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ABSTRACT

We consider smooth optimization problems with a Hermitian positive semi-definite fixed-rank con-
straint, where a quotient geometry with three Riemannian metrics gi(·, ·) (i = 1, 2, 3) is used to
represent this constraint. By taking the nonlinear conjugate gradient method (CG) as an example,
we show that CG on the quotient geometry with metric g1 is equivalent to CG on the factor-based
optimization framework, which is often called the Burer–Monteiro approach. We also show that
CG on the quotient geometry with metric g3 is equivalent to CG on the commonly-used embedded
geometry. We call two CG methods equivalent if they produce an identical sequence of iterates
{Xk}. In addition, we show that if the limit point of the sequence {Xk} generated by an algorithm
has lower rank, that is Xk ∈ Cn×n, k = 1, 2, . . . has rank p and the limit point X∗ has rank r < p,
then the condition number of the Riemannian Hessian with metric g1 can be unbounded, but those
of the other two metrics stay bounded. Numerical experiments show that the Burer–Monteiro CG
method has slower local convergence rate if the limit point has a reduced rank, compared to CG
on the quotient geometry under the other two metrics. This slower convergence rate can thus be
attributed to the large condition number of the Hessian near a minimizer.

Keywords Riemannian optimization · Hermitian fixed-rank positive semidefinite matrices · embedded manifold ·
quotient manifold · Burer–Monteiro · conjugate gradient · Riemannian Hessian

1 Introduction

1.1 The Hermitian PSD low-rank constraints

In this paper we are interested in algorithms for minimizing a real-valued function f with a Hermitian positive semi-
definite (PSD) low-rank constraint

minimize
X

f(X)

subject to X ∈ Hn,p
+

, (1)

where Hn,p
+ denotes the set of n-by-n Hermitian PSD matrices of fixed rank p ≪ n. Even though X ∈ Hn,p

+ is a
nonconvex constraint, in practice (1) is often used for approximating solutions to a minimization with a convex PSD
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constraint:
minimize
X∈Cn×n

f(X)

subject to X < 0
. (2)

Among all kinds of matrix constraints, PSD matrices are abundant in applications and recent research. They arise in
semidefinite programming serving as covariance matrices in statistics and kernels in machine learning, etc. See [1]
and [2] for a reference of these applications. If the solution of (2) is of low rank and O(n2) complexity is too large
for storage or computation, it is preferable to consider a low-rank representation of PSD matrices. For example, real
symmetric PSD fixed-rank matrices were used in [3, 4].

Since the elements in the constraint setHn,p
+ have a low-rank structure, they can be represented in a low-rank compact

form on the order of O(np2), which is smaller than the O(n2) storage when directly using X ∈ Cn×n. In many
applications, the cost function in (2) takes the form f(X) = 1

2‖A(X) − b‖2F where A is a linear operator and the
norm is the Frobebius norm, and f(X) can be evaluated efficiently by O(pn logn) flops for X ∈ Hn,p

+ ; see, e.g., the
PhaseLift problem [5, 6] and the interferometry recovery problem [7, 8]. For these kinds of problems, solving (1) with
an iterative algorithm that works with low-rank representations for X ∈ Hn,p

+ can lead to a good approximate solution
to (2) with compact storage and computational cost.

1.2 The real inner product and Fréchet derivatives

Since f(X) is real-valued and thus not holomorphic, f(X) does not have a complex derivative with respect to X ∈
Cn×n. In this paper, all linear spaces of complex matrices will therefore be regarded as vector spaces over R. For any
real vector space E , the inner product on E is denoted by 〈., .〉E . For real matrices A,B ∈ Rm×n, the Hilbert–Schmidt
inner product is 〈A,B〉

Rm×n = tr(ATB). Let ℜ(A) and ℑ(B) represent the real and imaginary parts of a complex
matrix A. For A,B ∈ C

m×n, the real inner product for the real vector space C
m×n then equals

〈A,B〉
Cm×n := ℜ(tr(A∗B)), (3)

where ∗ is the conjugate transpose. We emphasize that (3) is a real inner product, rather than the complex Hilbert—
Schmidt inner product. It is straightforward to verify that (3) can be written as

〈A,B〉
Cm×n = tr(ℜ(A)Tℜ(B)) + tr(ℑ(A)Tℑ(B)) = 〈ℜ(A),ℜ(B)〉

Rm×n + 〈ℑ(A),ℑ(B)〉
Rm×n .

With the real inner product (3) for the real vector space Cm×n, a Fréchet derivative for any real valued function f(X)
can be defined as

∇f(X) = ∇fℜ(X)(X) + i∇fℑ(X)(X) ∈ C
m×n, (4)

where∇fℜ(X)(X),∇fℑ(X)(X) ∈ Rm×n are the gradient of the cost function f with respect to the real and imaginary
parts of X , respectively. In particular, for f(X) = 1

2‖A(X)− b‖2F with a linear operatorA, the Fréchet derivative (4)
becomes

∇f(X) = A∗(A(X)− b)

where A∗ is the adjoint operator of A. See Appendix A for details.

1.3 Three different methodologies

In this paper we will consider three straightforward ideas and methodologies for solving (1).

1.3.1 The Burer–Monteiro method

The first approach, often called the Burer–Monteiro method [9], is to solve the unconstrained problem

min
Y ∈Cn×p

F (Y ) := f(Y Y ∗). (5)

As proven in Appendix A, the chain rule of Fréchet derivatives gives

∇F (Y ) = [∇f(Y Y ∗) +∇f(Y Y ∗)∗]Y ∈ C
n×p.

The gradient descent method simply takes the form of

Yn+1 = Yn − τ∇F (Yn) = Yn − τ [∇f(YnY
∗
n ) +∇f(YnY

∗
n )

∗]Yn, (6)
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which is one of the simplest low-rank algorithms. The nonlinear conjugate gradient and quasi-Newton type methods,
like L-BFGS, can also be easily used for (5). On the other hand, F (Y ) = F (Y O) for any unitary matrix O ∈ Op×p,
where

Op = {O ∈ C
p×p : O∗O = OO∗ = I}.

Even though this ambiguity of unitary matrices is never explicitly addressed in the Burer–Monteiro method, in this
paper we will prove that the gradient descent and nonlinear conjugate gradient methods for solving (5) are exactly
equivalent to the Riemannian gradient descent and Riemannian conjugate gradient methods on a quotient manifold.
Thus the convergence of the Burer–Monteiro method can be understood within the context of Riemannian optimizaiton
on a quotient manifold.

1.3.2 Riemannian optimization with the embedded geometry ofHn,p
+

Another natural approach is to regardHn,p
+ as an embedded manifold in Cn×n. For instance, Riemannian optimization

algorithms on the embedded manifold of low-rank matrices and tensors are quite efficient and popular [10, 11]. Even
though it is possible to study Hn,p

+ ⊂ C
n×n as a complex manifold, we will regard C

n×n as a 2n2-dimensional real
vector space andHn,p

+ ⊂ C
n×n as a manifold over R since f(X) is real-valued. In particular, the embedded geometry

of Sn,p+ , representing the set real symmetric PSD low-rank matrices, was studied in [12].

A Riemannian metric is a smoothly varying inner product defined on the tangent space. The Riemannian metric of the
real embedded manifoldHn,p

+ can simply be taken as the inner product (3) on Cn×n. The embedded geometry of the
real manifoldHn,p

+ ⊂ Cn×n will be discussed in Section 3.

Even though the tangent space and the Riemannian gradient in Section 3 for Hn,p
+ look like a natural extension of

those for Sn,p+ , it is not obvious why this should be true. The subtlety lies in the fact that we have to regard X ∈ Hn,p
+

as an element of a real vector space. For instance, for regarding X ∈ Hn,p
+ as a real vector, one can either regard a

complex matrix X as the pair of its real and imaginary part, or regard X ∈ Cn×n with its realification, which is a

2n-by-2n real matrix generated by replacing each complex entry a+ ib of X by a 2-by-2 block
[
a −b
b a

]

. But neither

way gives a straightforward generalization from the real case in [12] to the complex case in Section 3. Instead, with
the real inner product (3) and the corresponding Fréchet derivative, it is possible to achieve the desired generalization.

1.3.3 Riemannian optimization by using quotient geometry

The third approach is to consider the quotient manifold C
n×p
∗ /Op, which will be reviewed in Section 4. Here Cn×p

∗ is
the noncompact Stiefel manifold of full rank n-by-p matrices:

C
n×p
∗ = {X ∈ C

n×p : rank(X) = p}.
Define an equivalent class by

[Y ] = {Z ∈ C
n×p
∗ : Z = Y O,O ∈ Op}

and denote the natural projection as
π : Cn×p

∗ → C
n×p
∗ /Op

Y 7→ [Y ]
.

Since there is a one-to-one correspondence between X = Y Y ∗ ∈ Hn,p
+ and π(Y ) ∈ C

n×p
∗ /Op, the optimization

problem (1) is equivalent to
minimize

π(Y )
h(π(Y ))

subject to π(Y ) ∈ C
n×p
∗ /Op

, (7)

where the cost function h is defined as h(π(Y )) = F (Y ) = f(Y Y ∗).

For the quotient manifold C
n×p
∗ /Op, one can first choose a metric for its total space C

n×p
∗ , which induces a Rie-

mannian metric on the quotient manifold under suitable conditions. In particular, a special metric was used in [13]
to construct efficient Riemannian optimization algorithms for the problem (5). The horizontal lift of the Riemannian
gradient for h(π(Y )) under this particular metric satisfies

(gradh(π(Y )))Y = ∇F (Y )(Y ∗Y )−1 = [∇f(Y Y ∗) +∇f(Y Y ∗)∗]Y (Y ∗Y )−1. (8)

From the representation of the Riemannian gradient (8), we see that this approach generates different algorithms from
the simpler Burer–Monteiro approach.
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1.4 Main results: a unified representation and analysis of three methods using quotient geometry

A natural question arises: which of the three methods is the best? Even though the unconstrained Burer–Monteiro
method is quite straightforward to use, it has an ambiguity up to a unitary matrix, and its performance is usually
observed to be inferior to Riemannian optimization on embedded and quotient geometries. In order to compare these
three methods, in this paper we will show that it is possible to equivalently rewrite both the Burer–Monteiro approach
and embedded manifold approach as Riemannian optimization over the quotient manifold C

n×p
∗ /Op with suitable

metrics, retractions and vector transports.

For any Y ∈ C
n×p
∗ , we consider three different Riemannian metrics giY (·, ·) (i = 1, 2, 3) for any A,B in the total

space Cn×p
∗ :

g1Y (A,B) = 〈A,B〉
Cn×p = ℜ(tr(A∗B))

g2Y (A,B) = 〈AY ∗, BY ∗〉
Cn×n = ℜ(tr((Y ∗Y )A∗B))

g3Y (A,B) = 〈Y A∗ +AY ∗, Y B∗ +BY ∗〉
Cn×n +

〈
PV
Y (A)Y ∗, PV

Y (B)Y ∗〉
Cn×n ,

where PV
Y is given by

PV
Y (A) = Y

(
(Y ∗Y )−1Y ∗A−A∗Y (Y ∗Y )−1

2

)

.

In particular, the Burer–Monteiro approach corresponds to the first metric g1Y and the embedded manifold approach
corresponds to the third metric g3Y . The second metric g2Y is the one used in [13].

We will show that both the gradient descent and the conjugate gradient method for the unconstrained problem (5) are
equivalent to a Riemannian gradient descent and a Riemannian conjugate gradient method on the quotient manifold
C

n×p
∗ /Op with the simplest metric g1Y and a specific vector transport.

Furthermore, we will prove that the Riemannian gradient descent and the Riemannian conjugate gradient methods
using the embedded geometry of Hn,p

+ are equivalent to a Riemannian gradient descent and a Riemannian conjugate
gradient algorithms on the quotient manifold C

n×p
∗ /Op with the metric g3Y and a specific vector transport.

Finally, we will analyze and compare the condition numbers of the Riemannian Hessian using these three different
metrics by estimating their Rayleigh quotient. It is well known that the condition number of the Hessian of the cost
function is closely related to the asymptotic performance of optimization methods. Under the assumption that the
Fréchet Hessian∇2f(X) is well conditioned, we will show that the the condition numbers of the Riemannian Hessian
using the first metric can be significantly worse than the other two if the minimizer of (2) has a rank smaller than p.

1.5 Related work

The Burer–Monteiro approach for the PSD constraint has been popular in applications due to its simplicity. For
instance, an L-BFGS method for (5) was used for solving convex recovery from interferometric measurements in [8].
It is straightforward to verify that (6) with p = 1 and a suitable step size τ for the PhaseLift problem [5] is precisely
the Wirtinger flow algorithm [6]. In [14], it was shown that first-order and second-order optimality conditions of the
nonconvex Burer–Monteiro approach are sufficient to find the global minimizer of the convex semi-definite program
under certain assumptions.

Riemannian optimization on various matrix manifolds such as the Stiefel manifold, the Grassmann manifold and the
set of fixed-rank matrices, have been used for applications in data science, machine learning, signal processing, bio-
science, etc. The geometry of real symmetric PSD matrices of fixed rank Sn,p+ has also been studied intensively in the
literature. Its embedded geometry was studied in [12]. The quotient geometry was studied in [15, 16, 1]. In [2], a new
geometry of Sn,p+ as a homogeneous space of the general linear group of positive determinant GL+

n was discussed.

Riemannian optimization based on the embedded geometry has been well studied in [10] for real matrices of fixed
rank, which can be easily extended to real symmetric PSD matrices of fixed rank [12]. As expected, Section 3 is its
natural extensions to Hermitian PSD matrices of fixed rank. This is not surprising, but it is not a straightforward result
either, because such a natural extension holds only when using the real inner product (3) and its associated Fréchet
derivatives.

The quotient geometry of Hermitian PSD matrices of fixed-rank for the metric g2Y has been studied in [17, 13]. The
quotient geometry with metric g2Y in this paper is exactly the same one as the one in [17, 13].
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It is not uncommon to explore different metrics of a manifold for Riemannian optimization [18, 19]. In [2], a new
embedded geometry and complete geodesics for real PSD fixed-rank matrices were for example obtained from a
special quotient metric.

1.6 Contributions

In this paper, for simplicity, we only focus on the nonlinear conjugate gradient method.

First, we will prove that the nonlinear conjugate gradient method for the unconstrained Burer–Monteiro formulation
(5) is equivalent to a Riemannian conjugate gradient method on the quotient manifold (Cn×p

∗ /Op, g
1) for solving

(7). Thus the convergence of the simple Burer–Monteiro approach can be understood in the context of Riemannian
optimization on the quotient manifold (Cn×p

∗ /Op, g
1). This is one major contribution of this paper.

Second, we will show that a Riemannian conjugate gradient method on the embedded manifold Hn,p
+ for solving (1)

is equivalent to a Riemannian conjugate gradient method on the quotient manifold (Cn×p
∗ /Op, g

3) for solving (7). For
implementation, this is not necessary and there is no motivation to explicitly implement a Riemannian optimization
algorithm on an embedded geometry as a Riemannian optimization algorithm on a quotient geometry. However,
it is useful when comparing a Riemannian optimization algorithm on an embedded geometry with a Riemannian
optimization algorithm on a quotient geometry.

Finally, for the sake of understanding the differences among the three methodologies, we will analyze the condition
number of the Riemannian Hessian on the quotient manifold (Cn×p

∗ /Op, g
i) for the three different metrics gi (i =

1, 2, 3). One metric is equivalent to the simple Burer–Monteiro approach and another to Riemannian optimization on
the embedded manifoldHn,p

+ . Since the three methods in Section 1.3 can all be regarded as Riemannian optimization
algorithms on a quotient manifold with three different metrics, such a comparison is meaningful.

In certain problems, such as PhaseLift [5] and interferometry recovery [8], the rank r of the minimizer of (2) is known.
However, it has been observed in practice that the basin of attraction is larger when solving the nonconvex problems
(5) or (7) with rank p > r instead of with rank p = r; see [8, 13]. We will also demonstrate this in the numerical
tests in Section 8. Under suitable assumptions, we will show that the condition number of the Riemannian Hessian on
the quotient manifold (Cn×p

∗ /Op, g
1) can be unbounded if p > r. On the other hand, the condition numbers of the

Riemannian Hessians on the quotient manifold C
n×p
∗ /Op with metrics g1 and g2 are still bounded. This is consistent

with the numerical observation that the Burer–Monteiro approach has a much slower asymptotic convergence rate
than the Riemannian optimization approach on the embedded manifold and the quotient manifold (Cn×p

∗ /Op, g
2)

when p > r.

1.7 Organization of the paper

The outline of the paper is as follows. We summarize the notation in Section 2. Then we discuss the geometric
operators such as the Riemannian gradient and vector transport in Section 3 for the embedded manifold Hn,p

+ and in
Section 4 for the quotient manifold C

n×p
∗ /Op. In Section 5, we outline the Riemannian Conjugate Gradient (RCG)

methods on different geometries and discuss equivalences among them. In particular, we show that RCG on the
quotient manifold (Cn×p

∗ /Op, g
1) is exactly the Burer–Monteiro CG method, that is, CG directly on (5). We also

show that Riemannian CG on the embedded manifold for solving (1) is equivalent to RCG on the quotient manifold
(Cn×p

∗ /Op, g
3 with a specific retraction and vector transport for solving (7). Implementation details are given in

Section 6. In Section 7, we analyze and compare the condition numbers of the Riemannian Hessian operators, which
can be used to understand the difference in the asymptotic convergence rates between using the simple Burer–Monteiro
method and the more sophisticated Riemannian optimization using an embedded geometry or a quotient geometry with
metric g2. Numerical tests are given in Section 8.

2 Notation

Let Cm×n denote all complex matrices of size m× n. Let p ≤ n and define

C
n×p
∗ = {X ∈ C

n×p : rank(X) = p},
St (p, n) = {X ∈ C

n×p : X∗X = Ip},
Hn,p

+ = {X ∈ C
n×n : X∗ = X,X < 0, rank(X) = p},

Sn,p+ = {X ∈ R
n×n : XT = X,X < 0, rank(X) = p},

5



Op = {O ∈ C
p×p : O∗O = OO∗ = I},

where St (p, n) is also called the compact Stiefel manifold. For a matrix X , X∗ denotes its conjugate transpose and X
denotes its complex conjugate. If X is real, X∗ becomes the matrix transpose and is denoted by XT . We define

Herm(X) :=
X +X∗

2
, Skew(X) :=

X −X∗

2
.

Let ℜ(X) and ℑ(X) denote the real and imaginary part of X respectively so that X = ℜ(X) + iℑ(X). Let Ip be the
identity matrix of size p-by-p. For any n-by-p matrix Z , Z⊥ denotes the n-by-(n−p) matrix such that Z∗

⊥Z⊥ = In−p

and Z∗
⊥Z = 0.

Let Diag(m,n) be the set of all m-by-n diagonal matrices. Let diag(M) be the n-by-1 vector that is the diagonal of
the n-by-n matrix M . Given a vector v, Diag(v) is a square matrix with its ith diagonal entry equal to vi. Given a
matrix A, tr(A) denotes the trace of A and Aij denotes the (i, j)th entry of A.

For any X ∈ Hn,p
+ , its eigenvalues coincide with its singluar values. The compact singular value decomposition

(SVD) of X is denoted by X = UΣU∗, where U ∈ St (p, n) and Σ = Diag(σ) with σ = (σ1, · · · , σp)
T and

σ1 ≥ · · · ≥ σp > 0. In the rest of the paper, U and Σ are reserved for denoting the compact SVD of X ∈ Hn,p
+ .

In this paper, all manifolds of complex matrices are viewed as manifolds over R unless otherwise specified. Given a
Euclidean space E , the inner product on E is denoted by 〈., .〉E . Specifically, 〈A,B〉

Rm×n = tr(ATB) for A,B ∈
Rm×n and 〈A,B〉

Cm×n = ℜ(tr(A∗B)) for A,B ∈ Cm×n denotes the canonical inner product on Rm×n and Cm×n,
respectively.

3 Embedded geometry ofHn,p

+

The results in this section are natural extensions of results for Sn,p+ in [12]. Such an extension is not entirely obvious
sinceHn,p

+ is treated as a real manifold and the real inner product (3) is not the complex Hilbert–Schmidt inner product.
For completeness, we thus discuss these extensions in details.

3.1 Tangent space

We first need to show that Hn,p
+ is a smooth embedded submanifold of Cn×n. See [20, Prop. 2.1] and [21, Chap. 5]

for the case of Sn,p+ .

Theorem 3.1. Regard Cn×n as a real vector space over R of dimension 2n2. Then Hn,p
+ is a smooth embedded

submanifold of Cn×n of dimension 2np− p2.

Proof. Let

E =

[
Ip×p 0p×(n−p)

0(n−p)×p 0(n−p)×(n−p)

]

(9)

and consider the smooth Lie group action

Φ : GL(n,C)× C
n×n → C

n×n

(g,N) 7→ gNg∗

where

gNg∗ = (ℜ(g)ℜ(N)− ℑ(g)ℑ(N))ℜ(g)T + (ℑ(g)ℜ(N) + ℜ(g)ℑ(N))ℑ(g)T

+i

(
(ℑ(g)ℜ(N) + ℜ(g)ℑ(N))ℜ(g)T − (ℜ(g)ℜ(N)−ℑ(g)ℑ(N))ℑ(g)T

)
.

It is easy to see that Φ is a rational mapping. Since GL(n,C) is a semialgebraic set by Lemma (B.1) in the Appendix,
we have that GL(n,C) × Cn×n is also a semialgebraic set [22, section 2.1.1]. It follows from (B1) in [23] that Φ is
a semialgebraic mapping. Observe that Hn,p

+ is the orbit of E through Φ. It therefore follows from (B4) in [23] that
Hn,p

+ is a smooth submanifold of Cn×n.

Next, we compute the dimension ofHn,p
+ . Consider the smooth surjective mapping

η : GL(n,C)→ Hn,p
+ γ 7→ γEγ∗. (10)

6



The differential of η at γ ∈ GL(n,C) is the linear mapping Dη(γ) : TγGL(n,C) = Cn×n → TXHn,p
+ , where

X = η(γ) = γEγ∗, by Dη(γ)[∆] = ∆Eγ∗ + γE∆∗. Observe that the differential at arbitrary γ is related to the
differential at In by a full-rank linear transformation:

Dη(γ)[∆] = γDη(In)[γ
−1∆]γ∗. (11)

Recall that the rank of a differentiable mapping f between two differentiable manifolds is the dimension of the image
of the differential of f . So, from equation (11) we see that the rank of η is constant. It follows from Theorem 4.14 in
[24] that η is a smooth submersion. As a consequence Dη(γ) maps TγGL(n,C) ∼= Cn×n surjectively onto TXHn,p

+
and we obtain

TXHn,p
+ =

{
∆X +X∆∗ : ∆ ∈ C

n×n
}
. (12)

Let ∆ =

[
∆11 ∆12

∆21 ∆22

]

be partitioned according to the partition of E = diag(Ip×p) =

[
Ip×p 0
0 0

]

. Then it can be

easily verified that ∆ ∈ KerDη(I) if and only if

∆11 = −∆∗
11, ∆21 = 0.

This implies that ∆11 is a skew-Hermitian matrix, hence its diagonal entries are purely imaginary and its off diagonal
entries satisfy aij = −aji. This gives us p+2× (1+2+ · · ·+(p−1)) degrees of freedom. For ∆12 and ∆22 there are
2n(n− p) degrees of freedom. So, the dimension of Ker(Dη(I)) is 2n(n− p) + p+ 2p(p− 1)/2 = 2n2 − 2np+ p2

and by rank-nullity we get
dimD η(I) = 2n2 − dim kerD η(I) = 2np− p2. (13)

Since η is of constant rank, the dimension of TXHn,p
+ is therefore 2np − p2. Remember that the dimension of the

tangent space at every point of a connected manifold is the same as that of the manifold itself. Let GL+(n,C) denote
the connected subset of GL(n,C) with positive determinant, then Hn,p

+ is the image of the connected set GL+(n,C)
under a continuous mapping η, soHn,p

+ is connected. We conclude that the dimension ofHn,p
+ is 2np− p2.

The next result characterizes the tangent space. See [10, Proposition 2.1] for the tangent space of Sn,p+ .

Theorem 3.2. Let X = UΣU∗ ∈ Hn,p
+ . Then the tangent space ofHn,p

+ at X is given by

TXHn,p
+ =

{

[U U⊥]

[
H K∗

K 0

] [
U∗

U∗
⊥

]}

(14)

where H = H∗ ∈ Cp×p, K ∈ C(n−p)×p.

Remark 3.3. Notice that there is no need to compute and store U⊥ ∈ Cn×(n−p) and it suffices to store U⊥K ∈ Cn×p.
See Section 6 for the implementation details.

Proof. Let t 7→ U(t) be any smooth curve in St (p, n) through U at t = 0 such that U(t) ∈ Cn×p, U(0) = U and
U(t)∗U(t) = Ip for all t. Let t 7→ Σ(t) be any smooth curve in Diag(p, p) through Σ at t = 0. Then X(t) :=
U(t)Σ(t)U(t)∗ defines a smooth curve inHn,p

+ through X . It follows by differentiating X(t) := U(t)Σ(t)U(t)∗ that

X ′(t) = U ′(t)Σ(t)U(t)∗ + U(t)Σ′(t)U(t)∗ + U(t)Σ(t)U ′(t)∗. (15)

Without loss of generality, since U ′(t) is an element of Cn×p and U(t) has full rank, we can set

U ′(t) = U(t)A(t) + U⊥(t)B(t). (16)

Hence, we have

X ′(t) = [U(t) U⊥(t)]

[
A(t)Σ(t) + Σ′(t) + Σ(t)A(t)∗ Σ(t)B(t)∗

B(t)Σ(t) 0

] [
U(t)∗

U⊥(t)∗

]

. (17)

Thus we consider the tangent vectors in the form of [U U⊥]

[
H K∗

K 0

] [
U∗

U∗
⊥

]

with H = H∗. For any H = H∗ ∈

Cp×p and K ∈ C(n−p)×p, taking ∆ = (UH/2 + U⊥K)Σ−1(U∗U)−1U∗ in (12), we see that
{

[U U⊥]

[
H K∗

K 0

] [
U∗

U∗
⊥

]}

⊆ TXHn,p
+ . (18)

Now counting the real dimension we see that H has p+ 2× p(p−1)
2 = p2 number of freedom and K has 2× p(n− p)

number of freedom. So the LHS of the inclusion (18) has freedom 2np − p2, which is equal to the dimension of
TXHn,p

+ . Hence, the inclusion in (18) is an equality.
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3.2 Riemannian gradient

The Riemannian metric of the embedded manifold at X ∈ Hn,p
+ is induced from the Euclidean inner product on Cn×n,

gX(ζ1, ζ2) = 〈ζ1, ζ2〉Cn×n = ℜ(tr(ζ∗1 ζ2)), ζ1, ζ2 ∈ TXHn,p
+ . (19)

Let f(X) be a smooth real-valued function for X ∈ Cn×n and Fréchet gradient (4), denoted by∇f(X). See Appendix
A.1 for more details about Fréchet gradient.

The Riemannian gradient of f at X ∈ Hn,p
+ , denoted by grad f(X), is the projection of grad f(X) onto TXHn,p

+ (
[25, Sect. 3.6.1]):

grad f(X) = P t
X(∇f(X)), (20)

where P t
X denotes the orthogonal projection onto TXHn,p

+ . In order to get a closed-form expression of P t
X , we should

characterize the normal space to Hn,p
+ at X , denoted by (TXHn,p

+ )⊥ or NXHn,p
+ ,

NXHn,p
+ = {ξX ∈ TXC

n×n : 〈ξX , ηX〉Cn×n = 0 for all ηX ∈ TXC
n×n}, (21)

which is the orthogonal complement of TXHn,p
+ in Cn×n.

Lemma 3.4. The normal space NXHn,p
+ at X = UΣU∗ ∈ Hn,p

+ is given by

NXHn,p
+ =

{

[U U⊥]

[
Ω −L∗

L M

] [
U∗

U∗
⊥

]}

, (22)

where Ω = −Ω∗ ∈ Cp×p, M ∈ C(n−p)×(n−p)and L ∈ C(n−p)×p.

Proof. First we show that every vector in (22) is orthogonal to TXHn,p
+ . Since U is orthonormal, we only need to

show that
〈[

H K∗

K 0

]

,

[
Ω −L∗

L M

]〉

Cn×n

= 0 for all H,K,Ω, L and M defined in Theorem 3.2 and Lemma 3.4.

Indeed we have
〈[

H K∗

K 0

]

,

[
Ω −L∗

L M

]〉

Cn×n

= 〈Ω, H〉Cn×n − 〈L∗,K∗〉Cn×n + 〈L,K〉Cn×n (23)

= 〈Ω, H〉Cn×n = 0. (24)

Next, we count the real dimension of NXHn,p
+ . Remember that a skew-Hermitian matrix has purely imaginary num-

bers on its diagonal entries, and ωij = −ωji on its off diagonal entries. So the number of degree of freedoms in Ω is
p+ 2× p(p−1)

2 = p2. The number of degree of freedoms in L is 2× p(n− p), and the number of degree of freedoms
in M is 2× (n− p)2. So, the dimension of NXHn,p

+ is 2n2 + p2 − 2np. This gives us the desire dimension since the
sum of the dimension of the tangent space and its normal space should be 2n2.

The orthogonal projection from C
n×n onto TXHn,p

+ is given the following theorem.

Theorem 3.5. Let X = Y Y ∗ = UΣU∗ be the compact SVD for X ∈ Hn,p
+ with Y ∈ Cn×p. Let Z ∈ Cn×n. Then

the operator P t
X defined below is the orthogonal projection onto TXHn,p

+ :

P t
X(Z) =

1

2

(
PY (Z + Z∗)PY + P⊥

Y (Z + Z∗)PY + PY (Z + Z∗)P⊥
Y

)

=
1

2

(
PU (Z + Z∗)PU + P⊥

U (Z + Z∗)PU + PU (Z + Z∗)P⊥
U

)
(25)

= [U U⊥]

[

U∗ (Z+Z∗)
2 U U∗ (Z+Z∗)

2 U⊥
U∗
⊥

(Z+Z∗)
2 U 0

][
U∗

U∗
⊥

]

,

where PY = Y (Y ∗Y )−1Y ∗, P⊥
Y = I − PY = PY⊥

, PU = UU∗ and P⊥
U = I − PU = PU⊥

.

Proof. First, observe that

P t
X(Z) = [PY PY⊥

]

[
Z+Z∗

2
Z+Z∗

2
Z+Z∗

2 0

] [
PY

PY⊥

]
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= [U U⊥]

[

U∗ (Z+Z∗)
2 U U∗ (Z+Z∗)

2 U⊥
U∗
⊥

(Z+Z∗)
2 U 0

][
U∗

U∗
⊥

]

is a tangent vector at X . So it suffices to show that Z − P t
X(Z) is a normal vector. Write Z as Z = PY ZPY +

PY ZPY⊥
+ PY⊥

ZPY + PY⊥
ZPY⊥

= [PY PY⊥
]

[
Z Z
Z Z

] [
PY

PY⊥

]

. Then we have

Z − P t
X(Z) = [PY PY⊥

]

[
Z−Z∗

2
Z−Z∗

2
Z−Z∗

2 Z

] [
PY

PY⊥

]

= [U U⊥]

[

U∗ (Z−Z∗)
2 U U∗ (Z−Z∗)

2 U⊥
U∗
⊥

(Z−Z∗)
2 U U∗

⊥ZU⊥

][
U∗

U∗
⊥

]

Hence, Z − P t
X(Z) is a normal vector, which completes the proof.

Remark 3.6. We can write P t
X = P s

X + P p
X by introducing the two operators

P s
X : Z 7→ PU

Z + Z∗

2
PU (26)

P p
X : Z 7→ PU⊥

Z + Z∗

2
PU + PU

Z + Z∗

2
PU⊥

(27)

3.3 A retraction by projection to the embedded manifold

A retraction is essentially a first-order approximation to the exponential map; see [25, Def. 4.1.1]. SupposeM is an
embedded submanifold of a Euclidean space E , then by [26, Props. 3.2 and 3.3], the mapping R from the tangent
bundle TM to the manifoldM defined by

R :

{
TM→M
(x, u) 7→ PM(x+ u)

(28)

is a retraction, where PM is the orthogonal projection onto the manifoldM with respect to the Euclidean distance,
that is, the closest point. In our case M = Hn,p

+ and E = Cn×n. Hence, a retraction on Hn,p
+ is defined by the

truncated SVD:

RX(Z) := PHn,p

+
(X + Z) =

p
∑

i=1

σi(X + Z)viv
∗
i ,

where vi is the singular vector of X + Z corresponding to the ith largest singular value σi(X + Z).

Let X = UΣU∗ ∈ Hn,p
+ be the compact SVD and let Z = [U U⊥]

[
H K∗

K 0

] [
U∗

U∗
⊥

]

∈ TXHn,p
+ . Then

X + Z = [U U⊥]

[
H +Σ K∗

K 0

] [
U∗

U∗
⊥

]

= U(H +Σ)U∗ + U⊥KU∗ + UK∗U∗
⊥. (29)

Consider the compact QR factorization of U⊥K = QKRK where QK is n× p and RK is p× p. Then (29) becomes

X + Z = U(H +Σ)U∗ +QKRKU∗ + (QKRKU∗)∗ = [U QK ]

[
H +Σ R∗

K

RK 0

] [
U∗

Q∗
K

]

. (30)

Now notice that
[
H +Σ R∗

K

RK 0

]

from the RHS of (30) is a small 2p×2p Hermitian matrix. We can therefore efficiently

compute its SVD as
[
H +Σ R∗

K

RK 0

]

= [V1 V2]

[
S1 0
0 S2

] [
V ∗
1

V ∗
2

]

, (31)

where S1 and S2 are p × p diagonal matrices that contain the singular values of
[
H +Σ R∗

K

RK 0

]

in descending order.

The matrices V1 and V2 are 2p× p contain the corresponding singular vectors. Combining (31) and (30), we can write
X + Z as

X + Z = [U QK ] [V1 V2]

[
S1 0
0 S2

] [
V ∗
1

V ∗
2

] [
U∗

Q∗
K

]

(32)
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with [U QK ] [V1 V2] a unitary matrix. So (32) is the SVD of X +Z with singular values in descending order. The
orthogonal projection of X + Z onto the manifoldHn×p

+ is therefore given by

PHn,p

+
(X + Z) = ([U QK ]V1)S1([U QK ]V1)

∗. (33)

3.4 Vector transport

The vector transport is a mapping that transports a tangent vector from one tangent space to another tangent space.

Definition 3.1 ([25, definition 8.1.1]). A vector transport on a manifoldM is a smooth mapping

TM⊕ TM→ TM : (ηx, ξx) 7→ Tηx
(ξx) ∈ TM (34)

satisfying the following properties for all x ∈M:

1. (Associated retraction) There exists a retraction R, called the retraction associated with T , such that the
following diagram commutes

(ηx, ξx) Tηx
(ξx)

ηx Π(Tηx
(ξx))

T

Π

R

where Π(Tηx
(ξx)) denotes the foot of the tangent vector Tηx

(ξx).

2. (Consistency) T0xξx = ξx for all ξx ∈ TxM;

3. (Linearity) Tηx
(aξx + bζx) = aTηx

(ξx) + bTηx
(ζx).

Let ξX , ηX ∈ TXHn,p
+ and let R be a retraction on Hn,p

+ . By [25, section 8.1.3], the projection of one tangent vector
onto another tangent space is a vector transport,

TηX
ξX := P t

RX(ηX )ξX , (35)

where P t
Z is the projection operator onto TZHn,p

+ . Namely, we first apply retraction to X+ ηX to arrive at a new point
on the manifold, then we project the old tangent vector ξX onto the tangent space at that new point.

Now, we derive the expression of the vector transport (35) in closed form. Given X1 = U1Σ1U
∗
1 ∈ Hn,p

+ , the

retracted point X2 = U2Σ2U
∗
2 ∈ Hn,p

+ , and a tangent vector ν1 = [U1 U1⊥]

[
H1 K∗

1
K1 0

] [
U∗
1

U1
∗
⊥

]

= U1H1U
∗
1 +

U1⊥K1U
∗
1 + U1K

∗
1U1

∗
⊥ ∈ TX1Hn,p

+ , we need to determine H2 and K2 of the transported tangent vector ν2 =

[U2 U2⊥]

[

H2 K∗
2

K2 0

] [

U∗
2

U2
∗
⊥

]

∈ TX2Hn,p
+ .

By the projection formula (25), we have

ν2 = P t
X2

(ν1) = [U2 U2⊥]

[
U∗
2 ν1U2 U∗

2 ν1U2⊥
U2

∗
⊥ν1U2 0

] [
U∗
2

U2
∗
⊥

]

. (36)

Hence, H2 and K2 are satisfy

H2 = U∗
2 ν1U2 = U∗

2U1H1U
∗
1U2 + U∗

2U1⊥K1U
∗
1U2 + U∗

2U1K
∗
1U1

∗
⊥U2,

K2 = U2
∗
⊥ν1U2 = U2

∗
⊥U1H1U

∗
1U2 + U2

∗
⊥U1⊥K1U

∗
1U2 + U2

∗
⊥U1K

∗
1U1

∗
⊥U2.

In implementation, we observe a better numerical performance if we only keep the first term in the above sum of H2

and the second term of K2. That is, we define H2 and K2 by

H2 = U∗
2U1H1U

∗
1U2 (37a)

K2 = U2
∗
⊥U1⊥K1U

∗
1U2. (37b)

It is straightforward to verify that this choice of H2 and K2 also defines a vector transport:

Proposition 3.7. The operation defined by (37) is a vector transport.
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One can verify that the vector transport in (37) is a vector transport by parallelization in [27].

In numerical tests we have observed that the nonlinear conjugate gradient method using this simpler version of vector
transport is usually more efficient. So in all our numerical tests, we do not use the more complicated (35), instead we
use the following simplified vector transport:

1. Given X1 = U1Σ1U
∗
1 ∈ Hn,p

+ , and ηX1 , ξX1 ∈ TX1Hn,p
+ , first compute

X2 = RX1(ηX1 ) := PHn,p

+
(X1 + ηX1) = U2Σ2U

∗
2 ∈ Hn,p

+ .

2. Let ξX1 = [U1 U1⊥]

[
H1 K∗

1
K1 0

] [
U∗
1

U1
∗
⊥

]

∈ TX1Hn,p
+ , then compute

TηX1
ξX1 = [U2 U2⊥]

[
H2 K∗

2
K2 0

] [
U∗
2

U2
∗
⊥

]

∈ TX2Hn,p
+ . (37c)

3.5 Riemannian Hessian operator

For a real-valued function f(X) defined on the Euclidean space Cn×n, the Hessian∇2f(X) is defined in the sense of
the Fréchet derivative; see Appendix A.2 for the definition of the Fréchet Hessian.

The following proposition gives the Riemannian Hessian of f . The proof follows similar ideas as in [4, Prop. 5.10]
and [28, Prop. 2.3] where a second-order retraction based on a simple power expansion is constructed. We will leave
the outline of the proof to Appendix B.1.
Proposition 3.8. Let f(X) be the a real-valued function defined on Hn,p

+ . Let X ∈ Hn,p
+ and ξX ∈ TXHn,p

+ . Then
the Riemannian Hessian operator of f at X is given by

Hess f(X)[ξX ] = P t
X(∇2f(X)[ξX ]) + P p

X

(
∇f(X)(X†ξpX)∗ + (ξpXX†)∗∇f(X)

)
. (38)

4 The quotient geometry of Cn×p

∗
/Op using three Riemannian metrics

Besides being regarded as an embedded manifold in Cn×n,Hn,p
+ can also be viewed as a quotient set Cn×p

∗ /Op since
any X ∈ Hn,p

+ can be written as X = Y Y ∗ with Y ∈ C
n×p
∗ . We define an equivalence relation on C

n×p
∗ through the

smooth Lie group action of Op on the manifold C
n×p
∗ :

C
n×p
∗ ×Op → C

n×p
∗

(Y,O) 7→ Y O.
(39)

This action defines an equivalence relation on C
n×p
∗ by setting Y1 ∼ Y2 if there exists an O ∈ Op such that Y1 = Y2O.

Hence we have constructed a quotient space C
n×p
∗ /Op that removes this ambiguity. The set Cn×p

∗ is called the total

space of Cn×p
∗ /Op.

Denote the natural projection as
π : Cn×p

∗ → C
n×p
∗ /Op.

For any Y ∈ C
n×p
∗ , π(Y ) is an element in C

n×p
∗ /Op. We denote the equivalent class containing Y as

[Y ] = π−1(π(Y )) = {Y O|O ∈ Op} .

Define
β : Cn×p

∗ → Hn,p
+

Y 7→ Y Y ∗.

Then β is invariant under the equivalence relation ∼ and induces a unique function β̃ on C
n×p
∗ /Op, called the pro-

jection of β, such that β = β̃ ◦ π [25, section 3.4.2]. One can easily check that β̃ is a bijection. For any real-valued
function f(X) defined on X = Y Y ∗ ∈ Hn,p

+ , F (Y ) := f ◦ β(Y ) = f(Y Y ∗) is a real-valued function defined on
C

n×p
∗ and F induces f . This is summarized in the diagram below:

C
n×p
∗

C
n×p
∗ /Op Hn,p

+ R

β:=β̃◦π
π

β̃ f

(40)
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The next theorem shows that Cn×p
∗ /Op is a smooth manifold.

Theorem 4.1. The quotient space C
n×p
∗ /Op is a quotient manifold over R of dimension 2np− p2 and has a unique

smooth structure such that the natural projection π is a smooth submersion.

Proof. The proof follows from Corollary 21.6 and Theorem 21.10 of [24].

The next theorem shows thatHn,p
+ and C

n×p
∗ /Op are essentially the same in the sense that there is a diffeomorphism

between them. The proof uses the same technique in [1, Prop. A.7]

Theorem 4.2. The quotient manifold C
n×p
∗ /Op is diffeomorphic to the embedded manifoldHn,p

+ under β̃.

Proof. Recall from Theorem 3.2, any tangent vector in Tβ(Y )Hn,p
+ can be written as

ζβ(Y ) = Y HY ∗ + Y⊥KY ∗ + Y K∗Y ∗
⊥. (41)

Let V = Y H/2 + Y⊥K , then Dβ(Y )[V ] = ζβ(Y ). This implies that β is a submersion.

Now notice that π = β̃−1 ◦ β and β = β̃ ◦ π. By [29, Prop. 6.1.2], we conclude that β̃−1 and β̃ are both differentiable.
So β̃ is a diffeomorphism between C

n×p
∗ /Op andHn,p

+ .

4.1 Vertical space, three Riemannian metrics and horizontal space

The equivalence class [Y ] is an embedded submanifold of Cn×p
∗ ([25, Prop. 3.4.4]). The tangent space of [Y ] at Y

is therefore a subspace of TY C
n×p
∗ called the vertical space at Y and is denoted by VY . The following proposition

characterizes VY .

Proposition 4.3. The vertical space at Y ∈ [Y ] = {Y O|O ∈ Op}, which is the tangent space of [Y ] at Y is

VY =
{
Y Ω|Ω∗ = −Ω,Ω ∈ C

p×p
}
. (42)

Proof. The tangent space of Op at Ip is TIpOp = {Ω : Ω∗ = −Ω,Ω ∈ Cp×p}, which is also the set
{γ′(0) : γ is a curve in Op, γ(0) = Ip}. Hence TY {Y O|O ∈ Op} = {Y γ′(0) : γ is a curve in Op, γ(0) = Ip} =
{YΩ|Ω∗ = −Ω,Ω ∈ Cp×p}.

A Riemannian metric g is a smoothly varying inner product defined on the tangent space. That is, gY (·, ·) is an inner
product on TY C

n×p
∗ . Once we choose a Riemannian metric g for Cn×p

∗ , we can obtain the orthogonal complement
in TY C

n×p
∗ of VY with respect to the metric. In other words, we choose the horizontal distribution as orthogonal

complement w.r.t. Riemannian metric, see [25, Section 3.5.8]. This orthogonal complement to VY is called horizontal
space at Y and is denoted byHY . We thus have

TY C
n×p
∗ = HY ⊕ VY . (43)

Once we have the horizontal space, there exists a unique vector ξ̄Y ∈ HY that satisfies Dπ(Y )[ξ̄Y ] = ξπ(Y ) for each
ξπ(Y ) ∈ Tπ(Y )C

n×p
∗ /Op. This ξ̄Y is called the horizontal lift of ξπ(Y ) at Y . The next lemma shows the relationship

between the horizontal lifts of the quotient tangent vector ξπ(Y ) lifted at different representatives in [Y ].

Lemma 4.4. Let η be a vector field on C
n×p
∗ /Op, and let η̄ be the horizontal lift of η. Then for each Y ∈ C

n×p
∗ , we

have
η̄Y O = η̄Y O

for all O ∈ Op.

Proof. See [1, Prop. A.8] and [13, Lemma 5.1].

There exist more than one choice of Riemannian metric on C
n×p
∗ . Different Riemanian metrics do not affect the

vertical space, but generally result in different horizontal spaces. In this paper, we discuss three Riemannian metrics
on C

n×p
∗ and study how each metric affects the convergence of Riemannian optimization algorithms.

The most straightforward choice of a Riemannian metric on C
n×p
∗ is the canonical Euclidean inner product on Cn×p

defined by
g1Y (A,B) := 〈A,B〉

Cn×p = ℜ(tr(A∗B)), ∀A,B ∈ TY C
n×p
∗ = C

n×p. (44)
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Proposition 4.5. Under metric g1, the horizontal space at Y satisfies

H1
Y =

{
Z ∈ C

n×p : Y ∗Z = Z∗Y
}

=
{

Y (Y ∗Y )−1S + Y⊥K|S∗ = S, S ∈ C
p×p,K ∈ C

(n−p)×p
}

.

Another Riemannian metric used in [17, 13] is defined by

g2Y (A,B) := 〈AY ∗, BY ∗〉
Cn×n = ℜ(tr((Y ∗Y )A∗B)), ∀A,B ∈ TY C

n×p
∗ = C

n×p. (45)

Proposition 4.6. Under metric g2, the horizontal space at Y satisfies

H2
Y =

{
Z ∈ C

n×p : (Y ∗Y )−1Y ∗Z = Z∗Y (Y ∗Y )−1
}

=
{

Y S + Y⊥K|S∗ = S, S ∈ C
p×p,K ∈ C

(n−p)×p
}

.

The third Riemannian metric for Cn×p
∗ is motivated by the Riemannian metric of Hn,p

+ and the diffeomorphism be-
tween C

n×p
∗ /Op and Hn,p

+ . We know that β is a submersion. Every tangent vector of Hn,p
+ therefore corresponds

to a tangent vector of Cn×p
∗ . We can use the Riemannian metric of Hn,p

+ and the correspondence of tangent vectors
betweenHn,p

+ and C
n×p
∗ to define a Riemannian metric for Cn×p

∗ . A natural first attempt would be to use

gY (A,B) := 〈Dβ(Y )[A],Dβ(Y )[B]〉
Cn×n = 〈Y A∗ +AY ∗, Y B∗ +BY ∗〉

Cn×n , (46)

which is however not a Riemannian metric because it is not positive-definite. To see this, notice that ker(Dβ(Y )[·]) =
VY . Consider C 6= 0 ∈ VY , then g3Y (C,C) = 0. To modify this definition for g3, we can use the Riemannian metric
g2 and the decomposition TY C

n×p
∗ = H2

Y ⊕ VY , by which A ∈ TY C
n×p
∗ can be uniquely decomposed as

A = AV +AH2

, (47)

where AV ∈ VY and AH2 ∈ H2
Y . Now define g3 as

g3Y (A,B) : =
〈

Dβ(Y )[AH2

],Dβ(Y )[BH2

]
〉

+ g2Y
(
AV , BV)

= 〈Dβ(Y )[A],Dβ(Y )[B]〉
Cn×n +

〈
PV
Y (A)Y ∗, PV

Y (B)Y ∗〉
Cn×n ,

= 〈Y A∗ +AY ∗, Y B∗ +BY ∗〉
Cn×n +

〈
PV
Y (A)Y ∗, PV

Y (B)Y ∗〉
Cn×n

where PV
Y is the projection of any tangent vector of Cn×p

∗ to the vertical space VY . It is straightforward to verify that
g3 defined above is now a Riemannian metric.

Proposition 4.7. Under metric g3, the horizontal space at Y is the same set asH2
Y . That is,

H3
Y =

{
Z ∈ C

n×p : (Y ∗Y )−1Y ∗Z = Z∗Y (Y ∗Y )−1
}

=
{

Y S + Y⊥K|S∗ = S, S ∈ C
p×p,K ∈ C

(n−p)×p
}

.

4.2 C
n×p
∗ /Op as Riemannian quotient manifold

If the expression gY (ξ̄Y , ζ̄Y ) does not depend on the choice of Y ∈ [Y ] for every π(Y ) ∈ C
n×p
∗ /Op and every

ξπ(Y ), ζπ(Y ) ∈ Tπ(Y )C
n×p
∗ /Op, then

gπ(Y )(ξπ(Y ), ζπ(Y )) := gY (ξ̄Y , ζ̄Y ) (48)

defines a Riemannian metric on the quotient manifold C
n×p
∗ /Op, see [25, Section 3.6.2]. By Lemma 4.4, it is straight-

forward to verify that each Riemannian metric gi Cn×p
∗ induces a Riemannian metric on C

n×p
∗ /Op. The quotient

manifold C
n×p
∗ /Op endowed with a Riemannian metric defined in (48) is called a Riemannian quotient manifold. By

abuse of notation, we use gi for denoting Riemannian metrics on both total space Cn×p
∗ and quotient space Cn×p

∗ /Op.
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4.3 Projections onto vertical space and horizontal space

Due to the direct sum property (43), for our choices of Hi
Y , there exist projection operators for any A ∈ TY C

n×p
∗ to

Hi
Y as

A = PV
Y (A) + PHi

Y (A).

It is straightforward to verify the following formulae for projection operators PV
Y and PHi

Y .

Proposition 4.8. If we use g1 as our Riemannian metric on C
n×p
∗ , then the orthogonal projections of any A ∈ C

n×p

to VY andH1
Y are

PV
Y (A) = YΩ, PH1

Y (A) = A− YΩ,

where Ω is the skew-symmetric matrix that solves the Lyapunov equation

ΩY ∗Y + Y ∗YΩ = Y ∗A−A∗Y. (49)

Remark 4.9. The solution X to the Lyapunov equation XE+EX = Z for a Hermitian E is unique if E is Hermitian
positive-definite [1, Section 2.2]. Let E = UΛU∗ be the SVD, then the Lyapunov equation XE + EX = Z becomes

(U∗XU)Λ + Λ(U∗XU) = U∗ZU,

which gives the solution
(U∗XU)i,j = (U∗ZU)i,j/(Λi,i + Λj,j).

Proposition 4.10. If we use g2 as our Riemannian metric on C
n×p
∗ , then the orthogonal projection of any A ∈ Cn×p

to vertical space VY satisfies

PV
Y (A) = Y

(
(Y ∗Y )−1Y ∗A−A∗Y (Y ∗Y )−1

2

)

= Y Skew
(
(Y ∗Y )−1Y ∗A

)
,

and the orthogonal projection of any A ∈ Cn×p to the horizontal spaceH2
Y is

PH2

Y (A) = A− PV
Y (A)

= Y

(
(Y ∗Y )−1Y ∗A+A∗Y (Y ∗Y )−1

2

)

+ Y⊥Y
∗
⊥A

= Y Herm
(
(Y ∗Y )−1Y ∗A

)
+ Y⊥Y

∗
⊥A.

Proposition 4.11. If we use g3 as our Riemannian metric on C
n×p
∗ , then the orthogonal projection of any A ∈ C

n×p

to vertical space VY satifies

PV
Y (A) = Y

(
(Y ∗Y )−1Y ∗A−A∗Y (Y ∗Y )−1

2

)

= Y skew((Y ∗Y )−1Y ∗A),

and the orthogonal projection of any A ∈ Cn×p to the horizontal spaceH3
Y is

PH3

Y (A) = A− PV
Y (A)

= Y

(
(Y ∗Y )−1Y ∗A+A∗Y (Y ∗Y )−1

2

)

+ Y⊥Y
∗
⊥A

= Y Herm
(
(Y ∗Y )−1Y ∗A

)
+ Y⊥Y

∗
⊥A.

4.4 Riemannian gradient

Recall that Cn×p
∗ /Op is diffeomorphic toHn,p

+ under β̃. Given a smooth real-valued function f(X) on X ∈ Hn,p
+ , the

corresponding cost function on C
n×p
∗ /Op satisfies

h : Cn×p
∗ /Op → R

π(Y ) 7→ f(β̃(π(Y ))) = f(β(Y )) = f(Y Y ∗).
(50)

Observe that the function F (Y ) := f(Y Y ∗) satisfies F (Y ) = h ◦ π(Y ) = f ◦ β(Y ).

The Riemannian gradient of h at π(Y ) is a tangent vector in Tπ(Y )C
n×p
∗ /Op . The next theorem shows that the

horizontal lift of gradh(π(Y )) can be obtained from the gradient of F defined on C
n×p
∗ .
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Theorem 4.12. The horizontal lift of the gradient of h at π(Y ) is the Riemannian gradient of F at Y . That is,

gradh(π(Y ))Y = gradF (Y ) (51)

Proof. See [25, Section 3.6.2].

The next proposition summarizes the expression of gradF (Y ) under different metrics.

Proposition 4.13. Let f be a smooth real-valued function defined on Hn,p
+ and let F : Cn×p

∗ → R : Y 7→ f(Y Y ∗).
Assume Y Y ∗ = X . Then the Riemannian gradient of F is given by

gradF (Y ) =







(∇f(Y Y ∗) +∇f(Y Y ∗)∗)Y, if using metric g1

(∇f(Y Y ∗) +∇f(Y Y ∗)∗)Y (Y ∗Y )−1, if using metric g2
(

I − 1

2
PY

) ∇f(Y Y ∗) +∇f(Y Y ∗)∗

2
Y (Y ∗Y )−1 if using metric g3

(52)

where ∇f denotes Fréchet gradient (4) and PY = Y (Y ∗Y )−1Y ∗.

Proof. Let A ∈ TY C
n×p
∗ . By chain rule, we have

DF (Y )[A] = D f(Y Y ∗)[Y A∗ +AY ∗]. (53)

This yields to
giY (gradF (Y ), A) = gX (grad f(Y Y ∗), Y A∗ +AY ∗) , (54)

where gX is the metric (19). Since Y A∗ +AY ∗ ∈ TY Y ∗Hn,p
+ , we have

gX (grad f(Y Y ∗), Y A∗ +AY ∗) =
〈
P t
Y Y ∗(∇f(Y Y ∗)), Y A∗ + Y A∗〉

Cn×n = 〈∇f(Y Y ∗), Y A∗ +AY ∗〉
Cn×n .

It is straightforward to verify that

〈∇f(Y Y ∗), Y A∗ + Y A∗〉
Cn×n = g1Y ((∇f(Y Y ∗) +∇f(Y Y ∗)∗)Y,A)

= g2Y
(
(∇f(Y Y ∗) +∇f(Y Y ∗)∗)Y (Y ∗Y )−1, A

)
,

which yields the expression of gradF (Y ) under g1 and g2.

The Riemannian gradient for g3 is due to

〈
P t
Y Y ∗(∇f(Y Y ∗)), Y A∗ + Y A∗〉

Cn×n = g3Y

((

I − 1

2
PY

)

P t
X(f ′)Y (Y ∗Y )−1, A

)

= g3Y

((

I − 1

2
PY

)
f ′ + f ′∗

2
Y (Y ∗Y )−1, A

)

.

4.5 Retraction

The retraction on the quotient manifold C
n×p
∗ /Op can be defined using the retraction on the total space Cn×p

∗ . For any
A ∈ TY C

n×p
∗ and a step size τ > 0,

RY (τA) := Y + τA, (55)

is a retraction on C
n×p
∗ if Y + τA remains full rank, which is ensured for small enough τ . Then Lemma 4.4 indicates

that R satisfies the conditions of [25, Prop. 4.1.3], which implies that

Rπ(Y )(τηπ(Y )) := π(RY (τηY )) = π(Y + τηY ) (56)

defines a retraction on the quotient manifold C
n×p
∗ /Op for a small enough step size τ > 0. With Lemma 4.4, it is

straightforward to verify that the retraction (56) does not depend on the choice of Y for the same equivalent class.
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4.6 Vector transport

A vector transport on C
n×p
∗ /Op introduced in [25, Section 8.1.4] is projection to horizontal space.

(
Tηπ(Y )

ξπ(Y )

)

Y+ηY

:= PH
Y +ηY

(ξY ). (57)

It can be shown that this vector transport is actually the differential of the retraction R defined in (56) (see [25, Section
8.1.2]) since

DRπ(Y )(ηπ(Y ))[ξπ(Y )] = Dπ
(
RY (ηY )

) [
DRY (ηY )[ξY ]

]

= Dπ(Y + ηY )

[
d

dt

∣
∣
∣
∣
t=0

(Y + ηY + tξY )

]

= Dπ(Y + ηY )
[
ξY
]

= Dπ(Y + ηY )
[

PH
Y +ηY

(ξY )
]

.

Based on the projection formulae in Section 4.3, we can obtain formulae of vector transports using different Rieman-
nian metrics. Denote Y2 = Y1 + ηY1

. If we use metric g1, then
(

Tηπ(Y1)
ξπ(Y1)

)

Y1+ηY1

= ξY1
− Y2Ω, (58)

where Ω solves the Lyapunov equation

Y ∗
2 Y2Ω+ ΩY ∗

2 Y2 = Y ∗
2 ξY1

− ξ
∗
Y1
Y2.

See Remark 4.9 for the expression of Ω.

If we use metric g2 or g3, then
(

Tηπ(Y1)
ξπ(Y1)

)

Y1+ηY1

= ξY1
− PV

Y2
(ξY1

)

= ξY1
− Skew

(
(Y ∗

2 Y2)
−1Y ∗

2 ξY1

)

= Y2

(

(Y ∗
2 Y2)

−1Y ∗
2 ξY1

+ ξ
∗
Y1
Y2(Y

∗
2 Y2)

−1

2

)

+ Y2⊥Y2
∗
⊥ξY1

.

4.7 Riemannian Hessian operator

Recall that the cost function h on C
n×p
∗ /Op is defined in (50). In this section, we summarize the Riemannian Hessian

of h under the three different metrics gi. The proofs are tedious calculations and given in Appendix C.1.

Proposition 4.14. Using g1, the Riemannian Hession of h is given by

(
Hessh(π(Y ))[ξπ(Y )]

)

Y
= PH1

Y

(

2Herm{∇2f(Y Y ∗)[Y ξ
∗
Y + ξY Y

∗]}Y + 2Herm(∇f(Y Y ∗))ξY

)

. (59)

Proposition 4.15. Using g2, the Riemannian Hession of h is given by

(
Hessh(π(Y ))[ξπ(Y )]

)

Y
= PH2

Y

{

2Herm{∇2f(Y Y ∗)[Y ξ
∗
Y + ξY Y

∗]}Y (Y ∗Y )−1

+Herm(∇f(Y Y ∗))P⊥
Y ξY (Y

∗Y )−1 + P⊥
Y Herm(∇f(Y Y ∗))ξY (Y

∗Y )−1

+2skew(ξY Y
∗)Herm(∇f(Y Y ∗))Y (Y ∗Y )−2

+ 2skew{ξY (Y ∗Y )−1Y ∗Herm(∇f(Y Y ∗))}Y (Y ∗Y )−1
}
.

Proposition 4.16. Using g3, the Riemannian Hession of h is given by

(
Hessh(π(Y ))[ξπ(Y )]

)

Y
= PH3

Y (HessF (Y )[ξY ])

=

(

I − 1

2
PY

)

Herm{∇2f(Y Y ∗)[Y ξ
∗
Y + ξY Y

∗]}Y (Y ∗Y )−1

+(I − PY )Herm(∇f(Y Y ∗))(I − PY )ξY (Y
∗Y )−1.
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5 The Riemannian conjugate gradient method

For simplicity, in this paper we only consider the Riemannian conjugate gradient (RCG) method described as Algo-
rithm 1 in [10] with the geometric variant of Polak–Ribiére (PR+) for computing the conjugate direction. It is possible
to explore other methods such as the limited-memory version of the Riemannian BFGS method (LRBFGS) as in [30].
However, RCG performs very well on a wide variety of problems.

In this section, we focus on establishing two equivalences. First, we show that the Burer–Monteiro CG method, which
is simply applying CG method for the unconstrainted problem (5), is equivalent to RCG on the quotient manifold
(Cn×p

∗ /Op, g
1) with our retraction and vector transport. Second, we show that RCG on the embedded manifoldHn,p

+

is equivalent to RCG on the quotient manifold (Cn×p
∗ /Op, g

3) with a specific retraction and vector transport.

For convenience, let TXk−1→Xk
denote a vector transport that maps tangent vectors from TXk−1

Hn,p
+ to TXk

Hn,p
+ ,

defined as
TXk−1→Xk

: TXk−1
Hn,p

+ → TXk
Hn,p

+ , ζXk−1
7→ TR−1

Xk−1
(Xk)

(ζXk−1
), (60)

whereR−1
X exists locally for everyX ∈ Hn,p

+ by the inverse function theorem. Hence TXk−1→Xk
should be understood

locally in the sense that Xk is sufficiently close to Xk. See [28, Section 2.4].

Similarly, Let TYk−1→Yk
denote a vector transport that maps tangent vectors fromHYk−1

toHYk
as

TYk−1→Yk
: HYk−1

→ HYk
, ξYk−1

7→
(

TR−1
π(Yk−1)

ξπ(Yk)

)

Yk

, (61)

where R−1
π(Y ) also exists locally for every π(Y ) ∈ C

n×p
∗ /Op. TYk−1→Yk

and should again be understood locally in the
sense that π(Yk−1) is sufficiently close to π(Yk).

We first summarize two Riemannian CG algorithm in Algorithm 1 and Algorithm 2 below. Algorithm 1 is the RCG on
the embedded manifold for solving 1 and Algorithm 2 is the RCG on the quotient manifold (Cn×p

∗ /Op, g
i) for solving

(7). We remark that the explicit constants 0.0001 and 0.5 in the Armijo backtracking are chosen for convenience.

Algorithm 1 Riemannian Conjugate Gradient on the embedded manifoldHn,p
+

Require: initial iterate X1 ∈ Hn,p
+ , tolerance ε > 0, tangent vector η0 = 0

1: for k = 1, 2, . . . do
2: Compute gradient

ξk := grad f(Xk) ⊲ See Algorithm 3
3: Check convergence

if ‖ξk‖ :=
√

gXk
(ξk, ξk) < ε, then break

4: Compute a conjugate direction by PR+ and vector transport
ηk == −ξk + βkTXk−1→Xk

(ηk−1) ⊲ See Algorithm ??

βk =
gXk

(
ξk, ξk − TXk−1→Xk

(ξk−1)
)

gXk−1
(ξk−1, ξk−1)

.

5: Compute an initial step tk. For special cost functions, it is possible to compute:
tk = argmint f(Xk + tηk) ⊲ See Algorithm 8

6: Perform Armijo backtracking to find the smallest integer m ≥ 0 such that

f(Xk)− f(RXk
(0.5mtkηk)) ≥ −0.0001× 0.5mtkgXk

(ξk, ηk) (62)

7: Obtain the new iterate by retraction
Xk+1 = RXk

(0.5mtkηk) ⊲ See Algorithm 5
8: end for

5.1 Equivalence between Burer–Monteiro CG and RCG on the quotient manifold (Cn×p
∗ /Op, g

1)

Theorem 5.1. Using retraction (56), vector transport (57) and metric g1, Algorithm 2 is equivalent to the conjugate
gradient method solving (5) in the sense that they produce exactly the same iterates if started from the same initial
point.
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Algorithm 2 Riemannian Conjugate Gradient on the quotient manifold C
n×p
∗ /Op with metric gi

Require: initial iterate Y1 ∈ π−1(π(Y1)), tolerance ε > 0, tangent vector η0 = 0
1: for k = 1, 2, . . . do
2: Compute the horizontal lift of gradient

ξk := (gradh(π(Yk)))Yk
= gradF (Yk) ⊲ See Algorithm 6

3: Check convergence

if ‖ξk‖ :=
√

giYk
(ξk, ξk) < ε, then break

4: Compute a conjugate direction by PR+ and vector transport
ηk = −ξk + βkTYk−1→Yk

(ηk−1) ⊲ See Algorithm 7

βk =
giYk

(
gradF (Yk), gradF (Yk)− TYk−1→Yk

(ξk−1)
)

giYk−1
(gradF (Yk−1), gradF (Yk−1))

.

5: Compute an initial step tk. For special cost functions, it is possible to compute:
tk = argmint F (Yk + tηk) ⊲ See Algorithm 9

6: Perform Armijo backtracking to find the smallest integer m ≥ 0 such that

F (Yk)− F (RYk
(0.5mtkηk)) ≥ −0.0001× 0.5mtkg

i
Yk
(ξk, ηk)

7: Obtain the new iterate by the simple retraction
Yk+1 = RYk

(0.5mtkηk) = Yk + 0.5mtkηk
8: end for

Proof. First of all, for g1, gradF (Y ) = (∇f(Y Y ∗) +∇f(Y Y ∗)∗)Y , is equal to the Fréchet gradient of F (Y ) :=
f(Y Y ∗) at Y . Since vector transport is the orthogonal projection to the horizontal space, the PR+ βk used in Rieman-
nian CG becomes

βk =
g1Yk

(

gradF (Yk), gradF (Yk)− PH1

Yk
(gradF (Yk−1))

)

g1Yk−1
(gradF (Yk−1), gradF (Yk−1))

. (63)

Now observe that
PH1

Yk
(gradF (Yk−1)) = gradF (Yk−1)− PV

Yk
(gradF (Yk−1)) (64)

and g1 is equivalent to the classical inner product for Cn×p. Hence βk computed by (63) is equal to PR+ βk in
conjugate gradient for (5).

The first conjugate direction is η1 = −gradF (Y1) = −∇F (Y1), so Burer–Monteiro CG coincides with Riemannian
CG for the first iteration. It remains to show that ηk generated in Riemannian CG by

ηk = −ξk + βkP
H1

Yk
(ηk−1)

is equal to ηk generated in Burer–Monteiro CG for each k ≥ 2. It suffices to show that

PH1

Yk
(ηk−1) = ηk−1, ∀k ≥ 2.

Equivalently we need to show that for all k ≥ 2, the Lyapunov equation

(Y ∗
k Yk)Ω + Ω(Y ∗

k Yk) = Y ∗
k ηk−1 − η∗k−1Yk (65)

only has trivial solution Ω = 0. By invertibility of the equation, this means that we only need to show the right hand
side is zero. We prove it by induction.

For k = 2, ηk−1 = η1 = −ξ1 = −gradF (Y1). The following computations show that the RHS of (65) satisfies

Y ∗
2 η1 − η∗1Y2 = −Y ∗

2 ξ1 + ξ∗1Y2

= −(Y1 − cξ1)
∗ξ1 + ξ∗1 (Y1 − cξ1)

= ξ∗1Y1 − Y ∗
1 ξ1

= Y ∗
1 [∇f(Y1Y

∗
1 ) +∇f(Y1Y

∗
1 )

∗]Y1 − Y ∗
1 [∇f(Y1Y

∗
1 ) +∇f(Y1Y

∗
1 )

∗]Y1

= 0.

Hence Ω = 0 and PH1

Yk
(ηk−1) = ηk−1 for k = 2.
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Now suppose for k ≥ 2, the RHS of (65) is 0 and hence PH1

Yk
(ηk−1) = ηk−1 holds. Then the RHS of the Lyapunov

equation of step k + 1 is

Y ∗
k+1ηk − η∗kYk+1 = (Yk + cηk)

∗ηk − η∗k(Yk + cηk)

= Y ∗
k ηk − η∗kYk

= Y ∗
k

(

−ξk + βkP
H1

Yk
(ηk−1)

)

−
(

−ξk + βkP
H1

Yk
(ηk−1)

)∗
Yk

= Y ∗
k (−ξk + βkηk−1)− (−ξk + βkηk−1)

∗Yk

= −Y ∗
k ξk + ξ∗kYk

= −Y ∗
k [∇f(YkY

∗
k ) +∇f(YkY

∗
k )

∗]Yk + Y ∗
k [∇f(YkY

∗
k ) +∇f(YkY

∗
k )

∗]Yk

= 0.

Hence PH1

Yk+1
(ηk) = ηk also holds. We have thus proven that Riemannian CG is equivalent to Burer–Monteiro CG.

Since the gradient descent corresponds to βk ≡ 0, the same discussion also implies the following
Theorem 5.2. Using retraction (56) and metric g1, the Riemannian gradient descent on the quotient manifold is
equivalent to the Burer–Monteiro gradient descent method with suitable step size (6) in the sense that they produce
exactly the same iterates.

5.2 Equivalence between RCG on embedded manifold and RCG on the quotient manifold (Cn×p
∗ /Op, g

3)

In this subsection we show that Algorithm 1 is equivalent to Algorithm 2 with Riemannian metric g3, a specific initial
line-search in step 5, a specific retraction and a specific vector transport. The idea is to take the advantage of the
diffeomorphism β̃ between C

n×p
∗ /Op andHn,p

+ , as well as the fact that the metric g3 of Cn×p
∗ /Op is induced from the

metric ofHn,p
+ .

The Lemma below shows that there is a one-to-one correspondence between grad f and gradh.

Lemma 5.3. If we use g3 as the Riemannian metric for C
n×p
∗ /Op, then the Riemannian gradient of f and h is related

by the diffeomorphism β̃ in the following way:

D β̃(π(Y ))[gradh(π(Y ))] = grad f(Y Y ∗). (66)

Proof. Recall that β = β̃ ◦ π and we have Theorem 4.12. By chain rule and the definition of horizontal lift we have

LHS = D β̃(π(Y ))[gradh(π(Y ))] = D β̃(π(Y ))
[

Dπ(Y )
[

gradh(π(Y ))Y

]]

= Dβ(Y )
[

gradh(π(Y ))Y

]

= Dβ(Y ) [gradF (Y )] .

Now recall that F = f ◦ β. Let A ∈ C
n×p then

DF (Y )[A] = D f(Y Y ∗)[Y A∗ + Y A∗].

Let X = Y Y ∗. Then we have

g3Y (gradF (Y ), A) = gX(grad f(Y Y ∗), Y A∗ +AY ∗).

Since gradF (Y ) ∈ H3
Y , we have

gX (Dβ(Y )[gradF (Y )], Y A∗ +AY ∗) = gX (grad f(Y Y ∗), Y A∗ +AY ∗) ,

or
gX (LHS, Y A∗ +AY ∗) = gX (RHS, Y A∗ +AY ∗) .

Now notice that A is arbitrary and Y A∗ + AY ∗ can be any tangent vector in TXHn,p
+ . Hence we must have LHS =

RHS

Remark 5.4. Since β̃ is a diffeomorphism bewteenC
n×p
∗ /Op andHn,p

+ , Dβ̃(π(Y ))[·] defines an isomorphism between

the two tangent space Tπ(Y )C
n×p
∗ /Op and TY Y ∗Hn,p

+ . We denote this isomorphism by Lπ(Y ). When the tangent space

is clear from the context, π(Y ) is omitted and we only use the notationL for simplicity. The previous lemma then simply
reads

Lπ(Y )(gradh(π(Y ))) = grad f(β̃(π(Y ))). (67)
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In Algorithm 1, we have a retraction RE and a vector transport T E on the embedded manifold Hn,p
+ , with the super-

script E for Embedded, such that RE is the retraction associated with T E . Then we claim that there are a retraction
RQ and a vector transport T Q, with the superscript Q denoting Quotient, on the quotient manifold C

n×p
∗ /Op with

metric g3, such that Algorithm 2 is equivalent to Algorithm (1). The idea is again to use the diffeomorphism β̃ and the
isomorphism Lπ(Y ). We give the desired construction of RQ and T Q as follows.

RQ

π(Y )(ξπ(Y )) := β̃−1
(

RE
β̃(π(Y ))

(
L(ξπ(Y ))

))

. (68)

T Q
ηπ(Y )

(ξπ(Y )) := L−1
π(Y2)

(

T E
L(ηπ(Y ))

(
L(ξπ(Y ))

))

, (69)

where β̃(π(Y2)) denotes the foot of the tangent vector T E
L(ηπ(Y ))

(
L(ξπ(Y ))

)
.

Next we need to show that RQ defined in (68) and T Q defined in (69) are indeed a retraction and a vector transport,
respectively.

Theorem 5.5. RQ defined in (68) is a retraction.

Proof. First it is easy to see that RQ

π(Y )(0π(Y )) = π(Y ). Then we also have for all vπ(Y ) ∈ Tπ(Y )C
n×p
∗ /Op

DRQ

π(Y )(0π(Y ))[vπ(Y )] = D β̃−1(β̃(π(Y ))
[

DRE

β̃(π(Y ))
(0)
[
DL(0)

[
vπ(Y )

]]]

= D β̃−1(β̃(π(Y ))
[

DRE
β̃(π(Y ))

(0)
[
L(vπ(Y ))

]]

= D β̃−1(β̃(π(Y ))
[
L(vπ(Y ))

]

=
(

D β̃(π(Y ))
)−1

[L(vπ(Y ))]

= L−1(L(vπ(Y )))

= vπ(Y )

Hence DRQ

π(Y )(0π(Y ))[·] is an identity map.

Theorem 5.6. T E defined in (69) is a vector transport and RQ is the retraction associated with T E .

Proof. Consistency and linearity are straightforward. It thus suffices to verify that the foot of T Q
ηπ(Y )

(ξπ(Y ))

is equal to RQ

π(Y )(ηπ(Y )). Since RE is the associated retraction with T E , the foot of T E
L(ηπ(Y ))

(L(ξπ(Y )))

is equal to RE

β̃(π(Y ))

(
L(ηπ(Y ))

)
, which we denote by β̃(π(Y2)) for some π(Y2). Hence RQ

π(Y )(ηπ(Y )) =

β̃−1
(

RE

β̃(π(Y ))

(
L(ηπ(Y ))

))

= π(Y2).

Furthermore, we have that T Q
ηπ(Y )

(ξπ(Y )) = L−1
π(Y2)

(

T E
L(ηπ(Y ))

(
L(ξπ(Y ))

))

is a tangent vector in Tπ(Y2)C
n×p
∗ /Op.

Hence, the foot of T Q
ηπ(Y )

(ξπ(Y )) is also π(Y2).

Finally, in order to reach an equivalence, we also need the initial step size to match the one in step 5 of Algorithm 2.
We simply replace the original initial step size tk by

tk = argmin
t

f(YkY
∗
k + t(Ykη

∗
k + ηkY

∗
k )). (70)

This value of tk now is equivalent to the initial step size in step 5 of Algorithm 1. This gives us the following result:

Theorem 5.7. With the newly constructed initial step size, retraction and vector transport in this subsection, Algorithm
2 for solving (7) is equivalent to Algorithm 1 solving (1) in the sense that they produce exactly the same iterates.
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6 Implementation details

The algorithms in this paper can be applied for minimizing any smooth function f(X) in (1). For problems with
large n, however, it is advisable to avoid constructing and storing the Fréchet derivative ∇f(X) ∈ Cn×n explicitly.
Instead, one directly computes the matrix-vector multiplications∇f(X)U and (∇f(X))∗U . In the PhaseLift problem
[5], for example, these matrix-vector multiplications can be implemented via the FFT at a cost of O(pn logn) when
U ∈ Cn×p; see [13].

Below, we detail the calculations needed in Algorithms 1 and 2. When giving flop counts, we assume that ∇f(X)U
and (∇f(X))∗U ∈ C

n×p can be computed in spn logn flops with s small. For g2 and g3 in Algorithms 6 and 7, we
use forwardslash "/" and backslash "\" in Matlab command to compute the inverse of Y ∗Y .

6.1 Embedded manifold

Algorithm 3 Calculate the Riemannian gradient grad f(X)

Require: X = UΣU∗ ∈ Hn,p
+

Ensure: grad f(X) = UHU∗ + UpU
∗ + UU∗

p ∈ TXHn,p
+

T ← 1
2 (∇f(X) +∇f(X)∗)U ⊲ # 2spn logn flops

H ← U∗T ⊲ # 2np2 flops
Up ← T − UH ⊲ # 2np2 + np flops

Algorithm 4 Calculate the embedded vector transport P t
X2

(ν)

Require: X1 = U1Σ1U
∗
1 , X2 = U2Σ2U

∗
2 and tangent vector ν = U1H1U

∗
1 + Up1U

∗
1 + U1Up

∗
1 ∈ TX1Hn,p

+ .
Ensure: P t

X2
(ν) = U2H2U

∗
2 + Up2U

∗
2 + U2Up

∗
2

A← U∗
1U2 ⊲ # 2np2 flops

H
(1)
2 ← A∗H1A, U

(1)
p ← U1(H1A) ⊲ # 6p3 + 2np2 flops

H
(2)
2 ← U∗

2Up1A, U
(2)
p ← Up1A ⊲ # 4np2 + 2p3 flops

H
(3)
2 ← H

(2)
2

∗
, U

(3)
p ← U1(U1

∗
pU2) ⊲ # 4np2 flops

H2 ← H
(1)
2 +H

(2)
2 +H

(3)
2 ⊲ # 4np2 flops

Up2 ← U
(1)
p + U

(2)
p + U

(3)
p , Up2 ← Up2 − U2(U

∗
2Up2) ⊲ # 4np2 flops

Algorithm 5 Calculate the retraction PHn,p

+
(X + Z)

Require: X = UΣU∗ ∈ Hn,p
+ , tangent vector Z = UHU∗ + UpU

∗ + UU∗
p .

Ensure: PHn,p

+
(X + Z) = U+Σ+U

∗
+.

(Q,R)← qr(Up, 0) M ←
[
Σ+H R∗

R 0

]

⊲ # 10np2 flops

[V, S]← eig(M) ⊲ O(p3) flops
Σ+← S(1 : p, 1 : p), U+ ← [U Q]V (:, 1 : p) ⊲ # 4np2 flops
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6.2 Quotient manifold

Algorithm 6 Calculate the Riemannian gradient gradF (Y )

Require: Y ∈ C
n×p
∗

Ensure: T = gradF (Y )
1: if metric is g1 then

T ← (∇f(Y Y ∗) +∇f(Y Y ∗)∗)Y . ⊲ # 2spn logn flops
2: else if metric is g2 then

Z ← Y (Y ∗Y )−1 ⊲ # 4np2 +O(p3) flops
T ← (∇f(Y Y ∗) +∇f(Y Y ∗)∗)Z ⊲ # 2spn logn flops

3: else if metric is g3 then
Z ← Y (Y ∗Y )−1 ⊲ # 4np2 +O(p3) flops
T ← (∇f(Y Y ∗) +∇f(Y Y ∗)∗)Z ⊲ # 2spn logn flops
M ← Y ∗T , T ← T − 1

2ZM ⊲ # 4np2 + np+ p3 flops
4: end if

Algorithm 7 Calculate the quotient vector transport PH
Y2
(h1)

Require: Y1 ∈ C
n×p
∗ , Y2 ∈ C

n×p
∗ and horizontal vector h1 ∈ HY1 .

Ensure: h2 = PH
Y2
(h1) ∈ HY2 .

1: if metric is g1 then
E ← Y ∗

2 Y2 ⊲ # 2np2 flops
(Q,S)← eig(E), d← diag(S) ⊲ # O(p3) flops
λ← d [1, 1, · · · , 1] + [1, 1, · · · , 1]T dT ⊲ # 2p2 flops
A← Q∗(Y ∗

2 h1 − h∗
1Y2)Q ⊲ # 4np2 + 4p3 flops

Ω← Q(A./λ)Q∗ ⊲ # p2 + 4p3 flops
h2 ← h1 − Y2Ω ⊲ # np+ 2np2 flops

2: else if metric is g2 or g3 then

Ω̃← (Y ∗Y )−1(Y ∗
2 h1) ⊲ # 4np2 +O(p3) flops

Ω← 1
2 (Ω̃− Ω̃∗) ⊲ # 2p2 flops

h2 ← h1 − Y2Ω ⊲ # np+ 2np2 flops
3: end if

6.3 Initial guess for the line search

The initial guess for the line search generally depends on the expression of the cost function f(X). For the important
case of f(X) = 1

2 ‖A(X)− b‖2F where A is a linear operator and b is a matrix, the initial guess for embedded CG
requires solving a linear equation and for quotient CG it requires solving a cubic equation. Below this calculation is
detailed for b of size mn for some m and assuming that A(X) can be evaluated in spαn logn flops for X ∈ Hn,p

+ ,
A(T ) for T ∈ TXHn,p

+ and A(Y η∗) for Y, η ∈ C
n×p
∗ .

Algorithm 8 Calculate the initial guess t∗ = argmint f(X + tT )

Require: X ∈ Hn,p
+ and a descend direction T ∈ TXHn,p

+

Ensure: t∗ = argmint f(X + tT ) = argmint
1
2 ‖A(X + tT )− b‖2F

R← A(X)− b ⊲ # spαn logn+mn flops
S ← A(T ) ⊲ # spαn logn flops
t∗ ← − 〈R,S〉

〈S,S〉 ⊲ # 2mn+ 1 flops
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Algorithm 9 Calculate the initial guess t∗ = argmint F (Y + tη)

Require: Y ∈ C
n×p
∗ , a descend direction η ∈ HY ,

Ensure: t∗ = argmint F (Y + tη) = argmint
1
2 ‖A((Y + tη)(Y + tη)∗)− b‖2F

c0 ← A(Y Y ∗)− b ⊲ # spαn logn+mn flops
c
(1)
1 ← A(Y η∗), c

(2)
1 ← A(ηY ∗), c1 ← c

(1)
1 + c

(2)
1 ⊲ # 2spαn logn+mn flops

c2 ← A(ηη∗) ⊲ # spαn logn flops
d4 ← 〈c2, c2〉, d3 ← 2 〈c2, c1〉 ⊲ # 2mn flops
d2 ← 2 〈c2, c0〉+ 〈c1, c1〉, d1 ← 2 〈c1, c0〉 ⊲ # 3mn flops
C ← [4d4 3d3 2d2 d1]
S ← roots(C), t∗ ← the smallest real positive root in S

7 Estimates of Rayleigh quotient for Riemannian Hessians

In many applications, (1) or (7) is often used for solving (2). In [14], it was proven that first-order and second-order
optimality conditions for the nonconvex Burer–Monteiro approach are sufficient to find the global minimizer of certain
convex semi-definite programs under certain assumptions. In practice, even if the minimizer X̂ of (2) has a known
rank r, one might consider solving (1) or (7) for Hermitian PSD matrices with fixed rank p > r. For instance, in
PhaseLift [5] and interferometry recovery [8], the minimizer to (2) is has rank one, but in practice optimization over
the set of PSD Hermitian matrices of rank p with p ≥ 2 is often used because of a larger basin of attraction [8, 13].

If p > r, then an algorithm that solves (1) or (7) can generate a sequence that goes to the boundary of the manifold.
Numerically, the smallest p − r singular values of the iterates Xk will become very small as k → ∞. In this section,
we analyze the eigenvalues of the Riemannian Hessian. In particular we will obtain upper and lower bounds of the
Rayleigh quotient at the point X = Y Y ∗ (or π(Y )) that is close to the global minimum X̂ = Ŷ Ŷ ∗ (or π(Ŷ )). We
assume that the Fréchet Hessian ∇2f is well conditioned when restricted to the tangent space. Formally, our bounds
will be stated in terms of the constants A,B defined in the following assumption:

Assumption 7.1. For a fixed ǫ > 0, there exists constants A > 0 and B such that for all X with

∥
∥
∥X − X̂

∥
∥
∥
F
< ǫ, the

following inequality holds for all ζX ∈ TXHn,p
+ .

A ‖ζX‖2F ≤
〈
∇2f(X)[ζX ], ζX

〉

Cn×n ≤ B ‖ζX‖2F . (71)

An important case for which this assumption holds is f(X) = 1
2 ‖X −H‖2F with H a given Hermitian PSD matrix.

In this case,∇2f(X) is the identity operator and thus A = B = 1.

We summarize the main result in the following theorem. Its proof is outlined the subsections below.

Theorem 7.1. Let X̂ = Ŷ Ŷ ∗ be a minimizer of (2) with rank r < p. For X = Y Y ∗ near X̂ where Y ∈ C
n×p
∗ , let

ξπ(Y ) ∈ Tπ(Y )C
n×p
∗ /Op be any quotient tangent vector at π(Y ) and let ξY ∈ Hi

Y be its horizontal lift at Y w.r.t. the

metric gi. Define the Rayleigh quotient of the Riemannian Hessian of (Cn×p
∗ /Op, g

i) as

ρi(Y ) =
gi
π(Y )(Hessh(π(Y ))[ξπ(Y )], ξπ(Y ))

gi
π(Y )(ξπ(Y ), ξπ(Y ))

.

Then, under Assumption 7.1, it holds

0 ≤ lim
‖Y−Ŷ ‖F→0

ρ1(Y ) ≤ 4B‖X̂‖, 2A ≤ lim
‖Y −Ŷ ‖F→0

ρ2(Y ) ≤ 4B, A ≤ lim
‖Y−Ŷ ‖F→0

ρ3(Y ) ≤ B,

where ‖X̂‖ is the spectral norm, that is, the largest eigenvalue of X̂ .

7.1 Quotient manifold

Let π(Y ) ∈ C
n×p
∗ /Op such that each Y ∈ [Y ] gives Y Y ∗ close enough to X̂ . Let ξπ(Y ) ∈ Tπ(Y )C

n×p
∗ /Op be any

quotient tangent vector at π(Y ) and let ξY ∈ Hi
Y be its horizontal lift at Y w.r.t. the metric gi. We calculate the

Rayleigh quotients ρi defined in Theorem 7.1 for the three metrics gi, i = 1, 2, 3. Observe first that by definition of h,
we have for each gi that

ρi(Y ) =
giY (HessF (Y )[ξY ], ξY )

giY (ξY , ξY )
.

23



Simple calculations for g1 then gives

ρ1(Y ) =
g1Y (2Herm{∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y

∗]}Y, ξY )
g1Y (ξY , ξY )

+
g1Y (2Herm(∇f(Y Y ∗))ξY , ξY )

g1Y (ξY , ξY )
.

Likewise, for g2 we obtain

ρ2(Y ) =
g2Y (2Herm{∇2f(Y Y ∗)[Y ξ

∗
Y + ξY Y

∗]}Y (Y ∗Y )−1, ξY )

g2Y (ξY , ξY )

+
g2Y (Herm(∇f(Y Y ∗))P⊥

Y ξY (Y
∗Y )−1, ξY )

g2Y (ξY , ξY )
+

g2Y (P
⊥
Y Herm(∇f(Y Y ∗))ξY (Y

∗Y )−1, ξY )

g2Y (ξY , ξY )

+
g2Y (2skew(ξY Y

∗)Herm(∇f(Y Y ∗))Y (Y ∗Y )−2, ξY )

g2Y (ξY , ξY )

+
2skew{ξY (Y ∗Y )−1Y ∗Herm(∇f(Y Y ∗))}Y (Y ∗Y )−1, ξY )

g2Y (ξY , ξY )
.

Finally, for g3, we get

ρ3(Y ) =
g3Y

((
I − 1

2PY

)
Herm{∇2f(Y ∗Y )[Y ξ

∗
Y + ξY Y

∗]}Y (Y ∗Y )−1, ξY

)

g3Y (ξY , ξY )
(72)

+
g3Y ((I − PY )Herm(∇f(Y Y ∗))(I − PY )ξY (Y

∗Y )−1, ξY )

g3Y (ξY , ξY )
. (73)

Observe that when we use metric gi for any i, the leading term in the Rayleigh quotient takes the same form
〈

∇2f(Y Y ∗)[Y ξ
∗
Y + ξY Y

∗], Y ξ
∗
Y + ξY Y

∗
〉

Cn×n

giY (ξY , ξY )
. (74)

By Theorem 4.3 in [13], all other terms become arbitrarily small as Y → Ŷ . Therefore, it suffices to analyze the
fraction (74) near the true solution π(Ŷ ). Observe that Y ξ

∗
Y + ξY Y

∗ ∈ TY Y ∗Hn,p
+ . Hence Assumption 7.1 also

applies and becomes the following:

Lemma 7.2. For a fixed ǫ > 0, there exists constants A and B such that for all Y ∈ C
n×p
∗ with

∥
∥
∥Y Y ∗ − X̂

∥
∥
∥
F
< ǫ,

the following inequality holds for all ξY ∈ Hi
Y :

A
∥
∥
∥Y ξ

∗
Y + ξY Y

∗
∥
∥
∥

2

F
≤
〈

∇2f(Y Y ∗)[Y ξ
∗
Y + ξY Y

∗], Y ξ
∗
Y + ξY Y

∗
〉

Cn×n
≤ B

∥
∥
∥Y ξ

∗
Y + ξY Y

∗
∥
∥
∥

2

F
, (75)

where Y ∈ [Y ] is a representation of [Y ].

Equation (74) therefore satisfies

A

∥
∥
∥Y ξ

∗
Y + ξY Y

∗
∥
∥
∥

2

F

giY (ξY , ξY )
≤

〈

∇2f(Y Y ∗)[Y ξ
∗
Y + ξY Y

∗], Y ξ
∗
Y + ξY Y

∗
〉

Cn×n

giY (ξY , ξY )
≤ B

∥
∥
∥Y ξ

∗
Y + ξY Y

∗
∥
∥
∥

2

F

giY
(
ξY , ξY

) (76)

and it suffices to estimate the fraction
∥
∥
∥Y ξ

∗
Y + ξY Y

∗
∥
∥
∥

2

F

giY
(
ξY , ξY

) (77)

for different gi. Below, we will bound this fraction as ξY varies in Hi
Y for each gi. The cases of g2 and g3 are simple

while the case of g1 involves more analysis.
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7.2 Riemannian metric 1

For g1, write ξY = Y (Y ∗Y )−1S + Y⊥K for some S = S∗ ∈ Cp×p and K ∈ Cn×p. Then (77) becomes
∥
∥
∥Y ξ

∗
Y + ξY Y

∗
∥
∥
∥

2

F

giY (ξY , ξY )
=

∥
∥Y ((Y ∗Y )−1S + S(Y ∗Y )−1)Y ∗∥∥2

F
+ 2 ‖KY ∗‖2F

‖Y (Y ∗Y )−1S‖2F + ‖K‖2F
. (78)

Notice that the Rayleigh quotient is independent of the representative for [Y ]. Hence, we can choose Y = U
√
Σ

where Y Y ∗ = UΣU∗ is the SVD of Y Y ∗.

Let Ki denote the ith column of K . Let σi denote the ith diagonal entry of Σ with σ1 ≥ σ2 ≥ · · · ≥ σp ≥ ǫ > 0.
Similarly for X̂ , let Û Σ̂Û∗ be its SVD and let σ̂1 ≥ · · · ,≥ σ̂r > 0 be the singular values of X̂ . Define σ̂max =
max{σ̂1, · · · , σ̂r} and σ̂min = min{σ̂1, · · · , σ̂r}. Then (78) can be simplied to

∥
∥Y ((Y ∗Y )−1S + S(Y ∗Y )−1)Y ∗∥∥2

F
+ 2 ‖KY ∗‖2F

‖Y (Y ∗Y )−1S‖2F + ‖K‖2F
=

∥
∥
∥Σ− 1

2SΣ
1
2 +Σ

1
2SΣ− 1

2

∥
∥
∥

2

F
+ 2

∥
∥
∥KΣ

1
2

∥
∥
∥

2

F
∥
∥
∥Σ− 1

2S
∥
∥
∥

2

F
+ ‖K‖2F

(79)

=

∑p
i,j=1

(√
σi√
σj

+
√
σj√
σi

)2

|Sij |2 + 2
∑p

i=1 σi ‖Ki‖2F
∑p

i,j=1
|Sij |2
σi

+
∑p

i=1 ‖Ki‖2F
(80)

=

∑p
i,j=1

(
σi

σj
+

σj

σi
+ 2
)

|Sij |2 + 2
∑p

i=1 σi ‖Ki‖2F
∑p

i,j=1
|Sij |2
σi

+
∑p

i=1 ‖Ki‖2F
(81)

=
2
∑p

i,j=1
σj

σi
|Sij |2 + 2

∑p
i,j=1 |Sij |2 + 2

∑p
i=1 σi ‖Ki‖2F

∑p
i,j=1

|Sij |2
σi

+
∑p

i=1 ‖Ki‖2F
. (82)

Recall that X̂ has rank r. By Weyl’s theorem for the singular values of perturbed matrices [31], as π(Y ) approaches

the true solution π(Ŷ ) in the sense that
∥
∥
∥Y Y ∗ − X̂

∥
∥
∥
F

goes to 0, the last p − r eigenvalues in Σ will tend to 0, and

the first r eigenvalues in Σ will approach the eigenvalues of X̂ . That is, σi → σ̂i for 1 ≤ i ≤ r and σj → 0 for
r + 1 ≤ j ≤ p. To simplify the formula from (82), introduce the two terms

M = 2

r∑

i=1

∑p
j=1 σj |Si,j |2

σi

+ 2

p
∑

i,j=1

|Si,j |2 + 2

p
∑

i=1

σi ‖Ki‖2F (83)

and

N =

r∑

i=1

∑p
j=1 |Si,j |2

σ̂i

+

p
∑

i=1

‖Ki‖2F . (84)

If p ≥ r + 1, we can rewrite (82) as

2
∑p

i,j=1
σj

σi
|Sij |2 + 2

∑p
i,j=1 |Sij |2 + 2

∑p
i=1 σi ‖Ki‖2F

∑p
i,j=1

|Sij|2
σi

+
∑p

i=1 ‖Ki‖2F
(85)

=
2
(∑r

i=1 +
∑p

i=r+1

)
∑p

j=1 σj |Si,j|2
σi

+ 2
∑p

i,j=1 |Sij |2 + 2
∑p

i=1 σi ‖Ki‖2F
∑r

i=1

∑p

j=1|Si,j |2
σi

+
∑p

i=r+1

∑p

j=1|Si,j |2
σi

+
∑p

i=1 ‖Ki‖2F
(86)

=
2
∑p

i=r+1

∑p

j=1 σj |Si,j |2
σi

+M
∑p

i=r+1

∑p

j=1|Si,j |2
σi

+N
. (87)

If p = r + 1, then the limit of (87) as
∥
∥
∥Y Y ∗ − X̂

∥
∥
∥
F
→ 0 is

lim
σi→σ̂i
σp→0

2
∑p

j=1 σj |Sp,j|2
σp

+M
∑p

j=1|Sp,j|2
σp

+N
=

2
∑r

j=1 σ̂j |Sp,j |2
∑p

j=1 |Sp,j |2
. (88)
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If Sp,j = 0 for all 1 ≤ j ≤ r and Sp,p 6= 0, then the above limit equals zero. Otherwise it will be a nonzero constant.

If p ≥ r + 2, the limit of (87) as
∥
∥
∥Y Y ∗ − X̂

∥
∥
∥
F
→ 0 does not exist in general since the following ordered limit is

dependent by its order that σr+1, · · · , σp goes to 0.

lim
σ1→σ̂1

· · · lim
σr→σ̂r

lim
σr+1→0

· · · lim
σp→0

2
∑p

i=r+1

∑p

j=1 σj |Si,j |2
σi

+M
∑p

i=r+1

∑p

j=1|Si,j |2
σi

+N
= lim

σ1→σ̂1

· · · lim
σr→σ̂r

lim
σr+1→0

· · · lim
σp−1→0

2
∑p−1

j=1 σj |Sp,j|2
∑p

j=1 |Sp,j|2

=
2
∑r

j=1 σ̂j |Sp,j|2
∑p

j=1 |Sp,j |2
.

If Sp,j = 0 for all 1 ≤ j ≤ r and Sp,j 6= 0 for some r + 1 ≤ j ≤ p, then the above ordered limit is zero. Otherwise it
will be a nonzero constant. Therefore, when p = r, the fraction (77) can be bounded between 2σmin and 4σmax. When
p > r, the range of the fraction (77) can be unbounded. This implies that the condition number of the Riemannian
Hessian can be large when p > r for metric g1.

7.3 Riemannian metric 2

For g2, write ξY = Y S + Y⊥K for some S = S∗ ∈ Cp×p and K ∈ Cn×p. Then (77) becomes
∥
∥
∥Y ξ

∗
Y + ξY Y

∗
∥
∥
∥

2

F

g2Y (ξY , ξY )
= 2 +

2 ‖Y SY ∗‖2F
‖Y SY ∗‖2F + ‖KY ∗‖2F

. (89)

When K is zero, (77) is upper bounded by 4. When S is a zero and K is nonzero, it is lower bounded by 2:

2A ≤

〈

∇2f(Y Y ∗)[Y ξ
∗
Y + ξY Y

∗], Y ξ
∗
Y + ξY Y

∗
〉

Cn×n

g2Y (ξY , ξY )
≤ 4B. (90)

Hence, the condition number of Hess h(π(Y )) is at most 2B
A

when π(Y )→ π(Ŷ ).

7.4 Riemannian metric 3

For g3, (77) reduces to
∥
∥
∥Y ξ

∗
Y + ξY Y

∗
∥
∥
∥
F

g3Y (ξY , ξY )
= 1. (91)

Hence we get directly

A ≤

〈

∇2f(Y Y ∗)[Y ξ
∗
Y + ξY Y

∗], Y ξ
∗
Y + ξY Y

∗
〉

Cn×n

g3Y (ξY , ξY )
≤ B.

The condition number of Hessh(π(Y )) therefore is bounded by B
A

when π(Y )→ π(Ŷ ).

8 Numerical experiments

In this section, we report on the numerical performance of the the conjugate gradient methods on three kinds of cost
functions of f(X): eigenvalue problem, matrix completion, phase-retrieval, and interferometry. In particular, we
implement and compare the following four algorithms:

1. Riemannian CG on the quotient manifold (Cn×p
∗ /Op, g

1), i.e., Algorithm 2 with metric g1. This algorithm
is equivalent to Burer–Monteiro CG, that is, CG applied directly to (5).

2. Riemannian CG on the quotient manifold (Cn×p
∗ /Op, g

2), i.e., Algorithm 2 with metric g2. The same metric
g2 was used in [13].
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3. Riemannian CG on the quotient manifold (Cn×p
∗ /Op, g

3), i.e., Algorithm 2 with metric g3, and also a spe-
cific retraction, vector transport and initial step as described in Section 5.2. This special implementation is
equivalent to Riemannian CG on embedded manifold, i.e., Algorithm 1.

4. Burer–Monteiro L-BFGS method, that is, using the L-BFGS method directly applied to (5). This method was
used in [8].

8.1 Eigenvalue problem

For any n-by-n Hermitian PSD matrix A, its top p eigenvalues and associated eigenvectors can be found by solving
the following minimization problem:

minimize
X

f(X) := 1
2 ‖X −A‖2F

subject to X ∈ Hn,p
+

,

or equivalently

minimize
π(Y )

h(π(Y )) := 1
2 ‖Y Y ∗ −A‖2F

subject to π(Y ) ∈ C
n×p
∗ /Op

.

It is easy to verify that

∇f(X) = X −A, ∇2f(X)[ζX ] = ζX , ζX ∈ C
n×n.

We consider a numerical test for a random Hermitian PSD matrix A of size 50 000-by-50000 with rank 10. We solve
the minimization problem above with p = 15. Obivously, the minimizer is rank-10 thus rank deficient for Cn×p

∗ /Op

with p = 15. This corresponds to a scenario of finding the eigenvalue decomposition of a low rank Hermitian PSD
matrix A with estimated rank at most 15. The results are shown in Figure 1. The initial guess is the same random
initial matrix for all four algorithms. We see that the simpler Burer–Monteiro approach, including the L-BFGS method
and the CG method with metric g1, is significantly slower.
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Figure 1: Eigenvalue problem of a random 50 000-by-50 000 PSD matrix of rank 10 on the rank 15 manifold.
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8.2 Matrix completion

Let Ω be a subset of of the complete set {1, · · · , n} × {1, · · · , n}. Then the projection operator onto Ω is a sampling
operator defined as

PΩ : Cn×n → C
n×n : Xi,j 7→

{
Xi,j if (i, j) ∈ Ω,

0 if (i, j) /∈ Ω.
(92)

The original matrix completion problem has no symmetry or Hermitian constraint. Here, we just consider an artificial
Hermitian matrix completion problem for a given A ∈ Hn,p

+ :

minimize
X

f(X) := 1
2 ‖PΩ(X −A)‖2F

subject to X ∈ Hn,p
+

, (93)

or equivalently

minimize
π(Y )

h(π(Y )) := 1
2 ‖PΩ(Y Y ∗ −A)‖2F

subject to π(Y ) ∈ C
n×p
∗ /Op

. (94)

Straightforward calculation shows

∇f(X) = PΩ(X −A), ∇2f(X)[ζX ] = PΩ(ζX), ζX ∈ C
n×n.

We consider a Hermitian PSD matrix A ∈ Cn×n with n = 10 000 and PΩ a random 90% sampling operator. In the
first test of Figure 2, the minimizer has rank r = 25, and the fixed rank for the manifold is set to p = 30. In the second
test of Figure 3, the minimizer has rank r = 25, and the fixed rank for the manifold is set to p = 25. The initial guess
is the same random matrix for all four algorithms. For both cases, we see that the simpler Burer–Monteiro approach,
including the L-BFGS method and the CG method with metric g1, is significantly slower.
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Figure 2: Matrix completion of a random 10 000-by-10 000 PSD matrix of rank 25 observed at random 90% entries.
The algorithms are solved on the rank 30 manifold.
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Figure 3: Same setting as in Figure 2 but minimized on the rank 25 manifold.

8.3 The PhaseLift problem

We now solve the phase retrieval problem as described in [5]: Take an image x ∈ C
N2×1 and a collection of masks

denoted by {Mi}mi=1 where N2 = n is the size of the flattened image. Each Mi is of the same size as x and the
elements in each Mi are real or complex numbers with both real and imaginary parts between 0 and 1. We can choose
Mi to be random numbers or i.i.d. Gaussian. We have m number of observations for each mask i = 1, · · · ,m:

di = N (x) := |(DFT(Diag(Mi) ∗ x)|2, (95)

whereN denotes the nonlinear operator. The squared power is taken element-wisely. Diag(Mi) denotes the diagonal
matrix whose diagonal is Mi. DFT denotes the n× n discrete fourier transform matrix. Therefore, di is vector of size
n× 1.

Now we lift x so that N can be treated as a linear operator. Let dij denote the jth component of di. Let zi
∗

denote
DFT · Diag(Mi) and zij

∗
denote the jth row of DFT · Diag(Mi). Then equation (95) can be written as

|〈zij , x〉|2 = zij
∗
xx∗zij = dij , j = 1, . . . n, i = 1, . . . ,m. (96)

Denoting X := xx∗, the nonlinear operatorN can be rewritten as the linear operator

A : Cn×n → R
mn×1, X 7→ [tr(z11z

1
1
∗
X), · · · , tr(z1nz1n

∗
X), · · · , tr(zm1 zm1

∗X), · · · , tr(zmn zmn
∗X)]T . (97)

Let Zi := DFT ·Diag(Mi) =





−zi1
∗−
· · ·
−zin

∗−



, then we have alternatively

A : Cn×n → R
mn×1, X 7→ [diag(Z1XZ1∗), · · · , diag(ZmXZm∗)]T . (98)

Denote b = [d1, · · · , dm]T . Then the cost function can be written as

f(X) =
1

2
‖A(X)− b‖2
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The conjugate of operatorA, detoted byA∗ is given by

A∗(b) =







m∑

i=1

n∑

j=1

bijz
i
jz

i
j

∗
=

m∑

i=1

Zi∗ Diag(bi)Zi, if domain of A is Cn×n

ℜ





m∑

i=1

n∑

j=1

bijz
i
jz

i
j

∗



 = ℜ
(

m∑

i=1

Zi∗ Diag(bi)Zi

)

, if domain of A is Rn×n.

Straightforward calculation shows

∇f(X) = A∗(A(X)− b), ∇2f(X)[ζX ] = A∗(A(ζX )) for all ζX ∈ C
n×n.

For the numerical experiments, we take the phase retrieval problem for a complex gold ball image of size 256×256 as
in [13]. Thus n = 2562 = 65, 536 in (2) or (1). We consider two different kinds of operator A: the first corresponds
to 6 Gaussian random masks and the second one to 8 Gaussian random masks. Hence, the size of b is 8n = 524, 288.
Remark that problem is easier to solve with more masks.

We first test the algorithms on the rank 1 manifold, and then on the rank 3 manifolds. The results are visible in Figures
4–7. The initial guess is randomly generated. First, we observe that solving the PhaseLift problem on the rank p
manifold with p > 1 can accelerate the convergence, compared to solving it on the rank 1 manifold. Second, when
p = r = 1, the asymptotic convergence rates of all algorithms are essentially the same, though the algorithms differ
in the length of their convergence "plateaus". When p = 3 > r = 1, we can see that the Burer–Monteiro approach has
slower asymptotic convergence rates.
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Figure 4: Phase retrieval of a 256-by-256 image with 6 Gaussian masks. The algorithms are solved on the rank 3
manifold.
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Figure 5: Phase retrieval of a 256-by-256 image with 8 Gaussian masks. The algorithms are solved on the rank 3
manifold.
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Figure 6: Same phase retrieval problem setting as in Figure 4 but The algorithms are solved on the rank 1 manifold.
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Figure 7: Same phase retrieval problem setting as in Figure 5 but The algorithms are solved on the rank 1 manifold.

8.4 Interferometry recovery problem

As last example, we consider solving the interferometry recovery problem described in [8]. Consider solving the linear
system Fx = d where F ∈ Cm×n

∗ with m > n and x ∈ Cn×1. For the sake of robustness, the interferometry recovery
[8] requires solving the lifted problem

minimize
X

f(X) = 1
2 ‖PΩ(FXF ∗ − dd∗)‖2F

subject to X ∈ Hn,p
+

, (99)

where Ω is a sparse and symmetric sampling index that includes all of the diagonal.

Straightforward calculation again shows

∇f(X) = F ∗PΩ(FXF ∗ − dd∗)F, ∇2f(X)[ζX ] = F ∗PΩ(FζXF ∗)F for all ζX ∈ C
n×n.

We solve an interferometry problem with a randomly generated F ∈ C10 000×1000. Hence n = 1000 in (2) or (1). The
sampling operator Ω is also randomly generated, with 70% density. In Figure8, p = 3 and r = 1 and we can see that
the Burer–Monteiro approach has slower asymptotic convergence rates. In Figure9, p = r = 1 and we can see now
that all algorithms have more or less the same asymptotic convergence rates.
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Figure 8: Interferometry recovery of a random 10 000-by-1000 F with 70% sampling. The algorithms are solved on
the rank 3 manifold
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Figure 9: Same setting as in Figure 8 but on the rank 1 manifold.
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9 Conclusion

In this paper, we have shown that the nonlinear conjugate gradient method on the unconstrained Burer–Monteiro
formulation for Hermitian PSD fixed-rank constraints is equivalent to a Riemannian conjugate gradient method on a
quotient manifold C

n×p
∗ /Op with a specific metric g1, retraction, and vector transport. We have also shown that the

Riemannian conjugate gradient method on the embedded geometry of Hn,p
+ is equivalent to a Riemannian conjugate

gradient method on a quotient manifold C
n×p
∗ /Op with a metric g3, a special retraction, and a special vector transport.

We have analyzed the condition numbers of the Riemannian Hessians on (Cn×p
∗ /Op, g

i) for these metrics g1, g3 and
another metric g2 used in the literature. As notheworthy result, we have show that when the rank p of the optimization
manifold is larger than the rank of the minimizer to the original PSD constrained minimization, the condition number
of the Riemannian Hessian on (Cn×p

∗ /Op, g
1) can be unbounded, which is consistent with the observation that the

Burer–Monteiro approach often has a slower asymptotic convergence rate in numerical tests.
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Appendix A Derivatives

See A.5 in [25] for more details in this section.

A.1 Fréchet derivatives

For any two finite-dimensional vector spaces U and V over R, a mappingF : U → V is Fréchet differentiable at x ∈ U
if there exists a linear operator

DF (x) : U → V
h 7→ DF (x)[h]

such that
F (x+ h) = F (x) + DF (x)[h] + o(‖h‖).

The operator DF (x) is called the Fréchet differential and DF (x)[h] is called the directional derivative of F at x along
h. The derivative satisfies the chain rule

D(f ◦ g)(x)[h] = Df(g(x))[Dg(x)[h]].

For a smooth real-valued function f : U → R, the Fréchet gradient of f at x, denoted by∇f(x), is the unique element
in U satisfying

〈∇f(x), h〉U = Df(x)[h], ∀h ∈ U , (100)

where 〈·, ·〉U is the inner product in U .

In particular, considerU = C
n×n as a vector space overR with the standard inner product 〈X,Y 〉Cn×n = ℜ(tr(X∗Y )).

Then the expression

∇f(X) =
∂f(X)

∂ℜX

+ i

∂f(X)

∂ℑX

(101)

defines a Fréchet gradient. To see this, view X as (ℜ(X),ℑ(X)) and apply the multivariate Taylor theorem to f :

|f(X + h)− f(X)− 〈∇f(X), h〉Cn×n | =
∣
∣
∣
∣
f (ℜ(X) + ℜ(h),ℑ(X) + ℑ(h))− f(ℜ(X),ℑ(X))−

(〈
∂f

∂ℜ(X)
,ℜ(h)

〉

+

〈
∂f

∂ℑ(X)
,ℑ(h)

〉)∣
∣
∣
∣
,

where X and h are n-by-n complex matrices. The last line is o(‖h‖
Cn×n) due to the multivariate Taylor theorem.

Now let g : Cn×p → Cn×n : Y 7→ Y Y ∗ and the the inner product on Cn×p as the standard inner product
〈A,B〉

Cn×p = ℜ(tr(A∗B)). Then the Fréchet gradient of q := f ◦ g satisfies

q′(Y ) = 2Herm(∇f(Y Y ∗))Y. (102)

Indeed, by the chain rule of Fréchet derivative we have

D q(Y )[h] = D f(g(Y )) [D g(Y )[h]] , ∀h ∈ C
n×p. (103)

Hence
〈q′(Y ), h〉

Cn×p = 〈∇f(Y Y ∗),D g(Y )[h]〉
Cn×n . (104)

One can check by definition that D g(Y )[h] = Y h∗ + hY ∗. Hence

〈q′(Y ), h〉
Cn×p = 〈∇f(Y Y ∗), Y h∗ + hY ∗〉

Cn×n = 〈2Herm(∇f(Y Y ∗))Y, h〉
Cn×p . (105)

This proves (102).

Theorem A.1. The Fréchet gradient of f(X) = 1
2‖A(X)− b‖2F for a linear operatorA is given by

∇f(X) = A∗(A(X)− b). (106)

Proof. We know by the definition of Fréchet gradient (see A.1) that

∇f(X) =
∂f

∂ℜX

+ i

∂f

∂ℑX

, (107)

Now for f(X) = 1
2‖A(X)− b‖2 = 1

2 〈A(X)− b,A(X)− b〉, by the linearity of A, we have

∇f(X) =
1

2

∂

∂X
〈A(X)− b,A(∆)− b〉

∣
∣
∣
∣
∆=X

+
1

2

∂

∂∆
〈A(X)− b,A(∆)− b〉

∣
∣
∣
∣
∆=X
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=
1

2

∂

∂X
〈A(X)− b,A(∆)− b〉

∣
∣
∣
∣
∆=X

+
1

2

∂

∂∆
〈A(∆)− b,A(X)− b〉

∣
∣
∣
∣
∆=X

=
1

2

∂

∂X
〈A(X)− b,A(∆)− b〉Cn×n

∣
∣
∣
∣
∆=X

+
1

2

∂

∂∆
〈A(∆) − b,A(X)− b〉Cn×n

∣
∣
∣
∣
∆=X

=
1

2

∂

∂X
〈X,A∗(A(∆) − b)〉Cn×n

∣
∣
∣
∣
∆=X

+
1

2

∂

∂∆
〈∆,A∗(A(X)− b)〉Cn×n

∣
∣
∣
∣
∆=X

=
1

2

∂

∂X
(〈ℜ(X),ℜ(A∗(A(∆)− b))〉+ 〈ℑ(X),ℑ(A∗(A(∆) − b))〉)

∣
∣
∣
∣
∆=X

+
1

2

∂

∂∆
(〈ℜ(∆),ℜ(A∗(A(X)− b))〉+ 〈ℑ(∆),ℑ(A∗(A(X)− b))〉)

∣
∣
∣
∣
∆=X

=
1

2

(
∂

∂ℜ(X)
+ i

∂

∂ℑ(X)

)

(〈ℜ(X),ℜ(A∗(A(∆) − b))〉+ 〈ℑ(X),ℑ(A∗(A(∆) − b))〉)
∣
∣
∣
∣
∆=X

+
1

2

(
∂

∂ℜ(∆)
+ i

∂

∂ℑ(∆)

)

(〈ℜ(∆),ℜ(A∗(A(X)− b))〉+ 〈ℑ(∆),ℑ(A∗(A(X)− b))〉)
∣
∣
∣
∣
∆=X

=
1

2
(ℜ(A∗(A(∆) − b)) + iℑ(A∗(A(∆) − b)))

∣
∣
∣
∣
∆=X

+
1

2
(ℜ(A∗(A(X)− b)) + iℑ(A∗(A(X)− b)))

∣
∣
∣
∣
∆=X

= A∗(A(X)− b).

A.2 Hessian

For a Euclidean space E and a twice-differentiable, real-valued function f on E , the Fréchet Hessian operator of f at
x is the unique symmetric operator∇2f(x) : E → E defined by

∇2f(x)[h] = D (f ′)(x)[h] (108)

for all h ∈ E .

A.3 Taylor’s formula

Let E be finite-dimensional Euclidean space. Let f be a twice-differentiable real-valued function on an open convex
domain Ω ⊂ E . Then for all x and x+ h ∈ Ω,

f(x+ h) = f(x) + 〈∇f(x), h〉E +
1

2

〈
∇2f(x)[h], h

〉

E +O
(

‖h‖3E
)

. (109)

Appendix B Embedded manifoldHn,p

+

The geometry of the real case, i.e., Sn,p+ has been explored in [12]. However, it is not straightforward to extend these
results directly to the complex case. Although the methods of proofs of the complex case turn out to be similar to the
real case, we still need to provide. In this paper, recall that a complex matrix manifold is viewed as a manifold over R
instead of C. One way is to identify a complex matrix with the pair of its real and imaginary part; another way is to
identify the matrix with its realification.

Definition B.1 (Realification). The realification is an injective mapping R : Cn×n → R
2n×2n defined by replacing

each entry Aij of A ∈ Cn×n by the 2×2matrix

[
ℜ(Aij) −ℑ(Aij)
ℑ(Aij) ℜ(Aij)

]

. It can be shown thatR preserves the algebraic

structure:

• R(A+B) = R(A) +R(B)

• R(AB) = R(A)R(B)

• R(aA) = aR(A) ∀a ∈ R
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• R(I) = I

• R(A∗) = (R(A))T

Hence A ∈ Cn×n is invertible if and only ifR(A) is invertible.

Cn×n is a vector space of dimension 2n2 over R, and thus a smooth manifold of dimension 2n2. We will show in
Theorem 3.1 thatHn,p

+ is a smooth embedded submanifold of Cn×n of dimension 2np− p2.

Lemma B.1. Let GL(n,C) be the general linear group viewed as a real Lie group. Then it is a semialgebraic set.

Proof. Recall that a subset of Rm is a semialgebraic set if it can be obtained by finitely many intersections, union and
set differences starting from sets of the from {x ∈ Rm : P (x) > 0} with P a polynomial on Rm [23, Appendix B].
Since GL(n,C) is viewed as a real Lie group, GL(n,C) is understood as a subset of GL(2n,R) through realification.
It can be shown that

GL(n,C) = {X ∈ GL(2n,R) : XJ = JX} , with J = R(iI). (110)

We know that GL(2n,R) is a semialgebraic set since it is the non-vanishing points of determinant; and {X ∈ R2n×2n :
XJ = JX} is also a semialgebraic set by definition. Hence GL(n,C) is a semialgebraic set.

B.1 Riemannian Hessian operator

Let f be a smooth real-valued function onHn,p
+ . In this section we derive the Riemannian Hessian operator of f .

By [26, section 4] we know that R defined in (28) is a second-order retraction. One can also see this from the following
remark.

Remark B.2. SinceHn,p
+ is a Riemannian submanifold of the Euclidean space Cn×n, the Riemannian connection on

Hn,p
+ satisfies

∇ηX
ξ = P t

X(D ξ(X)[ηX ]), (111)

On other words, it is a classical directional derivative followed by an orthogonal projection to tangent space.(See [25,
Proposition 5.3.2])

The definition of a second-order retraction in [26, Equation 2.3] is equivalent with the definition in [25, Proposition
5.5.5] as one can simply check the following. For all ξX ∈ TXHn,p

+ , we have

D2

dt2
R(tξX)

∣
∣
∣
∣
t=0

=
D

dt

[
d

dt
R(tξX)

]∣
∣
∣
∣
t=0

= ∇ξX

(
d

dt
R(tξX)

)

(112)

= P t
X

(
d2

dt2

∣
∣
∣
∣
t=0

R(tξX)

)

= 0. (113)

Proposition 5.5.5 in [25] states that if R is a second-order retraction, then the Riemannian Hessian of f can be com-
puted in the following nice way:

Hess f(X) = Hess (f ◦RX)(0X). (114)

Notice that now f ◦RX is a smooth function defined on a vector space. Hence, we obtain

gX (Hess f(X)[ξX ], ξX) =
d2

dt2
f(RX(tξX))

∣
∣
∣
∣
t=0

. (115)

However, it is difficult to obtain a second-order derivative of f ◦ RX using the retraction RX defined in (28). The
references [4] and [10] proposed a method to compute Hess f(X) by constructing a second-order retraction R(2) that
has a second-order series expansion which makes it simple to derive a series expansion of f ◦R(2)

X up to second order
and thus obtain the Hessian of f . We will summarize the derivation below.

Lemma B.3. For any X ∈ Hn,p
+ with X† the pseudoinverse, the mapping R

(2)
X : TXHn,p

+ → Hn,p
+ given by

ξX 7→ wX†w∗, with w = X +
1

2
ξsX + ξpX −

1

8
ξsXX†ξsX −

1

2
ξpXX†ξsX , (116)

where ξsX = P s
X(ξX) and ξpX = P p

X(ξX) (see 26) is a second-order retraction onHn,p
+ . Moreover we have

R
(2)
X (ξX) = X + ξX + ξpXX†ξpX +O(‖ξX‖3). (117)
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Proof. It follows the same proof of [4, Proposition 5.10] .

From this the Riemannian Hessian operator of f can be computed in essentially the same way as in [28, Section
A.2] but applied to the general cost function f(X). Consider the Taylor expansion of f̂ (2)

X := f ◦ R(2)
X , which is a

real-valued function on a vector space. We get

f̂
(2)
X (ξX) = f(R

(2)
X (ξX))

= f
(

X + ξX + ξpXX†ξpX +O(‖ξX‖3)
)

= f(X) +
〈
∇f(X), ξX + ξpXX†ξpX

〉

Cn×n +
1

2

〈
∇2f(X)[ξX + ξpXX†ξpX ], ξX + ξpXX†ξpX

〉

Cn×n +O(‖ξX‖3)

= f(X) + 〈∇f(X), ξX〉Cn×n +
〈
∇f(X), ξpXX†ξpX

〉

Cn×n +
1

2

〈
∇2f(X)[ξX ], ξX

〉

Cn×n + O(‖ξX‖3).
We can immediately recognize the first order term and the second order term that contribute to the Riemannian gradient
and Hessian, respectively. That is,

gX (grad f(X), ξX) = 〈∇f(X), ξX〉Cn×n , (118)

gX (Hess f(X)[ξX ], ξX) = 2
〈
∇f(X), ξpXX†ξpX

〉

Cn×n

︸ ︷︷ ︸

f1:=〈H1(ξX),ξX〉
Cn×n

+
〈
∇2f(X)[ξX ], ξX

〉

Cn×n

︸ ︷︷ ︸

f2:=〈H2(ξX ),ξX〉
Cn×n

. (119)

The first equation immediately gives us
grad f(X) = P t

X(∇f(X)). (120)

For the second equation, the inner product of the Riemannian Hessian consists of the sum of f1 and f2; and the
Riemannian Hessian operator is the sum of two operators H1 and H2. Since ξX is already separated in f2, the
contribution to Riemannian Hessian fromH2 is readily given by

H2(ξX) = P t
X(∇2f(X)[ξX ]). (121)

Now, we still need to separate ξX in f1 to see the contribution to Riemannian Hessian fromH1. Since we can choose
to bring over ξpXX† or X†ξpX , we writeH1(ξX) as the linear combination of both:

f1 = 2c
〈
∇f(X)(X†ξpX)∗, ξpX

〉

Cn×n + 2(1− c)
〈
(ξpXX†)∗∇f(X), ξpX

〉

Cn×n . (122)

OperatorH1 is clearly linear. SinceH1 is symmetric, we must have 〈H1(ξX), νX〉Cn×n = 〈νX ,H1(ξX)〉
Cn×n for all

νX . Hence we must have c = 1
2 and we obtain

H1(ξX) = P p
X

(
∇f(X)(X†ξpX)∗ + (ξpXX†)∗∇f(X)

)
. (123)

PuttingH1 andH2 together, we obtain

Hess f(X)[ξX ] = P t
X(∇2f(X)[ξX ]) + P p

X

(
∇f(X)(X†ξpX)∗ + (ξpXX†)∗∇f(X)

)
. (124)

Appendix C Quotient manifold Cn×p

∗
/Op

C.1 Calculations for the Riemannian Hessian

In this section, we outline the computations of the Riemannian Hessian operators of the cost function h defined on
C

n×p
∗ /Op under the three different metrics gi.

Definition C.1. [25, Definition 5.5.1] Given a real-valued function f on a Riemannian manifoldM, the Riemannian
Hessian of f at a point x inM is the linear mapping Hess f(x) of TxM into itself defined by

Hess f(x)[ξx] = ∇ξxgrad f(x) (125)

for all ξx in TxM, where∇ is the Riemannian connection onM.

Lemma C.1. The Riemannian Hessian of h : Cn×p
∗ /Op 7→ R is related to the Riemannian Hessian of F : Cn×p

∗ 7→ R

in the following way:
(
Hessh(π(Y ))[ξπ(Y )]

)

Y
= PH

Y

(
HessF (Y )[ξY ]

)
, (126)

where ξY is the horizontal lift of ξπ(Y ) at Y .

Proof. The result follows from [25, Proposition 5.3.3] and the definition of the Riemannian Hessian.
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C.1.1 Riemannian Hessian for the metric g1

Using the Riemannian metric g1, Cn×p
∗ is a Riemannian submanifold of a Euclidean space. By [25, Proposition 5.3.2],

the Riemannian connection on C
n×p
∗ is classical the directional derivative

∇ηY
ξ = D ξ(Y )[ηY ]. (127)

Recall that for g1, gradF (Y ) = (∇f(Y Y ∗) +∇f(Y Y ∗)∗)Y . Hence, the Riemannian Hessian of F at Y is given by

HessF (Y )[ξY ] = ∇ξY gradF (128)
= D gradF (Y )[ξY ] (129)

= 2Herm{∇2f(Y Y ∗)[Y ξ∗Y + ξY Y
∗]}Y + 2Herm(∇f(Y Y ∗))ξY . (130)

The last line is by product rule and chain rule of differential. Therefore we obtain
(
Hessh(π(Y ))[ξπ(Y )]

)

Y
= PH1

Y

(

2Herm{∇2f(Y Y ∗)[Y ξ
∗
Y + ξY Y

∗]}Y + 2Herm(∇f(Y Y ∗))ξY

)

. (131)

C.1.2 Riemannian Hessian under metric g2

First, for any Riemannian metric g, g satisfies the Koszul formula

2gx(∇ξxλ, ηx) = ξxg(λ, η) + λxg(η, ξ)− ηxg(ξ, λ)

−gx(ξx, [λ, η]x) + gx(λx, [η, ξ]x) + gx(η, [ξ, λ]x)

= D g(λ, η)(x)[ξx] + D g(η, ξ)(x)[λx]− D g(ξ, λ)(x)[ηx]

−gx(ξx, [λ, η]x) + gx(λx, [η, ξ]x) + gx(η, [ξ, λ]x),

where the Lie bracket [·, ·] is defined in [25].

In particular, for g2 the above Koszul formula turns into

2g2Y (∇ξY λ, ηY ) = D g2(λ, η)(Y )[ξY ] + D g2(η, ξ)(Y )[λY ]− D g2(ξ, λ)(Y )[ηY ] (132)

−g2Y (ξY , [λ, η]Y ) + g2Y (λY , [η, ξ]Y ) + g2Y (η, [ξ, λ]Y ). (133)

Recall that g2(λ, η)(Y ) = ℜ(tr(Y ∗Y λ∗
Y ηY )). Hence, the first term in the above sum equals

D g2(λ, η)(Y )[ξY ] = g2Y (Dλ(Y )[ξY ], ηY )+g2Y (λY ,D η(Y )[ξY ])+ℜ(tr(ξ∗Y Y λ∗
Y ηY ))+ℜ(tr(Y ∗ξY λ

∗
Y ηY )). (134)

Following [25, Section 5.3.4], since Cn×p
∗ is an open subset of Cn×p, we also have

[λ, η]Y = D η(Y )[λY ]− Dλ(Y )[ηY ]. (135)

Summarizing, we get

2g2Y (∇ξY λ, ηY ) = D g2(λ, η)(Y )[ξY ] + D g2(η, ξ)(Y )[λY ]− D g2(ξ, λ)(Y )[ηY ]

−g2(ξY ,D η(Y )[λY ]− Dλ(Y )[ηY ])

+g2(λY ,D ξ(Y )[ηY ]− D η(Y )[ξY ])

+g2(ηY ,Dλ(Y )[ξY ]− D ξ(Y )[λY ])

= 2g2Y (ηY ,Dλ(Y )[ξY ])

+ℜ(tr(η∗Y (λY (ξ
∗
Y Y + Y ∗ξY ) + ξY (Y

∗λY + λ∗
Y Y )− Y λ∗

Y ξY − Y ξ∗Y λY )))

= 2g2Y (ηY ,Dλ(Y )[ξY ])

+g2Y (ηY , (λY (ξ
∗
Y Y + Y ∗ξY ) + ξY (Y

∗λY + λ∗
Y Y )− Y λ∗

Y ξY − Y ξ∗Y λY )(Y
∗Y )−1).

We therefore obtain a closed-form expression for Riemannian connection on C
n×p
∗ for g2:

∇ξY λ = Dλ(Y )[ξY ] +
1

2
(λY (ξ

∗
Y Y + Y ∗ξY ) + ξY (Y

∗λY + λ∗
Y Y )− Y λ∗

Y ξY − Y ξ∗Y λY ) (Y
∗Y )−1. (136)

Recall that for the Riemannian metric g2, we have gradF (Y ) = (∇f(Y Y ∗) + ∇f(Y Y ∗)∗)Y (Y ∗Y )−1. Hence we
have

HessF (Y )[ξY ] = ∇ξY gradF (Y )
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= D Y gradF (Y )[ξY ]

+
1

2
{gradF (Y )(ξ∗Y Y + Y ∗ξY ) + ξY (Y

∗gradF (Y ) + gradF (Y )∗Y )−

Y gradF (Y )∗ξY − Y ξ∗Y gradF (Y )}(Y ∗Y )−1

= 2Herm{∇2f(Y Y ∗)[Y ξ∗Y + ξY Y
∗]}Y (Y ∗Y )−1 + 2Herm(∇f(Y Y ∗))ξY (Y

∗Y )−1

−2Herm(∇f(Y Y ∗))Y (Y ∗Y )−1(Y ∗ξY + ξ∗Y Y )(Y ∗Y )−1

+Herm(∇f(Y Y ∗))Y (Y ∗Y )−1(Y ∗ξY + ξ∗Y Y )(Y ∗Y )−1

+ξY {Y ∗Herm(∇f(Y Y ∗))Y (Y ∗Y )−1 + (Y ∗Y )−1Y ∗Herm(∇f(Y Y ∗))Y }(Y ∗Y )−1

−{Y (Y ∗Y )−1Y ∗Herm(∇f(Y Y ∗))ξY + Y ξ∗Y Herm(∇f(Y Y ∗))Y (Y ∗Y )−1}(Y ∗Y )−1

= 2Herm{∇2f(Y Y ∗)[Y ξ∗Y + ξY Y
∗]}Y (Y ∗Y )−1 + 2Herm(∇f(Y Y ∗))ξY (Y

∗Y )−1

−Herm(∇f(Y Y ∗))Y (Y ∗Y )−1(Y ∗ξY + ξ∗Y Y )(Y ∗Y )−1

+ξY {Y ∗Herm(∇f(Y Y ∗))Y (Y ∗Y )−1 + (Y ∗Y )−1Y ∗Herm(∇f(Y ∗Y ))Y }(Y ∗Y )−1

−{Y (Y ∗Y )−1Y ∗Herm(∇f(Y Y ∗))ξY + Y ξ∗Y Herm(∇f(Y Y ∗))Y (Y ∗Y )−1}(Y ∗Y )−1

= 2Herm{∇2f(Y Y ∗)[Y ξ∗Y + ξY Y
∗]}Y (Y ∗Y )−1 + 2Herm(∇f(Y Y ∗))ξY (Y

∗Y )−1

−Herm(∇f(Y Y ∗))PY ξY (Y
∗Y )−1 −Herm(∇f(Y Y ∗))Y (Y ∗Y )−1ξ∗Y Y (Y ∗Y )−1

+ξY Y
∗Herm(∇f(Y Y ∗))Y (Y ∗Y )−2 + ξY (Y

∗Y )−1Y ∗Herm(∇f(Y Y ∗))Y (Y ∗Y )−1

−PY Herm(∇f(Y Y ∗))ξY (Y
∗Y )−1 − Y ξ∗Y Herm(∇f(Y Y ∗))Y (Y ∗Y )−2

= 2Herm{∇2f(Y Y ∗)[Y ξ∗Y + ξY Y
∗]}Y (Y ∗Y )−1

+Herm(∇f(Y Y ∗))ξY (Y
∗Y )−1 −Herm(∇f(Y Y ∗))PY ξY (Y

∗Y )−1

+Herm(∇f(Y Y ∗))ξY (Y
∗Y )−1 − PY Herm(∇f(Y ∗Y ))ξY (Y

∗Y )−1

+2skew(ξY Y
∗)Herm(∇f(Y Y ∗))Y (Y ∗Y )−2

+2skew{ξY (Y ∗Y )−1Y ∗Herm(∇f(Y Y ∗))}Y (Y ∗Y )−1

= 2Herm{∇2f(Y Y ∗)[Y ξ∗Y + ξY Y
∗]}Y (Y ∗Y )−1

+Herm(∇f(Y Y ∗))P⊥
Y ξY (Y

∗Y )−1 + P⊥
Y Herm(∇f(Y Y ∗))ξY (Y

∗Y )−1

+2skew(ξY Y
∗)Herm(∇f(Y Y ∗))Y (Y ∗Y )−2

+2skew{ξY (Y ∗Y )−1Y ∗Herm(∇f(Y Y ∗))}Y (Y ∗Y )−1.

To conclude, we obtain
(
Hess h(π(Y ))[ηπ(Y )]

)

Y
= PH2

Y

{

2Herm{∇2f(Y Y ∗)[Y ξ
∗
Y + ξY Y

∗]}Y (Y ∗Y )−1

+Herm(∇f(Y Y ∗))P⊥
Y ξY (Y

∗Y )−1 + P⊥
Y Herm(∇f(Y Y ∗))ξY (Y

∗Y )−1

+2skew(ξY Y
∗)Herm(∇f(Y Y ∗))Y (Y ∗Y )−2

+ 2skew{ξY (Y ∗Y )−1Y ∗Herm(∇f(Y Y ∗))}Y (Y ∗Y )−1
}
.

C.1.3 Riemannian Hessian under metric g3

Recall that the Riemannian metric g3 on C
n×p
∗ satisfies

g3Y (ξY , ηY ) = g̃Y (ξY , ηY ) + g2Y (P
V
Y (ξY ), P

V
Y (ηY )) (137)

= 2ℜ(tr(Y ∗ξY Y
∗ηY + Y ∗Y ξ∗Y ηY )) + ℜ(tr(Y PV

Y (ξY )
∗PV

Y (ηY )Y
∗)) (138)

where
g̃Y (ξY , ηY ) = 〈Y ξ∗Y + ξY Y

∗, Y η∗Y + ηY Y
∗〉

Cn×n . (139)

PV
Y (λY ) = Y skew((Y ∗Y )−1Y ∗λY ). (140)

Hence

D g3(λ, η)(Y )[ξY ]

= g̃Y (Dλ(Y )[ξY ], ηY ) + g̃(λY , Dη(Y )[ξY ]) + 2ℜ(tr(ξ∗Y λY Y
∗ηY + Y ∗λY ξ

∗
Y ηY + ξ∗Y Y λ∗

Y ηY + Y ∗ξY λ
∗
Y ηY ))
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+g2Y (P
V
Y (λY ), DPV

Y (ηY )[ξY ]) + g2(DPV
Y (λY )[ξY ], P

V
Y (ηY ))

+ℜ(tr(ξY PV
Y (λY )

∗PV
Y (ηY )Y

∗ + Y PV
Y (λY )

∗PV
Y (ηY )ξ

∗
Y )).

Suppose λ, η and ξ are horizontal vector fields, then many terms in the above equation vanish:

D g3(λ, η)(Y )[ξY ] = g̃Y (Dλ(Y )[ξY ], ηY ) + g̃Y (λY ,D ηY [ξY ])

+2ℜ(tr(ξ∗Y λY Y
∗ηY + Y ∗λY ξ

∗
Y ηY + ξ∗Y Y λ∗

Y ηY + Y ∗ξY λ
∗
Y ηY )).

Combining the above equation and the Koszul formul with ξ, η, λ horizontal vector fields, we obtain

2g3Y (∇ξY λ, ηY )

= D g3(λ, η)(Y )[ξY ] + D g3(η, ξ)(Y )[λY ]− D g3(ξ, λ)(Y )[ηY ]

−g3Y (ξY ,D η(Y )[λY ]− Dλ(Y )[ηY ])

+g3Y (λY ,D ξ(Y )[ηY ]− D η(Y )[ξY ])

+g3Y (ηY ,Dλ(Y )[ξY ]− D ξ(Y )[λY ])

= g̃Y (Dλ(Y )[ξY ], ηY ) + g̃Y (λY ,D η(Y )[ξY ]) + 2ℜ(tr(ξ∗Y λY Y
∗ηY + Y ∗λY ξ

∗
Y ηY + ξ∗Y Y λ∗

Y ηY + Y ∗ξY λ
∗
Y ηY ))

+g̃Y (D η(Y )[λY ], ξY ) + g̃Y (ηY ,D ξ(Y )[λY ]) + 2ℜ(tr(λ∗
Y ηY Y

∗ξY + Y ∗ηY λ
∗
Y ξY + λ∗

Y Y η∗Y ξY + Y ∗λY η
∗
Y ξY ))

−g̃Y (D ξ(Y )[ηY ], λY )− g̃Y (ξY ,Dλ(Y )[ηY ])− 2ℜ(tr(η∗Y ξY Y ∗λY + Y ∗ξY η
∗
Y λY + η∗Y Y ξ∗Y λY + Y ∗ηY ξ

∗
Y λY ))

−g̃Y (ξY ,D η(Y )[λY ]) + g̃Y (ξY ,Dλ(Y )[ηY ])

+g̃Y (λY ,D ξ(Y )[ηY ])− g̃Y (λY ,D η(Y )[ξY ])

+g̃Y (ηY ,Dλ(Y )[ξY ])− g̃Y (ηY ,D ξ(Y )[λY ])

= 2g̃Y (Dλ(Y )[ξY ], ηY ) + 4ℜ(tr(Y ∗ξY λ
∗
Y ηY + Y ∗λY ξ

∗
Y ηY )).

It follows that
g3Y (∇ξY λ, ηY ) = g̃Y (Dλ(Y )[ξY ], ηY ) + 2ℜ(tr(Y ∗ξY λ

∗
Y ηY + Y ∗λY ξ

∗ηY )). (141)

By definition, we have HessF (Y )[ξY ] = ∇ξY gradF . By Lemma (C.1), it suffices to assume that ξY is a horizontal
vector in order to obtain the Hessian operator of h. Therefore,

g3Y (HessF (Y )[ξY ], ηY ) (142)

= g3Y (∇ξY gradF, ηY ) (143)
= g̃(ηY ,D gradF (Y )[ξY ]) + 2ℜ(tr(Y ∗ξY gradF (Y )∗ηY + Y ∗gradF (Y )ξ∗Y ηY )) (144)
= g̃(ηY ,D gradF (Y )[ξY ]) + ℜ(tr((Y η∗Y + ηY Y

∗)(gradF (Y )ξ∗Y + ξY gradF (Y )∗))) (145)
= g̃(ηY ,D gradF (Y )[ξY ]) (146)

+g̃

(

ηY ,

(

I − 1

2
PY

)

(gradF (Y )ξ∗Y + ξY gradF (Y )∗)Y (Y ∗Y )−1

)

. (147)

Recall that for Riemannian metric g3, we have gradF (Y ) =
(
I − 1

2PY

)
Herm∇f(Y ∗Y )Y (Y ∗Y )−1. Hence

D gradF (Y )[ξY ] (148)

=

(

I − 1

2
PY

)

Herm{∇2f(Y ∗Y )[Y ξ∗Y + ξY Y
∗]}Y (Y ∗Y )−1 (149)

−1

2
(D (PY )[ξY ])Herm(∇f(Y ∗Y ))Y (Y ∗Y )−1 (150)

+

(

I − 1

2
PY

)

Herm(∇f(Y ∗Y ))D (Y (Y ∗Y )−1)[ξY ], (151)

where we have

D (PY )[ξY ] = D (Y (Y ∗Y )−1Y ∗)[ξY ] (152)

= ξY (Y
∗Y )−1Y ∗ − Y (Y ∗Y )−1(ξ∗Y Y + Y ∗ξY )(Y

∗Y )−1Y ∗ + Y (Y ∗Y )−1ξ∗Y (153)

and

D (Y (Y ∗Y )−1)[ξY ] = ξY (Y
∗Y )−1 − Y (Y ∗Y )−1(ξ∗Y Y + Y ∗ξY )(Y

∗Y )−1. (154)
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Combining these equations we have

g3Y (HessF (Y )[ξY ], ηY )

= g̃

(

ηY ,

(

I − 1

2
PY

)

Herm{∇2f(Y ∗Y )[Y ξ∗Y + ξY Y
∗]}Y (Y ∗Y )−1

)

−g̃
(

ηY ,
1

2
(ξY (Y

∗Y )−1Y ∗ − Y (Y ∗Y )−1(ξ∗Y Y + Y ∗ξY )(Y
∗Y )−1Y ∗ + Y (Y ∗Y )−1ξ∗Y )Herm(∇f(Y Y ∗))Y (Y ∗Y )−1

)

+g̃

(

ηY ,

(

I − 1

2
PY

)

Herm(∇f(Y Y ∗))
(
ξY (Y

∗Y )−1 − Y (Y ∗Y )−1(ξ∗Y Y + Y ∗ξY )(Y
∗Y )−1

)
)

+g̃

(

ηY ,

(

I − 1

2
PY

)((

I − 1

2
PY

)

Herm(∇f(Y Y ∗))Y (Y ∗Y )−1ξ∗Y

+ ξY (Y
∗Y )−1Y ∗Herm(∇f(Y Y ∗))

(

I − 1

2
PY

))

Y (Y ∗Y )−1

)

= g̃

(

ηY ,

(

I − 1

2
PY

)

Herm{∇2f(Y ∗Y )[Y ξ∗Y + ξY Y
∗]}Y (Y ∗Y )−1

)

−g̃
(

ηY ,
1

2
(ξY (Y

∗Y )−1Y ∗ − Y (Y ∗Y )−1(ξ∗Y Y + Y ∗ξY )(Y
∗Y )−1Y ∗ + Y (Y ∗Y )−1ξ∗Y )Herm(∇f(Y Y ∗))Y (Y ∗Y )−1

)

+g̃

(

ηY ,

(

I − 1

2
PY

)

Herm(∇f(Y Y ∗))
(
ξY (Y

∗Y )−1 − Y (Y ∗Y )−1(ξ∗Y Y + Y ∗ξY )(Y
∗Y )−1

)
)

+g̃

(

ηY ,

(

I − 3

4
PY

)

Herm(∇f(Y Y ∗))Y (Y ∗Y )−1ξ∗Y Y (Y ∗Y )−1

)

+g̃

(

ηY ,
1

2

(

I − 1

2
PY

)

ξY (Y
∗Y )−1Y ∗Herm(∇f(Y Y ∗))Y (Y ∗Y )−1

)

= g̃

(

ηY ,

(

I − 1

2
PY

)

Herm{∇2f(Y ∗Y )[Y ξ∗Y + ξY Y
∗]}Y (Y ∗Y )−1

)

−g̃
(

ηY ,
1

2
ξY (Y

∗Y )−1Y ∗Herm(∇f(Y Y ∗))Y (Y ∗Y )−1

)

−g̃
(

ηY ,
1

2
Y (Y ∗Y )−1ξ∗Y Herm(∇f(Y Y ∗))Y (Y ∗Y )−1

)

+g̃

(

ηY ,
1

2
Y (Y ∗Y )−1ξ∗Y PY Herm(∇f(Y Y ∗))Y (Y ∗Y )−1

)

+g̃

(

ηY ,
1

2
PY ξY (Y

∗Y )−1Y ∗Herm(∇f(Y Y ∗))Y (Y ∗Y )−1

)

+g̃

(

ηY ,

(

I − 1

2
PY

)

Herm(∇f(Y Y ∗))
(
(I − PY )ξY (Y

∗Y )−1 − Y (Y ∗Y )−1ξ∗Y Y (Y ∗Y )−1
)
)

+g̃

(

ηY ,

(

I − 1

2
PY

)

Herm(∇f(Y Y ∗))Y (Y ∗Y )−1ξ∗Y Y (Y ∗Y )−1 − 1

4
PY Herm(∇f(Y Y ∗))Y (Y ∗Y )−1ξ∗Y Y (Y ∗Y )−1

)

+g̃

(

ηY ,
1

2
(I − PY ) ξY Y (Y ∗Y )−1Y ∗Herm(∇f(Y Y ∗))Y (Y ∗Y )−1 +

1

4
PY ξY (Y

∗Y )−1Y ∗Herm(∇f(Y Y ∗))Y (Y ∗Y )−1

)

= g̃

(

ηY ,

(

I − 1

2
PY

)

Herm{∇2f(Y ∗Y )[Y ξ∗Y + ξY Y
∗]}Y (Y ∗Y )−1

)

+g̃
(
ηY , (I − PY )Herm(∇f(Y Y ∗))(I − PY )ξY (Y

∗Y )−1
)

+g̃

(

ηY ,
1

2
Y skew

(
(Y ∗Y )−1Y ξY (Y

∗Y )−1Y ∗Herm(∇f(Y Y ∗))Y (Y ∗Y )−1
)
)

+g̃
(
ηY , Y skew

(
(Y ∗Y )−1Y ∗Herm(∇f(Y Y ∗))(I − PY )ξY (Y

∗Y )−1
))

= g̃

(

ηY ,

(

I − 1

2
PY

)

Herm{∇2f(Y ∗Y )[Y ξ∗Y + ξY Y
∗]}Y (Y ∗Y )−1

)

42



+g̃
(
ηY , (I − PY )Herm(∇f(Y Y ∗))(I − PY )ξY (Y

∗Y )−1
)

= g3Y

(

ηY ,

(

I − 1

2
PY

)

Herm{∇2f(Y ∗Y )[Y ξ∗Y + ξY Y
∗]}Y (Y ∗Y )−1

+(I − PY )Herm(∇f(Y Y ∗))(I − PY )ξY (Y
∗Y )−1

)

Hence for ξY ∈ HY , we have

HessF (Y )[ξY ] (155)

=

(

I − 1

2
PY

)

Herm{∇2f(Y ∗Y )[Y ξ∗Y + ξY Y
∗]}Y (Y ∗Y )−1 (156)

+(I − PY )Herm(∇f(Y Y ∗))(I − PY )ξY (Y
∗Y )−1 (157)

To summarize, we obtain
(
Hessh(π(Y ))[ηπ(Y )]

)

Y
= PH3

Y (HessF (Y )[ξY ])

=

(

I − 1

2
PY

)

Herm{∇2f(Y ∗Y )[Y ξ
∗
Y + ξY Y

∗]}Y (Y ∗Y )−1

+(I − PY )Herm(∇f(Y Y ∗))(I − PY )ξY (Y
∗Y )−1.
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