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Abstract We first briefly review some recently proven new results about𝑄𝑘 spectral
element method for second order linear PDEs, including its order of accuracy as
a finite difference method in ℓ2-norm and monotonicity, both of which are special
properties of 𝑄𝑘 spectral element method on structured meshes. We discuss some
extensions or applications of these two special properties, including the accuracy
for the Helmholtz equation and applications of monotone discrete Laplacian to a
semi-linear problem. In particular, the 𝑄2 spectral element method gives a fourth
order accurate monotone discrete Laplacian, with which one can obtain explicit
convergence rates of Picard and Newton iterations for solving a special second order
semilinear PDE.
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1 Introduction

In the vast computational science and engineering literature, spectral element meth-
ods usually refer to various finite element methods using high order polynomial basis.
In this paper, 𝑄𝑘 spectral element method specifically refers to the classical contin-
uous finite element method for second order partial differential equations (PDEs)
with 𝑄𝑘 Lagrangian basis on rectangular meshes, implemented by (𝑘 + 1)-point
Gauss-Lobatto quadrature for all integrals.

Such a scheme can be regarded as a finite difference scheme defined at all the
Gauss-Lobatto quadrature points. For example, consider solving −𝑢′′ (𝑥) = 𝑓 (𝑥) on
𝑥 ∈ (0, 1), and consider a uniform grid 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0, 1, · · · , 𝑛 + 1 with mesh size
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ℎ = 1
𝑛+1 , the explicit equivalent finite difference form of𝑄2 spectral element method

on the uniform mesh with intervals 𝐼 𝑗 = [𝑥2 𝑗 , 𝑥2 𝑗+2] can be written as

−𝑢𝑖−1 + 2𝑢𝑖 − 2𝑢𝑖+1

ℎ2 = 𝑓𝑖 , 𝑖 is odd, (1a)

𝑢𝑖−2 − 8𝑢𝑖−1 + 14𝑢𝑖 − 8𝑢𝑖+1 + 𝑢𝑖+2

4ℎ2 = 𝑓𝑖 , 𝑖 is even. (1b)

Since 1960s, it has been very well known that finite element methods with suit-
able quadrature are finite difference methods. What makes the scheme (1) in par-
ticular much more interesting is the fact that it is a high order accurate monotone
scheme [28]. Let −Δℎ be the discrete Laplacian matrix, e.g., −Δℎ is the tridiago-
nal 1

ℎ2 (−1, 2,−1) matrix for the simplest centered finite difference approximation
−𝑢′′ (𝑥𝑖) ≈ −𝑢𝑖−1+2𝑢𝑖−2𝑢𝑖+1

ℎ2 . Then a discrete Laplacian scheme or the matrix −Δℎ is
called monotone, if the inverse matrix has non-negative entries (−Δℎ)−1 ≥ 0, where
the inequality is for each entry of the matrix.

The second order finite difference is monotone due to the well known fact that
the tridiagonal 1

ℎ2 (−1, 2,−1) matrix is an M-matrix [44, 14]. The most useful gen-
eralization of this property is that linear finite element method forms an M-matrix
for scalar variable coefficient operator −∇ · (𝑎(𝒙)∇𝑢) on triangular meshes under a
mild mesh angle constraints [49].

In the past decade, there have been some efforts pursuing implicit high order ac-
curate bound-preserving and positivity-preserving schemes for convection diffusion
problems, which are naturally related to monotone schemes. Though monotonicity
is in general lost for high order finite element method on unstructured meshes [21],
it is still possible to have monotone high order finite element method on structured
meshes [39].

In particular, it has been proven in [28] that the𝑄2 spectral element method (1) is
monotone for any mesh size on a uniform rectangular mesh for the Laplacian in two
dimensions, and the same scheme is monotone under mesh constraints for a variable
coefficient operator −∇ · (𝑎(𝒙)∇𝑢) + 𝑐(𝒙)𝑢 with a scalar coefficient 𝑎(𝒙). Thus a
convenient high order monotone scheme to replace the second order finite difference
would be (1) on a uniform mesh. Mesh constraints are necessary for monotonicity
to hold on quasi-uniform rectangular meshes even for the second order accurate 𝑄1

scheme, see [14] and references therein.
The rest of the paper is organized as follows. In Section 2, we briefly review some

recent results for this scheme including its accuracy in ℓ2-norm and monotonicity
which are properties only true on structured meshes. Then we discuss some exten-
sions and applications of these results to some second order PDEs including ℓ2-norm
a priori error estimate of 𝑄𝑘 spectral element method for the Helmholtz equation
in Section 3 and applications of monotonicity including ℓ∞ estimate of the discrete
Laplacian of 𝑄2 spectral element method and explicit convergence rates of Picard
and Newton iterations for solving a semi-linear PDE in Section 4. The a priori error
estimate in Section 3 is in the asymptotic regime for the Helmholtz equation, i.e., the
estimate holds only on a fine enough mesh for very smooth solutions, thus we will
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not state how small the mesh size should be with respect to the polynomial degree
and the frequency in the equation, even though it is not difficult to do so. All the
discussion in Section 4 is for uniform meshes. Concluding remarks are given in
Section 5.

2 Review of recent progress: accuracy, monotonicity and
implementation

2.1 Accuracy as a finite difference scheme

Since the 𝑄2 spectral element method (1) is a monotone scheme, it is interesting
to understand its order of accuracy as a finite difference scheme. In one dimension,
using Green’s function [16], it is straightforward to show (1) is a fourth order finite
difference scheme in ℓ2-norm for very smooth solutions. In multiple dimensions, the
𝑄𝑘 (𝑘 ≥ 2) spectral element method is (𝑘 +2)-th order accurate as a finite difference
scheme in ℓ2-norm, but it is quite technical to establish a rigorous a priori error
estimate to the desired (𝑘 + 2)-th order.

The main difficulty is related to the fact that the (𝑘 + 2)-th order convergence for
function values at all Gauss-Lobatto quadrature points is a superconvergence result
for 𝑄𝑘 element (𝑘 ≥ 2). The standard error estimate only states that it is (𝑘 + 1)-th
order accurate for function values in 𝐿2-norm [41]. For 𝑄𝑘 finite element method
without using any quadrature, such a superconvergence result has been proven since
1980s by two different approaches: one is via M-type projection in [8, 9, 10] and the
other one is by analyzing superconvergence of bilinear forms [35, 34].

It may seem straightforward to obtain a rigorous a priori error estimate for the
(𝑘 + 2)-th order convergence by combining existing superconvergence theory and
quadrature error estimates, since (𝑘 + 1)-point Gauss-Lobatto quadrature is (𝑘 + 2)-
th order accurate. However, as explained in [30], a straightforward quadrature error
estimate by standard Bramble-Hilbert Lemma is not enough, and it is necessary
to derive a sharp quadrature error estimate via counting error cancellations, which
should be combined with M-type projection to show the desired results.

It is easy to check that the finite difference scheme (1) is only a second order
approximation to the second order derivative, but it is a fourth order accurate scheme
for solving second order PDEs. The rigorous a priori error estimate for the (𝑘 + 2)-
th order convergence of 𝑄𝑘 (𝑘 ≥ 2) spectral elememt method as a finite difference
scheme in ℓ2-norm has been established for elliptic equations with Dirichlet boundary
conditions in [30], and for wave, parabolic and Schrödinger equations in [26]. See
[25, Section 2.8] for the discussion for Neumann boundary. In Section 3, we will
discuss the a priori error estimate for solving the Helmholtz equation.
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2.2 Provable monotonicity results

Even though arbitrarily high order finite element method can be proven monotone
for Laplacian in one dimension using the Green’s function [48], it is simply not true
that 𝑄𝑘 spectral element method is monotone for Laplacian in multiple dimensions
for any 𝑘 . In two dimensions, 𝑄𝑘 spectral element method with 𝑘 ≥ 9 is no longer
unconditionally monotone for Laplacian, as indicated by numerical results in [13].

To be more specific, for solving a one-dimensional Poisson equation −𝑢′′ = 𝑓

on the domain (0, 1) with homogeneous Dirichlet boundary condition, consider the
classical continuous finite element method using 𝑃𝑘 polynomial basis on a uniform
mesh with all the integrals approximated by (k + 1)-point Gauss-Lobatto quadrature,
which is equivalent to a finite difference scheme at all Gauss-Lobatto points excluding
two domain boundary points. The finite difference scheme can be written as 𝑆u = 𝑀f
or 𝐻u = f, where 𝑆 is the stiffness matrix, 𝑀 ≥ 0 is the diagonal mass matrix and
𝐻 = 𝑀−1𝑆. The result in [48] simply implies that 𝑆−1 ≥ 0 and 𝐻−1 ≥ 0 for any
polynomial degree 𝑘 .

In two dimensions, the 𝑄𝑘 spectral element method on a uniform mesh has a
stiffness matrix 𝑆 ⊗ 𝑀 + 𝑀 ⊗ 𝑆 = (𝑀 ⊗ 𝑀) (𝐻 ⊗ 𝐼 + ⊗𝐻). The monotonicity in
two dimensions is equivalent to (𝐻 ⊗ 𝐼 + 𝐼 ⊗ 𝐻)−1 ≥ 0. It may seem possible that
𝐻−1 ≥ 0 could imply (𝐻 ⊗ 𝐼 + 𝐼 ⊗ 𝐻)−1 ≥ 0, but this is simply not true for 𝑘 ≥ 9
as shown in [13], i.e., 𝑄𝑘 spectral element method is not monotone for 𝑘 ≥ 9 in two
dimensions.

For 𝑘 = 2, it is proven that 𝐻 ⊗ 𝐼 + 𝐼 ⊗ 𝐻 is a product of two M-matrices thus
still monotone [28]. For 𝑘 = 3, it is proven that 𝐻 ⊗ 𝐼 + 𝐼 ⊗ 𝐻 is a product of four
M-matrices thus still monotone [13]. Both the proof in [28] and [13] can be extended
to three dimensions. For proving that a matrix is a product of two M-matrices, a
convenient sufficient condition is due to Lorenz [39]. See [28, 14, 13] for details of
how to use Lorenz’s conditions.

For three dimensional Laplacian, the monotonicity of𝑄𝑘 spectral element method
is equivalent to the monotonicity of the matrix (𝐻⊗ 𝐼⊗ 𝐼+ 𝐼⊗𝐻⊗ 𝐼+ 𝐼⊗ 𝐼⊗𝐻)−1. As
shown by the numerical tests in Figure 1, 𝑄𝑘 spectral element method is no longer
monotone for 𝑘 ≥ 4 in three dimensions.

One of the motivating applications for studying monotonicity is to construct
implicit bound-preserving schemes for solving the heat equation 𝑢𝑡 = 𝑢𝑥𝑥 . If using
the scheme (1), the semi-discrete ODE is given as

𝑢′𝑖 (𝑡) = −−𝑢𝑖−1 + 2𝑢𝑖 − 2𝑢𝑖+1

ℎ2 , 𝑖 is odd, (2a)

𝑢′𝑖 (𝑡) = −𝑢𝑖−2 − 8𝑢𝑖−1 + 14𝑢𝑖 − 8𝑢𝑖+1 + 𝑢𝑖+2

4ℎ2 , 𝑖 is even. (2b)

Due to the negative sign in front of 𝑢𝑖±2, the exact solution to the initial value problem
of this ODE is simply not bound-preserving. This is a counter-intuitive result since
the solution to the ODE (2) is a more accurate approximation to the heat equation
than the semi-discrete ODE from centered difference
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Fig. 1 The smallest entry in the matrix (𝐻 ⊗ 𝐼 ⊗ 𝐼 + 𝐼 ⊗ 𝐻 ⊗ 𝐼 + 𝐼 ⊗ 𝐼 ⊗ 𝐻 )−1 for 𝑄𝑘 spectral
element method on a uniform 𝑁 × 𝑁 × 𝑁 mesh for solving −Δ𝑢 = 𝑓 in three dimensions with
homogeneous Dirichlet boundary on a cube. The figure on the right suggests that 𝑄𝑘 spectral
element method is not monotone for 𝑘 ≥ 4 in three dimensions.

𝑢′𝑖 (𝑡) = −−𝑢𝑖−1 + 2𝑢𝑖 − 2𝑢𝑖+1

ℎ2 , ∀𝑖,

which has a bound-preserving solution due to the ODE theory and the fact that
the right hand side matrix has negative diagonal entries, non-negative off-diagonal
entries and it is diagonally dominant. For instance, if one solves (2) by matrix
exponential method, then it is fourth order accurate in space and exact in time, but it
is not strictly bound-preserving especially if time step is very small. For backward
Euler time discretization of (2), a sufficient condition to ensure monotonicity thus
bound-preserving property is to require Δ𝑡 > 2

3 ℎ
2, which is practical since usually

one would not use a small time step like Δ𝑡 = O(ℎ2) for implicit time stepping.
We summarize a few useful conclusions and observations as follows:

1. For the discrete Laplacian, 𝑄2 and 𝑄3 spectral element methods are uncondi-
tionally monotone on uniform meshes. The proof of the two-dimensional case is
given in [28] for 𝑄2, and in [13] for 𝑄3. The monotonicity proof can be easily
extended to three dimensions and Neumann boundary conditions.

2. For the discrete Laplacian, the Lagrangian 𝑃2 finite element method on a struc-
tured regular triangular mesh is unconditionally monotone [39]. A structured
regular triangular mesh is obtained by dividing each rectangle in a uniform rect-
angular mesh into two triangles, i.e., the quadrature points on a structured regular
triangular mesh forms a uniform cartesian grid, see [39] and references therein.
This scheme is also a fourth order finite difference scheme [13]. On unstructured
triangular meshes, the monotonicity does not hold [21].

3. For Laplacian,𝑄𝑘 element method are not unconditionally monotone for 𝑘 ≥ 9 in
two dimensions, and not unconditionally monotone for 𝑘 ≥ 4 in three dimensions.
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On the other hand, it is possible that very high order schemes can be still monotone
if using different implementations, e.g., different quadrature rules.

4. It is possible to construct traditional finite difference schemes that are fourth order
accurate and monotone [3, 4, 27, 32], however only for Dirichlet boundary con-
ditions. It is difficult to extend these schemes to Neumann boundary conditions.

5. All the known high order accurate monotone discrete Laplacian schemes include:

• The classical fourth order compact finite difference schemes (see Appendix in
[32]), e.g., 9-point discrete Laplacian: −Δℎ is an M-matrix in two-dimensions.

• A fourth order accurate traditional finite difference scheme [3, 4]: −Δℎ is a
product of two M-matrices in two dimensions.

• A fourth order accurate finite difference by 𝑃2 spectral element method: −Δℎ

is a product of two M-matrices in two dimensions.
• A fourth order accurate finite difference by 𝑄2 finite element method: −Δℎ is

a product of two M-matrices in two dimensions.
• A fifth order accurate finite difference by 𝑄3 finite element method: −Δℎ is a

product of fourth M-matrices in two dimensions.

6. The monotonicity of 𝑄2 spectral element method on quasi-uniform meshes is
given in [14].

7. For scalar variable coefficient elliptic operators −∇ · (𝑎(𝒙)∇𝑢) + 𝑐(𝒙)𝑢, mono-
tonicity of𝑄2 spectral element method still holds under mesh constraints [28]. See
extensions and applications to Allen-Cahn equation in [46], Keller-Segel equa-
tion in [22], Fokker-Planck equation in [36], and compressible Navier-Stokes
equations in [37].

8. For a matrix coefficient elliptic operator, even the𝑄1 finite element method needs
a very stringent mesh constraint for monotonicity [31]. Thus we do not expect a
convenient monotonicity result for the 𝑄2 spectral element method.

9. For solving 𝑢𝑡 = Δ𝑢, the semi-discrete ODE by 𝑄2 spectral element method
in space is not bound-preserving. With backward Euler time discretization, 𝑄2

spectral element method is monotone thus bound-preserving if Δ𝑡 > 2
3 ℎ

2 in two
dimensions. It is an open problem to prove monotonicity of higher order implicit
time stepping methods.

2.3 Simple and efficient implementation on GPU

For three dimensional Laplacian, the 𝑄𝑘 spectral element method on rectangular
meshes has the structure 𝑆⊗𝑀 ⊗𝑀 +𝑀 ⊗ 𝑆⊗𝑀 +𝑀 ⊗𝑀 ⊗ 𝑆. Since 1980s, it is well
known that such a tensor structure can be used to invert the stiffness matrix directly
via its eigenvalue decomposition, yet with a complexity O(𝑁 4

3 ) where 𝑁 is the total
degree of freedoms (DoFs). Modern graphic processing units (GPU) are designed to
compute tensor multiplications efficiently. As of 2023, softwares such as MATLAB
and JAX in Python allow one to implement tensor matrix multiplications on GPU
without any low level coding, e.g., the GPU code is the same as CPU code. One only
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needs to write a few lines in these softwares to implement such a direct solver. It is
demonstrated in [38] that the MATLAB double precision implementation achieves
0.8 second for inverting the 3D discrete Laplacian for 𝑄𝑘 spectral element method
with one billion DoFs (e.g., a 10003 grid) on one Nividia A100 80G GPU card. At
the time of writing this paper, JAX in Python for double precision computation can
only handle a smaller problem like DoFs being 8003 on the same A100 GPU card.

3 Accuracy for the Helmholtz equation

For simplicity, we only consider a square domain Ω = (0, 1) × (0, 1) since there
is no essential difficulty to extend the main arguments in this section to a cubic
domain in three dimensions. We consider the Helmholtz equation on a square domain
Ω = (0, 1) × (0, 1) with a homogeneous Robin boundary condition,

−Δ𝑢(𝒙) − 𝜔2𝑢(𝒙) = 𝑓 (𝒙), 𝒙 ∈ Ω, (3a)
𝜕𝑢

𝜕𝑛
− i𝜔𝑢 = 0, 𝒙 ∈ 𝜕Ω. (3b)

The main results in this section can also be easily extended to a more general equation
like −∇ · (𝑎(𝒙)∇𝑢) − 𝜔2 (𝒙)𝑢 = 𝑓 following the arguments in [30] and [25, Section
2.8].

The variational form of (3) is to seek 𝑢 ∈ 𝐻1 (Ω) satisfying

𝐴(𝑢, 𝑣) :=
∬

Ω

[∇𝑢 · ∇�̄� − 𝜔2𝑢�̄�]𝑑𝒙 − i
∫
𝜕Ω

𝜔𝑢�̄�𝑑𝑠 =

∬
Ω

𝑓 �̄�𝑑𝒙, ∀𝑣 ∈ 𝐻1 (Ω).

3.1 Notation

We will use the same notation as in [30]:

• Only for convenience, we assume Ωℎ is an uniform rectangular mesh for Ω̄ and
𝑒 = [𝑥𝑒 − ℎ, 𝑥𝑒 + ℎ] × [𝑦𝑒 − ℎ, 𝑦𝑒 + ℎ] denotes any cell in Ωℎ with cell center
(𝑥𝑒, 𝑦𝑒). The assumption of an uniform mesh is not essential to the discussion
of superconvergence. All superconvergence results in this paper can be easily
extended to continuous finite element method with𝑄𝑘 element on a quasi-uniform
rectangular mesh, but not on a generic quadrilateral mesh or any curved mesh.

• 𝑄𝑘 (𝑒) =

{
𝑝(𝑥, 𝑦) =

𝑘∑
𝑖=0

𝑘∑
𝑗=0
𝑝𝑖 𝑗𝑥

𝑖𝑦 𝑗 , (𝑥, 𝑦) ∈ 𝑒
}

is the set of tensor product of

polynomials of degree 𝑘 on a cell 𝑒.
• 𝑉ℎ = {𝑝(𝑥, 𝑦) ∈ 𝐶0 (Ωℎ) : 𝑝 |𝑒 ∈ 𝑄𝑘 (𝑒), ∀𝑒 ∈ Ωℎ} denotes the continuous

piecewise 𝑄𝑘 finite element space on Ωℎ.
• 𝑉ℎ

0 = {𝑣ℎ ∈ 𝑉ℎ : 𝑣ℎ = 0 on 𝜕Ω}.
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• The norm and seminorms for𝑊 𝑘, 𝑝 (Ω) and 1 ≤ 𝑝 < +∞:

∥𝑢∥𝑘, 𝑝,Ω =
©«

∑︁
𝑖+ 𝑗≤𝑘

∬
Ω

|𝜕𝑖𝑥𝜕
𝑗
𝑦𝑢(𝑥, 𝑦) |𝑝𝑑𝑥𝑑𝑦

ª®¬
1/𝑝

,

|𝑢 |𝑘, 𝑝,Ω =
©«
∑︁
𝑖+ 𝑗=𝑘

∬
Ω

|𝜕𝑖𝑥𝜕
𝑗
𝑦𝑢(𝑥, 𝑦) |𝑝𝑑𝑥𝑑𝑦

ª®¬
1/𝑝

,

[𝑢]𝑘, 𝑝,Ω =

(∬
Ω

|𝜕𝑘𝑥 𝑢(𝑥, 𝑦) |𝑝𝑑𝑥𝑑𝑦 +
∬

Ω

|𝜕𝑘𝑦 𝑢(𝑥, 𝑦) |𝑝𝑑𝑥𝑑𝑦
)1/𝑝

.

• For simplicity, sometimes we may use ∥𝑢∥𝑘,Ω, |𝑢 |𝑘,Ω and [𝑢]𝑘,Ω denote norm
and seminorms for 𝐻𝑘 (Ω) = 𝑊 𝑘,2 (Ω).

• When there is no confusion, Ω may be dropped in the norm and seminorms, e.g.,
∥𝑢∥𝑘 = ∥𝑢∥𝑘,2,Ω.

• For any 𝑣ℎ ∈ 𝑉ℎ, 1 ≤ 𝑝 < +∞ and 𝑘 ≥ 1, we denote the broken Sobolev norm
and seminorms by the following symbols

∥𝑣ℎ∥𝑘, 𝑝,𝑉ℎ :=

(∑︁
𝑒

∥𝑣ℎ∥ 𝑝𝑘,𝑝,𝑒

) 1
𝑝

, |𝑣ℎ |𝑘, 𝑝,𝑉ℎ :=

(∑︁
𝑒

|𝑣ℎ |𝑝𝑘,𝑝,𝑒

) 1
𝑝

.

We also define the broken Sobolev norm on the domain boundary 𝜕Ω as

∥𝑣ℎ∥𝑘, 𝑝,𝜕Ωℎ =

( ∑︁
𝑒∩𝜕Ω

∥𝑣ℎ∥ 𝑝𝑘,𝑝,𝑒∩𝜕Ω

) 1
𝑝

.

We may use ∥𝑣ℎ∥𝑘,𝑉ℎ and ∥𝑣ℎ∥𝑘,𝜕Ωℎ for the broken Sobolov norms for the special
case 𝑝 = 2.

• Let 𝑍0,𝑒 denote the set of (𝑘 + 1) × (𝑘 + 1) Gauss-Lobatto points on a cell 𝑒.
• 𝑍0 =

⋃
𝑒 𝑍0,𝑒 denotes all Gauss-Lobatto points in the mesh Ωℎ.

• Let ∥𝑢∥2,𝑍0 and ∥𝑢∥∞,𝑍0 denote the discrete 2-norm and the maximum norm over
𝑍0 respectively:

∥𝑢∥2,𝑍0 =

ℎ2
∑︁

(𝑥,𝑦) ∈𝑍0

|𝑢(𝑥, 𝑦) |2


1
2

, ∥𝑢∥∞,𝑍0 = max
(𝑥,𝑦) ∈𝑍0

|𝑢(𝑥, 𝑦) |.

• ( 𝑓 , 𝑣)𝑒 =
∬
𝑒
𝑓 �̄� 𝑑𝑥𝑑𝑦, ( 𝑓 , 𝑣) =

∬
Ω
𝑓 �̄� 𝑑𝑥𝑑𝑦 =

∑
𝑒 ( 𝑓 , 𝑣)𝑒 .

• ⟨ 𝑓 , 𝑣⟩ℎ =
∬
Ω
𝑓 �̄� 𝑑𝑥ℎ𝑑𝑦ℎ denotes the approximation to ( 𝑓 , 𝑣) by using (𝑘 + 1) ×

(𝑘 + 1)-point Gauss Lobatto quadrature with 𝑘 ≥ 2 for integration over each cell
𝑒. Notice that we use 𝑑𝑥ℎ to denote that quadrature is used.
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3.2 𝑸𝒌 spectral element method

We consider a uniform rectangular mesh and a continous piecewise 𝑄𝑘 polynomial
space 𝑉ℎ. With notation above, we define a bilinear form with quadrature as

𝐴ℎ (𝑢, 𝑣) := ⟨∇𝑢,∇𝑣⟩ℎ−𝜔2⟨𝑢, 𝑣⟩ℎ−i𝜔⟨𝑢, 𝑣⟩𝜕Ω,ℎ =

∬
Ω

[∇𝑢·∇�̄�−𝜔2𝑢�̄�]𝑑𝒙ℎ−i
∫
𝜕Ω

𝜔𝑢�̄�𝑑𝑠ℎ,

where 𝑑𝒙ℎ and 𝑑𝑠ℎ denote that (𝑘 + 1)-point Gauss-Lobatto quadrature is used for
each finite element cell or interval. The exact solution 𝑢 ∈ 𝐻1 (Ω) satisfies

𝐴(𝑢, 𝑣) = ( 𝑓 , 𝑣), ∀𝑣 ∈ 𝐻1 (Ω).

The 𝑄𝑘 spectral element method solution 𝑢ℎ ∈ 𝑉ℎ satisfies

𝐴ℎ (𝑢ℎ, 𝑣ℎ) = ⟨ 𝑓 , 𝑣ℎ⟩ℎ, ∀𝑣ℎ ∈ 𝑉ℎ ⊂ 𝐻1 (Ω).

3.3 Quadrature error estimates

We first need a sharp quadrature estimate. Following the proof in [25, Theorem
2.8.1], we have

Theorem 1 For 𝑘 ≥ 2, assume 𝑢 ∈ 𝐻𝑘+3 (Ω) and 𝜕𝑢
𝜕𝑛

− i𝜔𝑢 = 0,∀𝒙 ∈ 𝜕Ω, then

𝐴(𝑢, 𝑣ℎ) − 𝐴ℎ (𝑢, 𝑣ℎ) = O(ℎ𝑘+2)∥𝑢∥𝑘+3∥𝑣ℎ∥2,𝑉ℎ + O(ℎ𝑘+2)𝜔2∥𝑢∥𝑘+2∥𝑣ℎ∥2,𝑉ℎ .

Remark 1 Without the assumption on the boundary condition 𝜕𝑢
𝜕𝑛

− i𝜔𝑢 = 0,∀𝒙 ∈
𝜕Ω, then following Theorem 3.7 in [30], one can only prove O(ℎ𝑘+1.5). The half
order loss is due to an extra boundary term, which can be cancelled if using boundary
conditions of 𝑢.

By Theorem 3.3 in [30], a standard quadrature estimate is given by

Theorem 2 If 𝑓 ∈ 𝐻𝑘+2 (Ω) with 𝑘 ≥ 2, then ( 𝑓 , 𝑣ℎ)−⟨ 𝑓 , 𝑣ℎ⟩ℎ = O(ℎ𝑘+2)∥ 𝑓 ∥𝑘+2∥𝑣ℎ∥2,𝑉ℎ .

3.4 M-type projection

The M-type projection in [9, 10] is a convenient tool for discussing the supercon-
vergence of function values at Gauss-Lobatto points. We refer to [29, 30] for its
detailed definition. Given a smooth function 𝑢(𝑥, 𝑦), let 𝑢𝑝 (𝑥, 𝑦) be the M-type 𝑄𝑘

projection of 𝑢(𝑥, 𝑦), then 𝑢𝑝 ∈ 𝑉ℎ and 𝑢 − 𝑢𝑝 has smaller errors at Gauss-Lobatto
points, e.g., Theorem 4.2 in [30] is given as

Theorem 3 For 𝑘 ≥ 2,



10 Xiangxiong Zhang

∥𝑢 − 𝑢𝑝 ∥2,𝑍0 = O(ℎ𝑘+2)∥𝑢∥𝑘+2, ∀𝑢 ∈ 𝐻𝑘+2 (Ω).

∥𝑢 − 𝑢𝑝 ∥∞,𝑍0 = O(ℎ𝑘+2)∥𝑢∥𝑘+2,∞, ∀𝑢 ∈ 𝑊 𝑘+2,∞ (Ω).

Thus, in order to prove 𝑄𝑘 spectral element method is a (𝑘 + 2)-th order accurate
finite difference scheme for smooth solutions in ℓ2-norm, it suffices to prove ∥𝑢ℎ −
𝑢𝑝 ∥2,𝑍0 = O(ℎ𝑘+2). Next, we need the superconvergence of the bilinear form:

Theorem 4 For 𝑘 ≥ 2, assume 𝑢 ∈ 𝐻𝑘+4 (Ω) and 𝜕𝑢
𝜕𝑛

− i𝜔𝑢 = 0,∀𝒙 ∈ 𝜕Ω, then

𝐴ℎ (𝑢 − 𝑢𝑝 , 𝑣ℎ) = O(ℎ𝑘+2) (∥𝑢∥𝑘+3 + 𝜔∥𝑢∥𝑘+4 + 𝜔2∥𝑢∥𝑘+2)∥𝑣ℎ∥2,𝑉ℎ , ∀𝑣ℎ ∈ 𝑉ℎ .

Proof. By Lemma 4.5-4.8 in [30], we first have

⟨∇(𝑢 − 𝑢𝑝),∇𝑣ℎ⟩ℎ − 𝜔2⟨(𝑢 − 𝑢𝑝), 𝑣ℎ⟩ℎ = O(ℎ𝑘+2) (∥𝑢∥𝑘+3 + 𝜔2∥𝑢∥𝑘+2)∥𝑣ℎ∥2,𝑉ℎ .

For the line integral, with the properties of M-type projection (see [29, 30]),
following the proof of Lemma 2.3.6 in [25], we can get

|i𝜔⟨∇(𝑢−𝑢𝑝),∇𝑣ℎ⟩𝜕Ω,ℎ | = O(ℎ𝑘+3)𝜔∥𝑢∥𝑘+3,𝜕Ω∥𝑣ℎ∥2,𝜕Ωℎ = O(ℎ𝑘+2.5)𝜔∥𝑢∥𝑘+4,Ω∥𝑣ℎ∥2,𝑉ℎ .

Notice that the arguments in [25, Lemma 2.3.6] do not work for the case 𝑘 = 2 due
to the fact that 3-point Gauss-Lobatto quadrature is exact only for polynomials of
degree 3 but not polynomials of degree 𝑘 + 2 = 4. In order to establish the desired
result for 𝑘 = 2, one possibility is to apply the discrete integration by part in the
proof of [25, Theorem 2.8.1] to use ⟨∇(𝑢 − 𝑢𝑝),∇𝑣ℎ⟩ℎ to generate a boundary line
integral term, which can be used to reduce the error term ⟨∇(𝑢 − 𝑢𝑝),∇𝑣ℎ⟩𝜕Ω,ℎ. ⊓⊔

3.5 Dual problem and regularity for the Helmholtz equation

Define 𝜃ℎ = 𝑢ℎ − 𝑢𝑝 , then 𝜃ℎ ∈ 𝑉ℎ ⊂ 𝐻1 (Ω). One critical step in this section is to
consider the following dual problem: seek 𝑤 ∈ 𝐻1 (Ω) satisfying

𝐴∗ (𝑤, 𝑣) := 𝐴(𝑣, 𝑤) = (𝑣, 𝜃ℎ), ∀𝑣 ∈ 𝐻1 (Ω).

In other words, 𝑤 satisfies the Helmholtz equation −Δ𝑤 − 𝜔2𝑤 = 𝜃ℎ with the
homogeneous Robin boundary condition.

Consider a finite element solution for the dual problem: seek 𝑤ℎ ∈ 𝑉ℎ satisfying

𝐴∗
ℎ (𝑤ℎ, 𝑣ℎ) := 𝐴ℎ (𝑣ℎ, 𝑤ℎ) = (𝑣ℎ, 𝜃ℎ), ∀𝑣ℎ ∈ 𝑉ℎ .

We first need to establish a convergence result for finite element scheme solving
Helmholtz equation: ∥𝑤−𝑤ℎ∥ ≤ 𝐶ℎ∥𝑤∥2. Since the bilinear form for the Helmholtz
equation is indefinite, its variational problem satisfies a Garding inequality [45], for
which Galerkin methods are asymptotically quasi-optimal, e.g., convergence can be
proven if assuming ℎ is small enough. In particular, assuming 𝜔2ℎ ≪ 1, it satisfies
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standard estimate
∥𝑤 − 𝑤ℎ∥1 ≤ 𝐶 (𝜔) min

𝑣ℎ∈𝑉ℎ
∥𝑤 − 𝑣ℎ∥1

which can be found in [17, 18]. For simplicity, we do not discuss the specific
dependency of 𝐶 (𝜔) on 𝜔 and polynomial degree 𝑘 , which is of interest for high
frequency problems in the pre-asymptotic region. We refer to [23, 24, 42, 43, 7, 2, 20]
and references therenin for pre-asymptotic analysis.

We also need the regularity result for solving Helmholtz equation −Δ𝑤 − 𝜔2𝑤 =

𝜃ℎ. In particular, the regularity result in [19] states that

∥𝑤∥2 ≤ 𝐶 (𝜔3 + 𝜔−1)∥𝜃ℎ∥0.

See also [42, 43] for a regularity result, and [15] for a sharp estimate of the regularity
coefficients for high frequencies.

Then by the proof of Theorem 5.3 in [30], we obtain a standard estimate for 𝑤ℎ:

Theorem 5 Assume ℎ is small enough, then

∥𝑤ℎ∥2,𝑉ℎ ≤ 𝐶 (𝜔)∥𝑤∥2 ≤ 𝐶 (𝜔) (𝜔3 + 𝜔−1)∥𝜃ℎ∥0.

3.6 The main result: superconvergence of function values

Now we can put all the results together in this section to obtain

Theorem 6 Assume the exact solution 𝑢(𝑥, 𝑦) ∈ 𝐻𝑘+4 (Ω) and satisfies the homo-
geneoug Robin boundary condition, 𝑓 (𝑥, 𝑦) ∈ 𝐻𝑘+2 (Ω). Assume ℎ is sufficiently
small. Then 𝑢ℎ is a (𝑘 + 2)-th order accurate approximation to 𝑢 in the discrete
2-norm over all the (𝑘 + 1) × (𝑘 + 1) Gauss-Lobatto points:

∥𝑢ℎ − 𝑢∥2,𝑍0 = O(ℎ𝑘+2) (∥𝑢∥𝑘+3 +𝜔2∥𝑢∥𝑘+2 +𝜔∥𝑢∥𝑘+4 + ∥ 𝑓 ∥𝑘+2)𝐶 (𝜔) (𝜔3 +𝜔−1).

Proof. Recall 𝜃ℎ = 𝑢ℎ − 𝑢𝑝 ∈ 𝑉ℎ, with Theorem 1, Theorem 2, Theorem 4 and
Theorem 5, we have

∥𝜃ℎ∥2
0 = (𝜃ℎ, 𝜃ℎ) = 𝐴ℎ (𝜃ℎ, 𝑤ℎ) = 𝐴ℎ (𝑢ℎ − 𝑢𝑝 , 𝑤ℎ)

= [𝐴ℎ (𝑢ℎ, 𝑤ℎ) − 𝐴(𝑢, 𝑤ℎ)] + [𝐴(𝑢, 𝑤ℎ) − 𝐴ℎ (𝑢, 𝑤ℎ)] + 𝐴ℎ (𝑢 − 𝑢𝑝 , 𝑤ℎ)
= ⟨ 𝑓 , 𝑤ℎ⟩ℎ − ( 𝑓 , 𝑤ℎ) + [𝐴(𝑢, 𝑤ℎ) − 𝐴ℎ (𝑢, 𝑤ℎ)] + 𝐴ℎ (𝑢 − 𝑢𝑝 , 𝑤ℎ)
= O(ℎ𝑘+2) (∥𝑢∥𝑘+3 + 𝜔2∥𝑢∥𝑘+2 + 𝜔∥𝑢∥𝑘+4 + ∥ 𝑓 ∥𝑘+2)∥𝑤ℎ∥2,𝑉ℎ

= O(ℎ𝑘+2) (∥𝑢∥𝑘+3 + 𝜔2∥𝑢∥𝑘+2 + 𝜔∥𝑢∥𝑘+4 + ∥ 𝑓 ∥𝑘+2)𝐶 (𝜔) (𝜔3 + 𝜔−1)∥𝜃ℎ∥0.

So we obtain

∥𝜃ℎ∥0 = O(ℎ𝑘+2) (∥𝑢∥𝑘+3 + 𝜔2∥𝑢∥𝑘+2 + 𝜔∥𝑢∥𝑘+4 + ∥ 𝑓 ∥𝑘+2)𝐶 (𝜔) (𝜔3 + 𝜔−1).
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Finally, by the equivalence of the discrete 2-norm on 𝑍0 and the 𝐿2 (Ω) norm in
finite-dimensional space 𝑉ℎ and Theorem 3, we obtain

∥𝑢ℎ − 𝑢∥2,𝑍0 ≤ ∥𝑢ℎ − 𝑢𝑝 ∥2,𝑍0 + ∥𝑢𝑝 − 𝑢∥2,𝑍0 ≤ 𝐶∥𝑢ℎ − 𝑢𝑝 ∥0 + ∥𝑢𝑝 − 𝑢∥2,𝑍0 = O(ℎ𝑘+2).

⊓⊔

3.7 Numerical tests

For simplicity we test the accuracy 𝑄𝑘 spectral element method for solving −Δ𝑢 −
𝜔2𝑢 = 𝑓 on [0, 1]2 with a homogeneous Neumann boundary condition. We consider
a simple exact solution 𝑢(𝑥, 𝑦) = cos(𝜔𝜋𝑥) cos(𝜔𝜋𝑦), and the ℓ2-norm error for
𝜔 = 100 is given in Figure 2, in which we observe (𝑘 + 2)-th order convergence for
small enough ℎ.
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Fig. 2 The 𝑄𝑘 spectral element method on a 𝑁 × 𝑁 mesh is also a finite difference scheme at all
(𝑁𝑘 + 1) × (𝑁𝑘 + 1) Gauss-Lobatto quadrature points. The error in ℓ2-norm at all (𝑁𝑘 + 1) ×
(𝑁𝑘 + 1) grid points is listed.

4 Applications of Monotone Discrete Laplacian

In this section, we first demonstrate how to find the estimate ∥ − Δℎ∥∞ for two
monotone schemes: the classical second order centered difference (or equivalently
𝑄1 finite element method with quadrature) and the fourth order finite difference
scheme (1) (or equivalently 𝑄2 spectral element method) in multiple dimensions.
Then we discuss the applications.

For simplicity we start with the Poisson equation −Δ𝑢 + 𝑣(𝒙)𝑢 = 𝑓 with a given
potential function 𝑣(𝒙) ≥ 0 onΩ = (0, 1)𝑑 with 𝑑 = 1, 2, 3 and homogeneous Dirich-
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let boundary conditions. Extensions to Neumann and periodic boundary conditions
are straightforward.

4.1 Second order finite difference

The second order finite difference scheme for −𝑢′′ (𝑥) + 𝑣(𝑥)𝑢(𝑥) = 𝑓 (𝑥) can be
written as

(𝐾 +𝑉)u = f,

where 𝑉 is diagonal matrix with entries 𝑣(𝑥𝑖) ≥ 0 and

𝐾 =
1
ℎ2

©«

2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2

ª®®®®®®®®¬
, u =

©«

𝑢1
𝑢2
𝑢3
. . .

𝑢𝑁−1
𝑢𝑁

ª®®®®®®®®¬
, f =

©«

𝑓1
𝑓2
𝑓3
. . .

𝑓𝑁−1
𝑓𝑁

ª®®®®®®®®¬
.

It is easy to verify that the matrix 𝐾 +𝑉 satisfies Theorem 11 thus is monotone. The
2D scheme can be written as

(𝐾 ⊗ 𝐼 + 𝐼 ⊗ 𝐾 +𝑉)𝑣𝑒𝑐(𝑈) = 𝑣𝑒𝑐(𝐹),

where 𝑈 and 𝐹 denote 2D arrays of grid point values and 𝑣𝑒𝑐(𝑈) is the vector by
arranging𝑈 column by column, and 𝑉 is still a diagonal matrix.

For 3D scheme, following notation in [38], the matrix can be written as

𝐾 ⊗ 𝐼 ⊗ 𝐼 + 𝐼 ⊗ 𝐾 ⊗ 𝐼 + 𝐼 ⊗ 𝐼 ⊗ 𝐾 +𝑉, (4)

where𝑉 is still a diagonal matrix. The matrix 𝐾 ⊗ 𝐼 + 𝐼 ⊗𝐾 +𝑉 and the matrix (4) still
satisfy Theorem 11 thus they are monotone. The scheme can also be regarded as 𝑄1
finite element method on uniform rectangular meshes with 2-point Gauss-Lobatto
quadrature for all integrals. The monotonicity can be extended to P1 finite element
method on 2D unstructured triangular meshes [49]. Next, we focus on the discrete

Laplacian −Δℎ =


𝐾, 𝑑 = 1
(𝐾 ⊗ 𝐼 + 𝐼 ⊗ 𝐾), 𝑑 = 2
(𝐾 ⊗ 𝐼 ⊗ 𝐼 + 𝐼 ⊗ 𝐾 ⊗ 𝐼 + 𝐼 ⊗ 𝐼 ⊗ 𝐾), 𝑑 = 3.

It can be easily shown the corresponding graph of discrete Laplacian is strongly
connected thus the matrix −Δℎ is irreducible, see [28]. By Corollary 1 in the Ap-
pendix, we only need to find a vector z such that (−Δℎ)z ≥ 1 to obtain estimates for
∥(−Δℎ)−1∥2 and ∥(−Δℎ)−1∥∞.

For the 𝐾 matrix, in order to find z such that 𝐾z = 1, first think about the exact
solution to the problem −𝑢′′ = 1, 𝑢(0) = 𝑢(1) = 0, which is 𝑧(𝑥) = 1

2𝑥(1 − 𝑥).
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Let z = 𝑧(x) where x is the grid points for the corresponding scheme, i.e.,
x =

[
ℎ 2ℎ · · · 𝑛ℎ

]𝑇 with ℎ = 1
𝑛+1 . It is straightforward to verify that 𝐾z = 1.

On the other hand, since 0 ≤ 𝑧(𝑥) ≤ 1
8 for 𝑥 ∈ (0, 1), we have ∥z∥∞ ≤ 1

8 , thus
∥𝐾−1∥∞ = ∥z∥∞ ≤ 1

8 .
For 𝐾 ⊗ 𝐼 + 𝐼 ⊗ 𝐾 , we only need to consider an array 𝑍 = 1

2 z1𝑇 + 1
2 1z𝑇 , then

(𝐾 ⊗ 𝐼 + 𝐼 ⊗𝐾)𝑣𝑒𝑐(𝑍) = 𝑣𝑒𝑐(𝑍𝐾𝑇 +𝐾𝑍) = 1
2
𝑣𝑒𝑐(z1𝑇𝐾𝑇 +1z𝑇𝐾𝑇 +𝐾z1𝑇 +𝐾1z𝑇 )

>
1
2
𝑣𝑒𝑐(1z𝑇𝐾𝑇 + 𝐾z1𝑇 ) = 𝑣𝑒𝑐(11𝑇 ),

where 𝐾1 = ℎ2 [
1 0 · · · 0 1

]𝑇 ≥ 0 and z ≥ 0 is used. Thus, ∥(𝐾 ⊗ 𝐼 + 𝐼 ⊗𝐾)−1∥∞ ≤
∥𝑣𝑒𝑐(𝑍)∥∞ < 1

8 .
Obviously the discussion can be easily extended to three dimensions by consid-

ering a 3D array

𝑍 =
1
3
(z1𝑇 ) ⊗𝑜𝑢𝑡𝑒𝑟 1 + 1

3
(1z𝑇 ) ⊗𝑜𝑢𝑡𝑒𝑟 1 + 1

3
(11𝑇 ) ⊗𝑜𝑢𝑡𝑒𝑟 z,

where 𝐴 ⊗𝑜𝑢𝑡𝑒𝑟 v denotes the outer product between a matrix 𝐴 and a column vector
v, and their outer product is a 3D array. By using this 3D array 𝑍 , we can easily find

∥(𝐾 ⊗ 𝐼 ⊗ 𝐼 + 𝐼 ⊗ 𝐾 ⊗ 𝐼 + 𝐼 ⊗ 𝐼 ⊗ 𝐾)−1∥∞ ≤ ∥𝑣𝑒𝑐(𝑍)∥∞ <
1
8
.

We emphasize that this estimate is sharp in one dimension but not in multiple
dimensions.

Remark 2 If the domain is (−𝐿, 𝐿)𝑑 instead of (0, 1)𝑑 , then similiar discussion gives

∥(−Δℎ)−1∥∞ ≤ ∥𝑣𝑒𝑐(𝑍)∥∞ ≤ 𝐿2

2
.

Here we also mention the eigenvectors of𝐾 . The eigen-decomposition of−Δℎ can
be used as a simple preconditioner used in conjugate gradient method for inverting
−Δℎ + V in multiple dimensions [38]. Let x =

[ 1
𝑛+1

2
𝑛+1 · · · 𝑛

𝑛+1
]𝑇 and sin(𝑚𝜋x) =[

sin(𝑚𝜋 1
𝑛+1 ) sin(𝑚𝜋 2

𝑛+1 ) · · · sin(𝑚𝜋 𝑛
𝑛+1 )

]𝑇 . Then 𝐾 has eigenvectors sin(𝑚𝜋x)
with eigenvalues 𝜆𝑚 =

(2−2 cos 𝑚𝜋
𝑛+1 )

ℎ2 =
(𝑛+1)2

(2𝐿)2 (2 − 2 cos 𝑚𝜋
𝑛+1 ) for 𝑚 = 1, · · · , 𝑛 for the

domain Ω = [−𝐿, 𝐿]𝑑 .

Remark 3 The eigen-value decomposition of 𝐾 can be written as 𝐾 = 𝑇Λ𝑇 where
𝑇 is the matrix of orthonormal eigenvectors with the property 𝑇−1 = 𝑇.
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4.2 𝑸2 spectral element method: fourth order finite difference

If using 𝑄2 spectral element method with 3-point Gauss-Lobatto quadrature for all
integrals, we get a finite difference scheme [30, 46]

(𝐻 +𝑉)u = f

or
(𝐻 ⊗ 𝐼 + 𝐼 ⊗ 𝐻 +𝑉)𝑣𝑒𝑐(𝑈) = 𝑣𝑒𝑐(𝐹),

where

𝐻 =
1
ℎ2

©«

2 −1
−2 7

2 −2 1
4

−1 2 −1
1
4 −2 7

2 −2 1
4

−1 2 −1
. . .

. . .
1
4 −2 7

2 −2
−1 2

ª®®®®®®®¬
.

The matrices 𝐻 + 𝑉 and 𝐻 ⊗ 𝐼 + 𝐼 ⊗ 𝐻 + 𝑉 are no longer M-matrices. It is proven
in [28] that they are products of M-matrices thus still monotone under the following
mesh size constraints:

1. ℎ2 max𝑖 𝑣(𝑥𝑖) < 5 for 1D.
2. ℎ2 max𝑖 𝑣(𝑥𝑖 , 𝑦 𝑗 ) < 3

2 for 2D.

It can also be extended to quasi-uniform rectangular grids [14]. The monotonicity
proof in [28] can be extended to the 3D case, for which the discrete Laplacian matrix

is given as −Δℎ =


𝐻, 𝑑 = 1
(𝐻 ⊗ 𝐼 + 𝐼 ⊗ 𝐻), 𝑑 = 2
(𝐻 ⊗ 𝐼 ⊗ 𝐼 + 𝐼 ⊗ 𝐻 ⊗ 𝐼 + 𝐼 ⊗ 𝐼 ⊗ 𝐻), 𝑑 = 3.

Notice that −Δℎ is monotone unconditionally on a uniform grid without any mesh
size constraint [28, 13].

It can be easily verified that we also have 𝐻z = 1 where z is the same vector in
previous subsection. Thus in the one dimension case, we have ∥(−Δℎ)∥∞ ≤ 1

8 .
Unfortunately we do not have 𝐻1 ≥ 0, thus the 2D case is different from the

second order finite difference. Define a vector v =
[
1 2 2 · · · 2 1

]𝑇 then we have
𝐻v ≥ 0.

For −Δℎ = 𝐻 ⊗ 𝐼 + 𝐼 ⊗ 𝐻, we need to consider an array 𝑍 = 1
2 zv𝑇 + 1

2 1v𝑇 , then

(𝐻 ⊗ 𝐼 + 𝐼 ⊗𝐻)𝑣𝑒𝑐(𝑍) = 𝑣𝑒𝑐(𝑍𝐻𝑇 +𝐻𝑍) = 1
2
𝑣𝑒𝑐(zv𝑇𝐻𝑇 +vz𝑇𝐻𝑇 +𝐻zv𝑇 +𝐻vz𝑇 )

>
1
2
𝑣𝑒𝑐(vz𝑇𝐻𝑇 + 𝐻zv𝑇 ) > 𝑣𝑒𝑐(11𝑇 ),

where 𝐻z ≥ 1, 𝐻v ≥ 0, v ≥ 1 and z ≥ 0 are used. Thus, we can only obtain

∥(𝐻 ⊗ 𝐼 + 𝐼 ⊗ 𝐻)−1∥∞ < ∥𝑣𝑒𝑐(𝑍)∥∞ ≤ 1
4
.
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Remark 4 If the domain is (−𝐿, 𝐿)𝑑 instead of (0, 1)𝑑 , then similiar discussion gives

∥(−Δℎ)−1∥∞ ≤ ∥𝑣𝑒𝑐(𝑍)∥∞ ≤ 𝐿2.

For three dimensions, if considering a 3D array

𝑍 =
1
3
(zv𝑇 ) ⊗𝑜𝑢𝑡𝑒𝑟 v + 1

3
(vz𝑇 ) ⊗𝑜𝑢𝑡𝑒𝑟 v + 1

3
(vv𝑇 ) ⊗𝑜𝑢𝑡𝑒𝑟 z,

we can easily find

∥(𝐻 ⊗ 𝐼 ⊗ 𝐼 + 𝐼 ⊗ 𝐻 ⊗ 𝐼 + 𝐼 ⊗ 𝐼 ⊗ 𝐻)−1∥∞ < ∥𝑣𝑒𝑐(𝑍)∥∞ ≤ 1
4
.

The eigen-decomposition of 𝐻 can be computed either numerically or expressed
explicitly as follows. Let x and sin(𝑚𝜋x) be the same as in previous subsection. Let
𝑥1
𝑗

and 𝑥2
𝑗

be the larger and smaller root of the following quadratic equation of 𝑥:

2 cos
𝑗𝜋

𝑛 + 1
𝑥2 + (1 + cos2 𝑗𝜋

𝑛 + 1
)𝑥 − 4 cos

𝑗𝜋

𝑛 + 1
= 0. (5)

𝑏 𝑗 =

{
𝑥1
𝑗

𝑗 ≤ 𝑛+1
2

𝑥2
𝑗

𝑗 > 𝑛+1
2
.

The𝑚-th eigenvector of𝐻 is given as sin(𝑚𝜋x) ◦
[
1 𝑏𝑚 1 𝑏𝑚 1 𝑏𝑚 · · · 1 𝑏𝑚 1

]𝑇
with eigenvalue (𝑛+1)2

(2𝐿)2 (2 − 2𝑏𝑚 cos 𝑚𝜋
𝑛+1 ) for the domain Ω = [−𝐿, 𝐿]𝑑 .

4.3 Picard iteration and Newton’s iteration for nonlinear equations

Consider solving a semilinear equation −Δ𝑢 + 𝑣𝑢 + 𝛽 |𝑢 |2𝑢 = 𝑓 with cubic nonlin-
ear term and a non-negative potential function 𝑣 ≥ 0 on homogeneous Dirichlet
boundary conditions on Ω = [0, 1]𝑑 . For simplicity, we denote the numerical ap-
proximation by

−Δℎ𝑢 +𝑉𝑢 + 𝛽 diag( |𝑢 |2)𝑢 = 𝑓 , (6)

where −Δℎ is a monotone discrete Laplacian, 𝑉 is diagonal matrix, 𝑢 is a vector of
numerical solutions and diag(𝑢2) denotes a diagonal matrix with diagonal entries
|𝑢𝑖 |2. The system (6) is closely related to the Gross-Pitaevskii eigenvalue problem
[40]. See [12] and references for more details on the background. We assume both
right hand side 𝑓 and the exact solution to (6) are positive. Note that the ground state
of Gross-Pitaevskii eigenvalue problem can be proven positive [33].

The Picard iteration for a semi-linear equation 𝐴(𝑢)𝑢 = 𝑓 takes the form
𝐴(𝑢𝑛)𝑢𝑛+1 = 𝑓 , and we have

−Δℎ𝑢
𝑛+1 +𝑉𝑢𝑛+1 + 𝛽 diag( |𝑢𝑛 |2)𝑢𝑛+1 = 𝑓 . (7)
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The Newton’s method for𝑁 (𝑢) = 0 takes the form𝑢𝑛+1 = 𝑢𝑛−[ 𝛿𝑁
𝛿𝑢

(𝑢𝑛)]−1𝑁 (𝑢𝑛),
equivalent to [ 𝛿𝑁

𝛿𝑢
(𝑢𝑛)]𝑢𝑛+1 = [ 𝛿𝑁

𝛿𝑢
(𝑢𝑛)]𝑢𝑛 − 𝑁 (𝑢𝑛), which can be written as:

−Δℎ𝑢
𝑛+1 +𝑉𝑢𝑛+1 + 𝛽3 diag( |𝑢𝑛 |2)𝑢𝑛+1 = 𝑓 + 2𝛽(𝑢𝑛)3. (8)

To see why the cubic polynomial system (6) has a unique solution, we note that
−Δℎ𝑢 + 𝑉𝑢 + 𝛽𝑢3 = 𝑓 is the first order optimality condition for the minimizing the
energy function:

𝐹 (𝑢) = −1
2
𝑢𝑇 (Δℎ +𝑉)𝑢 +

1
4
𝛽
∑︁
𝑖

𝑢4
𝑖 − ⟨ 𝑓 , 𝑢⟩. (9)

Since 𝐹′′ (𝑢) = −Δℎ + 𝑉 + 3𝛽 diag(𝑢2) and −Δℎ has positive eigenvalues as
discussed in previous subsections, 𝐹 (𝑢) is strongly convex for the case 𝛽 ≥ 0 and
non-negative potential 𝑉 (𝒙𝑖) ≥ 0, it thus has a unique minimizer. For minimizing
the function, there are other straightforward algorithms, e.g.,

• Gradient descent (forward Euler):

𝑢𝑛+1 = 𝑢𝑛 − Δ𝑡𝐹′ (𝑢𝑛) = 𝑢𝑛 − Δ𝑡𝑘 [−Δℎ𝑢
𝑛 +𝑉𝑢𝑛 + 𝛽 diag( |𝑢𝑛 |2)𝑢𝑛 − 𝑓 ]

where the step sizeΔ𝑡𝑘 can be implemented by exact line search (steepest descent).
• Backward Euler for the linearized equation [1]:

𝑢𝑛+1 = 𝑢𝑛 − Δ𝑡 [−Δℎ𝑢
𝑛+1 +𝑉𝑢𝑛+1 + 𝛽 diag( |𝑢𝑛 |2)𝑢𝑛+1 − 𝑓 ] . (10)

• Newton’s method: with step size being constant 1 for minimizing 𝐹 (𝑢) will give
exactly the same Newton iteration above for solving the equation directly.

In both Picard iteration and Newton’s method, we need to invert a matrix 𝐴ℎ =

−Δℎ +𝑉 + 𝛽 diag( |𝑢𝑛 |2) or 𝐴ℎ = −Δℎ +𝑉 + 3𝛽 diag( |𝑢𝑛 |2). Recall that 𝑉 is diagonal
with non-negative diagonal entries. If 𝛽 > 0 and (−Δℎ)z = 1, then 𝐴ℎz ≥ (−Δℎ)z =

1 because z ≥ 0. If 𝐴ℎ is monotone, then we have ∥𝐴−1
ℎ
∥2 ≤ ∥𝐴−1

ℎ
∥∞ ≤ ∥z∥∞.

4.4 Convergence rate of Picard iteration for 𝜷 = 1

From now on, we only focus on the 𝑄2 spectral element scheme (1) for −Δℎ on
Ω = [0, 1]2. Recall 𝑉 is a diagonal matrix with non-negative diagonal entries being
point values of the potential function 𝑉 (𝒙𝑖), and |𝑢𝑛 |2 in (6) can be regarded as a
diagonal matrix with diagonal entries being |𝑢𝑛 |2

𝑖
.

Theorem 7 On the domain Ω = [0, 1]2, for the discrete Laplacian being the fourth
order finite difference obtained from 𝑄2 spectral element method, for 𝛽 = 1 and
non-negative potential function 𝑣(𝒙𝑖) ≥ 0, assume the exact solution to (6) satisfies
0 ≤ 𝑢𝑖 ≤ 1 and the right hand side function is bounded 0 ≤ 𝑓𝑖 ≤ 4,∀𝑖. If the mesh
size is small enough ℎ ≤ 1 and ℎ2𝑣(𝒙𝑖) ≤ 1

2 for all 𝑖, then



18 Xiangxiong Zhang

1. The Picard iteration (7) with random initial guess 𝑢0
𝑖
∈ [0, 1] satisfies 0 ≤ 𝑢𝑛

𝑖
< 1.

2. The Picard iteration converges with a rate ∥𝑢𝑛+1 − 𝑢∥∞ ≤ 3
4 ∥𝑢

𝑛 − 𝑢∥∞.

Remark 5 The results above are not sharp since the estimate on ∥(−Δℎ)−1∥∞ in this
paper is not sharp.

Proof. By the discussion in Section 4.2, the matrix 𝐴ℎ = −Δℎ + 𝑉 + diag( |𝑢𝑛 |2) is
monotone if ℎ2 (𝑣(𝒙𝑖) + |𝑢𝑛

𝑖
|2) < 3

2 .
We first prove 0 ≤ 𝑢𝑛

𝑖
< 1 by induction. With 𝑢0

𝑖
∈ [0, 1], we first have 𝑢1 =

(−Δℎ + 𝑉 + diag |𝑢0 |2)−1 𝑓 . Under the assumption ℎ2 (𝑣(𝒙𝑖) ≤ 1
2 and ℎ ≤ 1, by

discussion in Section 4.2, we have (−Δℎ + 𝑉 + diag |𝑢0 |2)−1 ≥ 0 and ∥(−Δℎ +
𝑉 + diag |𝑢0 |2)−1∥∞ < 1

4 , thus 𝑢1 = (−Δℎ + 𝑉 + diag |𝑢0 |2)−1 𝑓 ≥ 0 and ∥𝑢1∥∞ ≤
∥(−Δℎ+𝑉 +diag |𝑢0 |2)−1∥∞∥ 𝑓 ∥∞ < 1 gives 0 ≤ 𝑢1

𝑖
< 1. With induction assumption

0 ≤ 𝑢𝑛
𝑖
< 1, the same discussion easily gives 0 ≤ 𝑢𝑛+1

𝑖
< 1.

Let 𝑢 be the exact solution to −Δℎ𝑢+𝑉 (𝑥)𝑢+diag |𝑢 |2𝑢 = 𝑓 . Let 𝑒𝑛+1 = 𝑢𝑛+1 −𝑢,
then

−Δℎ𝑒
𝑛+1 +𝑉𝑒𝑛+1 + diag |𝑢𝑛 |2𝑢𝑛+1 − diag |𝑢 |2𝑢 = 0

−Δℎ𝑒
𝑛+1 +𝑉𝑒𝑛+1 + diag |𝑢𝑛 |2𝑢𝑛+1 − diag |𝑢𝑛 |2𝑢 + diag |𝑢𝑛 |2𝑢 − diag |𝑢 |2𝑢 = 0

−Δℎ𝑒
𝑛+1 +𝑉𝑒𝑛+1 + diag |𝑢𝑛 |2𝑒𝑛+1 = − diag( |𝑢𝑛 |2 − 𝑢2)𝑢

𝐴ℎ𝑒
𝑛+1 = −(𝑢𝑛 + 𝑢) (𝑒𝑛)𝑢,

where 𝑢(𝑢𝑛 + 𝑢)𝑒𝑛 are entryways product for vectors. So 𝑒𝑛+1 = −𝐴−1
ℎ
𝑢(𝑢𝑛 + 𝑢)𝑒𝑛,

which is standard for Picard iteration. Here we have already proven |𝑢𝑛
𝑖
| < 1, so the

mesh size satisfies ℎ2 (𝑣(𝒙𝑖) + |𝑢𝑛𝑖 |2) <
3
2 . Thus 𝐴ℎ is monotone and we have estimate

∥𝐴−1
ℎ
∥∞ ≤ 1

4 . With both 0 ≤ 𝑢 ≤ 1 and 0 ≤ 𝑢𝑛
𝑖
< 1, we have ∥𝑒𝑛∥∞ ≤ 1, so we have

∥𝑒𝑛+1∥∞ ≤ ∥𝐴−1
ℎ ∥∞∥𝑢∥∞∥𝑢𝑛+𝑢∥∞∥𝑒𝑛∥∞ ≤ 1

4
(∥𝑒𝑛∥∞+2∥𝑢∥∞)∥𝑒𝑛∥∞ ≤ 3

4
∥𝑒𝑛∥∞.

⊓⊔

4.5 Convergence rate of Newton’s method for 𝜷 = 1

For Newton’s method, we need to make stronger assumptions on ℎ and 𝑓 :

Theorem 8 On the domain Ω = [0, 1]2, for the discrete Laplacian being the fourth
order finite difference obtained from 𝑄2 spectral element method, for 𝛽 = 1 and
non-negative potential function 𝑣(𝒙𝑖) ≥ 0, assume the exact solution to (6) satisfies
0 ≤ 𝑢𝑖 ≤ 1 and the right hand side function is bounded 0 ≤ 𝑓𝑖 ≤ 4 − 𝑎,∀𝑖 where
𝑎 > 0 is small. If the mesh size is small enough ℎ2 ≤ 1

3 and ℎ2𝑣(𝒙𝑖) ≤ 1
2 for all 𝑖,

then

1. Newton’s method (8) with random initial guess 𝑢0
𝑖
∈ [0, 1] satisfies 0 ≤ 𝑢𝑛

𝑖
<

1 − 𝑎
4 .
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2. Newton’s method (8) converges with a rate ∥𝑢𝑛+1 − 𝑢∥∞ ≤ (1 − 3𝑎
16 )∥𝑢

𝑛 − 𝑢∥2
∞.

Remark 6 The results above are not sharp since the estimate on ∥(−Δℎ)−1∥∞ in this
paper is not sharp.

Proof. By the discussion in Section 4.2, the matrix 𝐴ℎ = −Δℎ +𝑉 + 3 diag( |𝑢𝑛 |2) is
monotone if ℎ2 (𝑣(𝒙𝑖) + 3|𝑢𝑛

𝑖
|2) < 3

2 .
We first prove 0 ≤ 𝑢𝑛

𝑖
< 1 − 𝑎

4 by induction. With 0 ≤ 𝑢𝑖 ≤ 1, we first
have 𝑢1 = (−Δℎ + 𝑉 + 3 diag |𝑢0 |2)−1 𝑓 . Under the assumption ℎ2 (𝑣(𝒙𝑖) ≤ 1

2 and
ℎ3 ≤ 1

3 , by discussion in Section 4.2, we have (−Δℎ + 𝑉 + 3 diag |𝑢0 |2)−1 ≥ 0 and
∥(−Δℎ + 𝑉 + 3 diag |𝑢0 |2)−1∥∞ < 1

4 , thus 𝑢1 = (−Δℎ + 𝑉 + 3 diag |𝑢0 |2)−1 𝑓 ≥ 0
and ∥𝑢1∥∞ ≤ ∥(−Δℎ + 𝑉 + 3 diag |𝑢0 |2)−1∥∞∥ 𝑓 ∥∞ < 1 − 𝑎

4 gives 0 ≤ 𝑢1
𝑖
< 1 − 𝑎

4 .
With induction assumption 0 ≤ 𝑢𝑛

𝑖
< 1 − 𝑎

4 , the same discussion gives 𝑢𝑛+1 =

𝐴−1
ℎ
( 𝑓 + 2 diag |𝑢𝑛 |2𝑢𝑛) ≥ 0 and ∥𝑢𝑛+1∥∞ < 1 − 𝑎

4 .

Let 𝐴ℎ = −Δℎ +𝑉 +3 diag( |𝑢𝑛 |2) and 𝑒𝑛 = 𝑢𝑛 −𝑢. Notice that diag |𝑢2 |𝑢 can also
be written as a vector 𝑢3 with entries 𝑢3

𝑖
, we have

−Δℎ𝑒
𝑛+1 +𝑉𝑒𝑛+1 + 3(𝑢𝑛)2𝑢𝑛+1 − 𝑢3 = 0 + 2(𝑢𝑛)3

−Δℎ𝑒
𝑛+1 +𝑉𝑒𝑛+1 + 3(𝑢𝑛)2𝑢𝑛+1 − 3(𝑢𝑛)2𝑢 + 3(𝑢𝑛)2𝑢 − 𝑢3 − 2(𝑢𝑛)3 = 0

𝐴ℎ𝑒
𝑛+1 + 3(𝑢𝑛)2𝑢 − 𝑢3 − 2(𝑢𝑛)3 = 0

𝐴ℎ𝑒
𝑛+1 = −3(𝑢𝑛)2𝑢 + 𝑢3 + 2(𝑢𝑛)3

𝐴ℎ𝑒
𝑛+1 = −3(𝑢𝑛)2𝑢 + 3𝑢3 − 2𝑢3 + 2(𝑢𝑛)3

𝐴ℎ𝑒
𝑛+1 = −3𝑢[(𝑢𝑛)2 − 𝑢2] + 2(𝑢𝑛 − 𝑢) (𝑢2 + 𝑢𝑢𝑛 + |𝑢𝑛 |2)

𝐴ℎ𝑒
𝑛+1 = 𝑒𝑛 [−3𝑢(𝑢𝑛 + 𝑢) + 2(𝑢2 + 𝑢𝑢𝑛 + |𝑢𝑛 |2)

𝐴ℎ𝑒
𝑛+1 = 𝑒𝑛 [2|𝑢𝑛 |2 − 𝑢𝑢𝑛 − 𝑢2]

𝐴ℎ𝑒
𝑛+1 = |𝑒𝑛 |2 (2𝑢𝑛 + 𝑢),

which is all standard for Newton’s method. Here we have estimate ∥𝐴−1
ℎ
∥∞ ≤ 1

4 .
Also, 0 ≤ 𝑢𝑛

𝑖
≤ 1 − 𝑎

4 implies ∥𝑒𝑛∥∞ ≤ 1. With ∥𝑢𝑛∥∞ ≤ 1 − 𝑎
4 , we have

∥𝑒𝑛+1∥∞ ≤ 1
4
∥2𝑢𝑛 + 𝑢∥∞∥𝑒𝑛∥2

∞ ≤ 1
4
(3∥𝑢𝑛∥∞ + ∥𝑒𝑛∥∞)∥𝑒𝑛∥2

∞ ≤ (1 − 3𝑎
16

)∥𝑒𝑛∥2
∞.

⊓⊔

4.6 Convergence of a new Picard iteration for 𝜷 = −1

Consider a constant 𝑐 and an equivalent system−Δℎ𝑢+𝑉𝑢+𝛽 |𝑢 |2𝑢+𝑐𝑢 = 𝑓 +𝑐𝑢 with
𝑐 +𝑉 (𝑥) + 𝛽𝑢2 ≥ 0. The Picard iteration for 𝐴(𝑢)𝑢 = 𝐵(𝑢) is 𝐴(𝑢𝑛)𝑢𝑛+1 = 𝐵(𝑢𝑛):

−Δℎ𝑢
𝑛+1 + (𝑉 + 𝑐)𝑢𝑛+1 + 𝛽 |𝑢𝑛 |2𝑢𝑛+1 = 𝑓 + 𝑐𝑢𝑛.

In particular, let 𝑐 = 1
Δ𝑡

, then this is exactly the backward Euler scheme (10).
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Let 𝑒𝑛+1 = 𝑢𝑛+1 − 𝑢, then

−Δℎ𝑒
𝑛+1 + (𝑉 + 𝑐)𝑒𝑛+1 + 𝛽 |𝑢𝑛 |2𝑢𝑛+1 − 𝛽𝑢3 = 𝑐𝑒𝑛

−Δℎ𝑒
𝑛+1 + (𝑉 + 𝑐)𝑒𝑛+1 + 𝛽 |𝑢𝑛 |2𝑢𝑛+1 − 𝛽 |𝑢𝑛 |2𝑢 + 𝛽 |𝑢𝑛 |2𝑢 − 𝛽𝑢3 = 𝑐𝑒𝑛

−Δℎ𝑒
𝑛+1 + (𝑉 + 𝑐)𝑒𝑛+1 + 𝛽 |𝑢𝑛 |2𝑒𝑛+1 = −𝛽𝑢( |𝑢𝑛 |2 − 𝑢2) + 𝑐𝑒𝑛

𝐴𝑐
ℎ𝑒

𝑛+1 = [𝑐 − 𝛽𝑢(𝑢𝑛 + 𝑢)]𝑒𝑛.

If assuming 𝑉 + 𝑐 + 𝛽 |𝑢𝑛 |2 ≥ 0, with suitable mesh size assumptions, we can still
have [𝐴𝑐

ℎ
]−1 ≥ 0 and estimate ∥ [𝐴𝑐

ℎ
]−1∥∞ ≤ 1

4 , then similar convergence discussion
follows.

4.7 Positivity of SCF for a nonlinear eigenvalue problem

We conclude this section by considering another application of monotonicity for the
nonlinear eigenvalue problem of finding the smallest eigenvalue for

−Δ𝑢 +𝑉 (𝒙)𝑢 + 𝛽 |𝑢 |2𝑢 = 𝜆𝑢.

It is proven in [33] that the ground state eigenfunction 𝑢(𝒙) > 0. A priori error
estimates of finite element methods for such a nonlinear eigenvalue problem were
discussed in [5]. In general, it is not easy to solve such a nonlinear eigenvalue
problem numerically, especially with a convergent proof. The self consistent field
(SCF) iteration is a simple popular method for nonlinear eigenvalue problems given
as

−Δℎ𝑢
𝑛+1 +𝑉𝑢𝑛+1 + 𝛽 |𝑢𝑛 |2𝑢𝑛+1 = 𝜆𝑛𝑢

𝑛+1,

where 𝜆𝑛 is the lowest eigenvalue for the matrix −Δℎ +𝑉 + 𝛽 diag |𝑢𝑛 |2. Though the
local convergence of SCF can usually be proven [50, 6], SCF may diverge without
further relaxations or modifications [6], e.g., if there is a pair (𝑢, 𝑣) such that 𝑣 is the
lowest eigenvector of 𝐴(𝑢) = −Δℎ + 𝑉 + 𝛽 diag |𝑢 |2 and 𝑢 is the lowest eigenvector
of 𝐴(𝑣) = −Δℎ +𝑉 + 𝛽 diag |𝑣 |2, then SCF starting with 𝑢 will stuck with this pair.

Let 𝐴ℎ (𝑢𝑛) = −Δℎ + 𝑉 + 𝛽 diag( |𝑢𝑛 |2) where diag( |𝑢𝑛 |2) is a diagonal matrix
with entries |𝑢𝑛

𝑖
|2. Notice that 𝑉 + 𝛽 diag( |𝑢𝑛 |2) is a diagonal matrix thus does not

change connectivity of a graph. Since −Δℎ is irreducible, 𝐴ℎ is also irreducible.
For 𝛽 > 0, it is the easier defocusing case. Assume ℎ2 max𝑖 (𝑣(𝑥𝑖) + |𝑢𝑛

𝑖
|2) ≤ 3

2 ,
then monotonicity of 𝐴ℎ holds for fourth order scheme (no mesh constraints for
second order scheme). By Perron-Frobenius Theorem in the appendix, the smallest
eigenvalue of a monotone and irreducible matrix 𝐴ℎ is positive and simple, and has
a positive eigenvector.

For the focusing case 𝛽 < 0, let 𝑐 be a fixed positive constant such that
𝑐 + min𝑖 (𝑣(𝑥𝑖) − |𝑢𝑛

𝑖
|2) ≥ 0. Consider 𝐴𝑐

ℎ
= −Δℎ + 𝑉 − diag( |𝑢𝑛 |2) + 𝑐𝐼. For

ℎ2 max𝑖 (𝑣(𝑥𝑖) − |𝑢𝑛
𝑖
|2 + 𝑐) ≤ 3

2 , then monotonicity of 𝐴ℎ holds for fourth order
scheme (no mesh constraints for second order scheme). By Perron-Frobenius Theo-
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rem, i.e., Theorem 9 in the Appendix, the smallest eigenvalue of 𝐴𝑐
ℎ

is positive and
simple, and has a positive eigenvector. This implies that the smallest eigenvalue 𝐴ℎ

is simple and has a positive eigenvector.
So monotonicity of the discrete Laplacian ensures SCF returns a positive iterate

𝑢𝑛+1 > 0:
−Δ𝑢𝑛+1 +𝑉𝑢𝑛+1 + 𝛽 diag |𝑢𝑛 |2𝑢𝑛+1 = 𝜆𝑛𝑢𝑛+1,

where 𝜆𝑛 is the smallest eigenvalue of 𝐴ℎ (𝑢𝑛).

5 Concluding Remarks

We have reviewed some recent progress of 𝑄𝑘 spectral element method including
its accuracy as a finite difference scheme and provable monotonicity results. We
have also discussed its accuracy for the Helmholtz equation and the applications of
monotonicity for solving certain nonlinear problems.
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Appendix

A matrix 𝐴 ∈ R𝑛×𝑛 is called monotone if its inverse is nonnegative 𝐴−1 ≥ 0
(entrywise inequality). A matrix 𝐴 ∈ C𝑛×𝑛 is called reducible if there exists a
permutation matrix 𝑃 such that 𝑃𝐴𝑃𝑇 is block upper triangular. A square matrix 𝐴
is irreducible if it is not reducible. A matrix is irreducible if and only the graph it
represents is strongly connected.

Lemma 1 For a nonsingluar irreducible matrix 𝐴, 𝐴−1 is also irreducible.



22 Xiangxiong Zhang

Proof. Assume 𝐴−1 is reducible, then 𝑃𝐴−1𝑃𝑇 =

[
𝐵11 𝐵12
0 𝐵22

]
. Since 𝐴−1 is nonsingu-

lar, so are 𝐵11 and 𝐵22. Thus 𝐴 = 𝑃𝑇

[
𝐵−1

11 −𝐵−1
11 𝐵12𝐵

−1
22

0 𝐵−1
22

]
𝑃, which is a contradiction

with 𝐴 being irreducible. ⊓⊔

The following results can be found in [47]:

Lemma 2 If 𝐴 ≥ 0 is irreducible, then either min𝑖

(
𝑛∑
𝑗=1
𝑎𝑖 𝑗

)
≤ 𝜌(𝐴) ≤ max𝑖

(
𝑛∑
𝑗=1
𝑎𝑖 𝑗

)
or 𝜌(𝐴) = ∑𝑛

𝑗=1 𝑎𝑖 𝑗 ,∀𝑖.

Theorem 9 (Perron-Frobenius) If 𝐴 ≥ 0 is irreducible, then

1. The spectral radius 𝜌(𝐴) is a simple eigenvalue of 𝐴 with an eigenvector 𝑥 > 0.
2. 𝜌(𝐴) increases when any entry of 𝐴 increases.

See Appendix B in [11] for the proof of the following result:

Theorem 10 The positive eigenvector (Perron-Frobenius eigenvector) for an irre-
ducible nonnegative matrix is unique.

By the results above, we get

Corollary 1 For a real monotone and irreducible matrix 𝐴, its inverse 𝐴−1 ≥ 0 is
irreducible. Let 𝑎𝑖 𝑗 be entries of 𝐴−1, then

1. 𝜌(𝐴−1) ≤ max𝑖

(
𝑛∑
𝑗=1
𝑎𝑖 𝑗

)
= ∥𝐴−1∥∞.

2. If a vector z satisifies 𝐴z ≥ 1, then 𝐴1 ≤ z, thus ∥𝐴−1∥2 ≤ ∥𝐴−1∥∞ ≤ ∥z∥∞.
3. 𝐴 has a positive eigenvalue with a positive eigenvector. If assume 𝐴 is also

symmetric, then the smallest eigenvalue of 𝐴 is positive and simple with a positive
eigenvector, and

∥𝐴−1∥2 = 𝜌(𝐴−1) ≤ ∥𝐴−1∥∞.

Nonsingular M-matrices are monotone matrices. There are many equivalent def-
initions or characterizations of M-matrices, see [44]. The following is a convenient
sufficient but not necessary characterization of nonsingular M-matrices [28]:

Theorem 11 For a real square matrix 𝐴 with positive diagonal entries and non-
positive off-diagonal entries, 𝐴 is a nonsingular M-matrix if all the row sums of 𝐴
are non-negative and at least one row sum is positive.

By condition 𝐾35 in [44], a sufficient and necessary characterization is,

Theorem 12 For a real square matrix 𝐴 with positive diagonal entries and non-
positive off-diagonal entries, 𝐴 is a nonsingular M-matrix if and only if that there
exists a positive diagonal matrix 𝐷 such that 𝐴𝐷 has all positive row sums.
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Non-negative row sum is not a necessary condition for M-matrices. For instance,
the following matrix 𝐴 is an M-matrix by Theorem 12:

𝐴 =


10 0 0
−10 2 −10

0 0 10

 , 𝐷 =


0.1 0 0
0 2 0
0 0 0.1

 , 𝐴𝐷 =


1 0 0
−1 4 −1
0 0 1

 .
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