY1

. Based on the projection formulae in Section
2.3.5, the explicit formula of (21) using different Riemannian metrics is then

(
Tηπ(Y1)

ξπ(Y1)

)
Y1+ηY1

=

{
ξY1
− Y2Ω, with Ω defined in Prop. 2.14, for g1,

Y2 Herm((Y ∗2 Y2)−1Y ∗2 ξY1
) + Y2⊥Y2

∗
⊥ξY1

, for g2 or g3.

2.3.10 Riemannian Hessian operator

In this section, we summarize the Riemannian Hessian of the cost function h under
the three different metrics gi. The proofs are tedious calculations and are given in
Appendix B.
Proposition 2.20. Using g1, the Riemannian Hessian of h is given by(

Hessh(π(Y ))[ξπ(Y )]
)
Y

= PH
1

Y

(
2∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y

∗]Y + 2∇f(Y Y ∗)ξY

)
.

(22)
Using g2, the Riemannian Hessian of h is given by(
Hessh(π(Y ))[ξπ(Y )]

)
Y

=PH
2

Y

{
2∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y

∗]Y (Y ∗Y )−1

+∇f(Y Y ∗)P⊥Y ξY (Y ∗Y )−1 + P⊥Y ∇f(Y Y ∗)ξY (Y ∗Y )−1

+ 2 Skew(ξY Y
∗)∇f(Y Y ∗)Y (Y ∗Y )−2

+ 2 Skew{ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)}Y (Y ∗Y )−1
}
.

(23)
Using g3, the Riemannian Hessian of h is given by

(
Hessh(π(Y ))[ξπ(Y )]

)
Y

=

(
I − 1

2
PY

)
∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y

∗]Y (Y ∗Y )−1

+ (I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1.

(24)
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3 The Riemannian conjugate gradient method

For simplicity, in this paper we only consider the Riemannian conjugate gradi-
ent (RCG) method described as Algorithm 1 in [17] with the geometric variant of
Polak–Ribiére (PR+) for computing the conjugate direction. It is possible to explore
other methods such as the limited-memory version of the Riemannian BFGS method
(LRBFGS) as in [33]. However, RCG performs very well on a wide variety of problems
and is easier to implement for our numerical examples.

In this section, we focus on establishing two equivalences in algorithms. First,
we show that the Burer–Monteiro CG method, which is simply applying the CG
method for the unconstrained problem (5), is equivalent to RCG on the Riemannian
quotient manifold (Cn×p∗ /Op, g1) with our retraction and vector transport defined in
the previous sections. Second, we show that RCG on the embedded manifold Hn,p+ is

equivalent to RCG on the quotient manifold (Cn×p∗ /Op, g3) with a specific retraction
and vector transport.

We first summarize two Riemannian CG algorithms in Algorithm 1 and Algorithm
2 below. Algorithm 1 is the RCG on the embedded manifold for solving (1) and
Algorithm 2 is the RCG on the quotient manifold (Cn×p∗ /Op, gi) for solving (11).
We remark that the explicit constants 0.0001 and 0.5 in the Armijo backtracking are
chosen for convenience.

Algorithm 1 Riemannian Conjugate Gradient on the embedded manifold Hn,p+

Require: initial iterate X0 ∈ Hn,p+ , initial gradient ξ0 = grad f(X0), initial conjugate
direction η0 = −grad f(X0), tolerance ε > 0

1: for k = 1, 2, . . . do
2: Compute an initial step tk. For special cost functions, it is possible to compute:

tk = arg mint f(Xk−1 + tηk−1)
3: Perform Armijo backtracking to find the smallest integer m ≥ 0 such that

f(Xk−1)− f(RXk−1
(0.5mtkηk−1)) ≥ −0.0001× 0.5mtkgXk−1

(ξk−1, ηk−1)

ζk := 0.5mtkηk−1

4: Obtain the new iterate by retraction
Xk = RXk−1

(ζk) . See Algorithm 6
5: Compute gradient

ξk := grad f(Xk) . See Algorithm 3
6: Check convergence

if ‖ξk‖ :=
√
gXk(ξk, ξk) < ε or f(Xk) < ε, then break

7: Compute a conjugate direction by PR+ and vector transport
ηk = −ξk + βkTζk(ηk−1), . See Algorithm 4, 5

with βk :=
gXk (ξk, ξk − Tζk(ξk−1))

gXk−1
(ξk−1, ξk−1)

.

8: end for
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Algorithm 2 Riemannian Conjugate Gradient on the quotient manifold Cn×p∗ /Op
with metric gi

Require: initial iterate Y0 ∈ π−1(π(Y0)), initial horizontal lift of gradient ξ0 =
gradF (Y0), initial conjugate direction η0 = −ξ0, tolerance ε > 0

1: for k = 1, 2, . . . do
2: Compute an initial step tk. For special cost functions, it is possible to compute:

tk = arg mint F (Yk−1 + tηk−1)
3: Perform Armijo backtracking to find the smallest integer m ≥ 0 such that

F (Yk−1)− F (RYk−1
(0.5mtkηk−1)) ≥ −0.0001× 0.5mtkg

i
Yk−1

(ξk−1, ηk−1)

ζk := 0.5mtkηk

4: Obtain the new iterate by retraction
Yk = RYk−1

(ζk)
5: Compute the horizontal lift of gradient

ξk := (gradh(π(Yk)))Yk = gradF (Yk) . See Algorithm 7
6: Check convergence

if
∥∥ξk∥∥ :=

√
giYk(ξk, ξk) < ε or F (Yk) < ε, then break

7: Compute a conjugate direction by PR+ and vector transport
ηk = −ξk + βk(Tζkηk−1)Yk , . See Algorithm 8

with βk :=
giYk

(
gradF (Yk), gradF (Yk)− (Tζkξk−1)Yk

)
giYk−1

(gradF (Yk−1), gradF (Yk−1))
.

8: end for

3.1 Equivalence between Burer–Monteiro CG and RCG on the
Riemannian quotient manifold with the Bures-Wasserstein
metric (Cn×p

∗ /Op, g
1)

Theorem 3.1. Using retraction (20), vector transport (21) and the Bures-Wasserstein
metric g1, Algorithm 2 is equivalent to the conjugate gradient method solving (5) in
the sense that they produce exactly the same iterates if started from the same initial
point.

Proof. First of all, for g1, the Riemannian gradient of F at Y is gradF (Y ) =
2∇f(Y Y ∗)Y , which is equal to the gradient of F (Y ) = f(Y Y ∗) at Y . Since vector
transport is the orthogonal projection to the horizontal space, the βk of PR+ used in
Riemannian CG becomes

βk =
g1
Yk

(
gradF (Yk), gradF (Yk)− PH1

Yk
(gradF (Yk−1))

)
g1
Yk−1

(gradF (Yk−1), gradF (Yk−1))
. (25)
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Now observe that

PH
1

Yk
(gradF (Yk−1)) = gradF (Yk−1)− PVYk(gradF (Yk−1))

and g1 is equivalent to the classical inner product for Cn×p. Hence βk computed by
(25) is equal to βk of PR+ in conjugate gradient for (5).

Since η0 = −gradF (Y0) = −∇F (Y0), Burer–Monteiro CG coincides with RCG for
the first iteration. It remains to show that ηk generated in Riemannian CG by

ηk = −ξk + βkP
H1

Yk
(ηk−1)

is equal to ηk generated in Burer–Monteiro CG for each k ≥ 1. It suffices to show

PH
1

Yk
(ηk−1) = ηk−1, ∀k ≥ 1.

Equivalently we need to show that for all k ≥ 1, the Lyapunov equation

(Y ∗k Yk)Ω + Ω(Y ∗k Yk) = Y ∗k ηk−1 − η∗k−1Yk (26)

only has trivial solution Ω = 0. By the invertibility of the equation, this means that
we only need to show the right hand side is zero. We prove it by induction. For k = 1,
ηk−1 = η0 = −ξ0 = −gradF (Y0). The following shows that the RHS of (26) satisfies

Y ∗1 η0 − η∗0Y1 = −Y ∗1 ξ0 + ξ
∗
0Y1 = −(Y0 − cξ0)∗ξ0 + ξ

∗
0(Y0 − cξ0) = ξ

∗
0Y0 − Y ∗0 ξ0

= Y ∗0 (2∇f(Y0Y
∗
0 ))Y0 − Y ∗0 (2∇f(Y0Y

∗
0 ))Y0 = 0.

Hence Ω = 0 and PH
1

Yk
(ηk−1) = ηk−1 for k = 1.

Now suppose for k ≥ 1, the RHS of (26) is 0 and hence PH
1

Yk
(ηk−1) = ηk−1 holds.

Then the RHS of the Lyapunov equation of step k + 1 is

Y ∗k+1ηk − η∗kYk+1 = (Yk + cηk)∗ηk − η∗k(Yk + cηk) = Y ∗k ηk − η∗kYk

= Y ∗k

(
−ξk + βkP

H1

Yk
(ηk−1)

)
−
(
−ξk + βkP

H1

Yk
(ηk−1)

)∗
Yk

= Y ∗k (−ξk + βkηk−1)− (−ξk + βkηk−1)∗Yk

= −Y ∗k ξk + ξ
∗
kYk = −Y ∗k (2∇f(YkY

∗
k ))Yk + Y ∗k (2∇f(YkY

∗
k ))Yk = 0.

So PH
1

Yk+1
(ηk) = ηk also holds, thus RCG is equivalent to Burer–Monteiro CG.

Since the gradient descent corresponds to βk ≡ 0, the same discussion also implies
the following
Corollary 3.2. Using retraction (20) and metric g1, the Riemannian gradient descent
on the quotient manifold is equivalent to the Burer–Monteiro gradient descent method
with suitable step size (1.3) in the sense that they produce exactly the same iterates.
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3.2 Equivalence between RCG on embedded manifold and
RCG on the quotient manifold (Cn×p

∗ /Op, g
3)

In this subsection we show that Algorithm 1 is equivalent to Algorithm 2 with Rie-
mannian metric g3, a specific initial step in step 2, a specific retraction (27) and a
specific vector transport (28). The idea is to take the advantage of the diffeomorphism
β̃ between Cn×p∗ /Op and Hn,p+ , as well as the fact that the metric g3 of Cn×p∗ /Op is
induced from the metric of Hn,p+ .

Since β̃ : π(Y ) 7→ Y Y ∗ is a diffeomorphism between Cn×p∗ /Op and Hn,p+ , thus,

Dβ̃(π(Y ))[·] defines an isomorphism between the tangent spaces. We denote this
isomorphism by Lπ(Y ) : Tπ(Y )Cn×p∗ /Op → TY Y ∗Hn,p+ . The following lemma can be
verified by straightforward computation; see [9].
Lemma 3.3. For (Cn×p∗ /Op, g3), the Riemannian gradient of f and h is related by

(D β̃)(π(Y ))[gradh(π(Y ))] = grad f(Y Y ∗) and

Lπ(Y )(gradh(π(Y ))) = grad f(β̃(π(Y ))).

In Algorithm 1, we have a retraction RE and a vector transport T E on the embed-
ded manifold Hn,p+ , (with the superscript E for Embedded), such that RE is the
retraction associated with T E . Then we claim in the following theorem that there is
a retraction RQ and a vector transport T Q, (with the superscript Q denoting Quo-
tient), on the Riemannian quotient manifold (Cn×p∗ /Op, g3), such that Algorithm 2

is equivalent to Algorithm 1. The idea is again to use the diffeomorphism β̃ and the
isomorphism Lπ(Y ). We give the desired expression of RQ and T Q as follows.
Theorem 3.4. Let RE and T E denote any retraction and vector transport used
in Algorithm 1 on the embedded manifold Hn,p+ . Using the diffeomorphism β̃

between Cn×p∗ /Op and Hn,p+ and isomorphism Lπ(Y ) between Tπ(Y )Cn×p∗ /Op and
TY Y ∗Hn,p+ , define the retraction RQ and vector transport T Q on the quotient manifold

(Cn×p∗ /Op, g3) as

RQπ(Y )(ξπ(Y )) := β̃−1
(
RE
β̃(π(Y ))

(
L(ξπ(Y ))

))
, (27)

T Qηπ(Y )
(ξπ(Y )) := L−1

π(Y2)

(
T EL(ηπ(Y ))

(
L(ξπ(Y ))

))
, (28)

where π(Y2) is in Cn×p∗ /Op such that β̃(π(Y2)) denotes the foot of the tangent vec-
tor T EL(ηπ(Y ))

(
L(ξπ(Y ))

)
. Using RQ and T Q as the retraction and vector transport in

Algorithm 2 and assume the initial step tk in Algorithm 1 and 2 is be chosen to be the
same, then Algorithm 2 is equivalent to Algorithm 1 in the sense that if they produce
exactly the same iterates if started from the same initial point.

Proof. It suffices to show that the newly defined RQ and T Q are indeed retraction and
vector transport. This will be shown in the following Lemma 3.5 and Lemma 3.6.

Lemma 3.5. RQ defined in (27) is a retraction.
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Proof. First it is easy to see that RQπ(Y )(0π(Y )) = π(Y ). Then we also have for all

vπ(Y ) ∈ Tπ(Y )Cn×p∗ /Op, DRQπ(Y )(0π(Y ))[·] is an identity map because

DRQπ(Y )(0π(Y ))[vπ(Y )] = (D β̃−1)(β̃(π(Y ))
[
DRE

β̃(π(Y ))
(0)
[
DL(0)

[
vπ(Y )

]]]
= (D β̃−1)(β̃(π(Y ))

[
DRE

β̃(π(Y ))
(0)
[
L(vπ(Y ))

]]
= (D β̃−1)(β̃(π(Y ))

[
L(vπ(Y ))

]
=
(

D β̃(π(Y ))
)−1

[L(vπ(Y ))] = L−1(L(vπ(Y ))) = vπ(Y )

Lemma 3.6. T Q defined in (28) is a vector transport and RQ is the retraction
associated with T Q.

Proof. Consistency and linearity are straightforward. It thus suffices to ver-
ify that the foot of T Qηπ(Y )

(ξπ(Y )) is equal to RQπ(Y )(ηπ(Y )). Since RE is

the associated retraction with T E , the foot of T EL(ηπ(Y ))
(L(ξπ(Y ))) is equal

to RE
β̃(π(Y ))

(
L(ηπ(Y ))

)
, which we denote by β̃(π(Y2)) for some π(Y2). Hence

RQπ(Y )(ηπ(Y )) = β̃−1
(
RE
β̃(π(Y ))

(
L(ηπ(Y ))

))
= π(Y2).

Furthermore, we have that T Qηπ(Y )
(ξπ(Y )) = L−1

π(Y2)

(
T EL(ηπ(Y ))

(
L(ξπ(Y ))

))
is a

tangent vector in Tπ(Y2)Cn×p∗ /Op. Hence, the foot of T Qηπ(Y )
(ξπ(Y )) is also π(Y2).

Remark 3.7. To reach an equivalence, we also need the initial step size to match the
one in step 2 of Algorithm 1. We simply replace the original initial step size tk by

tk = arg min
t

f(YkY
∗
k + t(Ykη

∗
k + ηkY

∗
k )).

This value of tk now is equivalent to the initial step size in step 5 of Algorithm 1.

3.3 Implementation details

The algorithms in this paper can be applied for minimizing any smooth function f(X)
in (1). For problems with large n, however, it is advisable to avoid constructing and
storing the derivative ∇f(X) ∈ Cn×n explicitly. Instead, one directly computes the
matrix-vector multiplications ∇f(X)U . In the PhaseLift problem [5], for example,
these matrix-vector multiplications can be implemented via the FFT at a cost of
O(pn log n) when U ∈ Cn×p; see [15]. To store a tangent vector ζX ∈ TXM, there
is no need to compute and store U⊥ ∈ Cn×(n−p). By Theorem 2.2, it suffices to only
store U , H and Up := U⊥K ∈ Cn×p.

Below, we detail the calculations needed in Algorithms 1 and 2. When giving flop
counts, we assume that ∇f(X)U ∈ Cn×p can be computed in spn log n flops with s
small. For g2 and g3 in Algorithms 7 and 8, we use forward slash ”/” and backslash
”\” in Matlab command to compute the inverse of Y ∗Y .
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3.3.1 Embedded manifold

Algorithm 3 Calculate the Riemannian gradient grad f(X)

Require: X = UΣU∗ ∈ Hn,p+

Ensure: grad f(X) = UHU∗ + UpU
∗ + UU∗p ∈ TXH

n,p
+

T ← ∇f(X)U . # spn log n flops
H ← U∗T . # p2(2n− 1) flops
Up ← T − UH . # np+ np(2p− 1) flops

Algorithm 4 Calculate the vector transport by projection to tangent space P tX2
(ν)

Require: X1 = U1Σ1U
∗
1 , X2 = U2Σ2U

∗
2 and tangent vector ν = U1H1U

∗
1 + Up1U

∗
1 +

U1Up
∗
1 ∈ TX1

Hn,p+ .
Ensure: P tX2

(ν) = U2H2U
∗
2 + Up2U

∗
2 + U2Up

∗
2

A← U∗1U2 . # p2(2n− 1) flops

H
(1)
2 ← A∗H1A, U

(1)
p ← U1(H1A) . # 3p2(2p− 1) + np(2p− 1) flops

H
(2)
2 ← U∗2Up1A, U

(2)
p ← Up1A . # p2(2n− 1) + 2np(2p− 1) flops

H
(3)
2 ← H

(2)
2

∗
, U

(3)
p ← U1(U1

∗
pU2) . # np(2p− 1) + p2(2n− 1) flops

H2 ← H
(1)
2 +H

(2)
2 +H

(3)
2 . # 2p2 flops

Up2 ← U
(1)
p + U

(2)
p + U

(3)
p , Up2 ← Up2 − U2(U∗2Up2) . #

3np+ np(2p− 1) + p2(2n− 1) flops

In implementation, we observe a vector transport that has better numerical per-
formance if we only keep the first term in the above sum of H2 and the second term
of U2p in Algorithm 4, which is outlined in Algorithm 5.

Algorithm 5 Calculate the simpler form of vector transport used in implementation
that has a better performance P tX2

(ν)

Require: X1 = U1Σ1U
∗
1 , X2 = U2Σ2U

∗
2 and tangent vector ν = U1H1U

∗
1 + Up1U

∗
1 +

U1Up
∗
1 ∈ TX1H

n,p
+ .

Ensure: P tX2
(ν) = U2H2U

∗
2 + Up2U

∗
2 + U2Up

∗
2

A← U∗1U2 . # p2(2n− 1) flops
H2 ← A∗H1A . # 2p2(2p− 1) flops
Up ← Up1A . # np(2p− 1) flops
Up2 ← Up − U2(U∗2Up) . # np+ p2(2n− 1) + np(2p− 1) flops
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Algorithm 6 Calculate the retraction RX(Z) = PHn,p+
(X + Z)

Require: X = UΣU∗ ∈ Hn,p+ , tangent vector Z = UHU∗ + UpU
∗ + UU∗p .

Ensure: PHn,p+
(X + Z) = U+Σ+U

∗
+.

(Q,R)← qr(Up, 0) M ←
[
Σ +H R∗

R 0

]
. # 20np2 flops

[V, S]← eig(M) . O(p3) flops
Σ+← S(1 : p, 1 : p), U+ ←

[
U Q

]
V (:, 1 : p) . # np(4p− 1) flops

3.3.2 Quotient manifold

Algorithm 7 Calculate the Riemannian gradient gradF (Y )

Require: Y ∈ Cn×p∗
Ensure: T = gradF (Y )

1: if metric is g1 then
T ← 2∇f(Y Y ∗)Y . . # 2spn log n flops

2: else if metric is g2 then
Z ← Y (Y ∗Y )−1 . # np(2p− 1) + p2(2n− 1) +O(p3) flops
T ← 2∇f(Y Y ∗)Z . # 2spn log n flops

3: else if metric is g3 then
Z ← Y (Y ∗Y )−1 . # np(2p− 1) + p2(2n− 1) +O(p3) flops
T ← 2∇f(Y Y ∗)Z . # 2spn log n flops
M ← Y ∗T , T ← T − 1

2ZM . # p2(2n− 1) + np+ 2np2 flops
4: end if

Algorithm 8 Calculate the quotient vector transport PHY2
(h1)

Require: Y1 ∈ Cn×p∗ , Y2 ∈ Cn×p∗ and horizontal vector h1 ∈ HY1
.

Ensure: h2 = PHY2
(h1) ∈ HY2

.
1: if metric is g1 then

E ← Y ∗2 Y2 . # p2(2n− 1) flops
(Q,S)← eig(E), d← diag(S) . # O(p3) flops

λ← d
[
1, 1, · · · , 1

]
+
[
1, 1, · · · , 1

]T
dT . # 2p2 flops

A← Q∗(Y ∗2 h1 − h∗1Y2)Q . # p2(2n− 1) + np+ 2p2(2p− 1) flops
Ω← Q(A./λ)Q∗ . # p2 + 2p2(2p− 1) flops
h2 ← h1 − Y2Ω . # np+ np(2p− 1) flops

2: else if metric is g2 or g3 then
Ω̃← (Y ∗Y )−1(Y ∗2 h1) . # 2p2(2p− 1) + p2(2n− 1) +O(p3) flops
Ω← 1

2 (Ω̃− Ω̃∗) . # 2p2 flops
h2 ← h1 − Y2Ω . # np+ np(2p− 1) flops

3: end if
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3.3.3 Initial guess for the line search

The initial guess for the line search generally depends on the expression of the cost
function f(X). For the important case of f(X) = 1

2 ‖A(X)− b‖2F where A is a linear
operator and b is a matrix, the initial guess for embedded CG requires solving a
linear equation and for quotient CG it requires solving a cubic equation. Below this
calculation is detailed for b of size mn for some m and assuming that A(X),A(T )
and A(Y η∗) can be evaluated in spαn log n flops for X ∈ Hn,p+ , T ∈ TXHn,p+ and

Y, η ∈ Cn×p∗ .

Algorithm 9 Calculate the initial guess t∗ = arg mint f(X + tT )

Require: X ∈ Hn,p+ and a descend direction T ∈ TXHn,p+

Ensure: t∗ = arg mint f(X + tT ) = arg mint
1
2 ‖A(X + tT )− b‖2F

R← A(X)− b . # spαn log n+mn flops
S ← A(T ) . # spαn log n flops

t∗ ← − 〈R,S〉〈S,S〉 . # 4mn− 1 flops

Algorithm 10 Calculate the initial guess t∗ = arg mint F (Y + tη)

Require: Y ∈ Cn×p∗ , a descend direction η ∈ HY ,
Ensure: t∗ = arg mint F (Y + tη) = arg mint

1
2 ‖A((Y + tη)(Y + tη)∗)− b‖2F

c0 ← A(Y Y ∗)− b . # spαn log n+mn flops

c
(1)
1 ← A(Y η∗), c

(2)
1 ← A(ηY ∗), c1 ← c

(1)
1 +c

(2)
1 . # 2spαn log n+mn flops

c2 ← A(ηη∗) . # spαn log n flops
d4 ← 〈c2, c2〉, d3 ← 2 〈c2, c1〉 . # 4mn− 1 flops
d2 ← 2 〈c2, c0〉+ 〈c1, c1〉, d1 ← 2 〈c1, c0〉 . # 6mn− 1 flops
C ←

[
4d4 3d3 2d2 d1

]
S ← roots(C), t∗ ← the smallest real positive root in S

4 Estimates of Rayleigh quotient for Riemannian
Hessians

In many applications, (1) or (11) is often used for solving (2). Even if the global mini-
mizer of (2) has a known rank r, one might consider solving (1) or (11) for Hermitian
PSD matrices with fixed rank p ≥ r. For instance, in PhaseLift [5] and interferometry
recovery [8], the minimizer to (2) is rank one, but in practice, optimization over the
set of PSD Hermitian matrices of rank p with p ≥ 2 is often used because of a larger
basin of attraction [8, 15]. If p > r, then an algorithm that solves (1) or (11) can gen-
erate a sequence that goes to the boundary of the manifold. Numerically, the smallest
p− r singular values of the iterates Xk will become very small as k →∞.
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In this section, we analyze the eigenvalues of the Riemannian Hessian near the
global minimizer. We will obtain upper and lower bounds of the Rayleigh quotient at
X = Y Y ∗ (or π(Y )) that is close to the global minimizer X̂ = Ŷ Ŷ ∗ (or π(Ŷ )).
Definition 4.1. The Rayleigh quotient of the Riemannian Hessian of f on (Hn,p+ , g)
is defined by

ρE(X, ζX) =
gX(Hess f(X)[ζX ], ζX)

gX(ζX , ζX)
,∀ζX ∈ TXHn,p+ .

The Rayleigh quotient of the Riemannian Hessian of h on (Cn×p∗ /Op, gi) is defined by

ρi(π(Y ), ξπ(Y )) =
giπ(Y )

(
Hessh(π(Y ))[ξπ(Y )], ξπ(Y )

)
giπ(Y )(ξπ(Y ), ξπ(Y ))

, ∀ξπ(Y ) ∈ Tπ(Y )Cn×p∗ /Op.

If the Rayleigh quotient has a lower bound µ and an upper bound L, then we define L
µ

as an upper bound on the condition number of the Riemannian Hessian.

4.1 The Rayleigh quotient estimates

We assume that the Hessian ∇2f is well conditioned on the tangent space near the
global minimizer X̂:
Assumption 4.1. Let X̂ be the global minimizer of f . For a fixed ε > 0, there exist

constants A > 0 and B > 0 such that for all X with
∥∥∥X − X̂∥∥∥

F
< ε, the following

inequality holds,

A ‖ζX‖2F ≤
〈
∇2f(X)[ζX ], ζX

〉
Cn×n ≤ B ‖ζX‖

2
F , ∀ζX ∈ TXHn,p+ .

Observe that the Assumption 4.1 is always satisfied for sufficiently small ε when f
is smooth and X̂ is a nondegenerate minimizer of f . However, the condition number
B/A might be large in general. An important case for which this assumption holds
is f(X) = 1

2 ‖X −H‖
2
F with H being a given Hermitian PSD matrix. In this case,

∇2f(X) is the identity operator thus A = B = 1.
Our main result is given in the following theorem.

Theorem 4.1. Let X̂ = Ŷ Ŷ ∗ be the global minimizer of (2) with rank r ≤ p. For
X = Y Y ∗ = UΣU∗ with singular values σi, Y ∈ Cn×p∗ , and X near X̂, under the
Assumption 4.1, for any arbitrary tangent vectors ζX and ξπ(Y ), the following hold:

1. A− 2
σp
‖∇f(X)‖ ≤ ρE(X, ζX) ≤ B + 2

σp
‖∇f(X)‖ ,

2. 2Aσp − 2 ‖∇f(Y Y ∗)‖ ≤ ρ1(π(Y ), ξπ(Y )) ≤ B ·D1
π(Y ) + 2 ‖∇f(Y Y ∗)‖ ,

3. 2A− 4(
√
p+1)

σp
‖∇f(Y Y ∗)‖ ≤ ρ2(π(Y ), ξπ(Y )) ≤ 4B +

4(
√
p+1)

σp
‖∇f(Y Y ∗)‖ ,

4. A− 1
σp
‖∇f(Y Y ∗)‖ ≤ ρ3(π(Y ), ξπ(Y )) ≤ B + 1

σp
‖∇f(Y Y ∗)‖ ,
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where D1
π(Y ) satisfies 2σ1 ≤ D1

π(Y ) ≤ 2
(
σ2

1

σp
+ σ1

)
. In particular, if X̂ = Ŷ Ŷ ∗ has

rank p, we have the following limits, where X → X̂ and π(Y ) → π(Ŷ ) are taken in

the sense of
∥∥∥X − X̂∥∥∥

F
→ 0 and

∥∥∥Y Y ∗ − Ŷ Ŷ ∗∥∥∥
F
→ 0:

1. A− 2
σ̂p

∥∥∥∇f(X̂)
∥∥∥ ≤ limX→X̂ ρ

E(X, ξX) ≤ B + 2
σ̂p

∥∥∥∇f(X̂)
∥∥∥ ,

2. 2Aσ̂p − 2
∥∥∥∇f(X̂)

∥∥∥ ≤ limπ(Y )→π(Ŷ ) ρ
1(π(Y ), ξπ(Y )) ≤ B ·D1

π(Ŷ )
+ 2

∥∥∥∇f(X̂)
∥∥∥ ,

3. 2A− 4(
√
p+1)

σ̂p

∥∥∥∇f(X̂)
∥∥∥ ≤ limπ(Y )→π(Ŷ ) ρ

2(π(Y ), ξπ(Y )) ≤ 4B+
4(
√
p+1)

σ̂p

∥∥∥∇f(X̂)
∥∥∥ ,

4. A− 1
σ̂p

∥∥∥∇f(X̂)
∥∥∥ ≤ limπ(Y )→π(Ŷ ) ρ

3(π(Y ), ξπ(Y )) ≤ B + 1
σ̂p

∥∥∥∇f(X̂)
∥∥∥ ,

where D1
π(Ŷ )

satisfies 2σ̂1 ≤ D1
π(Ŷ )

≤ 2
(
σ̂2

1

σ̂p
+ σ̂1

)
.

Before we present the proof of Theorem 4.1, we give two remarks on this theorem:
Remark 4.2. If we also assume ∇f(X̂) = 0, then the limits above can be further
simplified. Though ∇f(X̂) = 0 may not be true in general, it holds for all numerical
examples considered in this paper, where the cost function takes the form f(X) =
1
2 ‖A(X)− b‖2F , and the minimizer X̂ for (1) or (2) satisfies f(X̂) = 0. Thus X̂ is

also the minimizer for minimizing f(X) over all X ∈ C, which implies ∇f(X̂) = 0.
Remark 4.3. Under the assumption ∇f(X̂) = 0, the limit of the condition number
for the Bures-Wasserstein metric g1 depends on the condition number of the minimizer
X̂. This reflects a significant difference between g1 and the other two metrics. For
certain problems, the minimizer X̂ may have a huge condition number, and the methods
using metric g1 indeed shows much slower asymptotic convergence rate, e.g., see the
numerical example shown in Figure 2 in the next Section.

The rest of this subsection is the proof of Theorem 4.1. By the expressions of
Riemannian Hessian, we have

ρE(X, ζX) =
〈∇2f(X)[ζX ],ζX〉Cn×n

gX(ζX ,ζX) +
gX(PpX(∇f(X)(X†ζpX)∗+(ζpXX

†)∗∇f(X)),ζX)
gX(ζX ,ζX) .

ρ1(π(Y ), ξπ(Y )) =
〈∇2f(Y Y ∗)[Y ξ

∗
Y +ξY Y

∗],Y ξ
∗
Y +ξY Y

∗〉Cn×n
g1
Y (ξY ,ξY )

+
g1
Y (2∇f(Y Y ∗)ξY ,ξY )

g1
Y (ξY ,ξY )

.

ρ2(π(Y ), ξπ(Y )) =
〈∇2f(Y Y ∗)[Y ξ

∗
Y +ξY Y

∗],Y ξ
∗
Y +ξY Y

∗〉Cn×n
g2
Y (ξY ,ξY )

+
〈∇f(Y Y ∗)P⊥Y ξY ,ξY 〉Cn×p

g2
Y (ξY ,ξY )

+
〈P⊥Y ∇f(Y Y ∗)ξY ,ξY 〉Cn×p

g2
Y (ξY ,ξY )

+
〈Y ξ∗Y ξY ,2∇f(Y Y ∗)Y (Y ∗Y )−1〉Cn×p

g2
Y (ξY ,ξY )

− 〈
ξY Y

∗ξY ,2∇f(Y Y ∗)Y (Y ∗Y )−1〉Cn×p
g2
Y (ξY ,ξY )

.

ρ3(π(Y ), ξπ(Y )) =
〈∇2f(Y Y ∗)[Y ξ

∗
Y +ξY Y

∗],Y ξ
∗
Y +ξY Y

∗〉Cn×n
g3
Y (ξY ,ξY )

+
g3
Y ((I−PY )∇f(Y Y ∗)(I−PY )ξY (Y ∗Y )−1,ξY )

g3
Y (ξY ,ξY )

.

Observe that the leading terms in the above Rayleigh quotients take similar forms:
the numerator involves the Hessian ∇2f , and the denominator is the induced norm
of the tangent vector from the respective Riemannian metric. We call the leading
term second order term (SOT) as it involves the Hessian of f as the second-order
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information of f , and we call the other terms that follow the leading term first order
terms (FOTs) as they only contain the first-order gradient.

Under Assumption 4.1, we get bounds of the SOT in ρE(X, ζX) as:

A = A
‖ζX‖2F

gX(ζX , ζX)
≤
〈
∇2f(X)[ζX ], ζX

〉
Cn×n

gX(ζX , ζX)
≤ B

‖ζX‖2F
gX(ζX , ζX)

= B.

For quotient manifold, since Y ξ
∗
Y + ξY Y

∗ ∈ TY Y ∗Hn,p+ , under Assumption 4.1, we get

A
‖Y ξ∗Y +ξY Y

∗‖2
F

giY (ξY ,ξY )
≤ 〈
∇2f(Y Y ∗)[Y ξ

∗
Y +ξY Y

∗],Y ξ
∗
Y +ξY Y

∗〉Cn×n
giY (ξY ,ξY )

≤ B ‖
Y ξ
∗
Y +ξY Y

∗‖2
F

giY (ξY ,ξY )
.

So the estimates of SOT for quotient manifold reduces to analyzing
‖Y ξ∗Y +ξY Y

∗‖2
F

giY (ξY ,ξY )
.

We denote its infimum and supremum by

Ciπ(Y ) := infξπ(Y )∈Tπ(Y )Cn×p∗ /Op
‖Y ξ∗Y +ξY Y

∗‖2
F

giY (ξY ,ξY )
, Di

π(Y ) := supξπ(Y )∈Tπ(Y )Cn×p∗ /Op
‖Y ξ∗Y +ξY Y

∗‖2
F

giY (ξY ,ξY )
.

The subscript is used to emphasize that the infimum and supremum are dependent
on π(Y ). The next lemma characterizes these infimum and supremum.
Lemma 4.4. Let Y Y ∗ = UΣU∗ denote the compact SVD of Y Y ∗ and denote the i-th
diagonal entry of Σ by σi with σ1 ≥ · · · ≥ σp > 0. Then the following estimates for the

infimum Ciπ(Y ) and the supremum Di
π(Y ) of

‖Y ξ∗Y +ξY Y
∗‖2
F

giY (ξY ,ξY )
hold: C1

π(Y ) = 2σp, 2σ1 ≤

D1
π(Y ) ≤ 2

(
σ2

1

σp
+ σ1

)
; C2

π(Y ) = 2, D2
π(Y ) = 4; and C3

π(Y ) = D3
π(Y ) = 1.

Next we estimate the FOTs in Rayleigh quotient.
Lemma 4.5. Let X = Y Y ∗ for any Y ∈ π−1(π(Y )) with X ∈ Hn,p+ and π(Y ) ∈
Cn×p∗ /Op. Let UΣU∗ be the compact SVD of X and denote the i-th diagonal entry of
Σ with σ1 ≥ · · · ≥ σp > 0.

1. For the embedded manifold we have |FOT| ≤ 2
σp
‖∇f(X)‖ .

2. For the quotient manifold with metric g1 we have |FOT| ≤ 2 ‖∇f(Y Y ∗)‖ .
3. For the quotient manifold with g2 we have |FOTs| ≤ 4(

√
p+1)

σp
‖∇f(Y Y ∗)‖ .

4. For the quotient manifold with g3 we have |FOTs| ≤ 1
σp
‖∇f(Y Y ∗)‖ .

The proofs for Lemma 4.5 and Lemma 4.4 are given in Appendix C. With Lemma
4.5 and Lemma 4.4, the proof of Theorem 4.1 is concluded.

4.2 The Rayleigh quotient for a rank-deficient minimizer

Next, we consider the rank deficient case p > r where r is the rank of the minimizer
X̂, i.e., the minimizer X̂ lies on the boundary of the constraint manifold. Under the
Assumption ∇f(X̂) = 0, any convergent algorithm that solves (1) or (11) will generate
a sequence such that both σr+1, · · · , σp and ∇f(X) will vanish as X → X̂. We make
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one more assumption for a simpler quantification of the lower and upper bounds of
Rayleigh quotient near the minimizer.
Assumption 4.2. For a sequence {Xk} with Xk ∈ Hn,p+ (or π(Yk) ∈ Cn×p∗ /Op ) that

converges to the minimizer X̂ (or π(Ŷ )), let (σp)k be the smallest nonzero singular
value of Xk = YkY

∗
k , assume the following limits hold.

1. For the embedded manifold, limk→∞
2

(σp)k
‖∇f(Xk)‖ ≤ A

2 .

2. For the quotient manifold with metric g1, limk→∞
1

(σp)k
‖∇f(YkY

∗
k )‖ ≤ A

2 .

3. For the quotient manifold with metric g2, limk→∞
4(
√
p+1)

(σp)k
‖∇f(YkY

∗
k )‖ ≤ A.

4. For the quotient manifold with metric g3, limk→∞
1

(σp)k
‖∇f(YkY

∗
k )‖ ≤ A

2 .

We remark that Assumption 4.2 may not always hold. In the next section, we will
give some numerical evaluation of this assumption for four examples listed in Figure
3 (eigenvalue problem), Figure 5 (matrix completion), Figure 7 (phase retrieval), and
Figure 9 (interferometry recovery). Assumption 4.2 holds numerically in most of these
tests.

If X̂ has rank r < p and {Xk} is a sequence that satisfies Assumption 4.2, then
Theorem 4.1 implies

1. For the embedded manifold we have A
2 ≤ limk→∞ ρE(Xk, ξXk) ≤ B + A

2 .

2. A ≤ limk→∞
ρ1(π(Yk),ξπ(Yk))

(σp)k
≤ B limk→∞

D1
π(Yk)

(σp)k
+ 2A,

3. A ≤ limk→∞ ρ2(π(Yk), ξπ(Yk)) ≤ 4B +A,

4. A
2 ≤ limk→∞ ρ3(π(Yk), ξπ(Yk)) ≤ B + A

2 ,

where lim
k→∞

D1
π(Yk)

(σp)k
≥ lim
k→∞

2(σ1)k
(σp)k

= +∞ since σp → σ̂p = 0.

Notice that the condition number in the Bures-Wasserstein metric g1 is funda-
mentally different from the other ones since it is the only metric where the condition
number may blow up.

5 Numerical experiments

In this section, we report on the numerical performance of the Riemannian conju-
gate gradient methods on four kinds of cost functions of f(X): eigenvalue problem,
matrix completion, phase-retrieval, and interferometry. In particular, we implement
and compare the following five algorithms:

1. Burer–Monteiro L-BFGS method, that is, using the L-BFGS method directly
applied to (5). This method was used in [8].

2. Riemannian CG on the quotient manifold (Cn×p∗ /Op, g1), i.e., Algorithm 2 with
metric g1. This algorithm is equivalent to CG applied directly to Burer–
Monteiro formulation (5).

3. Riemannian CG on the quotient manifold (Cn×p∗ /Op, g2), i.e., Algorithm 2 with
metric g2. The same metric g2 was used in [15].

4. Riemannian CG on the quotient manifold (Cn×p∗ /Op, g3), i.e., Algorithm 2 with
metric g3.
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5. Riemannian CG on the embedded manifold, i.e., Algorithm 1, which is equivalent
to Riemannian CG on the quotient manifold (Cn×p∗ /Op, g3), i.e., Algorithm 2 with
metric g3 using a specific retraction, vector transport and initial step as described
in Section 3.2.

5.1 Eigenvalue problem

For any n-by-n Hermitian PSD matrix A, its top p eigenvalues and associated eigen-
vectors can be found by solving (1) with f(X) = 1

2 ‖X −A‖
2
F or equivalently (11)

with h(π(Y )) = 1
2 ‖Y Y

∗ −A‖2F . It is easy to verify that

∇f(X) = X −A, ∇2f(X)[ζX ] = ζX , ζX ∈ Cn×n.

In practice we only need A as an operator A : v 7→ Av. We consider a numerical
test for a random Hermitian PSD matrix A of size 50 000-by-50 000 with rank 10.
We solve the minimization problem above with p = 15. Obviously, the minimizer is
rank-10 thus rank deficient for Cn×p∗ /Op with p = 15. This corresponds to a scenario
of finding the eigenvalue decomposition of a low rank Hermitian PSD matrix A with
estimated rank at most 15. The results are shown in Figure 1. The initial guess is the
same random initial matrix for all four algorithms. We see that the simpler Burer–
Monteiro approach, including the L-BFGS method and the CG method with metric
g1, is significantly slower.

In the second test of Figure 2, the minimizer has rank r = 15, and the fixed rank
for the manifold is also set to p = 15; i.e., there is no rank deficiency. But the condition
number of the minimizer A causes a difference in the asymptotic convergence rate for
the CG method with metric g1. In Figure 2(a), the condition number of A is large
and we observe a slower asymptotic convergence rate for the CG method with metric
g1; while in Figure 2(b), the condition number of A is smaller and the asymptotic
convergence rate becomes much faster. This is consistent with Theorem 4.1. In the

third test of Figure 3, we show the ratio term
‖∇f(YkY

∗
k )‖

(σp)k
in Assumption 4.2 versus

the iteration number k. This ratio does not blow up as π(Yk) converges to π(Ŷ ).

5.2 Matrix completion

Let Ω be a subset of of the complete set {1, · · · , n} × {1, · · · , n}. Then the projection
operator onto Ω is a sampling operator defined as

PΩ : Cn×n → Cn×n : Xi,j 7→

{
Xi,j if (i, j) ∈ Ω,

0 if (i, j) /∈ Ω.

We consider a matrix completion problem under Hermitian constraint by solv-
ing (1) with f(X) = 1

2 ‖PΩ(X −A)‖2F or equivalently (11) with h(π(Y )) =
1
2 ‖PΩ(Y Y ∗ −A)‖2F . Straightforward calculation shows

∇f(X) = PΩ(X −A), ∇2f(X)[ζX ] = PΩ(ζX), ζX ∈ Cn×n.
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Fig. 1 Eigenvalue problem of a random 50 000-by-50 000 PSD matrix of rank 10 solved on the rank

15 manifold: a comparison of relative residue
‖YkY ∗k −A‖F
‖A‖F

decrease versus iteration number k and

running time when using L-BFGS approach, quotient CG method with metric gi, i = 1, 2, 3 and
embedded CG method.
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Fig. 2 Numerical justification of Theorem 4.1 for the eigenvalue problem of a random 50 000-by-
50 000 PSD matrix of rank 15 on the rank 15 manifold. Effect of condition number of A on the

convergence speed of relative residue
‖YkY ∗k −A‖F
‖A‖F

versus iteration number k. (a): when the condition

number of A is large, Burer-Monteiro LBFGS and CG with metric g1 is slower; (b): when the condition
number of A is smaller, CG with metric g1 becomes faster.

We consider a Hermitian PSD matrix A ∈ Cn×n with n = 10 000 and PΩ a random
60% sampling operator. In the first test of Figure 4(a), the minimizer has rank r = 25,
and the fixed rank for the manifold is set to p = 30. In the second test of Figure 4(b),
the minimizer has rank r = 25, and the fixed rank for the manifold is set to p = 25.
The initial guess is the same random matrix for all four algorithms. For both cases,
we see that the simpler Burer–Monteiro approach, including the L-BFGS method and
the CG method with metric g1, is significantly slower.

31



0 200 400
10

0

10
2

10
4

0 200 400
10

0

10
1

10
2

0 5 10
10

0

10
5

0 5 10
10

0

10
1

10
2

0 5 10
10

0

10
20

10
40

Fig. 3 Numerical examination of Assumption 4.2 for the eigenvalue problem of a random 50 000-
by-50 000 PSD matrix of rank 10 on the rank 15 manifold, same setup as the numerical test shown

in Fig 1. Plots show the ratio term
‖∇f(YkY ∗k )‖F

(σp)k
in Assumption 4.2 versus the iteration number k

for L-BFGS approach, quotient CG method with metric gi, i = 1, 2, 3 and embedded CG method.

In the third test of Figure 5, we show that the ratio term
‖∇f(YkY

∗
k )‖

(σp)k
in Assump-

tion 4.2 versus the iteration number k does not blow up as π(Yk) converges to
π(Ŷ ).
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(a) The algorithms are solved on the rank 30
manifold
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(b) The algorithms are solved on the rank 25
manifold

Fig. 4 Matrix completion of a random 10 000-by-10 000 PSD matrix of rank 25 observed at random

60% entries. A comparison of decrease in relative residue
‖PΩ(YkY

∗
k −A)‖

F
‖PΩ(A)‖F

versus iteration number

k when using L-BFGS approach, quotient CG method with metric gi, i = 1, 2, 3 and embedded CG
method. When the minimizer is rank deficient (the case in (a)), L-BFGS approach and CG method
with metric g1 is significantly slower.

5.3 The phase retrieval problem

We now solve the phase retrieval problem as described in [5]. Take an image x ∈ Cn×1

and by lifting X := xx∗, the cost function can be written as

f(X) =
1

2
‖A(X)− b‖2 ,
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Fig. 5 Numerical examination of Assumption 4.2 for the matrix completion problem of a random
10 000-by-10 000 PSD matrix of rank 25 observed at random 60% entries solved on the rank 30 mani-

fold (same setup as the numerical test shown in Fig 4(a)). Plots show the ratio term
‖∇f(YkY ∗k )‖F

(σp)k
in

the Assumption 4.2 versus the iteration number k for L-BFGS approach, quotient CG method with
metric gi, i = 1, 2, 3 and embedded CG method.

where A : Cn×n → Rmn×1, X 7→ [diag(Z1XZ1∗), · · · ,diag(ZmXZm∗)]T with
given Zi ∈ Cn×n. See [9] for the complete definition of A. The conjugate of operator
A, denoted by A∗ can be shown to be

A∗(b) =



m∑
i=1

n∑
j=1

bijz
i
jz
i
j

∗
=

m∑
i=1

Zi
∗

Diag(bi)Zi, if domain of A is Cn×n

<

(
m∑
i=1

n∑
j=1

bijz
i
jz
i
j

∗
)

= <

(
m∑
i=1

Zi
∗

Diag(bi)Zi

)
, if domain of A is Rn×n.

Straightforward calculation shows

∇f(X) = A∗(A(X)− b), ∇2f(X)[ζX ] = A∗(A(ζX)) for all ζX ∈ Cn×n.

For the numerical experiments, we take the phase retrieval problem for a complex
gold ball image of size 256× 256 as in [15]. Thus n = 2562 = 65, 536 in (2) or (1). We
consider the operator A that corresponds to 6 Gaussian random masks. Hence, the
size of b is 6n = 393, 216. Remark that problem is easier to solve with more masks.

We first test the algorithms on the rank 3 manifold, and then on the rank 1
manifolds. The results are visible in Figure 6. The initial guess is randomly generated.
First, we observe that solving the PhaseLift problem on the rank p manifold with
p > 1 can accelerate the convergence, compared to solving it on the rank 1 manifold.
Second, when p = r = 1, the asymptotic convergence rates of all algorithms are
essentially the same, though the algorithms differ in the length of their convergence
”plateaus”. When p = 3 > r = 1, we can see that the Burer–Monteiro approach has
slower asymptotic convergence rates.

In the second test of Figure 7, we show that the ratio term
‖∇f(YkY

∗
k )‖

(σp)k
in Assump-

tion 4.2 versus the iteration number k does not blow up as π(Yk) converges to
π(Ŷ ).
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Fig. 6 Phase retrieval of a 256-by-256 image with 6 Gaussian masks. A comparison of relative residue
‖A(YkY

∗
k )−b‖

‖b‖ versus iteration number k when using L-BFGS approach, quotient CG method with

metric gi, i = 1, 2, 3 and embedded CG method. When the minimizer is rank deficient (the case in
6(a)), L-BFGS approach and CG method with metric g1 is significantly slower.
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Fig. 7 Numerical examination of Assumption 4.2 for the phase retrieval problem of a 256-by-256
image with 6 Gaussian masks solved on the rank 3 manifold (same setup as the numerical test shown

in Fig 6(a)). Plots show the ratio term
‖∇f(YkY ∗k )‖

F
(σp)k

in the Assumption 4.2 versus the iteration

number k for L-BFGS approach, quotient CG method with metric gi, i = 1, 2, 3 and embedded CG
method.

5.4 Interferometry recovery problem

As the last example, we consider solving the interferometry recovery problem described
in [8]. Consider solving the linear system Fx = d where F ∈ Cm×n∗ with m > n and
x ∈ Cn×1. For the sake of robustness, the interferometry recovery [8] requires solving
the lifted problem (1) with f(X) = 1

2 ‖PΩ(FXF ∗ − dd∗)‖2F or equivalently (11) with

h(π(Y )) = 1
2 ‖PΩ(FY Y ∗F ∗ − dd∗)‖2F , Ω is a sparse and symmetric sampling index

that includes all of the diagonals. Straightforward calculation again shows

∇f(X) = F ∗PΩ(FXF ∗−dd∗)F, ∇2f(X)[ζX ] = F ∗PΩ(FζXF
∗)F for all ζX ∈ Cn×n.

We solve an interferometry problem with a randomly generated F ∈ C10 000×1000,
with n = 1000 in (2) or (1). The sampling operator Ω is also randomly generated, with
1% density. In Figure 8(a), for p = 3 and r = 1, we can see that the Burer–Monteiro
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approach has slower asymptotic convergence rates. In Figure 8(b), for p = r = 1, we
can see that all algorithms have more or less the same asymptotic convergence rates.

In Figure 9, we show that the ratio term
‖∇f(YkY

∗
k )‖

(σp)k
in Assumption 4.2 does not blow

up as π(Yk) converges to π(Ŷ ).
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Fig. 8 Interferometry recovery of a random 10 000-by-1000 F with 1% sampling. A comparison

of relative residue
‖PΩ(FYkY

∗
k F
∗−dd∗)‖

F
‖PΩ(dd∗)‖F

versus iteration number k when using L-BFGS approach,

quotient CG method with metric gi, i = 1, 2, 3 and embedded CG method. When the minimizer is
rank deficient (the case in (a)), L-BFGS approach and CG method with metric g1 is significantly
slower.
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Fig. 9 Numerical examination of Assumption 4.2 for the interferometry recovery problem of a ran-
dom 10 000-by-1000 F with 1% sampling solved on a rank 3 manifold. (same setup as the numerical

test shown in Fig 8(a)). Plots show the ratio term
‖∇f(YkY ∗k )‖

F
(σp)k

in the Assumption 4.2 versus the iter-

ation number k for L-BFGS approach, quotient CG method with metric gi, i = 1, 2, 3 and embedded
CG method.

6 Concluding remarks

We have shown that the CG method on the Burer–Monteiro formulation for Her-
mitian PSD fixed-rank constraints is equivalent to a Riemannian CG method on a
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quotient manifold with the Bures-Wasserstein metric g1. We have also shown that the
Riemannian conjugate gradient method on the embedded geometry of Hn,p+ is equiv-

alent to a Riemannian conjugate gradient method on a quotient manifold Cn×p∗ /Op
with a metric g3. We have analyzed the condition numbers of the Riemannian Hes-
sians on (Cn×p∗ /Op, gi) for three metrics. We have shown that when the rank p of
the optimization manifold is larger than the rank of the minimizer to the original
PSD constrained minimization, the condition number of the Riemannian Hessian on
(Cn×p∗ /Op, g1) can be unbounded, which is consistent with the observation that the
Burer–Monteiro approach or Bures-Wasserstein metric often has a slower asymptotic
convergence rate in numerical tests.
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Appendix A Calculation for Riemannian Hessian
of Embedded manifold Hn,p

+

Let f be a smooth real-valued function on Hn,p+ . In this section we derive the
Riemannian Hessian operator of f .

By [30, Sect. 4] we know that the retraction R by projection is a second-order
retraction. [29, Prop. 5.5.5] states that if R is a second-order retraction, then the
Riemannian Hessian of f can be computed by Hess f(X) = Hess (f ◦RX)(0X). Thus

gX (Hess f(X)[ξX ], ξX) = d2

dt2 f(RX(tξX))
∣∣∣
t=0

.

In [4] and [17], a method was proposed to compute Hess f(X) by constructing a
second-order retraction R(2) that has a second-order series expansion which makes it

simple to derive a series expansion of f ◦R(2)
X up to second order and thus obtain the

Hessian of f . Following [4, Prop. 5.10], we have

Lemma A.1. ∀X ∈ Hn,p+ , the mapping R
(2)
X : TXHn,p+ → Hn,p+

ξX 7→ wX†w∗, with w = X +
1

2
ξsX + ξpX −

1

8
ξsXX

†ξsX −
1

2
ξpXX

†ξsX ,

is a second-order retraction on Hn,p+ , where X† is the pseudoinverse, ξsX = P sX(ξX)
and ξpX = P pX(ξX) as defined in (9). Moreover, we have

R
(2)
X (ξX) = X + ξX + ξpXX

†ξpX +O(‖ξX‖3).

From this the Riemannian Hessian operator of f can be computed in essentially the
same way as in [31, Sect. A.2] but applied to the general cost function f(X) instead of

a least square cost function. Consider the Taylor expansion of f̂
(2)
X := f ◦R(2)

X , which
is a real-valued function on a vector space. We get

f̂
(2)
X (ξX) = f(R

(2)
X (ξX)) = f

(
X + ξX + ξpXX

†ξpX +O(‖ξX‖3)
)

= f(X) +
〈
∇f(X), ξX + ξpXX

†ξpX
〉
Cn×n + 1

2

〈
∇2f(X)[ξX + ξpXX

†ξpX ], ξX + ξpXX
†ξpX

〉
Cn×n +O(‖ξX‖3)

= f(X) + 〈∇f(X), ξX〉Cn×n +
〈
∇f(X), ξpXX

†ξpX
〉
Cn×n + 1

2

〈
∇2f(X)[ξX ], ξX

〉
Cn×n +O(‖ξX‖3).

We can immediately recognize the first-order term and the second-order term that
contribute to the Riemannian gradient and Hessian, respectively. That is,

gX (grad f(X), ξX) = 〈∇f(X), ξX〉Cn×n ⇒ grad f(X) = P tX(∇f(X)),

gX (Hess f(X)[ξX ], ξX) = 2
〈
∇f(X), ξpXX

†ξpX
〉
Cn×n︸ ︷︷ ︸

f1:=〈H1(ξX),ξX〉Cn×n

+
〈
∇2f(X)[ξX ], ξX

〉
Cn×n︸ ︷︷ ︸

f2:=〈H2(ξX),ξX〉Cn×n

.

Since ξX is already separated in f2, the contribution to Riemannian Hessian from H2

is readily given by H2(ξX) = P tX(∇2f(X)[ξX ]).
Now, we still need to separate ξX in f1 to see the contribution to Riemannian

Hessian from H1. Since we can choose to bring over ξpXX
† or X†ξpX to the first position
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of 〈., .〉Cn×n , we write H1(ξX) as the linear combination of both:

f1 = 2c
〈
∇f(X)(X†ξpX)∗, ξpX

〉
Cn×n + 2(1− c)

〈
(ξpXX

†)∗∇f(X), ξpX
〉
Cn×n .

Operator H1 is clearly linear. Since H1 is symmetric, we must have
〈H1(ξX), νX〉Cn×n = 〈νX ,H1(ξX)〉Cn×n for all tangent vector νX . Hence we must have
c = 1

2 and we obtain

H1(ξX) = P pX
(
∇f(X)(X†ξpX)∗ + (ξpXX

†)∗∇f(X)
)
.

Hess f(X)[ξX ] = P tX(∇2f(X)[ξX ]) + P pX
(
∇f(X)(X†ξpX)∗ + (ξpXX

†)∗∇f(X)
)
.

Appendix B Calculations for Riemannian Hessian
of Quotient manifold Cn×p

∗ /Op

In this section, we outline the computations of the Riemannian Hessian operators of
the cost function h defined on Cn×p∗ /Op under the three different metrics gi.
Definition B.1. [29, Def. 5.5.1] Given a real-valued function f on a Riemannian
manifold M, the Riemannian Hessian of f at a point x in M is the linear mapping
Hess f(x) of TxM into itself defined by Hess f(x)[ξx] = ∇ξxgrad f(x). for all ξx in
TxM, where ∇ is the Riemannian connection on M.
Lemma B.1. The Riemannian Hessian of h : Cn×p∗ /Op 7→ R is related to the Rie-

mannian Hessian of F : Cn×p∗ 7→ R in the following way:
(
Hessh(π(Y ))[ξπ(Y )]

)
Y

=

PHY
(
HessF (Y )[ξY ]

)
, where ξY is the horizontal lift of ξπ(Y ) at Y .

Proof. The result follows from [29, Prop. 5.3.3] and the definition of the Riemannian
Hessian.

B.1 Riemannian Hessian for the metric g1

Using the Riemannian metric g1, Cn×p∗ is a Riemannian submanifold of a Euclidean
space. By [29, Prop. 5.3.2], the Riemannian connection on Cn×p∗ is the classical direc-
tional derivative ∇ηY ξ = D ξ(Y )[ηY ]. Recall that for g1, gradF (Y ) = 2∇f(Y Y ∗)Y .
Thus

HessF (Y )[ξY ] = ∇ξY gradF = D gradF (Y )[ξY ] = 2∇2f(Y Y ∗)[Y ξ∗Y + ξY Y
∗]Y + 2∇f(Y Y ∗)ξY .

Therefore we obtain by B.1 that(
Hessh(π(Y ))[ξπ(Y )]

)
Y

= PH
1

Y

(
2∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y

∗]Y + 2∇f(Y Y ∗)ξY

)
.

B.2 Riemannian Hessian under metric g2

First, for any Riemannian metric g, g satisfies the Koszul formula

2gx(∇ξxλ, ηx) = ξxg(λ, η) + λxg(η, ξ)− ηxg(ξ, λ)− gx(ξx, [λ, η]x) + gx(λx, [η, ξ]x) + gx(η, [ξ, λ]x)
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= D g(λ, η)(x)[ξx] + D g(η, ξ)(x)[λx]−D g(ξ, λ)(x)[ηx]− gx(ξx, [λ, η]x) + gx(λx, [η, ξ]x) + gx(η, [ξ, λ]x),

where [·, ·] is the Lie bracket. In particular, for g2 the Koszul formula turns into

2g2
Y (∇ξY λ, ηY ) = D g2(λ, η)(Y )[ξY ] + D g2(η, ξ)(Y )[λY ]−D g2(ξ, λ)(Y )[ηY ]− g2

Y (ξY , [λ, η]Y ) + g2
Y (λY , [η, ξ]Y ) + g2

Y (η, [ξ, λ]Y ).

Recall that g2(λ, η)(Y ) = <(tr(Y ∗Y λ∗Y ηY )). The first term equals

D g2(λ, η)(Y )[ξY ] = g2
Y (Dλ(Y )[ξY ], ηY ) + g2

Y (λY ,D η(Y )[ξY ]) + <(tr(ξ∗Y Y λ
∗
Y ηY )) + <(tr(Y ∗ξY λ

∗
Y ηY )).

Following [29, Sect. 5.3.4], since Cn×p∗ is an open subset of Cn×p, we also have
[λ, η]Y = D η(Y )[λY ]−Dλ(Y )[ηY ]. Thus we get

2g2
Y (∇ξY λ, ηY ) = D g2(λ, η)(Y )[ξY ] + D g2(η, ξ)(Y )[λY ]−D g2(ξ, λ)(Y )[ηY ]

−g2(ξY ,D η(Y )[λY ]−Dλ(Y )[ηY ]) + g2(λY ,D ξ(Y )[ηY ]−D η(Y )[ξY ]) + g2(ηY ,Dλ(Y )[ξY ]−D ξ(Y )[λY ])

= 2g2
Y (ηY ,Dλ(Y )[ξY ]) + <(tr(η∗Y (λY (ξ∗Y Y + Y ∗ξY ) + ξY (Y ∗λY + λ∗Y Y )− Y λ∗Y ξY − Y ξ∗Y λY )))

= 2g2
Y (ηY ,Dλ(Y )[ξY ]) + g2

Y (ηY , (λY (ξ∗Y Y + Y ∗ξY ) + ξY (Y ∗λY + λ∗Y Y )− Y λ∗Y ξY − Y ξ∗Y λY )(Y ∗Y )−1).

We therefore obtain a closed-form expression for Riemannian connection on Cn×p∗ :

∇ξY λ = Dλ(Y )[ξY ] + 1
2 (λY (ξ∗Y Y + Y ∗ξY ) + ξY (Y ∗λY + λ∗Y Y )− Y λ∗Y ξY − Y ξ∗Y λY ) (Y ∗Y )−1.

Thus we have

HessF (Y )[ξY ] = ∇ξY gradF = D Y gradF (Y )[ξY ]

+ 1
2{gradF (Y )(ξ∗Y Y + Y ∗ξY ) + ξY (Y ∗gradF (Y ) + gradF (Y )∗Y )− Y gradF (Y )∗ξY − Y ξ∗Y gradF (Y )}(Y ∗Y )−1

= 2∇2f(Y Y ∗)[Y ξ∗Y + ξY Y
∗]Y (Y ∗Y )−1 + 2∇f(Y Y ∗)ξY (Y ∗Y )−1 −∇f(Y Y ∗)Y (Y ∗Y )−1(Y ∗ξY + ξ∗Y Y )(Y ∗Y )−1

+ξY {Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1 + (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y }(Y ∗Y )−1 − {Y (Y ∗Y )−1Y ∗∇f(Y Y ∗)ξY + Y ξ∗Y∇f(Y Y ∗)Y (Y ∗Y )−1}(Y ∗Y )−1

= 2∇2f(Y Y ∗)[Y ξ∗Y + ξY Y
∗]Y (Y ∗Y )−1 +∇f(Y Y ∗)P⊥Y ξY (Y ∗Y )−1 + P⊥Y ∇f(Y Y ∗)ξY (Y ∗Y )−1

+2 Skew(ξY Y
∗)∇f(Y Y ∗)Y (Y ∗Y )−2 + 2 Skew{ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)}Y (Y ∗Y )−1.

B.2.1 Riemannian Hessian under metric g3

Denote
g̃Y (ξY , ηY ) = 〈Y ξ∗Y + ξY Y

∗, Y η∗Y + ηY Y
∗〉Cn×n .

Recall that the Riemannian metric g3 on Cn×p∗ satisfies g3
Y (ξY , ηY ) = g̃Y (ξY , ηY ) +

g2
Y (PVY (ξY ), PVY (ηY )). Hence D g3(λ, η)(Y )[ξY ] =

g̃Y (Dλ(Y )[ξY ], ηY ) + g̃(λY , Dη(Y )[ξY ]) + 2<(tr(ξ∗Y λY Y
∗ηY + Y ∗λY ξ

∗
Y ηY + ξ∗Y Y λ

∗
Y ηY + Y ∗ξY λ

∗
Y ηY ))

+ g2
Y (PVY (λY ), DPVY (ηY )[ξY ]) + g2(DPVY (λY )[ξY ], PVY (ηY )) + <(tr(ξY P

V
Y (λY )∗PVY (ηY )Y ∗ + Y PVY (λY )∗PVY (ηY )ξ∗Y )).

If λ, η and ξ are horizontal vector fields, many terms in the above equation vanish:

D g3(λ, η)(Y )[ξY ] = g̃Y (Dλ(Y )[ξY ], ηY ) + g̃Y (λY ,D ηY [ξY ])
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+2<(tr(ξ∗Y λY Y
∗ηY + Y ∗λY ξ

∗
Y ηY + ξ∗Y Y λ

∗
Y ηY + Y ∗ξY λ

∗
Y ηY )).

Combining it with the Koszul formula with ξ, η, λ horizontal vector fields, we obtain

2g3
Y (∇ξY λ, ηY ) = D g3(λ, η)(Y )[ξY ] + D g3(η, ξ)(Y )[λY ]−D g3(ξ, λ)(Y )[ηY ]

−g3
Y (ξY ,D η(Y )[λY ]−Dλ(Y )[ηY ]) + g3

Y (λY ,D ξ(Y )[ηY ]−D η(Y )[ξY ]) + g3
Y (ηY ,Dλ(Y )[ξY ]−D ξ(Y )[λY ])

= 2g̃Y (Dλ(Y )[ξY ], ηY ) + 4<(tr(Y ∗ξY λ
∗
Y ηY + Y ∗λY ξ

∗
Y ηY )).

g3
Y (∇ξY λ, ηY ) = g̃Y (Dλ(Y )[ξY ], ηY ) + 2<(tr(Y ∗ξY λ

∗
Y ηY + Y ∗λY ξ

∗ηY )).

Recall HessF (Y )[ξY ] = ∇ξY gradF . For ξY being a horizontal vector we have

g3
Y (HessF (Y )[ξY ], ηY ) = g3

Y (∇ξY gradF, ηY )

= g̃(ηY ,D gradF (Y )[ξY ]) + 2<(tr(Y ∗ξY gradF (Y )∗ηY + Y ∗gradF (Y )ξ∗Y ηY ))

= g̃(ηY ,D gradF (Y )[ξY ]) + <(tr((Y η∗Y + ηY Y
∗)(gradF (Y )ξ∗Y + ξY gradF (Y )∗)))

= g̃(ηY ,D gradF (Y )[ξY ]) + g̃
(
ηY ,

(
I − 1

2PY
)

(gradF (Y )ξ∗Y + ξY gradF (Y )∗)Y (Y ∗Y )−1
)
.

D gradF (Y )[ξY ] =

(
I − 1

2
PY

)
∇2f(Y Y ∗)[Y ξ∗Y + ξY Y

∗]Y (Y ∗Y )−1

− 1
2 (D (PY )[ξY ])∇f(Y Y ∗)Y (Y ∗Y )−1 +

(
I − 1

2PY
)
∇f(Y Y ∗)D (Y (Y ∗Y )−1)[ξY ],

where we have

D (PY )[ξY ] = D (Y (Y ∗Y )−1Y ∗)[ξY ]

= ξY (Y ∗Y )−1Y ∗ − Y (Y ∗Y )−1(ξ∗Y Y + Y ∗ξY )(Y ∗Y )−1Y ∗ + Y (Y ∗Y )−1ξ∗Y ,

D (Y (Y ∗Y )−1)[ξY ] = ξY (Y ∗Y )−1 − Y (Y ∗Y )−1(ξ∗Y Y + Y ∗ξY )(Y ∗Y )−1.

Combining these equations we have

g3
Y (HessF (Y )[ξY ], ηY ) = g̃

(
ηY ,

(
I − 1

2PY
)
∇2f(Y Y ∗)[Y ξ∗Y + ξY Y

∗]Y (Y ∗Y )−1
)

−g̃
(
ηY ,

1
2 (ξY (Y ∗Y )−1Y ∗ − Y (Y ∗Y )−1(ξ∗Y Y + Y ∗ξY )(Y ∗Y )−1Y ∗ + Y (Y ∗Y )−1ξ∗Y )∇f(Y Y ∗)Y (Y ∗Y )−1

)
+g̃
(
ηY ,

(
I − 1

2PY
)
∇f(Y Y ∗)

(
ξY (Y ∗Y )−1 − Y (Y ∗Y )−1(ξ∗Y Y + Y ∗ξY )(Y ∗Y )−1

))
+g̃
(
ηY ,

(
I − 1

2PY
) ((

I − 1
2PY

)
∇f(Y Y ∗)Y (Y ∗Y )−1ξ∗Y + ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)

(
I − 1

2PY
))
Y (Y ∗Y )−1

)
= g̃

(
ηY ,

(
I − 1

2PY
)
∇2f(Y Y ∗)[Y ξ∗Y + ξY Y

∗]Y (Y ∗Y )−1
)
− g̃

(
ηY ,

1
2ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1

)
−g̃
(
ηY ,

1
2Y (Y ∗Y )−1ξ∗Y∇f(Y Y ∗)Y (Y ∗Y )−1

)
+ g̃

(
ηY ,

1
2Y (Y ∗Y )−1ξ∗Y PY∇f(Y Y ∗)Y (Y ∗Y )−1

)
+g̃
(
ηY ,

1
2PY ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1

)
+ g̃

(
ηY ,

(
I − 1

2PY
)
∇f(Y Y ∗)

(
(I − PY )ξY (Y ∗Y )−1 − Y (Y ∗Y )−1ξ∗Y Y (Y ∗Y )−1

))
+g̃
(
ηY ,

(
I − 1

2PY
)
∇f(Y Y ∗)Y (Y ∗Y )−1ξ∗Y Y (Y ∗Y )−1 − 1

4PY∇f(Y Y ∗)Y (Y ∗Y )−1ξ∗Y Y (Y ∗Y )−1
)

+g̃
(
ηY ,

1
2 (I − PY ) ξY Y (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1 + 1

4PY ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1
)

= g̃
(
ηY ,

(
I − 1

2PY
)
∇2f(Y Y ∗)[Y ξ∗Y + ξY Y

∗]Y (Y ∗Y )−1
)

+ g̃
(
ηY , (I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1

)
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+g̃
(
ηY ,

1
2Y Skew

(
(Y ∗Y )−1Y ξY (Y ∗Y )−1Y ∗∇f(Y Y ∗)Y (Y ∗Y )−1

))
+ g̃

(
ηY , Y Skew

(
(Y ∗Y )−1Y ∗∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1

))
= g̃

(
ηY ,

(
I − 1

2PY
)
∇2f(Y Y ∗)[Y ξ∗Y + ξY Y

∗]Y (Y ∗Y )−1
)

+ g̃
(
ηY , (I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1

)
= g3

Y

(
ηY ,

(
I − 1

2PY
)
∇2f(Y Y ∗)[Y ξ∗Y + ξY Y

∗]Y (Y ∗Y )−1 + (I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1
)
.

Hence for ξY ∈ HY , we have

HessF (Y )[ξY ] =
(
I − 1

2PY
)
∇2f(Y Y ∗)[Y ξ∗Y + ξY Y

∗]Y (Y ∗Y )−1 + (I − PY )∇f(Y Y ∗)(I − PY )ξY (Y ∗Y )−1.

Appendix C Proof of lemmas

C.1 Proof of Lemma 4.4

Proof. It is straightforward to see C3
π(Y ) = D3

π(Y ) = 1 by the definition of g3. For g2,

write ξY = Y S + Y⊥K for some S = S∗ ∈ Cp×p and K ∈ Cn×p. We have∥∥∥Y ξ∗Y + ξY Y
∗
∥∥∥2

F

g2
Y (ξY , ξY )

= 2 +
2 ‖Y SY ∗‖2F

‖Y SY ∗‖2F + ‖KY ∗‖2F
.

Hence it is easy to see C2
π(Y ) = 2 when S is zero matrix and D2

π(Y ) = 4 when Y SY ∗

is nonzero and K is zero matrix. For g1, by its horizontal space, we can write ξY =
Y (Y ∗Y )−1S + Y⊥K for some S = S∗ ∈ Cp×p and K ∈ Cn×p. Notice that the SVD
of Y can be given as Y = UΣ

1
2V ∗ where V is unitary. Let S̄ = V ∗SV and K̄ = KV ,

and K̄i be the i-th column of K̄, then

‖Y ξ∗Y +ξY Y
∗‖2
F

g1
Y (ξY ,ξY )

=
‖Y ((Y ∗Y )−1S+S(Y ∗Y )−1)Y ∗‖2

F
+2‖KY ∗‖2F

‖Y (Y ∗Y )−1S‖2F+‖K‖2F
=

∥∥∥Σ−
1
2 S̄Σ

1
2 +Σ

1
2 S̄Σ−

1
2

∥∥∥2

F
+2
∥∥∥K̄Σ

1
2

∥∥∥2

F∥∥∥Σ−
1
2 S̄
∥∥∥2

F
+‖K̄‖2

F

=

p∑
i,j=1

(
σi
σj

+
σj
σi

+2
)
|S̄ij|2+2

p∑
i=1

σi‖K̄i‖2
F

p∑
i,j=1

|S̄ij |2
σi

+
p∑
i=1
‖K̄i‖2

F

=
2

p∑
i,j=1

σj
σi
|S̄ij|2+2

p∑
i,j=1
|S̄ij|2+2

p∑
i=1

σi‖Ki‖2F
p∑

i,j=1

|S̄ij |2
σi

+
p∑
i=1
‖K̄i‖2

F

, (C1)

where symmetry S̄∗ = S̄ is used in the last step. The lower bound is given by

2
p∑

i,j=1

σj
σi
|S̄ij|2+2

p∑
i,j=1
|S̄ij|2+2

p∑
i=1

σi‖K̄i‖2
F

p∑
i,j=1

|S̄ij |2
σi

+
p∑
i=1
‖K̄i‖2

F

≥
2
(
σp
σ1

+1
) p∑
i,j=1
|S̄ij|2+2σp

p∑
i=1
‖K̄i‖2

F

1
σp

p∑
i,j=1
|S̄ij|2+

p∑
i=1
‖K̄i‖2

F

=
2

(
σ2
p
σ1

+σp

)
p∑

i,j=1
|S̄ij|2+2σ2

p

p∑
i=1
‖K̄i‖2

F

p∑
i,j=1
|S̄ij|2+σp

p∑
i=1
‖K̄i‖2

F

≥ 2σp.

This lower bound is sharp as one can choose S = 0 and K with
∥∥K̄p

∥∥
F

= 1 and∥∥K̄i

∥∥
F

= 0 for i < p. We have the upper bound as follows.

2
p∑

i,j=1

σj
σi
|S̄ij|2+2

p∑
i,j=1
|S̄ij|2+2

p∑
i=1

σi‖K̄i‖2
F

p∑
i,j=1

|S̄ij |2
σi

+
p∑
i=1
‖K̄i‖2

F

≤
2
(
σ1
σp

+1
) p∑
i,j=1
|S̄ij|2+2σ1

p∑
i=1
‖K̄i‖2

F

1
σ1

p∑
i,j=1
|S̄ij|2+

p∑
i=1
‖K̄i‖2

F
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=

2
(
σ2

1

σp
+ σ1

) p∑
i,j=1

∣∣S̄ij∣∣2 + 2σ2
1

p∑
i=1

∥∥K̄i

∥∥2

F

p∑
i,j=1

∣∣S̄ij∣∣2 + σ1

p∑
i=1

∥∥K̄i

∥∥2

F

≤ 2

(
σ2

1

σp
+ σ1

)
,

where the last inequality is obtained by the range of the rational function f(x, y) =
ax+by
x+dy with a = 2

(
σ2

1

σp
+ σ1

)
, b = 2σ2

1 and d = σ1 on {(x, y)|x ≥ 0, y ≥ 0, xy 6= 0}.

This upper bound 2
(
σ2

1

σp
+ σ1

)
may not be the supremum as the inequalities are

not sharp. However, we can show that D1
π(Y ) ≥ 2σ1. To see this, choose S̄ = 0 and K

with
∥∥K̄1

∥∥
F

= 1 and
∥∥K̄i

∥∥
F

= 0 for i > 1. Then (C1) reaches the value 2σ1. Hence
the supremum must be at least 2σ1. So we have

2σ1 ≤ D1
π(Y ) ≤ 2

(
σ2

1

σp
+ σ1

)
. (C2)

C.2 Proof of Lemma 4.5

Proof. We will use the inequality ‖B∗A∗‖F = ‖AB‖F ≤ ‖A‖‖B‖F ≤ ‖A‖F ‖B‖F for
two matrices where ‖A‖ is the spectral norm. If X is Hermitian, ‖AX‖F = ‖XA∗‖F ≤
‖X‖‖A∗‖F = ‖X‖‖A‖F .

For the embedded manifold, recall that ξsX = P sX(ξX) and ξpX = P pX(ξX) and P tX
and P pX are defined in (9), and the bound for the FOT is given by

|gX(PpX(∇f(X)(X†ζpX)∗+(ζpXX
†)∗∇f(X)),ζX)|

gX(ζX ,ζX) =
|〈PpX(∇f(X)ζpXX

†+X†ζpX∇f(X)),ζX〉Cn×n |
〈ζX ,ζX〉Cn×n

≤
∣∣〈P pX (∇f(X)ζpXX

†) , ζX〉Cn×n∣∣
〈ζX , ζX〉Cn×n

+

∣∣〈P pX (X†ζpX∇f(X)
)
, ζX

〉
Cn×n

∣∣
〈ζX , ζX〉Cn×n

≤ 2
‖∇f(X)ζpXX

†‖F ‖ζX‖F
〈ζX ,ζX〉Cn×n

≤ 2
‖∇f(X)‖‖ζpXX

†‖F ‖ζX‖F
〈ζX ,ζX〉Cn×n

≤ 2
‖∇f(X)‖‖X†‖‖ζpX‖F ‖ζX‖F

〈ζX ,ζX〉Cn×n

≤
2 ‖∇f(X)‖

∥∥X†∥∥ ‖ζX‖2F
〈ζX , ζX〉Cn×n

= 2 ‖∇f(X)‖
∥∥X†∥∥ =

2

σp
‖∇f(X)‖ .

For the quotient manifold with g1, the FOT is bounded by

|g1
Y (2∇f(Y Y ∗)ξY ,ξY )|

g1
Y (ξY ,ξY )

=
|〈2∇f(Y Y ∗)ξY ,ξY 〉Cn×p |

〈ξY ,ξY 〉Cn×p
≤

2‖∇f(Y Y ∗)ξY ‖F‖ξY ‖F
〈ξY ,ξY 〉Cn×p

≤
2‖∇f(Y Y ∗)‖‖ξY ‖2F
〈ξY ,ξY 〉Cn×p

= 2 ‖∇f(Y Y ∗)‖ .

For the quotient manifold with g2, the FOTs contains four terms and we estimate
each term separately. Notice that the SVD of Y can be given as Y = UΣ

1
2V ∗ where

V is unitary. Let S̄ = V ∗SV and K̄ = KV , and K̄i be the i-th column of K̄. For the
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first summand we have∣∣〈∇f(Y Y ∗)P⊥Y ξY , ξY
〉
Cn×p

∣∣
g2
Y (ξY , ξY )

=

∣∣〈∇f(Y Y ∗)P⊥Y ξY , ξY
〉
Cn×p

∣∣〈
ξY Y

∗, ξY Y
∗
〉
Cn×n

≤
‖∇f(Y Y ∗)‖

∥∥ξY ∥∥2

F〈
ξY Y

∗, ξY Y
∗
〉
Cn×n

.

=
‖Y S‖2F + ‖K‖2F

‖Y SY ∗‖2F + ‖KY ∗‖2F
‖∇f(Y Y ∗)‖ ≤

(
‖Y S‖2F
‖Y SY ∗‖2F

+
‖K‖2F
‖KY ∗‖2F

)
‖∇f(Y Y ∗)‖

=


∥∥∥√ΣS̄

∥∥∥2

F∥∥∥√ΣS̄
√

Σ
∥∥∥2

F

+

∥∥K̄∥∥2

F∥∥∥K̄√Σ
∥∥∥2

F

 ‖∇f(Y Y ∗)‖ ≤ 2

σp
‖∇f(Y Y ∗)‖ .

Similarly we have the second term:
|〈P⊥Y ∇f(Y Y ∗)ξY ,ξY 〉Cn×p |

g2
Y (ξY ,ξY )

≤ 2
σp
‖∇f(Y Y ∗)‖.

For the third term, with the fact ‖A∗A‖F = ‖A‖2F , we have

|〈Y ξ∗Y ξY ,2∇f(Y Y ∗)Y (Y ∗Y )−1〉Cn×p |
g2
Y (ξY ,ξY )

=
|〈Y ξ∗Y ξY Y ∗,2∇f(Y Y ∗)Y (Y ∗Y )−2Y ∗〉Cn×n |

g2
Y (ξY ,ξY )

≤ ‖
Y ξ
∗
Y ξY Y

∗‖
F
‖2∇f(Y Y ∗)Y (Y ∗Y )−2Y ∗‖

F

g2
Y (ξY ,ξY )

≤ ‖ξY Y
∗‖2
F
‖2∇f(Y Y ∗)‖‖Y (Y ∗Y )−2Y ∗‖

F

g2
Y (ξY ,ξY )

= 2
∥∥Y (Y ∗Y )−2Y ∗

∥∥
F
‖∇f(Y Y ∗)‖ ≤ 2

√
p

σp
‖∇f(Y Y ∗)‖ .

Similarly we can bound the fourth term:
|〈ξY Y ∗ξY ,2∇f(Y Y ∗)Y (Y ∗Y )−1〉|Cn×p

g2
Y (ξY ,ξY )

≤
2
√
p

σp
‖∇f(Y Y ∗)‖ .

Thus, for the quotient manifold with g2 we have |FOTs| ≤ 4(
√
p+1)

σp
‖∇f(Y Y ∗)‖ .

For g3, recall that P⊥Y = I − PY = I − Y (Y ∗Y )−1Y ∗, with the property (18) and
the fact (I − PY )∗Y = 0, the FOT can be bounded as follows:

|FOT| = |g
3
Y ((I−PY )∇f(Y Y ∗)(I−PY )ξY (Y ∗Y )−1,ξY )|

g3
Y (ξY ,ξY )

=
2|〈P⊥Y ∇f(Y Y ∗)P⊥Y ξY ,ξY 〉Cn×p |

g3
Y (ξY ,ξY )

=
2|〈∇f(Y Y ∗)Y⊥K,Y⊥K〉Cn×p |

g3
Y (ξY ,ξY )

=
2|〈∇f(Y Y ∗)Y⊥K,Y⊥K〉Cn×p |

‖Y ξ∗Y +ξY Y
∗‖2
F

=
2|〈∇f(Y Y ∗)Y⊥K,Y⊥K〉Cn×p |
‖2Y SY ∗+Y⊥KY ∗+Y K∗Y ∗⊥‖2F

=
2|〈∇f(Y Y ∗)Y⊥K,Y⊥K〉Cn×p |

‖2Y SY ∗‖2F+‖Y⊥KY ∗‖2F+‖Y K∗Y ∗⊥‖2F
=
|〈∇f(Y Y ∗)Y⊥K,Y⊥K〉Cn×p |

2‖Y SY ∗‖2F+‖Y⊥KY ∗‖2F
≤ |〈∇f(Y Y ∗)Y⊥K,Y⊥K〉Cn×p |

‖Y⊥KY ∗‖2F

≤
‖Y⊥K‖2F
‖Y⊥KY ∗‖2F

‖∇f(Y Y ∗)‖ ≤ 1

σp
‖∇f(Y Y ∗)‖ .
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