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Abstract. A framework, PhaseLift, was recently proposed to solve the phase retrieval prob-
lem. In this framework, the problem is solved by optimizing a cost function over the set of complex
Hermitian positive semidefinite matrices. This approach to phase retrieval motivates a more gen-
eral consideration of optimizing cost functions on semidefinite Hermitian matrices where the desired
minimizers are known to have low rank. This paper considers an approach based on an alternative
cost function defined on a union of appropriate manifolds. It is related to the original cost function
in a manner that preserves the ability to find a global minimizer and is significantly more efficient
computationally. A rank-based optimality condition for stationary points is given and optimization
algorithms based on state-of-the-art Riemannian optimization and dynamically reducing rank are
proposed. Empirical evaluations are performed using the PhaseLift problem. The new approach is
shown to be an effective method of phase retrieval with computational efficiency increased substan-
tially compared to a state-of-the-art algorithm, the Wirtinger flow algorithm. A preliminary version
of this paper can be found in [W. Huang, K. A. Gallivan, and X. Zhang, Procedia Comput. Sci., 80
(2016), pp. 1125–1134].
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1. Introduction. Recovering a signal given the modulus of its transform, e.g.,
Fourier or wavelet transform, is an important task in the phase retrieval problem.
It is a key problem for many important applications, e.g., X-ray crystallography
imaging [Har93], diffraction imaging [BDP+07], optics [Wal63], and microscopy
[MISE08].

The continuous form of the problem with the Fourier transform recovers x(t) :
Rs → C from |x̃(u)|, where x̃(u) : Rs → C is defined by

x̃(u) =
∫

Rs

x(t) exp
(
−2πu · t

√
−1
)
dt,

and · denotes the Euclidean inner product. This paper considers the discrete form
of the problem where an indexed set of complex numbers x ∈ Cn1×n2×···×ns is to be
recovered from the modulus of its discrete Fourier transform (DFT) |x̃(g1, g2, . . . , gs)|,
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where (g1, g2, . . . , gs) ∈ Ω := G1 × G2 × . . . Gs and Ω is a grid of an s-dimensional
space. The DFT x̃ is given by

x̃(g1, g2, . . . , gs) =

1√
n

∑
i1,i2,...,is

xi1i2...is exp
(
−2π

(
(i1 − 1)g1

n1
+ · · ·+ (is − 1)gs

ns

)√
−1
)
,(1.1)

where n = n1n2 · · ·ns, ij is an integer satisfying 1 ≤ ij ≤ nj for j = 1, . . . s, xi1i2···is
denotes the corresponding entry of x, and x̃(g1, g2, . . . , gs) denotes the corresponding
entry of x̃.

It is well-known that the solution of the phase retrieval is not unique. For example,
when Ω is the uniform grid, i.e., Gi = {0, 1, . . . , ni−1}, i = 1, 2, . . . , s, if x is a solution,
then

1. y = cx is a solution, where c ∈ C and |c| = 1;
2. y ∈ Cn1×n2×···ns such that yi1i2···is = xj1j2···js is a solution, where jk = ik+ak

mod nk, k = 1, . . . , s, and a1, a2, . . . as are integers;
3. y ∈ Cn1×n2×···ns such that yi1,i2,...is = x̄j1j2...js is a solution, where jk = −ik

mod nk, k = 1, . . . , s, and x̄ is the conjugate of x.
These equivalent solutions are called trivial associates of x and infinitely many addi-
tional solutions may exist [San85].

Oversampling in the Fourier domain is a standard method to obtain a unique
solution and it has been shown to almost always give a unique solution for multiple
dimensional problems for real-valued and nonnegative signals [BS79, Hay82, San85].
Many algorithms based on alternating projection [GS72] have been developed to solve
phase retrieval problem using the oversampling framework [Fie78, Fie82, Els03, Bla04,
Mar07, CMWL07]. While these algorithms are efficient and effective in some problem
settings, they may not perform well in other settings. For details on the capabilities
and difficulties of these algorithms see [CESV13] and the references therein.

In recent years other frameworks, using multiple structured illuminations, or the
mathematically equivalent construct of masks, combined with convex programming,
have been proposed to recover the phase exactly, e.g., PhaseLift [CESV13] and Phase-
Cut [WDAM13]. It was later proved that a feasibility problem of two convex sets can
be solved for PhaseLift in [CL13, DH14]. For the PhaseLift framework, three major
results are of interest here. First, using a small number (related to s) of noiseless
measurements of the modulus defined by certain carefully designed illuminations, the
phase can be recovered exactly [CESV13]. Second, when these carefully designed
measurements are not used, the phase can be recovered exactly with high probabil-
ity using O(n log n) noiseless measurements of the modulus [CSV13]. This result is
further improved in [CL13] that exact recovery is still possible using O(n) noiseless
measurements. Finally, the stability of recovering the phase using noisy measurements
is shown in [CSV13, CL13].

For the PhaseCut framework, it is known that if the phase can be recovered using
PhaseLift, then it can also be recovered by a modified version of PhaseCut and that
the PhaseCut is at least as stable as the weak formulation of PhaseLift for noisy
measurements [WDAM13]. The weak formulation is formally defined in [WDAM13,
section 4.1]; however, the idea of a weak formulation is also given earlier in the proof
of [CESV13, Theorem 2.1]. Empirically, PhaseCut is observed to be more stable in
the situation of sparse sampling of the modulus.

The problems in both PhaseLift and PhaseCut concern optimizing convex cost
functions defined on a convex set of complex matrices, i.e.,
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(1.2) min
X∈Dn

H(X),

where H : Dn → R : X 7→ H(X), and Dn denotes the set of all n-by-n complex
Hermitian positive semidefinite matrices. PhaseCut further requires that the diagonal
entries of X are 1. However, the dimension of (1.2) is usually too large to be solved
by standard convex programming techniques. For example, in order to recover an
image of 100 by 100 pixels, i.e., s = 2 and n1 = n2 = 100, solving an optimization
problem with an argument that is a 1002 by 1002 matrix is required. The complexity
of solving PhaseLift and PhaseCut using standard semidefinite programming solvers,
e.g., SDPT3 [TTT99], is discussed in [WDAM13, section 4.6].

Since the desired optimum, X∗, is known to be a rank-one matrix, a low-rank ma-
trix approximation of the argument matrix is used in [CESV13] to save computations
for PhaseLift. While this approximation has good empirical performance, no conver-
gence proof is given in [CESV13]. For PhaseCut, a block coordinate descent algorithm
is proposed in [WDAM13] and the algorithm is shown to be computationally inex-
pensive for each iteration. However, the block coordinate descent algorithm converges
slowly, i.e., linear convergence [BV04, section 9.4.3], and the overall computational
cost can be unacceptably high.

This paper uses the framework of PhaseLift and an alternate cost function F :
Cn×p → R : Y 7→ F (Y ) = H(Y Y ∗) defined by matrix factorization is considered.
Even though F is not convex, it is shown to be a suitable replacement of the cost
function H. Riemannian optimization methods on an appropriate quotient space are
used for optimizing F . Using the cost function F with a small dimension p reduces
storage and the computational complexity of each iteration. Fast convergence rate is
also guaranteed theoretically by known Riemannian optimization results. This new
approach is shown to perform empirically much better than the low-rank approxi-
mate version of the algorithm used for PhaseLift in [CESV13] and the Wirtinger flow
algorithm in [CLS16] from the points of view of efficiency and effectiveness. Finally,
note that the analysis and algorithm presented is not specific to the cost function
used for phase retrieval in PhaseLift but for a general cost function defined on Dn
and therefore the approach has potential for optimization in other applications where
the global optimum is known to have low rank.

A forerunner to this paper appeared in [HGZ16b]. This paper differs from the
conference paper in the following main aspects: (i) proofs of theoretical results and
derivations of required ingredients for Riemannian optimization are given in this pa-
per; (ii) a different Riemannian metric is used for the fixed-rank Hermitian positive
semidefinite matrices and this metric yields a cheaper Riemannian gradient and iso-
metric vector transport;1 and (iii) the initial iterate in this paper is chosen by exploit-
ing the approach in [CLS16, Algorithm 1], whereas [HGZ16b] uses only a random
initial iterate. The proposed initial iterate has an edge over the previous one in the
sense that it significantly reduces computational time, and (iv) this paper compares
the proposed algorithm with the state-of-the-art algorithm, the Wirtinger flow algo-
rithm [CLS16], which is not done in [HGZ16b].

The idea of using low-rank factorization to solve positive semidefinite constrained
problems is, of course, not new, but all the research results of which the authors
are aware are for real positive semidefinite matrix constraints. Burer and Monteiro
[BM03] first investigated this approach for semidefinite programming in which the cost

1The Riemannian gradient in [HGZ16b] requires solving a Sylvester equation, whereas the Rie-
mannian gradient in this paper has a cheaper closed form. The isometric vector transports in this
paper has complexity O(np2)+O(p3) which is cheaper than the one of O(np2)+O(p6) in [HGZ16b].
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function is linear. Journée et al. [JBAS10] use low-rank factorization for a more gen-
eral problem in the sense that the cost function H is not necessary
linear,

min
X∈S+

n

H(X), such that tr(AiX) = bi, i = 1, . . .m,

where S+
n denotes the set of all real n-by-n symmetric positive semidefinite matrices,

Ai ∈ Rn×n, Ai = ATi , and AiAj = 0 for any i 6= j. The conditions that Ai = ATi and
AiAj = 0 for any i 6= j imply the number of equality constraints m is at most n as
pointed out in [JBAS10]. The complex problem (1.2) does not belong to this category
of problem since m is much larger than n when the complex problem is written as a
real problem; see details in [HGZ16a, Appendix A].

The paper is organized as follows. Section 2 presents the notation used. The
derivation of the optimization problem framework in PhaseLift is given in section
3. The alternate cost function and optimality conditions are derived in section 4.
Riemannian optimization methods and the required geometric objects are presented
in section 5. In section 6, the effectiveness of the methods is demonstrated with several
numerical experiments, and, finally, conclusions are given in section 7.

2. Notation. For any z ∈ Cn1×n2×···ns , vec(z) ∈ Cn, where n = n1n2 · · ·ns,
denotes the vector form of z, i.e., (vec(z))k = zi1i2···is , where k = i1+

∑s−1
j=1 n1n2 · · ·nj

(ij+1 − 1). Re(·) denotes the real part of the argument and superscript ∗ denotes the
conjugate transpose operator. Given a vector v with length h, Diag(v) denotes an
h-by-h diagonal matrix the diagonal entries of which are v.

0s×k denotes an s× k zero matrix; Is×k denotes a diagonal matrix with diagonal
entries 1; and 0s denotes a vector with length s with entries all 0. diag(M) denotes
a vector of the diagonal entries of M ∈ Cs×k and tr(M) denotes the trace of M .
If s ≥ k, M⊥ denotes an s × (s − k) matrix such that M∗⊥M⊥ = I(s−k)×(s−k) and
M∗⊥M = 0(s−k)×k. M(:, 1 : k) denotes a matrix that is formed by the first k columns
of matrix M . span(M) denotes the column space of M .

Given a manifold M, TxM denotes the tangent space of M at x ∈ M. Dk
denotes set {X ∈ Cn×n|X = X∗, X � 0, rank(X) ≤ k}, 1 ≤ k ≤ n, where the
statement X � 0 means that matrix X is positive semidefinite or definite. St(k, s)
denotes the complex compact Stiefel manifold {A ∈ Cs×k|A∗A = Ik×k} with s ≥ k.
SC

+(k, s) denotes the set of all Hermitian positive semidefinite s× s matrices of fixed
rank k. When elements of SC

+(k, s) are restricted to be real, it is denoted by SR
+(k, s).

Cs×k∗ denotes the complex noncompact Stiefel manifold, i.e., the set of all s × k full
column rank complex matrices. Os denotes the group of s-by-s unitary matrices.

Given a function f(x) on M or Cs×k, grad f(x) denotes the gradient of f at x.

3. The PhaseLift approach to phase retrieval. The phase retrieval problem
recovers x from its quadratic measurements of the form A(x) = {|〈ak,x〉|2 : k =
1, 2, . . . ,m}, where ak ∈ Cn1×n2×···ns , k = 1, 2, . . . ,m, are given. It is well-known
that the quadratic measurements can be lifted up to be linear measurements about
the rank-one matrix X = xx∗, where x = vec(x) ∈ Cn. Specifically, the measurements
are |〈ak,x〉|2 = tr(aka∗kxx

∗) := tr(AkX), where ak = vec(ak) ∈ Cn. Define A to be
the linear operator mapping X into b :=

[
tr(A1X) tr(A2X) · · · tr(AmX)

]T . The
goal of the phase retrieval problem is to

find X such that A(X) = b,X � 0 and rank(X) = 1.(3.1)
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The alternative problem suggested in [CESV13] considers an optimization problem
that does not force the rank of matrix to be one but adds a nuclear norm penalty
term to favor low-rank solutions,

(3.2) min
X∈Dn

‖b−A(X)‖22 + κ tr(X),

where κ is a positive constant.
Measurements with noise, b ∈ Rm, are assumed to have the form b = A(X) + ε,

where ε ∈ Rm is noise sampled from a distribution p(:;µ). The task suggested in
[CESV13] is

min
X
− log(p(b;µ)) + κ tr(X)(3.3)

such that µ = A(X) and X ∈ Dn

or equivalently

min
X∈Dn

− log(p(b;A(X))) + κ tr(X),(3.4)

where κ is a positive constant. Problems (3.3) and (3.4) are preferred over problem
(3.1), since they are convex programming problems when the log-likelihood function
is concave.

4. Theoretical results. This section presents theoretical results that motivate
the design of algorithms for optimizing a cost function H defined on Dn. The analysis
does not rely on the convexity of the cost function H.

4.1. Equivalent cost function. The cost functions generically denoted H all
satisfy

(4.1) H : Dn → R : X 7→ H(X).

It is well-known that for any X ∈ Dn, there exists Yn ∈ Cn×n such that YnY ∗n = X.
Furthermore, if X is rank p, then there exists Yp ∈ Cn×p such that YpY ∗p = X.
Throughout this paper, the subscript p is used to emphasize the column size of Y .
Therefore, a surjective mapping between Cn×p and Dp is given by αp : Cn×p → Dp :
Yp 7→ YpY

∗
p . It is clear that αp is not an injection. Specifically, given X ∈ Dp, if

Yp satisfies αp(Yp) = YpY
∗
p = X, then YpOp also satisfies αp(YpOp) = X for any

Op ∈ Op. Thus, if the desired solution of H is known to be at most rank p, then an
alternate cost function to H can be used:

Fp : Cn×p → R : Yp 7→ H(αp(Yp)) = H(YpY ∗p ).

The subscripts of F and α indicate the column size of the argument. The domain
of Fp has lower dimension than that of H which may yield computational efficiency.
Therefore, instead of problem of (1.2), the problem minYp∈Cn×p Fp(Yp) is considered.

4.2. Optimality conditions. In this section, the characterizations of stationary
points of F and H over Dn are used to derive the relationship between optimizing F
and optimizing H over Dn. Since H is defined on a constrained set, a stationary point
of H does not simply satisfy gradH(X) = 0. One can define the stationary points of
H as follows by [HGZ16a, Lemma A.1].

Definition 4.1. A stationary point of (4.1) is a matrix X ∈ Dn such that
gradH(X)X = 0 and gradH(X) � 0.
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The gradient is easily computed and is given in Lemma 4.2 in terms of H.

Lemma 4.2. The gradient of Fp at Yp is given by

(4.2) gradFp(Yp) = 2 gradH(YpY ∗p )Yp.

Proof. On one hand, it satisfies that for all ηp ∈ Cn×p

DFp(Yp)[ηp] = gE(gradFp(Yp), ηp).

On the other hand, we have

DFp(Yp)[ηp] = DH(YpY ∗p )[Ypη∗p + ηpY
∗
p ] = gE(gradH(YpY ∗p ), Ypη∗p + ηpY

∗
p )

= gE((gradH(YpY ∗p ) + gradH(YpY ∗p )∗)Yp, ηp),

which implies gradFp(Yp) = (gradH(YpY ∗p ) + gradH(YpY ∗p )∗)Yp. Since H is defined
on Hermitian matrices, gradH can be written as a Hermitian matrix. It follows that
gradFp(Yp) = 2 gradH(YpY ∗p )Yp, which is (4.2).

Theorem 4.3 and [JBAS10, Theorem 7] show similar results under different frame-
works. Both results suggest considering the cost function Fp if the desired minimizer
of H is known to have rank smaller than p, as is the case with PhaseLift for phase
retrieval. This is formalized in Theorem 4.3 and has critical algorithmic, efficiency,
and optimality implications when H has suitable structure such as convexity as in the
case of PhaseLift. These implications for PhaseLIft are discussed in section 6.1.

Theorem 4.3. Suppose Yp = KsQ
∗ is a rank deficient minimizer of Fp, where

Ks ∈ Cn×s∗ with s < p and Q ∈ St(s, p). Then gradH(YpY ∗p ) is a positive semidefinite
matrix and, therefore, X = YpY

∗
p is a stationary point of H. If furthermore H is

convex, then X is a global minimizer of (4.1).

Proof. We first show that (Ks)∗⊥ gradH(X)(Ks)⊥ is a positive semidefinite ma-
trix. This is proved by contradiction. If (Ks)∗⊥ gradH(X)(Ks)⊥ is not a positive
semidefinite matrix, then it has at least one negative eigenvalue. If µ and v de-
note a negative eigenvalue and the corresponding eigenvector, then the semidefinite
positive matrix η = −(Ks)⊥(vµv∗)(Ks)∗⊥ satisfies gE(η, gradH(X)) < 0. Thus, a
smooth curve γ(t) = X + tη satisfies that γ̇(0) = η, γ(t) ∈ Dp for all t ∈ [0, δ) and
γ(0) = X, where δ is a positive constant. The derivative d

dtH(γ(t))|t=0 by definition
is gE(η, gradH(X)) and, therefore, d

dtH(γ(t))|t=0 < 0.
Decomposing γ(t) yields

γ(t) =
(
Ks ṽ

)( Is×s
−tµ

)(
Ks ṽ

)∗
,

where ṽ = (Ks)⊥v. Define r(t) = ( Ks ṽ ) Diag (Is,
√
−tµ). Therefore, γ(t) =

r(t)r∗(t). The derivative of r(t2) is ξ(t) = ( 0n×s
√
−µṽ ). It follows that

(4.3)
d2

dt2
H(γ(t2))|t=0 =

d2

dt2
Fn(r(t2))|t=0 = gE(ξ(0),HessFp(Ỹp)[ξ(0)]) ≥ 0.

Let a(t) = H(γ(t)) and so ȧ(0) < 0. It follows that

d2

dt2
H(γ(t2))|t=0 =

d2

dt2
a(t2) = (4t2ä(t2) + 2ȧ(t2))|t=0 = 2ȧ(0) < 0,
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which conflicts with (4.3). Therefore, (Ks)∗⊥ gradH(YpY ∗p )(Ks)⊥ is a positive semidef-
inite matrix which is a contradiction with the initial assumption of the proof.

Let Qs denote an orthonormal basis of span(Ks). gradH(X) can be written as

gradH(X) =
(
Qs (Ks)⊥

)( S A∗

A R

)(
Qs (Ks)⊥

)∗
,

where S ∈ Cs×s, S∗ = S, A ∈ C(n−s)×p, and R = (Ks)∗⊥ gradH(X)(Ks)⊥. Since Yp
is a stationary point of F , we have gradH(X)KsQ

∗ = gradF (Yp) = 0n×s. It follows
that S = 0s×s and A = 0(n−s)×s. Therefore, R � 0 implies gradH(X) � 0, which
means X is a stationary point of H by Definition 4.1.

For the optimization problems in the PhaseLift framework for phase retrieval,
Theorem 4.3 is important due to the following reasons. First, the cost function H in
PhaseLift is convex over a convex domain Dn. Therefore, finding a stationary point of
H by using the cost function F is sufficient to find a global minimizer of H. Second,
the rank of the desired minimizer of H in PhaseLift is one. It follows that by using
a low-rank factorization-based cost function Fp with small p > 1 it is possible to
find the desired unique rank-one minimizer of H by optimizing Fp with small p > 1.
(This approach also has lower storage and computational complexity compared to
optimizing H.) The theorem guarantees that any minimizer, Yp, of Fp with rank less
than p must have rank 1 and YpY

∗
p must be the global minimizer of H.

5. A Riemannian approach. Riemannian optimization is an active research
area and recently many Riemannian optimization methods have been systemically
analyzed and efficient libraries designed, e.g., the Riemannian trust-region Newton
method (RTR-Newton) [Bak08], the Riemannian Broyden family method includ-
ing the BFGS method and its limited-memory version (RBroyden family, RBFGS,
LRBFGS) [RW12, Hua13, HGA15], the Riemannian trust-region symmetric rank-
one update method and its limited-memory version (RTR-SR1, LRTR-SR1) [Hua13,
HAG15], the Riemannian Newton method (RNewton), and the Riemannian nonlinear
conjugate gradient method (RCG) [AMS08, SI15, Sat15].

Journée et al. [JBAS10] have proposed a method that combines a Riemannian
optimization method on a fixed-rank manifold with a procedure for increasing rank
for their semidefinite constrained problem setting. Specifically, given an iterate with
rank r, a Riemannian optimization method is applied for a cost function on a manifold
with rank r. If the limit point is not rank deficient, then either a descent direction
to a higher rank space can be found or a desired stationary point is obtained. For
the former case, a descent algorithm is applied to find a next descent iterate which
is used to be the initial point for a Riemannian optimization method on a manifold
with larger rank. For the latter case, the convergence rate can be obtained and de-
pends on the Riemannian optimization algorithm. If the limit point is rank deficient,
then convergence analyses are complicated and may need to consider a union of man-
ifolds [ZHG+15]. This case was ignored in [JBAS10] since situations of a limit point
being rank deficient were not encountered in their experiments.

If the rank of the desired minimizer is known, such as in the problems in PhaseLift,
then [BM03] suggests choosing the rank of initial point to be that rank. However,
this, in fact, is not the appropriate response due to complexity considerations as the
theory and algorithms derived in this section indicate and the numerical experiments
in section 6 demonstrate. To see this, let r∗ denote the desired rank of the global
minimizer. Note that there may exist a stationary point Yr∗ of Fr∗ for which Yr∗Y

∗
r∗

is not a stationary point of H. It follows that forcing iterates to be rank r∗ is not
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appropriate and starting from a higher rank or moving to a higher rank to move to
the minimizer of H is necessary.

There is also a potential problem of using a rank increasing procedure. If Yp
is a stationary point of Fp, then (Yp, 0n×(k−p)) is also a stationary point of Fk. A
procedure that increases rank starting from Yp may find a point Yk which is close to
(Yp, 0n×(k−p)). It follows that using Yk to be an initial point of the iteration on the
rank-k manifold may not work efficiently since Yk may be too close to a stationary
point. Therefore, an algorithm based on Riemannian optimization methods on a
fixed-rank manifold and a procedure to decrease rank without using any rank increase
technique is proposed in this section.

5.1. Riemannian optimization on fixed-rank manifold. In order to make
use of Riemannian optimization theory and algorithms on a fixed-rank manifold, the
Riemannian gradient of the cost function, the tangent space of an element in the man-
ifold, the retraction operation on the manifold, and an appropriate vector transport
are needed. The definitions of Riemannian gradient, tangent space, retraction, and
vector transport are standard and can be found, e.g., in [Boo86, AMS08].

Derivations for Riemannian objects of SR
+(p, n) have been given in [AIDV09]. This

section includes derivations of Riemannian objects for the complex case, i.e., SC
+(p, n).

Since the mapping αp is not an injection, all the minimizers of Fp are degenerate,
which causes difficulties in some algorithms, e.g., Riemannian and Euclidean Newton
methods. In order to overcome this difficulty, a function defined on a quotient manifold
with fixed rank is considered. To this end, define the mapping βp to be the mapping
αp restricted on Cn×p∗ , i.e., βp : Cn×p∗ → SC

+(p, n) : Y 7→ αp(Y ) = Y Y ∗, and function
Gp to be the function Fp restricted on Cn×p∗ , i.e., Gp : Cn×p∗ → R : Y 7→ Fp(Y ) =
H(βp(Y )). Like αp, the mapping βp is a surjection but not an injection and there are
multiple matrices in Cn×p∗ mapping to a single point in SC

+(p, n). Nevertheless, given
an X ∈ SC

+(p, n), β−1
p (X) is a manifold, while α−1

p (X) is not a manifold. Therefore,
using the mapping βp, a quotient manifold can be used to remove the degeneracy by
defining the equivalence class β−1

p (Y Y ∗) = [Y ] = {Y O|O ∈ Op} and the set

Cn×p∗ /Op = {[Y ]|Y ∈ Cn×p∗ }.

This set can be shown to be a quotient manifold over R. To clarify the notation,
π(Y ) is used to denote [Y ] viewed as an element in Cn×p∗ /Op and π−1(π(Y )) is used
to denote [Y ] viewed as a subset of Cn×p∗ . The function mp : π(Y ) 7→ Y Y ∗ is a
diffeomorphism between Cn×p∗ /Op and SC

+(p, n).
An element of a quotient manifold is an equivalence class which is often cum-

bersome computationally . Fortunately, choosing a representative for an equivalence
class and definitions of related mathematical objects have been developed in many
papers in the literature of computation on manifolds, e.g., [AMS08]. The vertical
space at Y ∈ π−1(π(Y )), which is the tangent space of π−1(π(Y )) at Y , is

VY = {Y Ω|Ω∗ = −Ω,Ω ∈ Cp×p}.

The horizontal space at Y , HY , is defined to be a subspace of TY Cn×p∗ = Cn×p that is
orthogonal to VY , i.e., satisfying HA ⊕ VA = TA GL(n,C). Therefore, a Riemannian
metric of Cn×p∗ is required to define the meaning of orthogonal. The metric used is

(5.1) ĝY (ηY , ξY ) = Re(tr((Y ∗Y )η∗Y ξY ))
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for all ηY , ξY ∈ TY Cn×p∗ and Y ∈ Cn×p∗ . The metric (5.1) yields a cheap vector
transport by parallelization which is discussed later. The horizontal space is therefore

HY = {Y S + Y⊥K|S∗ = S, S ∈ Cp×p,K ∈ C(n−p)×p}.

The horizontal space HY is a representation of the tangent space Tπ(Y ) Cn×p∗ /Op. It
is known that for any ηπ(Y ) ∈ Tπ(Y ) Cn×p∗ /Op, there exists a unique vector in HY ,
called the horizontal lift of ηπ(Y ) and denoted by η↑Y

, satisfying Dπ(Y )[η↑Y
] = ηπ(Y );

see e.g., [AMS08]. Lemma 5.1 gives a relationship among horizontal lifts of a tangent
vector ηπ(Y ) when different representations in π−1(π(Y )) are chosen. The result
follows from [Hua13, Theorem 9.3.1].

Lemma 5.1. A horizontal vector field η̂ of Cn×p∗ is the horizontal lift of a vector
field η on Cn×p∗ /Op if and only if, for each Y ∈ Cn×p∗ , we have η̂Y O = η̂YO for all
O ∈ Op.

The orthogonal projections on to the horizontal space or the vertical space are
also easily characterized.

Lemma 5.2. The orthogonal projection to vertical space VY is P vY (η) = Y Ω, where
Ω = ((Y ∗Y )−1Y ∗η − η∗Y (Y ∗Y )−1)/2 is a skew Hermitian matrix. The orthogonal
projection to Horizontal space HY is PhY (η) = η − Y Ω.

Proof. By definition of HY and VY , PhY (η) satisfies that (Y ∗Y )−1Y ∗PhY (η) =
PhY (η)∗Y (Y ∗Y )−1 and can be expressed as η−Y Ω. It follows that Ω = ((Y ∗Y )−1Y ∗η−
η∗Y (Y ∗Y )−1)/2, which gives the desired results.

Finally, the desired cost function that removes the equivalence can be defined as

(5.2) fp : Cn×p∗ /Op → R : π(Y ) 7→ fp(π(Y )) = Gp(Y ) = Fp(Y ).

The function fp in (5.2) has the important property that π(Y ) is a nondegenerate
minimizer of f over Cn×p∗ /Op if and only if Y Y ∗ is a nondegenerate minimizer of H
over SC

+(p, n).
The gradient is given in Lemma 5.3.

Lemma 5.3. The horizontal lift of the gradient of (5.2) at Y is

(grad f(π(Y )))↑Y
= PhY (gradF (Y )(Y ∗Y )−1).

Proof. The directional derivative of f along any ηπ(Y ) ∈ Tπ(Y ) Cn×p∗ /Op is

D f(π(Y ))[ηπ(Y )] = D f(π(Y ))[Dπ(Y )[η↑Y
]] = DF (Y )[η↑Y

]

= Re(tr(gradF (Y )∗η↑Y
)) = ĝY (gradF (Y )(Y ∗Y )−1, η↑Y

)

= ĝY (PhY (gradF (Y )(Y ∗Y )−1), η↑Y
).

Additionally using the definition of gradient [AMS08, (3.31)], i.e., D f(π(Y ))
[ηπ(Y )] = gπ(Y )(grad f(π(Y )), ηπ(Y )), and the equation gπ(Y )(grad f(π(Y )), ηπ(Y )) =
ĝY ((grad f(π(Y )))↑Y

, η↑Y
), yields the result.

Retraction is used in updating iterates in a Riemannian algorithm. Vector trans-
port is used to compare tangent vectors in different tangent spaces. Specifically, a
retraction R is a smooth mapping from the tangent bundle TM, which is the set of all
tangent spaces, onto M such that (i) R(0x) = x for all x ∈M (where 0x denotes the
origin of TxM) and (ii) d

dtR(tξx)|t=0 = ξx for all ξx ∈ TxM. The restriction of R to
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TxM is denoted by Rx. A vector transport T : TM⊕TM→ TM, (ηx, ξx) 7→ Tηx
ξx

with associated retraction R is a smooth mapping such that, for all (x, ηx) in the do-
main of R and all ξx ∈ TxM, it holds that (i) Tηx

ξx ∈ TR(ηx)M, (ii) T0x
ξx = ξx,

and (iii) Tηx is a linear map. The retraction used in the Riemannian optimization
methods is

(5.3) Rπ(Y )(ηπ(Y )) = π(Y + η↑Y
),

and the vector transport used is the vector transport by parallelization [HAG16b]:

Tηx
ξx = ByB

†
x,

where B is a smooth tangent basis field defined on an open set V ofM and B†x denotes
the pseudoinverse of Bx. A smooth orthonormal tangent basis of Cn×p∗ /Op can be
defined as follows: given π(Z) ∈ Cn×p∗ /Op, the horizontal lifts of columns in Bπ(Z) at
Z is {

ZL−∗eie
T
i L
−1, i = 1, . . . , p

}
⋃{

1√
2
ZL−∗(eieTj − ejeTi )L−1, i = 1, . . . , p, j = i+ 1, . . . , p

}
⋃{

1√
2
ZL−∗(eieTj + eje

T
i )
√
−1L−1i = 1, . . . , p, j = i+ 1, . . . , p

}
⋃{

Z⊥ẽie
T
j L
−1, i = 1, . . . n− p, j = 1, . . . p

}⋃{
Z⊥ẽie

T
j

√
−1L−1, i = 1, . . . n− p, j = 1, . . . p

}
,

where (e1, . . . , ep) is the canonical basis of Rp, (ẽ1, . . . , ẽ(n−p)) is the canonical basis
of Rn−r, and Z∗Z = LL∗ is the Cholesky decomposition.

In summary, this section provides the objects used in Riemannian optimization
methods, i.e., the horizontal space, the projection to a horizontal space, the Rieman-
nian metric, the retraction, the vector transport, and the Riemannian gradient.

5.2. Dynamic rank reduction. Since the domain of fp, Cn×p∗ /Op, is not
closed, i.e., a sequence {W (i)} representing {π(W (i))} generated by an algorithm
may have a limit point Ŵ with rank less than p, a simple well-known strategy for
dynamically reducing rank is adapted and used. Since it is impossible in practice to
check whether a limit point of iterates {W (i)} is a lower-rank matrix or just close to
one of lower rank, the idea suggested below makes more sense when the desired rank
of the minimizer is known and the current iterate W (i) has a higher rank than the
desired rank. This is the case with PhaseLift for phase retrieval.

The thin singular value decomposition of the ith iterate is W (i) = UΣV ∗ and Σ =
Diag(σ1, σ2, . . . , σp), where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. Let σ̃ be ‖Diag(σ1, . . . , σp)‖F /√
p. If there exists q < p such that σq/σ̃ > δ and σq+1/σ̃ ≤ δ for a given threshold

δ, then Ŵ = U(:, 1 : q) Diag(σ1, . . . σq)V (:, 1 : q)∗ is chosen to be the initial point
for optimizing cost function fq over Cn×q∗ /Oq. The details of reducing rank are given
in Algorithm 1. Note that the step of decreasing the rank may produce an iterate
that increases the cost function value. This facilitates global optimization by allowing
nondescent steps.

Combining a Riemannian optimization method with the procedure of reducing
rank gives Algorithm 2.

Recently, a rigorous definition of a rank adaptation strategy, which not only re-
duces rank but also increases rank if necessary, for optimization with rank inequality
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Algorithm 1. Reduce rank.
Require: Y ∈ Cn×p; threshold δ;
Ensure: W ∈ Cn×q;

1: Take thin singular value decomposition for Y , i.e., Y = U Diag(σ1, . . . , σp)V ∗,
where U ∈ Cn×p, V ∈ Cp×p and σ1 ≥ · · · ≥ σp ≥ 0;

2: Set σ̃ = ‖Diag(σ1, . . . , σp)‖F /
√
p;

3: if σp/σ̃ > δ then
4: q ← p, W ← Y and return;
5: else
6: Find q such that σq/σ̃ > δ and σq+1/σ̃ ≤ δ;
7: Let W = U(:, 1 : q) Diag(σ1, . . . σq)V (:, 1 : q)∗ and return;
8: end if

Algorithm 2. Rank reduce algorithm.

Require: p > 0; Y (0)
p ∈ Cn×p a representation of initial point π(Y (0)

p ) for f ; stop-
ping criterion threshold ε; rank reducing threshold δ; a Riemannian optimization
method;

Ensure: W
1: for k = 0, 1, 2, . . . do
2: Apply Riemannian method for cost function f over Cn×p∗ /Op with initial point
π(Y (k)

p ) until ith iterate W (i) satisfying g(grad f, grad f) < ε2 or the requirement
of reducing rank with threshold δ;

3: if g(grad f, grad f) < ε2 then
4: Set W ←W (i) and return;
5: else[iterate in the Riemannian optimization method meets the requirements

of reducing rank]
6: Apply Algorithm 1 with threshold δ and obtain an output Ŵ ∈ Cn×q;
7: p← q and set Y (k+1)

p = Ŵ ;
8: end if
9: end for

constraints based on the notion of rank-related Riemannian retractions has been de-
veloped in [ZHG+15]. It is pointed out here that one can exploit the idea in [ZHG+15]
and similarly define a rank adaptation algorithm to optimize F .

6. Experiments. In this section, numerical simulations for noiseless problems
and those with Gaussian noise are used to illustrate the performance of the pro-
posed method. The required Riemannian objects are derived in section 6.1 and the
experimental environment and parameters are defined in section 6.3. The detailed
implementations are given in section 6.4. Algorithm 2 with LRBFGS is compared
for a range of parameters in section 6.5. In section 6.6, the Riemannian approach
is compared to the Wirtinger flow algorithm in [CLS16] that represents the current
state-of-the-art algorithm. Finally, the performance is evaluated for various sizes of
natural images.

6.1. Cost function, gradient, and complexity for PhaseLift. The known
random masks or illumination fields defined on the discrete signal domain are denoted
wr ∈ Cn1×n2×···ns , r = 1, . . . l. It follows that {〈ak,x〉, k = 1, . . .m} is
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 (Fns
⊗Fns−1 ⊗ · · · Fn1) Diag(w1)x

...
(Fns

⊗Fns−1 ⊗ · · · Fn1) Diag(wl)x

 ,

where ⊗ denotes the Kronecker product and Fni ∈ Cti×ni , i = 1, . . . , s, denotes
the one-dimensional DFT. Let Zi denote (Fns ⊗ Fns−1 ⊗ · · · Fn1) Diag(wi) and Z
denote (ZT1 ZT2 · · · ZTl )T . We have A(x) = diag(Zxx∗Z∗), which implies that
A(X) = diag(ZXZ∗).

When the entries in the noise ε are drawn from the normal distribution with mean
0 and variance τ , the cost functions of (3.4) and (3.2) are essentially identical, i.e.,
for (3.2), H1(X) = ‖b − diag(ZXZ∗)‖22 + κ tr(X), and for (3.4), H2(X) = 1

τ2 ‖b −
diag(ZXZ∗)‖22 + κ tr(X). Without loss of generality, only the cost function H(X) =
‖b−diag(ZXZ∗))‖22/‖b‖22 +κ tr(X) is considered. It can be shown that the Euclidean
gradient of H is gradH(X) = 2

‖b‖22
Z∗Diag(diag(ZXZ∗)−b)Z+κIn×n. The gradients

of functions Fp and fp can be constructed by using Lemmas 4.2 and 5.3.
Stationary points, including local minimizers, of Fp with rank p can be discarded

if found and the algorithm restarted appropriately possibly with an increased p. If an
X with numerical rank 1 < r < p is encountered when iterating using Fp and X is not
a stationary point, then the rank reduction strategy increases efficiency by removing
the unnecessary directions from X and continuing the iteration on Fr.

Even though stationary points with rank 1 that are not local minimizers of F1 may
exist, their presence tends to simply slow the algorithm rather than stop the iteration
at the saddle point; see the experiments in section 6.5. As expected, therefore, running
with p > 1 avoids this issue completely. There is no theorem guaranteeing that the
iterates generated by optimizing Fp with adapting p but remaining greater than 1
always converge to an approximation of the rank-one minimizer of H in PhaseLift,
but such convergence occurred in all of the experiments below. The use of a carefully
chosen initial iterate as discussed below is partly responsible, though the convergence
is also observed with random initial iterate.

6.2. Initial iterate. The initial iterate Y (0)
p is computed by Algorithm 3, which

generalizes [CLS16, Algorithm 1] such that the value p > 1 is allowed. It is shown
in [CLS16] that the initialization can be satisfactory with high probability if the
number of measure m is large enough, i.e., m ≥ cn log(n) for some sufficiently large
constant c. Note that the initial iterate is chosen such that its singular values are
identical. This choice of initial point minimizes the influence of magnitudes of singular

Algorithm 3. Initialization.
Require: Y ∈ Cn×p drawn from the standard normal distribution;
Ensure: Initial iterate Y (0)

p ;
1: Y ← qr(Y ), where qr(M) is a Q-factor of the QR-decomposition of M ;
2: for i = 1, . . . , N do
3: Y ← qr(Z∗Diag(b)ZY );
4: end for

5: λ =
√

n
∑m

i=1 bi∑l
i=1 vec(wi)∗ vec(wi)

;

6: Y
(0)
p ← λY ;
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values of the initial point. In other words, if a bias of magnitudes of singular values
is shown during iteration, one knows that the bias is generated by the algorithm and
the surface of the cost function not the initial iterate.

6.3. Data, parameters, and notation. A complex number a+ b
√
−1 is said

to be drawn from a distribution in this paper if both a and b are drawn from the
distribution independently. The entries of the true solution x∗ and Gaussian masks
wi, i = 1, . . . l, are drawn from the standard normal distribution. The entries of x∗
are further normalized by ‖x∗‖2. For the noiseless problem, the measurement b is set
to be diag(Zx∗x∗∗Z

∗), and for the Gaussian noise problem, the measurement b is set
to be diag(Zx∗x∗∗Z

∗) + ε, where the entries of ε ∈ Rm are drawn from the normal
distribution with mean 0 and variance τ that is specified later for each experiment.
The rank of the first iterate is denoted by p0.

The limited-memory version of the Riemannian BFGS method (LRBFGS) is cho-
sen to be the representative Riemannian method in step 2 of Algorithm 2. If the norm
of the gradient over the norm of the initial gradient is smaller than 10−6, then the
step size of LRBFGS is fixed to be 1. The minimum number of iterations at each rank
is 10. The parameter κ is chosen to be 1/

√
n if p > 1 and 0 if p = 0 for Algorithm 2.

The codes are written in C++ using the library ROPTLIB [HAGH16] through its
MATLAB interface. All experiments are performed in MATLAB R2016b on a 64-bit
Windows system with a 3.4-GHz CPU (Intel Core i7-6700). The DFT is performed
using the library FFTW [FJ05] with one thread. The code is available at http:
//www.math.fsu.edu/∼whuang2/papers/SPLRROMCSC.htm.

6.4. Implementation of a limited-memory BFGS method on the fixed-
rank manifold Cn×p

∗ /Op. We exploit the version of LRBFGS developed in [HGA15,
Algorithm 2] and modify the version to use an alternate update defined in [HAG16a]
which allows the line search using the Wolfe conditions to be replaced by the Armijo
line search. The LRBFGS method is stated in Algorithm 4. It is shown in [HAG16b]
that a tangent vector can be represented by a vector with size the dimension of
the manifold. The vector transport by parallelization using this representation is
essentially identity, which is the cheapest one can expect. The necessary subalgo-
rithms for efficiently computing the representation of vector transports are given in
Algorithms 5 to 9.

The complexities of the algorithms are measured by the number of fast Fourier
transforms (FFT) (or inverse FFT) and the number of matrix multiplications (MM)
between an m-by-p matrix and a p-by-p matrix. The complexities are given on the
right-hand side of the algorithms except the operations with lower-order complexities.
Note that p� n holds in practice. The operations with complexity of O(p3) are not
reported either. Since MM depends on p, we define complexity unit NN, which is
independent of p, such that MM = NNp2. If the step size is accepted at the first
try in the line search algorithm, then the complexity of one iteration in Algorithm 4
is 2lp FFT + 7p2 NN without consideration of the cost in the stopping criterion. If
p > 1, then the computations of singular values for checking the stopping criterion
take additional 2p2 NN.

6.5. Initial point size and rank reducing threshold. In this section, noise-
less problems are used. The initiate iterate of LRBFGS is obtained by Algorithm 3
with N = 10. The stopping criterion of Algorithm 2 requires the norm of gradient to
be less than 10−10.

http://www.math.fsu.edu/~whuang2/papers/SPLRROMCSC.htm
http://www.math.fsu.edu/~whuang2/papers/SPLRROMCSC.htm
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Algorithm 4. LRBFGS for problems on Cn×p∗ /Op.
Require: Initial iterate x0 ∈M; an integer χ > 0; line search constant δ ∈ (0, 1).

1: k = 0, γ0 = 1, ` = 0; compute Fp(xk) and gradFp(xk); . # 2lp FFT;
2: Compute the intrinsic representation gfdk of gradF (xk)(x∗kxk)−1 by Algorithm 5;
. # 9

2p
2 NN;2

3: Obtain ηk ∈ Cd, intrinsic representation of a vector ηw ∈ Txk
M, by the following

algorithm, step 4 to step 14:
4: q ← gfdk;
5: for i = k − 1, k − 2, . . . , k − ` do
6: ξi ← ρi Re(q∗si);
7: q ← q − ξiyi;
8: end for
9: r ← γkq;

10: for i = k − `, k − `+ 1, . . . , k − 1 do
11: ω ← ρi Re(r∗yi);
12: r ← r + si(ξi − ω);
13: end for
14: set ηk = −r;
15: Compute ηwk = D2Exk

(ηk) by Algorithm 6; . # 5
2p

2 NN
16: find the largest αk ∈ {1, %, %2, . . .} satisfying

F (xk + αkη
w
k ) ≤ F (xk) + δαkη

T
k gfdk,

17: Compute F (xk+1); . # lp FFT
18: Set xk+1 = xk + αkη

w
k ;

19: Apply Algorithm 7 with Z = xk+1 and obtain unit vectors V = {v1, v2, . . . , vp}
and complex numbers S = {s1, s2, . . . , sp} and W = {w1, w2, . . . , wp}, and the
lower triangle matrix L. . # p2 NN

20: Compute gradF (xk+1); . # lp FFT
21: Compute the intrinsic representation gfdk+1 of gradF (xk+1)L−1L−∗; . # 7

2p
2 NN

22: Define sk = αkηk and y = gfdk+1 − gfdk;
23: Compute a = Re(y∗ksk) and b = ‖sk‖22;
24: if a

b ≥ 10−4‖gfdk‖2 then
25: Compute c = ‖y(k+1)

k ‖22 and define ρk = 1/a and γk+1 = a/c;
26: Add sk, yk and ρk into storage and if ` ≥ χ, then discard vector pair
{sk−`, yk−`} and scalar ρk−` from storage, else `← `+ 1;

27: else
28: Set γk+1 ← γk, {ρk, . . . , ρk−`+1} ← {ρk−1, . . . , ρk−`}, {sk, . . . , sk−`+1} ←
{sk−1, . . . , sk−`} and {yk, . . . , yk−`+1} ← {yk−1, . . . , yk−`};

29: end if
30: k = k + 1, goto Step 3;

Table 1 presents the experimental results of Algorithm 2 with n1 = n2 = 128
several values of l, p0, and δ. When l = 6, the average computational time and
the standard derivation of p0 = 1 are much larger relatively than the starting ranks

2Note that Alg5(Y, U) = Alg5(Y, Ph
Y (U)), where Y ∈ Cn×p

∗ and Alg5 : (Cn×p
∗ ,Cn×p) →

Cnp−p(p+1)/2 is the function defined by Algorithm 5
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Algorithm 5. Compute the intrinsic representation of U ∈ HY .

Require: Y ∈ Cn×p∗ , U ∈ HX , a function αY : Cn×p → Cn×p : A 7→
[
Y L−∗ Y⊥

]T
A

(see Algorithm 8), where Y ∗Y = LL∗ is the Cholesky decomposition.

1:

[
Ω̃
K̃

]
= αY (U), where Ω̃ ∈ Cp×p and K̃ ∈ C(n−p)×p; . # 2p2 NN

2: Set Ω = (Ω̃L+ L∗Ω̃∗)/2, K = K̃L and k = 1; . # 1
2p

2 NN
3: for j = 2, . . . , p, i = 1, . . . j − 1 do
4: vX(k) = Ωij , where Ωij is the ith row jth column entry of Ω;
5: k ← k + 1;
6: end for
7: for i = 1, . . . , (n− p), j = 1, . . . , p do
8: vX(k) = Kij and k ← k + 1;
9: end for

10: return vector vX ∈ Cnp−p(p+1)/2;

Algorithm 6. Compute a vector in HY from its intrinsic representation.

Require: Y ∈ Cn×p∗ , vY ∈ Cnp−p(p+1)/2, a function βY : Cn×p → Cn×p : A 7→[
Y L−∗ Y⊥

]
A (see Algorithm 9), where Y ∗Y = LL∗ is the Cholesky decomposi-

tion.
1: k = 1;
2: for j = 2, . . . , p, i = 1, . . . j − 1 do
3: Ωij = vY (k) and Ωji = −vY (k);
4: k ← k + 1;
5: end for
6: for i = 1, . . . , (n− p), j = 1, . . . , p do
7: Kij = vY (k) and k ← k + 1;
8: end for
9: Set Ω̃ = ΩL−1 and K̃ = KL−1; . # 1

2p
2 NN;

10: return βY

[
Ω̃
K̃

]
; . # 2p2 NN;

Algorithm 7. Compute unit vectors in Householder matrices (v1, v2, . . . , vp), com-
plex numbers (s1, s2, . . . , sp), (w1, w2, . . . , wp), and a lower triangle matrix L satisfying
LL∗ = Z∗Z.
Require: Z =

[
z1 z2 · · · zp

]
∈ Cn×p;

1: for i = 1, . . . , p do . # p2 NN
2: Let a denote −earg z̃i1

√
−1‖z̃i‖2 and define vi = (z̃i − ae1)/‖z̃i − ae1‖2, si =

−earg z̃i1
√
−1, and wi = z̃∗i vi/v

∗
i z̃i, where z̃i is the vector formed by last n− i+ 1

entries of zi, z̃i1 is the first entry of z̃i and e1 denotes the first canonical basis of
Rn−i+1;

3: Z =
[
z1 z2 · · · zp

]
← QiZ, where Qi =

[
Ii−1 0

0 In−i+1 − (1 + wi)viv∗i

]
;

4: end for
5: L← Z(1 : p, 1 : p)∗; . Z is an upper triangle matrix.
6: return (v1, v2, . . . , vp), (s1, s2, . . . , sp), (w1, w2, . . . , wp), and L;
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Algorithm 8. Compute αX(A).
Require: A ∈ Cn×p, and VX = (v1, v2, . . . , vp), SX = (s1, s2, . . . , sp), and WX =

(w1, w2, . . . , wp) generated by Algorithm 7 with input X;
1: for i = 1, . . . , p do . # 2p2 NN

2: A← QiA, where Qi =
[
Ii−1 0

0 In−i+1 − (1 + wi)viv∗i

]
;

3: end for
4: return diag(s∗1, s

∗
2, . . . , s

∗
p, In−p)A;

Algorithm 9. Compute βX(A).
Require: A ∈ Cn×p, and VX = (v1, v2, . . . , vp), SX = (s1, s2, . . . , sp), and WX =

(w1, w2, . . . , wp) generated by Algorithm 7 with input X;
1: A← diag(s1, s2, . . . , sp, In−p)A
2: for i = p, (p− 1) . . . , 1 do . # 2p2 NN

3: A← QiA, where Qi =
[
Ii−1 0

0 In−i+1 − (1 + wi)viv∗i

]
.

4: end for
5: Return A;

Table 1
The mean and the standard derivation of computational time of 100 runs of Algorithm 2 using

LRBFGS with variant l, p0, and δ and output format is (mean)/(the standard derivation). Since δ
does not take effect for p0 = 1, the row corresponding to p0 = 1 has only one result. The subscript
k indicates a scale of 10k.

δ:0.95 δ:0.9 δ:0.85 δ:0.8 δ:0.75

l:6
p0:1 3.13/3.54
p0:2 1.60/5.54−1 1.49/3.56−1 1.39/2.72−1 1.37/2.31−1 1.38/2.14−1
p0:4 1.79/3.96−1 1.73/2.22−1 1.72/1.87−1 1.73/1.99−1 1.75/1.79−1

l:20
p0:1 9.35−1/8.48−2
p0:2 1.30/7.20−2 1.30/8.45−2 1.31/6.99−2 1.29/8.21−2 1.29/7.26−2
p0:4 1.99/1.65−1 2.00/1.71−1 1.99/1.55−1 1.99/1.46−1 2.02/1.66−1

p0 = 2, 4. Note that Algorithm 3 with a small value of l, which is the case in these
tests, often does not give a satisfactory initial iterate. Therefore, if the initial point
is close to the global rank-one minimizer, then Algorithm 2 with p0 = 1 is fast;
otherwise Algorithm 2 with p0 = 1 is usually very slow. This explains the big standard
derivation of computational time for p = 1. Using p0 > 1 improves the efficiency of
the algorithm. It allows the algorithm to search on a larger dimensional space and find
a more reasonable initial point for Algorithm 2 when p finally reduces to 1. However,
since optimizing over a higher dimensional space requires more work on each iteration,
Algorithm 2 with p0 = 4 is not as fast as p0 = 2. On the other hand, when l = 20,
Algorithm 3 is able to provide a satisfactory initial condition. Therefore, it is not
necessary to search over a larger dimensional space and Algorithm 2 with p0 = 1 is
efficient and reliable.

Table 2 reports empirical probabilities of success with the starting rank p0 = 1, 2
and n1 = n2 = 32. The threshold δ is set to 0.9 for p0 = 2. Multiple values of l
are used. Using starting rank p0 = 2 increases the probability of success when the
number of measurements are not sufficient.
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Table 2
Empirical probability of success based on 100 random trials for different signal/measurement.

l 2 3 4 5 6 7 8
p0 : 1 0 0.01 0.69 0.97 0.98 1.00 1.00
p0 : 2 0 0.48 0.96 0.99 1.00 1.00 1.00

Table 3
The comparison results of an average of 10 random runs between the Wirtinger flow algorithm

and Algorithm 2. WF and R denote the Wirtinger flow algorithm and the LRBFGS method. err
denotes the relative error min|a|=1 ‖ax− x∗‖/‖x∗‖

l = 6, ε = 10−5 , p0 = 2 l = 20, ε = 10−10 , p0 = 1
n1 = n2 = 16 n1 = n2 = 32 n1 = n2 = 128 n1 = n2 = 256

τ WF R WF R WF R WF R

0
t 9.12−2 2.81−2 2.28−1 4.91−2 3.84 9.23−1 2.251 6.11

FFT 4864 1129 7037 1305 12496 2560 11092 2662
NN 0 739 0 833 0 372 0 385
err 2.67−4 1.68−4 6.30−4 5.81−4 5.42−9 9.27−9 1.11−8 3.21−8

10−6
t 8.13−2 2.22−2 1.97−1 4.96−2 3.88 9.33−1 2.231 6.13

FFT 4864 1129 7037 1327 12492 2554 11092 2688
NN 0 735 0 839 0 372 0 388
err 2.68−4 1.65−4 6.36−4 5.15−4 3.51−4 3.51−4 10.00−4 10.00−4

10−4
t 7.97−2 2.18−2 2.00−1 4.91−2 3.79 8.84−1 2.191 6.14

FFT 4868 1127 7033 1312 12492 2526 11104 2746
NN 0 732 0 827 0 370 0 393
err 3.40−3 3.39−3 9.87−3 9.90−3 3.51−2 3.51−2 10.00−2 10.00−2

We conclude from these experiments that the rank reducing algorithm, Algo-
rithm 2, with p0 > 1 is useful in the sense of both efficiency and effectiveness when a
satisfactory initial iterate is unknown.

6.6. Comparisons with a standard low-rank method. A state-of-the-art
algorithm, the Wirtinger flow algorithm, is proposed in [CLS16]. This algorithm
works by defining

Y (k+1) = Y (k) − µk+1

‖Y (0)‖2
∇F (Y (k)),

where Y (0) is the first iterate given by Algorithm 3 and {µk} is a sequence of pre-
defined step sizes. We use the same heuristic formula as in [CLS16]: µk = min(1 −
e−k/k0 , µmax)µ0, where k0, µmax, and µ0 are given constants. The coefficient in the
formula of µk needs to be carefully chosen, and we use the best values by tuning
them during our tests. The stopping criteria of the Wirtinger flow algorithm and
Algorithm 2 require the norm of the gradient to be less than ε, which is specified in
Table 3. The initial iterate of the Wirtinger flow algorithm is given by Algorithm 3
with N = 50, which is the same as the setting in [CLS16].

Table 3 shows that Algorithm 2 is significantly faster than the Wirtinger flow
algorithm for both noiseless and noise problems in the sense of both computational
time and machine-independent criteria, the number of FFT and NN. Note that the
complexity of 1 FFT is larger than 1 NN.

Candes et al. [CESV13, CSV13] use a MATLAB library, TFOCS [BCG11], that
contains a variety of accelerated first-order methods given in [Nes04] and, in particu-
lar, the method based on FISTA [BT09] is used to optimize the cost functions (3.2) in
PhaseLift. Since the domain Dn has dimension 1

2n(n+ 1), which is usually too large
to be solved, a low-rank version of FISTA (LR-FISTA) is used instead in [CESV13].
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Gold balls data set

min

max

Galaxy

min

max

Fig. 1. Left: A gold balls data set image of 256 by 256 pixels. The values of pixels are complex
numbers. The number of iterations is 85. The computational time is 9.3 seconds, including the
computations for an initial iterate. The relative error min|a|=1 ‖ax − x∗‖/‖x∗‖ is 1.60 × 10−15.
The numbers of FFT and NN are 4020 and 682, respectively. Right: A gray galaxy image of 1800
by 2880 pixels. The values of pixels are real numbers. The number of iterations is 136. The
computational time is 1473 seconds including the computations for an initial iterate. The relative
error is 1.96× 10−15. The numbers of FFT and NN are 6000 and 1090, respectively.

However, LR-FISTA is not a competitive algorithm; see details in [HGZ16a] for com-
parisons between Algorithm 2 and LR-FISTA.

6.7. Performance of PhaseLift on natural images. Two images of different
sizes, shown in Figure 1, are used to illustrate the performance of Algorithm 2 for
noiseless measurements. Twenty masks l = 20 and p0 = 1 are used. Algorithm 2
stops when the norm of the gradient over the norm of the initial gradient is smaller
than 10−15. Algorithm 2 is able to recover the images in minutes.

7. Conclusion. In this paper, the recently proposed PhaseLift framework for
solving the phase retrieval problem motivated the consideration of cost functions H
on the set of complex Hermitian positive semidefinite matrices Dn that include the
PhaseLift cost function.

An alternate cost function F related to factorization is used to replace the cost
function H, i.e., F (Y ) = H(Y Y ∗). The optimality conditions of H are related to
the properties of F , and the important optimality condition, Theorem 4.3, shows
that if Yp is a rank deficient minimizer of Fp, then YpY

∗
p is a stationary point of H.

For general problems defined on Dn, if r∗, the rank of the desired minimizer of cost
function H, is low, the optimality condition suggests the use of the alternate cost
function F with p > r∗. If r∗ is small, then a small p can be used and optimization
on Fp can be more efficient than optimization on H.

Additionally, Algorithm 2 based on optimization on a fixed-rank manifold and dy-
namically reducing is developed for optimizing the cost function F . For optimization
on a fixed-rank manifold, recently developed state-of-the-art Riemannian optimization
methods on a quotient space are used.

For the phase retrieval problem, when the number of measurements is not suffi-
cient large, Algorithm 3 does not give a satisfactory initial condition. Algorithm 2
with higher starting rank p0 > 1 improves the efficiency and reliability. Further-
more, Algorithm 2 is much faster than the Wirtinger flow algorithm in the sense of
computational time and the number of machine-independent operations regardless of
p0 = 1 or 2.
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