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Abstract. We construct a monotone continuous Q1 finite element method on the uniform4
mesh for the anisotropic diffusion problem with a diagonally dominant diffusion coefficient matrix.5
The monotonicity implies the discrete maximum principle. Convergence of the new scheme is rigor-6
ously proven. On quadrilateral meshes, the matrix coefficient conditions translate into specific mesh7
constraints.8

Key words. Inverse positivity, Q1 finite element method, monotonicity, discrete maximum9
principle, anisotropic diffusion10

AMS subject classifications. 65N30, 65N15, 65N1211

1. Introduction.12

1.1. Monotonicity and discrete maximum principle. Consider solving the13

following elliptic equation on Ω = (0, 1)2 with Dirichlet boundary conditions:14

Lu ≡ −∇ · (a∇u) + cu = f on Ω,

u = g on ∂Ω,
(1.1)15

where the diffusion matrix a(x) ∈ R2×2, c(x), f(x) and g(x) are sufficiently smooth
functions over Ω̄ or ∂Ω. We assume that ∀x ∈ Ω, a(x) is symmetric and uniformly
positive definite on Ω. In the literature, (1.1) is called a heterogeneous anisotropic
diffusion problem when the eigenvalues of a(x) are unequal and vary over on Ω. For
a smooth function u ∈ C2(Ω) ∩ C(Ω̄), a maximum principle holds [8]:

Lu ≤ 0 on Ω =⇒ max
Ω̄

u ≤ max

{
0,max

∂Ω
u

}
.

In particular,16

(1.2) Lu = 0 in Ω =⇒ |u(x)| ≤ max
∂Ω

|u|, ∀(x) ∈ Ω.17

The anisotropic diffusion problem (1.1) arises from various areas of science and18

engineering, including plasma physics, Lagrangian hydrodynamics, and image pro-19

cessing. To avoid spurious oscillations or non-physical numerical solution, it is de-20

sired to have numerical schemes to satisfy (1.2) in the discrete sense. We are in-21

terested in a linear approximation to L which can be represented as a matrix Lh.22

The matrix Lh is called monotone if its inverse only has nonnegative entries, i.e.,23

L−1
h ≥ 0. Monotonicity of the scheme is a sufficient condition for the discrete max-24

imum principle and has various applications espeically for parabolic problems, see25

[1, 34, 15, 10, 32, 22, 7, 6, 23, 22, 14, 17].26
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2 H. LI AND X. ZHANG

1.2. Monotone schemes for anisotropic diffusion equations. Monotone27

(or positive-type in some literature) numerical methods for problem (1.1) have received28

considerable attention, e.g., see [12, 18, 19, 20, 21, 26, 35, 31, 13, 2, 28]. The major29

efforts of studying linear monotone schemes take advantage of M -matrix (see [30] for30

the definition), either by showing the coefficient matrix is M -matrix directly or the31

coefficient matrix can be factorized into a product of M -matrices. In the following, we32

call a numerical scheme satisfying M -matrix property if the corresponding coefficient33

matrix is an M -matrix.34

By factorizing the stiffness matrix into a product ofM -matrices, the monotonocity35

can still be ensured. For a nine-point scheme on a two-dimensional quadrilateral grid,36

the matrix condition for monotonicity with specific splitting strategy in [29] aligns37

with the Lorenz’s condition presented in [24, 15]. The difference is that in [24, 15],38

only the existence of the factorization was proved while in [29] the exact matrix39

factorization was found explicitly.40

In [27], it is proved that a monotone finite difference scheme exists for any lin-41

ear second-order elliptic problem on fine enough uniform mesh but a finite difference42

method with fixed stencil for all the problems satisfying the M -matrix property does43

not exist. With nonnegative directional splittings, [33, 9, 28] propose to construct44

finite difference schemes for elliptic operators in the non-divergence form and diver-45

gence form. Particularly in [28], it is shown that a monotone scheme satisfying the46

M -matrix property can be constructed for continuous diffusion matrix for sufficiently47

fine mesh and sufficiently large finite difference stencil.48

In [18], for the P 1 finite elements in two and three dimensions, the author gen-49

eralized the well known non-obtuse angle condition for anisotropic diffusion problem50

in the sense to have the dihedral angles of all mesh elements, measured in a metric51

depending on a(x), be non-obtuse. It reduces to the non-obtuse angle condition for52

isotropic diffusion matrices when a(x) = α(x)I, where I is the identity matrix. The53

formulation was also utilized in [18] for the construction of the so called M -uniform54

meshes on which the numerical scheme is monotone. The approach to show mono-55

tonicity in [18] is to write the global matrix as the sum of local contributions. In56

[11], the Delaunay condition is extended to anisotropic diffusion problems through a57

refined analysis studying the whole stiffness matrix for the two-dimensional situation.58

The analysis of [18] was extended to the anisotropic diffusion–convection–reaction59

problems in [25].60

For the Q1 finite elements, research on monotonicity has predominantly been61

focused on meshes whose elements are rectangular blocks. For the two-dimensional62

Poisson equation, it was noted in [3] that the M -matrix property is violated when the63

aspect ratio, i.e. the ratio between the length of the longer edge and the shorter edge64

of the element, becomes excessively large. Then the discrete maximum principle is65

not guaranteed.66

1.3. Contributions and organization of the paper. It is well known that67

the second-order accurate linear schemes, such as mixed finite element and multi-68

point flux approximation, do not always satisfy monotonicity on distorted meshes or69

with high anisotropy ratio. In this paper, we construct a monotone Q1 finite element70

method for solving the equation (1.1), which is second-order accurate for function71

values.72

To analyze the monotonicity of the stiffness matrix, we approximate integrals73

with a specific quadrature rule, particularly, the linear combination of the trapezoid74

rule and midpoint rule. Then we demonstrate that the continuous Q1 finite element75
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MONOTONE Q1 FEM 3

method with the specific quadrature rule, when applied to the anisotropic diffusion76

problem on a uniform mesh, ensures monotonicity for the problem with a diagonally77

dominant diffusion coefficient matrix. The method is linear and second-order accurate.78

The convergence of the function values for this method is rigorously proven. The79

coefficient constraints become mesh constraints when this Q1 finite element method80

is applied on general quadrilateral meshes.81

This paper is organized as follows. In Section 2, we introduce the notations and82

review some standard quadrature error estimates. In Section 3, we derive the Q183

scheme for anisotropic diffusion equation with Dirichlet boundary condition and the84

coefficient constraints for the stiffness matrix to be an M -matrix. In Section 4, the85

convergence rate of function values is proved. In Section 5, we discuss the extension86

to general quadrilateral meshes. Numerical results are given in Section 6.87

2. Preliminaries.88

2.1. Notation and tools. We introduce some notation and useful tools as fol-89

lows.90

• For the problem dimension d, though we only consider the case d = 2, some-91

times we keep the general notation d to illustrate how the results are influ-92

enced by the dimension.93

• For the Q1 finite element space, i.e., tensor product of linear polynomials, the94

local space is defined on a reference element K̂, e.g., K̂ = [0, 1]2. Then, the95

finite element space on a physical mesh element e is given by the reference96

map from K̂ to e. The reference element K̂ is as Figure 1.

K̂

(0,0)

(0,1) (1,1)

(1,0)

Fig. 1. The reference element.

97

On a reference element K̂, we have the Lagrangian basis ϕ̂0,0, ϕ̂0,1, ϕ̂1,1, ϕ̂1,098

as99

(2.1)

ϕ̂0,0 = (1−x̂1)(1−x̂2), ϕ̂0,1 = (1−x̂1)x̂2, ϕ̂1,1 = x̂1x̂2, ϕ̂1,0 = x̂1(1−x̂2).100

• We will use ∧ for a function to emphasize the function is defined on or trans-101

formed to the reference element K̂ from a physical mesh element.102

• For a quadrilateral element e, we assume Fe = (Fe1, Fe2)
T is the bilinear

mapping such that Fe(K̂) = e. Let ci,j , i, j = 0, 1 be the vertices of the
quadrilateral element e. The mapping Fe can be written as

Fe =

1∑
ℓ=0

1∑
m=0

cℓ,mϕ̂ℓ,m.

• Q1(K̂) =
{
p(x) =

∑1
i=0

∑1
j=1 pij ϕ̂i,j(x̂), x̂ ∈ K̂

}
is the set of Q1 polynomi-103

als on the reference element K̂.104
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4 H. LI AND X. ZHANG

• Q1(e) =
{
vh ∈ H1(e) : vh ◦ Fe ∈ Q1(K̂)

}
is the set of Q1 polynomials on an105

element e.106

• V h =
{
p(x) ∈ H1 (Ωh) : p|e ∈ Q1(e), ∀e ∈ Ωh

}
denotes the continuous Q1107

finite element space on Ωh.108

• V h
0 =

{
vh ∈ V h : vh = 0 on ∂Ω

}
109

• Let (f, v)e denote the inner product in L2(e) and (f, v) denote the inner110

product in L2(Ω):111

(f, v)e =

∫
e

fv dx, (f, v) =

∫
Ω

fv dx =
∑
e

(f, v)e.112

• Let ⟨f, v⟩e,h denote the approximation to (f, v)e by the mixed quadrature113

defined in (2.6) over element e with some specified quadrature parameter and114

⟨f, v⟩h denotes the approximation to (f, v) by115

⟨f, v⟩h =
∑
e

⟨f, v⟩e,h.116

• Let E(f) denote the quadrature error for integrating f(x) on element e. Let117

Ê(f̂) denote the quadrature error for integrating f̂(x̂) = f (Fe(x̂)) on the118

reference element K̂. Then E(f) = hdÊ(f̂) on uniform rectangular mesh119

with mesh size h.120

• The norm and semi-norms for W k,p(Ω) and 1 ≤ p < +∞, with standard121

modification for p = +∞ :122

∥u∥k,p,Ω =

 ∑
i+j≤k

∫
Ω

∣∣∂i
x1
∂j
x2
u(x1, x2)

∣∣p dx
1/p

,123

|u|k,p,Ω =

 ∑
i+j=k

∫
Ω

∣∣∂i
x1
∂j
x2
u(x1, x2)

∣∣p dx
1/p

,124

[u]k,p,Ω =

(∫
Ω

∣∣∂k
x1
u(x1, x2)

∣∣p dx+

∫
Ω

∣∣∂k
x2
u(x1, x2)

∣∣p dx)1/p

.125
126

• In the special case where ω = Ω, we drop the subscript, i.e. (·, ·) := (·, ·)Ω127

and ∥ · ∥ := ∥ · ∥Ω.128

• For any vh ∈ V h, 1 ≤ p < +∞ and k ≥ 1, we will abuse the notation to129

denote the broken Sobolev norm and semi-norms by the following symbols130

∥vh∥k,p,Ω :=

(∑
e

∥vh∥pk,p,e

) 1
p

,131

|vh|k,p,Ω :=

(∑
e

|vh|pk,p,e

) 1
p

,132

[vh]k,p,Ω :=

(∑
e

[vh]
p
k,p,e

) 1
p

.133

134

• For simplicity, sometimes we may use ∥u∥k,Ω, |u|k,Ω and [u]k,Ω denote norm135

and semi-norms for Hk(Ω) = W k,2(Ω). When there is no confusion, Ω may136

be dropped in the norm and semi-norms, e.g., ∥u∥k := ∥u∥k,Ω.137
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MONOTONE Q1 FEM 5

• Inverse estimates for polynomials: there exists a constant CI > 0, indepen-
dent of h and e, such that for

∥vh∥k+1 ≤ CIh
−1 ∥vh∥k , ∀vh ∈ V h, k ≥ 0.

• Elliptic regularity holds for the problem (3.1):

∥u∥2 ≤ C∥f∥0

• Let Ωh is a finite element mesh for Ω. For each element e ∈ Ωh, we denote138

āe = (āije ) as an approximation to the average of a on element e, i.e. āije =139
1

meas(e)

∫
e
aijdx. Then we define piece-wise constant function ā on Ω as140

ā(x) = āe, for x ∈ e.141

• Define the projection operator Π̂1 : û ∈ L1(K̂) → Π̂1û ∈ Q1(K̂) by142

(2.2)

∫
K̂

(
Π̂1û

)
ŵdx̂ =

∫
K̂

ûŵdx̂, ∀ŵ ∈ Q1(K̂).143

Observe that all degrees of freedom of Π̂1û can be expressed as a linear
combination of

∫
K̂
ûp̂dx̂ where p̂(x) takes the forms 1, x̂1, x̂2, and x̂1x̂2. This

implies that the H1(K̂) (or H2(K̂)) norm of Π̂1û is dictated by
∫
K̂
ûp̂dx̂.

Utilizing the Cauchy-Schwartz inequality, we deduce:∣∣∣∣∫
K̂

ûp̂dx̂

∣∣∣∣ ≤ ∥û∥0,2,K̂∥p̂∥0,2,K̂ ≤ C∥û∥0,2,K̂

From which it follows that:

∥Π1û∥1,2,K̂ ≤ C∥û∥0,2,K̂

This establishes that Π̂1 acts as a continuous linear mapping from L2(K̂) to144

H1(K̂). Similarly, by extending this argument, we can also demonstrate that145

Π̂1 is a continuous linear mapping from L2(K̂) to H2(K̂).146

• We denote all the the vertices of Ωh inside Ω by xj , j = 1, . . . , Nh and all the
the vertices of Ωh on ∂Ω by xj , j = Nh+1, . . . , Nh+N∂

h . The corresponding
Lagrange basis functions in Vh are denoted by φi, i = 1, . . . Nh +N∂

h , which
are continuous in Ω, linear polynomials in each element e and

φi (xj) = δij , i, j = 1, . . . , Nh +N∂
h .

2.2. Mixed quadrature. To analyze and impose the monotonicity of the stiff-147

ness matrix, we will use numerical quadrature rules to approximate integrals. As we148

will see, the choice of quadrature rules can significantly affect the monotonicity of the149

numerical schemes.150

For a one-dimensional integral of function f over the interval [0, 1], we can approx-151

imate
∫ 1

0
f(x̂)dx̂ using either the trapezoid rule, given by f(0)+f(1)

2 , or the midpoint152

rule, f
(
1
2

)
. Both quadrature offer second-order accuracy. We will use the linear153

combination of these two kinds of quadrature as follows:154

(2.3)

∫ 1

0

f(x̂)dx̂ ≃λ
f(0) + f(1)

2
+ (1− λ)f

(
1

2

)
=ω̂1f(ξ̂1) + ω̂2f(ξ̂2) + ω̂3f(ξ̂1),

155

This manuscript is for review purposes only.



6 H. LI AND X. ZHANG

where λ is a parameter to be determined and156

(2.4) ω̂1 =
λ

2
, ω̂2 = 1− λ, ω̂3 =

λ

2
, ξ̂1 = 0, ξ̂2 =

1

2
, ξ̂3 = 1.157

When λ = 1, the mixed quadrature recovers the trapezoid rule and when λ = 0 the158

mixed quadrature recovers the midpoint rule.159

To approximate integration on square K̂, we may use the mixed quadrature (2.3)160

with different parameters λ1 and λ2 for different dimension x1 and x2 respectively.161

By Fubini’s theorem,162 ∫
K̂

f(x̂)dx̂ =

∫ 1

0

∫ 1

0

f(x̂1, x̂2)dx̂1dx̂2 =

∫ 1

0

(∫ 1

0

f (x̂1, x̂2) dx̂2

)
dx̂1

≃
∫ 1

0

(
3∑

q=1

ω̂2
qf
(
x̂1, ξ̂q

))
dx̂1 ≃

3∑
p=1

ω̂1
p

(
3∑

q=1

ω̂2
qf
(
ξ̂p, ξ̂q

))
=

3∑
p=1

3∑
q=1

ω̂1
pω̂

2
qf
(
ξ̂p, ξ̂q

)
,

163

where ωj
i are just ωi but replacing λ with λj in (2.4) for i = 1, 2, 3, j = 1, 2.164

On the reference element K̂, for convenience, to denote the above quadrature165

for integral approximation with parameter λ =
(
λ1, λ2

)
, we will use the following166

notation167

(2.5)

∫
K̂

f̂(x̂)dhλx̂ :=

3∑
p=1

3∑
q=1

ω̂1
pω̂

2
qf
(
ξ̂p, ξ̂q

)
.168

Given the quadrature parameter λe =
(
λ1
e, λ

2
e

)
, the quadrature approximation to169 ∫

e
f(x)dx is denoted as170

(2.6)

∫
e

f(x)dhλe
x :=

∫
K̂

f ◦ Fe(x̂)d
h
λe
x̂.171

Then we define the quadrature approximation over the entire domain Ω as172

(2.7)

∫
Ω

fdhλΩ
x :=

∑
e∈Ωh

∫
e

fdhλe
x,173

where λΩ = (λe)e∈Ωh
can be viewed as a vector-valued piece-wise constant function,174

with values λe which differ across different elements.175

As a particular instance,
∫
Ω
fdh1x denotes the case λe = (1, 0) for all e ∈ Ωh, i.e.176

the integral on each element are approximated by the trapezoid rule in all directions.177

2.3. Quadrature error estimates. The Bramble-Hilbert Lemma for Qk poly-178

nomials can be stated as follows, see Exercise 3.1.1 and Theorem 4.1.3 in [5]:179

Theorem 2.1. If a continuous linear mapping Π̂ : Hk+1(K̂) → Hk+1(K̂) satis-180

fies Π̂v̂ = v̂ for any v̂ ∈ Qk(K̂), then181

(2.8) ∥û− Π̂û∥k+1,K̂ ≤ C[û]k+1,K̂ , ∀û ∈ Hk+1(K̂).182

Therefore if l(·) is a continuous linear form on the space Hk+1(K̂) satisfying l(v̂) =183

0, ∀v̂ ∈ Qk(K̂), then184

|l(û)| ≤ C∥l∥′
k+1,K̂

[û]k+1,K̂ , ∀û ∈ Hk+1(K̂),185

where ∥l∥′
k+1,K̂

is the norm in the dual space of Hk+1(K̂).186
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MONOTONE Q1 FEM 7

By applying Bramble-Hilbert Lemma, we have the following quadrature estimates.187

Lemma 2.2. For a sufficiently smooth function a ∈ H2(e), we have188 ∫
e

adx−
∫
e

adhx =O
(
h2+ d

2

)
[a]2,e = O

(
h2+d

)
[a]2,∞,e(2.9)189 ∫

e

adx−
∫
e

āedx =O
(
h2+ d

2

)
[a]2,e = O

(
h2+d

)
[a]2,∞,e(2.10)190

191

Proof. For any f̂ ∈ H2(K̂), since quadrature are represented by point values,
with the Sobolev’s embedding we have

|Ê(f̂)| ≤ C|f̂ |0,∞,K̂ ≤ C∥f̂∥2,2,K̂

Therefore Ê(·) is a continuous linear form on H2(K̂) and Ê(f̂) = 0 if f̂ ∈ Q1(K̂).
Then the Bramble-Hilbert lemma implies

|E(a)| = hd|Ê(â)| ≤ Chd[â]2,2,K̂ = O
(
h2+ d

2

)
[a]2,2,e = O

(
h2+d

)
[a]2,∞,e

Lemma 2.3. If f ∈ H2(Ω), ∀vh ∈ V h, we have

(f, vh)− ⟨f, vh⟩h = O
(
h2
)
∥f∥2 ∥vh∥1 .

Proof. Applying Theorem 2.1, on element e, with ∂2v̂h
∂2x̂i

vanish, we obtain:192

E(fv) = hdÊ(f̂ v̂h) ≤ Chd[f̂ v̂h]2,2,K̂

≤Chd
(
|f̂ |2,2,K̂ |v̂h|0,∞,K̂ + |f̂ |1,2,K̂ |v̂h|1,∞,K̂

)
≤Chd

(
|f̂ |2,2,K̂ |v̂h|0,2,K̂ + |f̂ |1,2,K̂ |v̂h|1,2,K̂

)
≤Ch2 (|f |2,2,e|vh|0,2,e + |f |1,2,e|vh|1,2,e) = O

(
h2
)
∥f∥2,e ∥vh∥1,e .

193

By sum the above result over all elements of Ωh, then we conclude with

(f, vh)− ⟨f, vh⟩h = O
(
h2
)
∥f∥2 ∥vh∥1 .

Lemma 2.4. If u ∈ H3(e), for i, j = 1, 2, then ∀vh,∫
e

uxi
(vh)xj

dx−
∫

uxi
(vh)xj

dhλe
x = O

(
h2
)
∥u∥3,e ∥vh∥2,e .

Proof. Applying Theorem 2.1, we obtain:194

E(uxi
(vh)xj

) = hd−2Ê(ûx̂i
(v̂h)x̂j

) ≤ Chd−2[ûx̂i
(v̂h)x̂j

]2,2,K̂

≤Chd−2
(
|ûx̂i

|2,2,K̂ |(v̂h)x̂j
|0,∞,K̂ + |ûx̂i

|1,2,K̂ |(v̂h)x̂j
|1,∞,K̂ + |ûx̂i

|0,2,K̂ |(v̂h)x̂j
|2,∞,K̂

)
≤Chd−2

(
|ûx̂i |2,2,K̂ |(v̂h)x̂j |0,2,K̂ + |ûx̂i |1,2,K̂ |(v̂h)x̂j |1,2,K̂ + |ûx̂i |0,2,K̂ |(v̂h)x̂j |2,2,K̂

)
≤Chd−2

(
|û|3,2,K̂ |v̂h|1,2,K̂ + |û|2,2,K̂ |v̂h|2,2,K̂

)
.

195

where the second last inequality is implied by the equivalence of norms over Q1(K̂)196

and in the last inequality we use the fact that the third derivative of Q1 polynomial197

vanish.198
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Therefore,199

E(uxi
(vh)xj

) ≤ Ch2 (|u|3,2,e|vh|1,2,e + |u|2,2,e|vh|2,2,e) = O
(
h2
)
∥u∥3,e ∥vh∥2,e .200

Lemma 2.5. If f ∈ H2(Ω) or f ∈ V h, ∀vh, we have

(f, vh)− ⟨f, vh⟩h = O (h) ∥f∥2 ∥vh∥0 .

Proof. As in the proof of Lemma 2.3, we have201

E(fv) = O
(
h2
)
∥f∥2,e ∥vh∥1,e .202

By applying the inverse estimate to polynomial vh, we have

E(fv) = O (h) ∥f∥2,e ∥vh∥0,e .

Summing the previous result across all elements in Ωh, we conclude:

(f, vh)− ⟨f, vh⟩h = O (h) ∥f∥2 ∥vh∥0 .

3. The Q1 finite element method and its monotonicity. In this section,203

we first derive the Q1 finite element scheme then pursue its monotonicity.204

3.1. Derivation of the scheme. For problem (1.1), assuming there is a func-205

tion ḡ ∈ H1(Ω) as an extension of g so that ḡ|∂Ω = g, the variational form of (1.1) is206

to find ũ = u− ḡ ∈ H1
0 (Ω) satisfying207

(3.1) A(u, v) = (f, v)−A(ḡ, v), ∀v ∈ H1
0 (Ω),208

where A(u, v) =
∫
Ω
a∇u · ∇vdx+

∫
Ω
cuvdx, (f, v) =

∫
Ω
fvdx.209

Let V h
0 ⊆ H1

0 (Ω) be the continuous finite element space consisting of piece-wise
Q1 polynomials. To have a second-order monotone method, we first approximate the
matrix coefficients a = (aij(x)) by either its average 1

meas(e)

∫
e
adx or its middle point

value on each element e. The approximation is denoted by āe. Then we obtain the
modified bilinear form

Ā(u, v) =

∫
Ω

ā∇u · ∇vdx+

∫
Ω

cuvdx,

where ā = (āe)e∈Ωh
. In practice, we take āe to be the middle point value of a on210

element e for smooth enough a and fine enough mesh Ωh.211

By approximating integrals in Ā(u, v) with quadrature specified in (2.7), along212

with designated quadrature parameter λΩ, we derive the following numerical scheme:213

find uh ∈ V h
0 satisfying214

(3.2) Ah(uh, vh) = ⟨f, vh⟩h −Ah(gI , vh), ∀vh ∈ V h
0 ,215

where the approximated bilinear form is defined as216

(3.3) Ah(uh, vh) :=

∫
Ω

ā∇uh · ∇vhd
h
λx+

∫
Ω

cuhvhd
h
1x.217

The right hand side is defined as218

(3.4) ⟨f, vh⟩h :=

∫
Ω

fvhd
h
1x,219
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and gI ∈ V h is the piece-wise Q1 Lagrangian interpolation polynomial of the following
function:

g(x, y) =

{
0, if (x, y) ∈ (0, 1)2

g(x, y), if (x, y) ∈ ∂Ω.

Then ūh = uh + gI is the numerical solution for the problem (1.1).220

Obviously the quadrature parameters λ = (λ1, λ2) on each element are to be221

determined for the quadrature (2.6). It is not obvious that the numerical solution222

ūh is an accurate approximation of the exact solution u as ā varies depending on the223

mesh.224

Let us denote f the vector consisting of fi = f(xi) for i = 1, . . . , Nh and f̄
an abstract vector consisting of fi for i = 1, . . . , Nh and the boundary condition
gi = g(xi) at the boundary grid points i = Nh + 1, . . . , Nh +N∂

h . Besides, we denote
ū = (u1, . . . , uNh+N∂

h
) the vector such that

ūh =

Nh+N∂
h∑

i=1

uiφi.

Then scheme (3.2) can be written as a finite difference scheme [16], with the matrix225

vector representation Āū = M f where Ā = (aij)Nh×(Nh+N∂
h ), aij = Ah(φj , φi), i =226

1, . . . , Nh, j = 1, . . . , Nh +N∂
h , and M is the lumped mass matrix. For convenience,227

after inverting the lumped mass matrix M , with the boundary conditions, the whole228

scheme can be represented in a matrix vector form229

(3.5) L̄hū = f̄ ,230

where231 (
L̄hū

)
i
:=
(
M−1Āū

)
i
= fi, i = 1, . . . , Nh,232 (

L̄hū
)
i
:=ui = gi, i = Nh + 1, . . . , Nh +N∂

h .233234

3.2. Discrete maximum principle. In this subsection, we review how the
monotonicity implies the discrete maximum principle. For the matrix form (3.5) of
the scheme (3.2), with

u = (u1, . . . , uNh
)
T
, u∂ =

(
uNh+1, . . . , uNh+N∂

h

)T
, ū =

(
u1, . . . , uNh+N∂

h

)T
,

we have the finite difference operator Lh defined by L̄h

Lh(ū) := L̄hū = f̄ , L̄h =

(
Lh B∂

0 I

)
, ū =

(
u

u∂

)
, f̄ =

(
f

g

)
.

The discrete maximum principle is235

(3.6) L̄h(ū)i ≤ 0, 1 ≤ i ≤ Nh =⇒ max
i

ui ≤ max

{
0, max

Nh+1≤i≤Nh+N∂
h

ui

}
.236

The following result was proven in [4]:237

Theorem 3.1. A finite difference operator Lh satisfies the discrete maximum238

principle (3.6) if L̄−1
h ≥ 0 and all row sums of L̄h are non-negative.239
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3.3. Monotonicity of the Q1 finite element. To have the monotonicity, we240

are interested in conditions for L̄h being an M -matrix. Recall a sufficient condition241

for M -matrix, see condition C10 in [30]:242

Lemma 3.2. For a real irreducible square matrix A with positive diagonal entries243

and non-positive off-diagonal entries, A is a nonsingular M -matrix if all the row sums244

of A are non-negative and at least one row sum is positive.245

Then we have the following result on the uniform rectangular mesh. The stiffness246

matrix of (3.2) is denoted as A = (aij) = (Ah(φj , φi)), i, j = 1, . . . , Nh.247

Theorem 3.3. Assume ∀e ∈ Ωh, |ā12e | ≤ min{ā11e , ā22e }. Then for the Q1 scheme248

given by (3.2) for the elliptic equation (1.1) on uniform rectangular mesh, the stiffness249

matrix and L̄h are M -matrices and the finite difference operator defined by L̄h satisfies250

discrete maximum principle, provided the quadrature parameters for each element e251

are chosen as:252

(3.7) λ1
e, λ

2
e ∈

(
|ā11e − ā22e |
ā11e + ā22e

, 1− 2|ā12e |
ā11e + ā22e

]
.253

When |ā12e | = min{ā11e , ā22e }, (3.7) means we take λ1
e, λ

2
e to be the upper bound of the254

interval, i.e. 1− 2|ā12
e |

ā11
e +ā22

e
.255

Proof. First, we consider the following quadrature approximation results on the256

reference element K̂. With quadrature (2.5) and quadrature parameter λe =
(
λ1
e, λ

2
e

)
,257

we have258

⟨ā∇ϕ0,0,∇ϕ0,1⟩h = ⟨ā∇ϕ1,1,∇ϕ1,0⟩h = −1

4
(λ2

eā
11
e + λ1

eā
22
e ) +

1

4
(ā11e − ā22e ),259

⟨ā∇ϕ0,0,∇ϕ1,0⟩h = ⟨ā∇ϕ0,1,∇ϕ1,1⟩h = −1

4
(λ2

eā
11
e + λ1

eā
22
e ) +

1

4
(ā22e − ā11e ),260

⟨ā∇ϕ0,0,∇ϕ1,1⟩h = −1

4

(
(1− λ2

e)ā
11
e + (1− λ1

e)ā
22
e

)
− 1

2
ā12e ,261

⟨ā∇ϕ0,1,∇ϕ1,0⟩h = −1

4

(
(1− λ2

e)ā
11
e + (1− λ1

e)ā
22
e

)
+

1

2
ā12e .262

263

With (3.7) and the assumption |ā12e | ≤ min{ā11e , ā22e }, we have264

(3.8)

⟨ā∇ϕ0,0,∇ϕ0,1⟩h = ⟨ā∇ϕ1,1,∇ϕ1,0⟩h ∈
[
1

2

(
|ā12e | − ā22e

)
,
1

4
(ā11e − ā22e − |ā11e − ā22e |

)
,

⟨ā∇ϕ0,0,∇ϕ1,0⟩h = ⟨ā∇ϕ0,1,∇ϕ1,1⟩h ∈
[
1

2

(
|ā12e | − ā11e

)
,
1

4
(ā22e − ā11e − |ā11e − ā22e |

)
,

⟨ā∇ϕ0,0,∇ϕ1,1⟩h ∈
(
−1

2
(min{ā11e , ā22e } − ā12e ),−1

2
(|ā12e |+ ā12e )

]
,

⟨ā∇ϕ0,1,∇ϕ1,0⟩h ∈
(
−1

2
(min{ā11e , ā22e }+ ā12e ),−1

2
(|ā12e | − ā12e )

]
,

265

which are all non-positive. Again, when |ā12e | = min{ā11e , ā22e }, we will take the above266

values as the bound of the closed side of the interval.267

Given i, j ∈
{
1, . . . , Nh +N∂

h

}
, obviously, if both xi and xj are vertices of the268
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same elements e, then we have269

(3.9)

aij = Ah(φj , φi)

=
∑
e∈Ωh

∫
e

ā∇φj · ∇φid
h
λe
x+

∫
e

cφjφid
h
1x

=
∑
e∈Ωh

∫
K̂

ā∇̂φ̂j · ∇̂φ̂id
h
λe
x̂+

∫
K̂

ĉφ̂jφ̂id
h
1 x̂

=
∑
i,j∈e

∫
K̂

ā∇̂φ̂j · ∇̂φ̂id
h
λe
x̂+

∫
K̂

ĉφ̂jφ̂id
h
1 x̂

270

where
∑

i,j∈e means summation over all elements e containing both vertices i and j.271

Notice that
∫
K̂
ĉφ̂jφ̂id

h
1 x̂ vanish if i ̸= j and

∫
K̂
ā∇̂φ̂j · ∇̂φ̂id

h
λe
x̂ aligns with one272

of the values in (3.8) depending on their relative positions. Therefore, for i ̸= j, with273

(3.7) and the assumption |ā12e | ≤ min{ā11e , ā22e } we have274

(3.10) Aij =
∑
i,j∈e

∫
K̂

ā∇̂φ̂j · ∇̂φ̂id
h
λe
x̂ ≤ 0.275

For i = 1, . . . , Nh, we note that276

(3.11)

Nh+N∂
h∑

j=1

Aij =

Nh+N∂
h∑

j=1

Ah(φj , φi) = Ah(1, φi) = Cci ≥ 0,277

where C is a certain positive number and ci = c(xi) ≥ 0. If xi has no neighboring278

node on the boundary, by
∑Nh

j=1 Aij =
∑Nh+N∂

h
j=1 Aij and (3.11), the i-th row sum of279

A is non-negative. Therefore, we have280

(3.12) Aii ≥
Nh∑

j=1,j ̸=i

|Aij | .281

If xi has a neighboring node on the boundary, with (3.11) and
∑Nh

j=1 Aij ≥
∑Nh+N∂

h
j=1 Aij282

due to Aij ≤ 0 for i ̸= j, we do have (3.12) holds. When xi has two neighboring node283

on the boundary, based on (3.8), among the two neighboring nodes on the boundary284

of xi, there exists nodes xl with l ∈ {Nh + 1, . . . , Nh +N∂
h } such that Ail < 0. Then285

we have286

Nh∑
j=1

Aij ≥
Nh+N∂

h∑
j=1

Aij −Ail > 0.287

Therefore, the stiffness matrix A is an M -matrix. Since the lumped mass ma-288

trix is diagonal and entry-wise positive, with Aij ≤ 0 and noticing that L̄−1
h =289 (

L−1
h −L−1

h B∂

0 I

)
, we conclude L̄h is also an M -matrix. Then with (3.11) and290

Theorem 3.1 we obtain the finite difference operator defined by L̄h satisfies discrete291

maximum principle.292
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Remark 1. For each element e, the choice in (3.7) make λ1
e, λ

2
e > 0, which im-293

plies the V h-ellipticity of the bilinear form (3.3) discussed in Section 4.2. Therefore,294

we can assure of V h-ellipticity and the stiffness matrix being an M-matrix simultane-295

ously.296

Remark 2. The constraint on the coefficient, |ā12e | ≤ min{ā11e , ā22e }, aligns with297

the condition for rendering the stiffness matrix as an M -matrix in the seven-point298

stencil control volume method with optimal optimal monotonicity region in the case299

of homogeneous medium and uniform mesh in [29]. In [28], the authors show that300

a three-by-three stencil can be used to construct monotone finite difference schemes301

under the assumption |a12| < min{a11, a22}.302

Remark 3. If the domain is not convex, e.g., an L-shaped domain, as long as it303

can be partitioned by uniform square meshes satisfying the coefficients constraints or304

quadrilateral meshes satisfying the mesh constraints derived in Section 5, the stiffness305

matrix is still an M -matrix and the monotonicity holds. But the a priori error esti-306

mates in Section 4 might no longer hold due to possible loss of the elliptic regularity307

on a nonconvex domain.308

Remark 4. The choice of the quadrature parameters in (3.7) is sharp to enforce309

the L̄h being an M -matrix but not for monotonicity since M -matrix property is just310

a sufficient but not necessary condition for monotonicity.311

4. Convergence of the Q1 finite element method with mixed quadra-312

ture. In this section, we prove the second-order accuracy of the scheme (3.2) on313

uniform rectangular mesh. For simplicity we only prove result for the problem with314

homogeneous Dirichlet boundary condition, i.e. g = 0. For convenience, in this sec-315

tion, we may drop the subscript h in a test function vh ∈ V h. When there is no316

confusion, we may also drop dx or dx̂ in a integral.317

4.1. Approximation error estimate of bilinear forms. In this subsection,318

we estimate the approximation error of Ah(u, v) to A(u, v).319

Theorem 4.1. Assume aij , c ∈ W 2,∞(Ω) for i, j = 1, 2 and u ∈ H3(Ω), then320

∀v ∈ V h, on element e, we have321

∫
e

(a∇u) · ∇vdx−
∫
e

(āe∇u) · ∇vdhλe
x =O(h2)∥u∥3,e∥v∥2,e,(4.1)322 ∫

e

cuvdx−
∫
e

cuvdh1x =O
(
h2
)
∥u∥2,e∥v∥2,e.(4.2)323

324

Proof. For k, l = 1, 2 and function a ∈ W 2,∞(e), we have325

(4.3)

∫
e

auxk
vxl

dx−
∫
e

āeuxk
vxl

dhλe
x

=

∫
e

(a− āe)uxk
vxl

dx+ āe

(∫
e

uxk
vxl

dx−
∫
e

uxk
vxl

dhλe
x

)
=

∫
e

(a− āe)uxk
vxl

dx+ āeE(uxk
vxl

).

326
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For the first term,327

(4.4)

∫
e

(a− āe)uxk
vxl

dx

=

∫
e

(a− āe)(uxk
vxl

− uxk
vxl

)dx+

∫
e

(a− āe)uxk
vxl

dx

≤∥a− āe∥0,∞,e∥uxk
vxl

− uxk
vxl

∥0,1,e +
1

meas(e)

∫
e

(a− āe)dx

∫
e

uxk
vxl

dx.

328

By Poincare inequality and Cauchy-Schwartz inequality, we have329

(4.5)
∥a− āe∥0,∞,e∥uxk

vxl
− uxk

vxl
∥0,1,e

=O(h2)∥a∥1,∞,e ∥∇ (uxk
vxl

)∥0,1,e = O(h2)∥u∥2,e∥v∥2,e.
330

By Lemma 2.2 and Cauchy-Schwartz inequality331

(4.6)

1

meas(e)

∫
e

(a− āe)dx

∫
e

uxk
vxl

dx

=
h2+d

meas(e)
[a]2,∞,e∥uxk

∥0,e∥vxl
∥0,e = O

(
h2
)
∥u∥1,e∥v∥1,e

332

where in the last equation meas(e) = O(hd) is also used. Therefore, we have the333

estimate of the first term of (4.3):334

(4.7)

∫
e

(a− āe)uxk
vxl

dx = O(h2)∥a∥2,∞,e∥u∥2,e∥v∥2,e.335

For the second term of (4.3), by Lemma 2.4, we obtain336

(4.8)

∫
e

āeuxk
vxl

dx−
∫
e

āeuxl
vxl

dhλe
x = O(h2)∥a∥0,∞,e∥u∥3,e∥v∥2,e,337

which together with (4.7) imply the estimate of (4.3):338

(4.9)

∫
e

auxk
vxl

dx−
∫
e

āeuxk
vxl

dhλe
x = O(h2)∥a∥2,∞,e∥u∥3,e∥v∥2,e.339

Therefore, we have340

(4.10)

∫
e

(a(x)∇u) · ∇vdx−
∫
e

(ā(x) · ∇u)∇vdhλe
x = O

(
h2
)
∥a∥2,∞,e∥u∥3,e∥v∥2,e.341

Similarly we have342

(4.11)

∫
e

cuvdx−
∫
e

cuvdh1x = O
(
h2
)
∥c∥2,∞,e∥u∥2,e∥v∥2,e.343

We also have344

Lemma 4.2. Assume aij , c ∈ W 2,∞(Ω) for i, j = 1, 2. We have

A (vh, wh)−Ah (vh, wh) = O(h) ∥vh∥2 ∥wh∥1 , ∀vh, wh ∈ V h
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Proof. By Theorem 4.1 and noticing that the third derivative of Q1 polynomial345

vanish, we have346 ∫
e

(a∇vh) · ∇whdx−
∫
e

(āe∇vh) · ∇whd
h
λe
x =O(h2)∥vh∥2,e∥wh∥2,e,(4.12)347 ∫

e

cvhwhdx−
∫
e

cvhwhd
h
1x =O

(
h2
)
∥vh∥2,e∥wh∥2,e.(4.13)348

349

By applying the inverse estimate to polynomial zh, we obtain350 ∫
e

(a∇vh) · ∇whdx−
∫
e

(āe∇vh) · ∇whd
h
λe
x =O(h)∥vh∥2,e∥wh∥1,e,(4.14)351 ∫

e

cvhwhdx−
∫
e

cvhwhd
h
1x =O (h) ∥vh∥2,e∥wh∥1,e.(4.15)352

353

Then by summing over all the elements we obtain prove the Lemma.354

4.2. V h-ellipticity and the dual problem. In order to prove the convergence355

results of the scheme (3.2), we need Ah satisfies V h-ellipticity:356

(4.16) ∀vh ∈ V h
0 , C ∥vh∥21 ≤ Ah (vh, vh) .357

By following the proof of Lemma 5.1 in [16], we have358

Lemma 4.3. Assume the eigenvalues of a have a uniform positive lower bound
and a uniform upper bound and c have a upper bound. If there exists lower bound
λ0 > 0 such that ∀e ∈ Ωh, the quadrature parameter λ1

e, λ
2
e > λ0, then there are two

constants C1, C2 > 0 independent of mesh size h such that

∀vh ∈ V h
0 , C1 ∥vh∥21 ≤ Ah (vh, vh) ≤ C2 ∥vh∥21 .

Proof. For element e, at first we map all the functions to the reference element
K̂. Let Z0,K̂ denote the set of vertices on the reference element K̂. We notice that

the set Z0,K̂ is a Q1(K̂)-unisolvent subset. Since the weights of trapezoid rule are
strictly positive, we have

∀p̂ ∈ Q1(K̂),

2∑
i=1

∫
K̂

p̂2x̂idh1 x̂ = 0 =⇒ p̂x̂i = 0 at Z0,K̂ ,

where i = 1, 2. As a consequence,
∑2

i=1

∫
K̂
p̂2x̂idh1 x̂ defines a norm over the quotient

space Q1(K̂)/Q0(K̂). Since that | · |1,K̂ is also a norm over the same quotient space,
by the equivalence of norms over a finite dimensional space, we have

∀p̂ ∈ Q1(K̂), C1|p̂|21,K̂ ≤
2∑

i=1

∫
K̂

p̂2x̂idh1 x̂ ≤ C2|p̂|21,K̂

As the quadrature parameter λ1
e, λ

2
e ≥ λ0 ≥ 0, we have

C1 |v̂h|21,K̂ ≤ C1

2∑
i=1

∫
K̂

(v̂h)
2
x̂i
dh1 x̂ ≤

∫
K̂

(āije ∇v̂h)·∇v̂hd
h
λe

x̂+

∫
K̂

ĉv̂2hd
h
1 x̂ ≤ C2 ∥v̂h∥21,K̂ .

Mapping these back to the original element e and summing over all elements, by the359

equivalence of two norms | · |1 and ∥ · ∥1 for the space H1
0 (Ω) ⊃ V h

0 , we obtain the360

conclusion.361
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In the following part, we assume the assumption of Lemma 4.3 is fulfilled, i.e. the362

V h-ellipticity holds.363

In order to apply the Aubin-Nitsche duality argument for establishing convergence364

of function values, we need certain estimates on a proper dual problem.365

Define θ := u− uh and consider the dual problem: find w ∈ H1
0 (Ω) satisfying366

(4.17) A∗(w, v) = (θ, v) , ∀v ∈ H1
0 (Ω),367

where A∗(·, ·) is the adjoint bilinear form of A(·, ·) such that

A∗(u, v) = A(v, u) = (a∇v,∇u) + (cv, u).

Although here the bilinear form we considered is symmetric i.e. A(·, ·) = A∗(·, ·), we368

still use A∗(·, ·) for abstractness.369

Let wh ∈ V h
0 be the solution to370

(4.18) A∗
h (wh, vh) = (θ, vh) , ∀vh ∈ V h

0 .371

Notice that the right hand side of (4.18) is different from the right hand side of372

the scheme (3.2).373

We have the following standard estimates on wh for the dual problem.374

Lemma 4.4. Assume aij , c ∈ W 2,∞(Ω) and u ∈ H3(Ω), f ∈ H2(Ω). Let w be375

defined in (4.17), wh be defined in (4.18). With elliptic regularity and V h-ellipticity376

hold, we have377

(4.19)
∥w − wh∥1 ≤Ch∥w∥2

∥wh∥2 ≤C ∥θ∥0 .
378

Proof. By V h-ellipticity, we have C1 ∥wh − vh∥21 ≤ A∗
h (wh − vh, wh − vh). By the

definition of the dual problem (4.17), we have

A∗
h (wh, wh − vh) = (θ, wh − vh) = A∗ (w,wh − vh) , ∀vh ∈ V h

0 .

Therefore ∀vh ∈ V h
0 , by Lemma 4.2, we have

C1 ∥wh − vh∥21 ≤ A∗
h (wh − vh, wh − vh)

=A∗ (w − vh, wh − vh) + [A∗
h (wh, wh − vh)−A∗ (w,wh − vh)] + [A∗ (vh, wh − vh)−A∗

h (vh, wh − vh)]

=A∗ (w − vh, wh − vh) + [A (wh − vh, vh)−Ah (wh − vh, vh)]

≤C ∥w − vh∥1 ∥wh − vh∥1 + Ch ∥vh∥2 ∥wh − vh∥1 ,

which implies379

(4.20) ∥w − wh∥1 ≤ ∥w − vh∥1 + ∥wh − vh∥1 ≤ C ∥w − vh∥1 + Ch ∥vh∥2 .380

Now consider Π1w ∈ V h
0 where Π1 is the piece-wise Q1 projection and its defini-381

tion on each element is defined through (2.2) on the reference element. By Theorem382

2.1 on the projection error, we have383

(4.21) ∥w −Π1w∥1 ≤ Ch∥w∥2, ∥w −Π1w∥2 ≤ C∥w∥2,384

which implies385

(4.22) ∥Π1w∥2 ≤ ∥w∥2 + ∥w −Π1w∥2 ≤ C∥w∥2.386
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By setting vh = Π1w, using (4.20), (4.21) and (4.22), we have387

(4.23) ∥w − wh∥1 ≤ C ∥w −Π1w∥1 + Ch ∥Π1w∥2 ≤ Ch∥w∥2.388

By (4.21) and (4.23), we also have389

(4.24) ∥wh −Π1w∥1 ≤ ∥w −Π1w∥1 + ∥w − wh∥1 ≤ Ch∥w∥2.390

By the inverse estimate on the piece-wise polynomial wh −Π1w, we obtain391

(4.25) ∥wh∥2 ≤ ∥wh −Π1w∥2+∥Π1w − w∥2+∥w∥2 ≤ Ch−1 ∥wh −Π1w∥1+C∥w∥2.392

With (4.24), (4.25) and the elliptic regularity ∥w∥2 ≤ C ∥θ∥0, we obtain

∥wh∥2 ≤ C∥w∥2 ≤ C ∥θ∥0 .

4.3. Convergence results. In this section, we initially establish the error es-393

timate for ∥u− uh∥1,Ω. Subsequently, we demonstrate that the Q1 finite element394

method, as given by (3.2), achieves second-order accuracy for function values.395

We have the estimate of the error ∥u− uh∥1,Ω as follows:396

Theorem 4.5. Assume aij , c ∈ W 2,∞(Ω) and u ∈ H2(Ω), f ∈ H2(Ω). With
elliptic regularity and V h-ellipticity hold, we have

∥u− uh∥1,Ω = O (h) (∥u∥2,Ω + ∥f∥2,Ω) .

Proof. By the First Strang Lemma,397

(4.26)

∥u− uh∥1,Ω ≤C

(
inf

vh∈V h

{
∥u− vh∥1,Ω + sup

wh∈Vh

|A (vh, wh)−Ah (vh, wh)|
∥wh∥1,Ω

}
+

+ sup
wh∈V h

|⟨f, wh⟩h − (f, wh)|
∥wh∥1,Ω

)
.

398

By Lemma 4.2, we have:399

|A (vh, wh)−Ah (vh, wh)|
∥wh∥1,Ω

=
O(h)∥vh∥2,Ω∥wh∥1,Ω

∥wh∥1,Ω
= O(h)∥vh∥2,Ω.400

By Lemma 2.3, we have

sup
wh∈V h

|⟨f, wh⟩h − (f, wh)|
∥wh∥1,Ω

=
O(h2)∥f∥2,Ω∥wh∥1,Ω

∥wh∥1,Ω
= O(h2)∥f∥2,Ω.

By the approximation property of piece-wise Q1 polynomials,401

∥u− uh∥1,Ω = O(h)(∥u∥2,Ω + |f∥2,Ω).402

In the following part we prove the Aubin-Nitsche Lemma up to the quadrature403

error for establishing convergence of function values.404

Theorem 4.6. Assume aij , c ∈ W 2,∞(Ω) and u(x) ∈ H3(Ω), f ∈ H2(Ω). As-
sume V h ellipticity holds. Then the numerical solution from scheme (3.2) uh is a
2-th order accurate approximation to the exact solution u:

∥uh − u∥0,Ω = O
(
h2
)
(∥u∥2,Ω + ∥f∥2,Ω) .
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Proof. With θ = u− uh ∈ H1
0 (Ω), we have405

(4.27) ∥θ∥20 = (θ, θ) = A (θ, w) = A (u− uh, wh) +A (u− uh, w − wh)406

For the first term (4.27), by Lemma 4.1, we have407

(4.28)

A (u− uh, wh) = [A (u,wh)−Ah (uh, wh)] + [Ah (uh, wh)−A (uh, wh)]

= (f, wh)− ⟨f, wh⟩h +O
(
h2
)
∥uh∥3 ∥wh∥2

=O
(
h2
)
∥f∥2 ∥wh∥1 +O

(
h2
)
∥uh∥2 ∥wh∥2

=O
(
h2
)
(∥f∥2 + ∥uh∥2)∥θ∥0,

408

where in the second last equation Lemma 2.3 and the fact the third derivative of409

Q1 polynomials vanish are used. As the estimate of ∥wh∥2 and ∥w∥2 in the proof of410

Lemma 4.4, we have411

(4.29)

∥uh∥2 ≤∥uh −Π1u∥2 + ∥Π1u− u∥2 + ∥u∥2 ≤ Ch−1 ∥uh −Π1u∥1 + C∥u∥2
≤Ch−1 (∥u−Π1u∥1 + ∥u− uh∥1) + C∥u∥2
≤Ch−1 ∥u− uh∥1 + C∥u∥2
≤C(∥u∥2 + ∥f∥2),

412

where Theorem 4.5 is used in the last inequality. Therefore, we have413

(4.30) A (u− uh, wh) = O
(
h2
)
(∥f∥2 + ∥u∥2)∥θ∥0.414

For the second term (4.27), by continuity of the bilinear form and Lemma 4.4, we415

have416

(4.31)
A (u− uh, w − wh) ≤ C ∥u− uh∥1 ∥w − wh∥1 ≤ Ch ∥u− uh∥1 ∥w∥2

≤Ch ∥u− uh∥1 ∥θ∥0 = O
(
h2
)
(∥f∥2 + ∥u∥2)∥θ∥0.

417

Therefore, by (4.27), (4.28) and (4.31), we have418

(4.32) ∥θ∥0 = O
(
h2
)
(∥f∥2 + ∥u∥2).419

Remark 5. Similar convergence results for the Q1 method on general quasi-420

uniform quadrilateral meshes can be established via the same proof procedure in this421

section.422

5. Extension to general quadrilateral meshes. For a quadrilateral element423

e as in Fig. 2, let Fe = (Fe1, Fe2)
T be the mapping such that Fe(K̂) = e.424

For φ ∈ V h
0 , by definition φ̂ = φ|e ◦Fe ∈ Q1(K̂). According to the chain rule, we

have
∇φ ◦ Fe = DFT−1

e ∇̂φ̂

where φ̂ = φ ◦Fe, ∇ =
(

∂
∂x1

, ∂
∂x2

)T
, ∇̂ =

(
∂
∂x̂1

, ∂
∂x̂2

)T
and Jacobian matrix DFe =425 (

∂Fe1

∂x̂1

∂Fe1

∂x̂2
∂Fe2

∂x̂1

∂Fe2

∂x̂2

)
.426

Therefore, we have427

(5.1)

∫
e

a∇uh · ∇vhdx =

∫
K̂

(
DF−1

e âDFT−1
e ∇̂ûh

)
· ∇̂v̂h |det(DFe)| dx̂.428
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In the case of regular meshes with mesh size h, the matrix DF−1
e âDFT−1

e = 1
h2 â429

and det(DFe) = h2.430

Approximate (5.1) by the mixed quadrature (2.5) with parameter λ = (λ1, λ2),431

i.e.432

(5.2)

∫
e

(a∇uh) · ∇vh dx ≈
∫
K̂

(
ã∇̂ûh

)
· ∇̂v̂hd

h
λx̂433

where ã =
(
|det(DFe)|DF−1

e âDFT−1
e

)
( 12 ,

1
2 ).434

As in Fig. 2, denote

−→c0 = c0,1 − c0,0,
−→c1 = c1,0 − c0,0,

−→c2 = c1,1 − c1,0,
−→c3 = c1,1 − c0,1

and435

−→ci = (c0i , c
1
i )

T , i = 0, 1, 2, 3, DFh = DFe(
1

2
,
1

2
), āe = a|e ◦ Fe(

1

2
,
1

2
),436

then we have437

DFh =
1

2

(
c01 + c03 c00 + c02
c11 + c13 c10 + c12

)
, DF−1

h =
1

2det(DFh)

(
c10 + c12 −c00 − c02
−c11 − c13 c01 + c03

)
,438

439440

and on element e, we have441

(5.3) ã = det(DFh)DF−1
h āeDFT−1

h =

(
ã11e ã12e
ã12e ã22e

)
.442

To have the stiffness matrix an M -matrix, by Theorem 3.3, the following is a443

sufficient condition:444

(5.4)
∣∣ã12e ∣∣ ≤ min{ã11e , ã22e },445

where446

ã11 =
1

4|det(DFh)|
(
c10 + c12 −c00 − c02

)(ā11 ā12

ā12 ā22

)(
c10 + c12
−c00 − c02

)
=

1

4|det(DFh)|
(
c00 + c02 c10 + c12

)(0 −1
1 0

)(
ā11 ā12

ā12 ā22

)(
0 1
−1 0

)(
c00 + c02
c10 + c12

)
=

1

4|det(DFh)|
(
c00 + c02 c10 + c12

)( ā22 −ā12

−ā12 ā11

)(
c00 + c02
c10 + c12

)
=

det(āe)

4|det(DFh)|
(−→c0 +−→c2

)T
ā−1
e

(−→c0 +−→c2
)
,

447

and similarly448

ã12 =− det(āe)

4|det(DFh)|
(−→c0 +−→c2

)T
ā−1
e

(−→c1 +−→c3
)
,449

ã22 =
det(āe)

4|det(DFh)|
(−→c1 +−→c3

)T
ā−1
e

(−→c1 +−→c3
)
.450

451

By −→c1 +−→c2 −−→c3 −−→c0 =
−→
0 , we note (5.4) is equivalent to452

(5.5)

(−→c0 +−→c2
)T

ā−1
e

(−→c0 +−→c3
)
≥0,

(−→c0 +−→c2
)T

ā−1
e

(−→c0 −−→c1
)
≥ 0,(−→c1 +−→c3

)T
ā−1
e

(−→c0 +−→c3
)
≥0,

(−→c1 +−→c3
)T

ā−1
e

(−→c1 −−→c0
)
≥ 0.

453
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c0,0

c1,0

c1,1

c0,1

e

−→c1

−→c2

−→c3

−→c0

Fig. 2. A quadrilateral element e.

Theorem 5.1. With ã defined in (5.3), if the quadrilateral mesh fulfill the condi-454

tion (5.4) or the mesh condition (5.5), then the stiffness matrix of the linear Q1 finite455

element scheme (3.2) for solving BVP (1.1) is an M -matrix.456

Remark 6. If the diffusion coefficient matrix degenerate to a scalar, i.e. a =457

α(x)I, a sufficient condition for (5.5) is that both diagonals of the quadrilateral ele-458

ment bisect each angle, resulting in two non-obtuse angles for each vertex.459

Remark 7. By adopting some anisotropic mesh adaptation strategy where an460

anisotropic mesh is generated as an M -uniform mesh or a uniform mesh in the metric461

specified by the diffusion matrix a. The method (3.2) for any anistropic problem462

possibly can be monotone on that anisotropic mesh.463

If we consider rectangular meshes, for simplicity we assume464

c0,0 = (0, 0), c1,0 = (h1, 0), c0,1 = (0, h2), c1,1 = (h1, h2).465

Then we have466

ã =

(
h2

h1
ā11 ā12

ā12 h1

h2
ā22

)
467

and (5.4) becomes468

(5.6) |ā12e | ≤ min{h2

h1
ā11e ,

h1

h2
ā22e }.469

Recall that
√

ā11e ā22e ≥ |ā12e |, taking470

(5.7)
h1

h2
=

√
ā11e
ā22e

471

will guarantee (5.6). Therefore, if the rectangular mesh is deployed with aspect ratio472 √
ā11
e

ā22
e
, then the stiffness matrix of the Q1 method (3.2) is an M -matrix.473

If the elliptic coefficient a is constant on the whole domain Ω, when the rect-474

angular mesh are fine enough, there must exist rectangular mesh with aspect ratio475

approximatly
√

ā11
e

ā22
e

such that the stiffness matrix of scheme (3.2) solve the BVP (1.1)476

is an M -matrix.477
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Remark 8. Unfortunately, the technique in this paper cannot be easily extended478

to the three-dimensional case. For the three-dimensional case, with the basis on the479

reference element K̂ = [0, 1]3480

(5.8) ϕ̂i,j,k = x̂i
1(1− x̂1)

1−ix̂j
2(1− x̂2)

1−j x̂k
3(1− x̂3)

1−k, i, j, k = 0, 1,481

and the same derivation as in two-dimensional case, we find out482

⟨ā∇ϕ0,0,0,∇ϕ1,1,0⟩h = − 1

16
(1 + λ3

e)
[
(1− λ2

e)ā
11
e + (1− λ1

e)ā
22
e + 2ā12e

]
+

1

16
(1− λ1

e)(1− λ2
e)ā

33
e .483484

For the symmetric positive-definite coefficient matrix485

a =

 1 −1 + ϵ ϵ
−1 + ϵ 1 −1 + ϵ

ϵ −1 + ϵ 1

486

487

with 1
4 (5−

√
17) < ϵ < 1

2 , we obtain488

⟨ā∇ϕ0,0,0,∇ϕ1,1,0⟩h =
1

16
(1 + λ3

e)(λ
1
e + λ2

e − 2ϵ) +
1

16
(1− λ1

e)(1− λ2
e) ≥

1

16
(1− 2ϵ).489

490

Then obviously the stiffness matrix fails to be an M -matrix.491

6. Numerical experiment.492

6.1. Numerical experiments on uniform meshes. In this subsection, we493

show tests verifying the proved order of accuracy and monotonicity of the scheme494

(3.2) on uniform rectangular meshes. We consider the following two-dimensional495

elliptic equation with Dirichlet boundary condition:496

(6.1) −∇ · (a∇u) + cu = f on [0, π]2497

where a =

(
a11 a12

a21 a22

)
, a11 = a12 = a21 = 1 + 10x2

2 + x1 cosx2 + x2, a22 =

2 + 10x2
2 + x1 cosx2 + x2 and c = x2

1x
2
2, with an exact solution

u(x1, x2) = − sin2 x1 sinx2 cosx2.

When solving this problem with our method, we take the quadrature parameter498

in element e as λ1
e = λ2

e = 1− 2|a12
e |

a11
e +a22

e
.499

The errors are reported in Table 1. We observe the desired second-order conver-500

gence in the discrete l2-norm and infinity norm for the function values.501

The monotonicity is verified by the smallest entries in L−1
h and L̄−1

h which are502

listed in Table 2. As we can see, L−1
h ≥ 0 and L̄−1

h ≥ 0 are achieved.503

Then we consider a more anisotropic case in the form of (6.1) with anisotropic-coef504

(6.2) a11 = 1, a12 = a21 = 9.99, a22 = 100, c = x2
1x

2
2505

and exact solution
u(x1, x2) = − sin2 x1 sinx2 cosx2.

As stated in (5.7), we set h1

h2
=
√

a11

a22 = 10, then we examine the accuracy and506

monotonicty of the method. When solving this problem with our method, we take507

the quadrature parameter in element e as λ1
e = λ2

e = 1− 2|ã12
e |

ã11
e +ã22

e
.508

The errors are reported in Table 3. We observe the desired second-order conver-509

gence in the discrete l2-norm and infinity norm for the function values.510

The monotonicity is verified by the smallest entries in L−1
h and L̄−1

h which are511

listed in Table 4.512
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Table 1
A two-dimensional elliptic equation with Dirichlet boundary conditions on uniform meshes.

The first column is the number of elements in a finite element mesh. The second column is the
number of degree of freedoms.

FEM Mesh DoF l2 error order l∞ error order
4× 4 32 3.56E-1 - 2.70E-2 -
8× 8 72 6.41E-2 2.47 4.89E-2 2.47
16× 16 152 1.49E-3 2.11 1.15E-2 2.08
32× 32 312 3.65E-3 2.03 2.91E-3 1.99
64× 64 632 9.08E-4 2.01 7.25E-4 2.00

Table 2
Minimum of entries in L̄−1

h and L−1
h for elliptic equation (6.1) with smooth coefficients on

uniform meshes.

FEM Mesh L̄−1
h L−1

h

4× 4 0 6.38E-06
8× 8 0 4.26E-10

16× 16 0 2.40E-14
32× 32 0 1.42E-18
64× 64 0 9.24E-23

6.2. Numerical experiments on quadrilateral meshes. In this subsection,513

we show tests verifying the proved order of accuracy and monotonicity of the scheme514

(3.2) on general quadrilateral meshes. We consider the following two-dimensional515

Poisson equation with Dirichlet boundary condition:516

(6.3) −∇ · (a∇u) + cu = f on [0, π]2517

where a = 1 + 10x2
2 + x1 cosx2 + x2 and c = x2

1x
2
2, with an exact solution

u(x1, x2) = − sin2 x1 sinx2 cosx2.

The domain [0, π]2 is partitioned into Ny × Nx elements, where the elements518

are forced to adapt to an inner edge. The angle between the inner edge and the519

x-axis is arctan( 6
√
3

5 ) as depicted in Figure 3, where Ny = Nx = 16. When solving520

this problem with our method, we take the quadrature parameter in element e as521

λ1
e = λ2

e = 1− 2|ã12
e |

ã11
e +ã22

e
.522

The errors are reported in Table 5. We observe the desired second-order conver-523

gence in the discrete l2-norm and infinity norm for the function values.524

For the quadrilateral meshes in Figure 3, we can verify that (5.4) are satisfied525

on each elements numerically. Then we verify the monotonicity through the smallest526

entries in L−1
h and L̄−1

h which are listed in Table 6. As we can see, L−1
h ≥ 0 and527

L̄−1
h ≥ 0 are achieved.528

7. Conclusion. We constructed a linear monotone Q1 finite element method529

for anistropic diffusion problem (1.1). On uniform meshes, when the diffusion matrix530

is diagonally dominant, the M -matrix property is guaranteed thus monotonicity is531

achieved. When this Q1 finite element method is deployed on a general quadrilateral532

mesh, we obtain a local mesh constraint.533
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Table 3
A two-dimensional elliptic equation with anisotropic coefficients (6.2) and Dirichlet boundary

conditions on anisotropic meshes.

FEM Mesh DoF l2 error order l∞ error order
40× 4 39× 3 1.58E-1 - 1.20E-1 -
80× 8 79× 7 3.59E-2 2.14 2.72E-2 2.14

160× 16 159× 15 8.76E-3 2.03 6.65E-3 2.03
320× 32 319× 31 2.18E-3 2.01 1.65E-3 2.01
640× 64 639× 63 5.44E-4 2.00 4.13E-4 2.00

Table 4
Minimum of entries in L̄−1

h and L−1
h for elliptic equation (6.1) with anisotropic coefficients

(6.2) on anisotropic meshes.

FEM Mesh L̄−1
h L−1

h

40× 4 0 0
80× 8 0 0
160× 16 0 0
320× 32 0 0
640× 64 0 0
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