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ABSTRACT

We consider smooth optimization problems with a Hermitian positive semi-definite fixed-rank con-
straint, where a quotient geometry with three Riemannian metrics ¢'(-,-) (i = 1,2,3) is used to
represent this constraint. By taking the nonlinear conjugate gradient method (CG) as an example,
we show that CG on the quotient geometry with metric g' is equivalent to CG on the factor-based
optimization framework, which is often called the Burer—Monteiro approach. We also show that
CG on the quotient geometry with metric g* is equivalent to CG on the commonly-used embedded
geometry. We call two CG methods equivalent if they produce an identical sequence of iterates
{X4}. In addition, we show that if the limit point of the sequence { X} generated by an algorithm
has lower rank, that is X, € C"*" k = 1,2, ... has rank p and the limit point X, has rank r < p,
then the condition number of the Riemannian Hessian with metric g* can be unbounded, but those
of the other two metrics stay bounded. Numerical experiments show that the Burer—Monteiro CG
method has slower local convergence rate if the limit point has a reduced rank, compared to CG
on the quotient geometry under the other two metrics. This slower convergence rate can thus be
attributed to the large condition number of the Hessian near a minimizer.

Keywords Riemannian optimization - Hermitian fixed-rank positive semidefinite matrices - embedded manifold -
quotient manifold - Burer—Monteiro - conjugate gradient - Riemannian Hessian

1 Introduction

1.1 The Hermitian PSD low-rank constraints

In this paper we are interested in algorithms for minimizing a real-valued function f with a Hermitian positive semi-
definite (PSD) low-rank constraint

A Y
minimize f(X)

, 1
subject to X € H'P )

where H';’? denotes the set of n-by-n Hermitian PSD matrices of fixed rank p < n. Even though X € X" is a
nonconvex constraint, in practice (1)) is often used for approximating solutions to a minimization with a convex PSD
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constraint:

minimize  f(X)

XeCnxn , 2)

subjectto X =0
Among all kinds of matrix constraints, PSD matrices are abundant in applications and recent research. They arise in
semidefinite programming serving as covariance matrices in statistics and kernels in machine learning, etc. See [1]
and [2] for a reference of these applications. If the solution of (2)) is of low rank and O(n?) complexity is too large
for storage or computation, it is preferable to consider a low-rank representation of PSD matrices. For example, real
symmetric PSD fixed-rank matrices were used in [3, 4].

Since the elements in the constraint set """ have a low-rank structure, they can be represented in a low-rank compact

form on the order of O(np?), which is smaller than the O(n?) storage when directly using X € C"*". In many

applications, the cost function in () takes the form f(X) = 3[|A(X) — b||% where A is a linear operator and the

norm is the Frobebius norm, and f(X) can be evaluated efficiently by O(pnlogn) flops for X € ’H’fr’p ; see, e.g., the
PhaseLift problem [, 6] and the interferometry recovery problem [7,8]. For these kinds of problems, solving (1) with
an iterative algorithm that works with low-rank representations for X € #"” can lead to a good approximate solution
to @) with compact storage and computational cost.

1.2 The real inner product and Fréchet derivatives

Since f(X) is real-valued and thus not holomorphic, f(X) does not have a complex derivative with respect to X €
C™*™_ 1In this paper, all linear spaces of complex matrices will therefore be regarded as vector spaces over R. For any
real vector space &, the inner product on £ is denoted by (., .) . For real matrices A, B € R™*", the Hilbert—Schmidt

inner product is (A, B)gmx. = tr(AT B). Let R(A) and 3(B) represent the real and imaginary parts of a complex
matrix A. For A, B € C™*", the real inner product for the real vector space C"™*™ then equals

<A7 B)(CMXH = ?R(t’f‘(A*B)), 3

where * is the conjugate transpose. We emphasize that (3) is a real inner product, rather than the complex Hilbert—
Schmidt inner product. It is straightforward to verify that (3) can be written as

(A, B)grxn = tr(R(A)TR(B)) +tr(S(A)TS(B)) = (R(A), R(B)) grxn + (S(A), S(B) s

With the real inner product (3)) for the real vector space C"*™, a Fréchet derivative for any real valued function f(X)
can be defined as

V(X)) = Vi) (X) +1V fgx)(X) € C™ 7, )

where V fi(x)(X), V fo(x)(X) € R™*™ are the gradient of the cost function f with respect to the real and imaginary

parts of X, respectively. In particular, for f(X) = £||.A(X) — b||% with a linear operator A, the Fréchet derivative (@)

2
becomes

VI(X) = A(AX) - b)
where A* is the adjoint operator of A. See Appendix[Alfor details.
1.3 Three different methodologies

In this paper we will consider three straightforward ideas and methodologies for solving (I).

1.3.1 The Burer—Monteiro method

The first approach, often called the Burer—Monteiro method [9], is to solve the unconstrained problem

y?&% F):= f(YYy"). 5)

As proven in Appendix[A] the chain rule of Fréchet derivatives gives
VFY)=[VfYY")+VfYY")]Y € C"*P.

The gradient descent method simply takes the form of
Yor1 =Y, —7VF(Y,) =Y, —7[Vf(Y.Y,))+ VI(Y.Y,))]Y,, (6)



which is one of the simplest low-rank algorithms. The nonlinear conjugate gradient and quasi-Newton type methods,
like L-BFGS, can also be easily used for (3). On the other hand, F/(Y') = F(Y O) for any unitary matrix O € QP*?,
where

0, ={0 e CP*?: 0*0 = 00* = I}.

Even though this ambiguity of unitary matrices is never explicitly addressed in the Burer—Monteiro method, in this
paper we will prove that the gradient descent and nonlinear conjugate gradient methods for solving (3) are exactly
equivalent to the Riemannian gradient descent and Riemannian conjugate gradient methods on a quotient manifold.
Thus the convergence of the Burer—Monteiro method can be understood within the context of Riemannian optimizaiton
on a quotient manifold.

1.3.2 Riemannian optimization with the embedded geometry of #{'}"”

Another natural approach is to regard 7" as an embedded manifold in C™*". For instance, Riemannian optimization
algorithms on the embedded manifold of low-rank matrices and tensors are quite efficient and popular [10, [11]. Even
though it is possible to study H'"P C C™*™ as a complex manifold, we will regard C"*" as a 2n?-dimensional real
vector space and 7" C C™*™ as a manifold over R since f(X) is real-valued. In particular, the embedded geometry
of 877, representing the set real symmetric PSD low-rank matrices, was studied in [12].

A Riemannian metric is a smoothly varying inner product defined on the tangent space. The Riemannian metric of the
real embedded manifold 7{""* can simply be taken as the inner product (@) on C"*". The embedded geometry of the
real manifold H'"? € C"*™ will be discussed in Section

Even though the tangent space and the Riemannian gradient in Section [3] for 7"* look like a natural extension of
those for S, it is not obvious why this should be true. The subtlety lies in the fact that we have to regard X € H'["”
as an element of a real vector space. For instance, for regarding X € 7" as a real vector, one can either regard a
complex matrix X as the pair of its real and imaginary part, or regard X € C™*" with its realification, which is a

2n-by-2n real matrix generated by replacing each complex entry a + b of X by a 2-by-2 block [Z _ab} . But neither
way gives a straightforward generalization from the real case in [12] to the complex case in Section[3] Instead, with

the real inner product (3) and the corresponding Fréchet derivative, it is possible to achieve the desired generalization.

1.3.3 Riemannian optimization by using quotient geometry

The third approach is to consider the quotient manifold C}*? /O, which will be reviewed in Sectiondl Here C*? is
the noncompact Stiefel manifold of full rank n-by-p matrices:

CP*P ={X € C"*P : rank(X) = p}.
Define an equivalent class by
Y]={ZeC?:Z=Y0,0 € 0,}
and denote the natural projection as
m:CPP — C*?P/0,
Y — [Y]

Since there is a one-to-one correspondence between X = YY* € H'P and 7(Y) € CI*?/O,, the optimization
problem (I is equivalent to
minimize k(7w (Y))
m(Y) )
subject to 7(Y) € C¥*?/0,
where the cost function h is defined as h(w(Y)) = F(Y) = f(YY™).

)

For the quotient manifold C5*?/O,, one can first choose a metric for its total space C ™", which induces a Rie-
mannian metric on the quotient manifold under suitable conditions. In particular, a special metric was used in [13]
to construct efficient Riemannian optimization algorithms for the problem (3). The horizontal lift of the Riemannian
gradient for h(7(Y")) under this particular metric satisfies

(erad h(n(Y)))y = VE(Y)(Y*Y)™! = [VA(YY*) + VA Y)Y (YY), ®)

From the representation of the Riemannian gradient (), we see that this approach generates different algorithms from
the simpler Burer—Monteiro approach.



1.4 Main results: a unified representation and analysis of three methods using quotient geometry

A natural question arises: which of the three methods is the best? Even though the unconstrained Burer—Monteiro
method is quite straightforward to use, it has an ambiguity up to a unitary matrix, and its performance is usually
observed to be inferior to Riemannian optimization on embedded and quotient geometries. In order to compare these
three methods, in this paper we will show that it is possible to equivalently rewrite both the Burer—Monteiro approach
and embedded manifold approach as Riemannian optimization over the quotient manifold C% ™/ O, with suitable
metrics, retractions and vector transports.

For any Y € CI”™”, we consider three different Riemannian metrics g (-,) (i = 1,2,3) for any A, B in the total
space CL™?:

<

v (A, B) = (A, B)cux, = R(tr(A*B))
Y (A, B) = (AY*, BY ")coxn = R(tr((Y*Y) A" B))
Y(A,B) = (YA* + AY*)YB* + BY ") cuxn + (PY(A)Y*, PY(B)Y™)

o o

(C'n.X'n. )

where Py is given by

* —1v % _Ax* * —1
P}’(A):Y((YY) YA2AY(YY) )

In particular, the Burer—Monteiro approach corresponds to the first metric g1 and the embedded manifold approach
corresponds to the third metric g3-. The second metric g3- is the one used in [13].

We will show that both the gradient descent and the conjugate gradient method for the unconstrained problem (3) are
equivalent to a Riemannian gradient descent and a Riemannian conjugate gradient method on the quotient manifold

cy P/ O,, with the simplest metric g1 and a specific vector transport.

Furthermore, we will prove that the Riemannian gradient descent and the Riemannian conjugate gradient methods
using the embedded geometry of #'}’” are equivalent to a Riemannian gradient descent and a Riemannian conjugate

gradient algorithms on the quotient manifold C *” /0, with the metric g3- and a specific vector transport.

Finally, we will analyze and compare the condition numbers of the Riemannian Hessian using these three different
metrics by estimating their Rayleigh quotient. It is well known that the condition number of the Hessian of the cost
function is closely related to the asymptotic performance of optimization methods. Under the assumption that the
Fréchet Hessian V2 f(X) is well conditioned, we will show that the the condition numbers of the Riemannian Hessian
using the first metric can be significantly worse than the other two if the minimizer of () has a rank smaller than p.

1.5 Related work

The Burer—Monteiro approach for the PSD constraint has been popular in applications due to its simplicity. For
instance, an L-BFGS method for (3) was used for solving convex recovery from interferometric measurements in [8].
It is straightforward to verify that (6) with p = 1 and a suitable step size 7 for the PhaseLift problem [5] is precisely
the Wirtinger flow algorithm [6]. In [[14], it was shown that first-order and second-order optimality conditions of the
nonconvex Burer—Monteiro approach are sufficient to find the global minimizer of the convex semi-definite program
under certain assumptions.

Riemannian optimization on various matrix manifolds such as the Stiefel manifold, the Grassmann manifold and the
set of fixed-rank matrices, have been used for applications in data science, machine learning, signal processing, bio-
science, etc. The geometry of real symmetric PSD matrices of fixed rank S’}” has also been studied intensively in the
literature. Its embedded geometry was studied in [12]. The quotient geometry was studied in [[15, 116, [1]. In [2], a new
geometry of Sf_"p as a homogeneous space of the general linear group of positive determinant GL;r was discussed.

Riemannian optimization based on the embedded geometry has been well studied in [[10] for real matrices of fixed
rank, which can be easily extended to real symmetric PSD matrices of fixed rank [12]. As expected, Section [ is its
natural extensions to Hermitian PSD matrices of fixed rank. This is not surprising, but it is not a straightforward result
either, because such a natural extension holds only when using the real inner product (@) and its associated Fréchet
derivatives.

The quotient geometry of Hermitian PSD matrices of fixed-rank for the metric g3 has been studied in [17,[13]. The
quotient geometry with metric g3 in this paper is exactly the same one as the one in [17,[13].



It is not uncommon to explore different metrics of a manifold for Riemannian optimization [18,[19]. In [2], a new
embedded geometry and complete geodesics for real PSD fixed-rank matrices were for example obtained from a
special quotient metric.

1.6 Contributions

In this paper, for simplicity, we only focus on the nonlinear conjugate gradient method.

First, we will prove that the nonlinear conjugate gradient method for the unconstrained Burer—Monteiro formulation
(3D is equivalent to a Riemannian conjugate gradient method on the quotient manifold (C{*?/0,, g') for solving
([@). Thus the convergence of the simple Burer—Monteiro approach can be understood in the context of Riemannian
optimization on the quotient manifold (C*?/ O,, g*). This is one major contribution of this paper.

Second, we will show that a Riemannian conjugate gradient method on the embedded manifold #"” for solving (I)

is equivalent to a Riemannian conjugate gradient method on the quotient manifold (C% ™/ O,, g*) for solving (@). For
implementation, this is not necessary and there is no motivation to explicitly implement a Riemannian optimization
algorithm on an embedded geometry as a Riemannian optimization algorithm on a quotient geometry. However,
it is useful when comparing a Riemannian optimization algorithm on an embedded geometry with a Riemannian
optimization algorithm on a quotient geometry.

Finally, for the sake of understanding the differences among the three methodologies, we will analyze the condition
number of the Riemannian Hessian on the quotient manifold (C}*?/0,), g*) for the three different metrics g° (i =
1,2, 3). One metric is equivalent to the simple Burer—-Monteiro approach and another to Riemannian optimization on
the embedded manifold #;’"”. Since the three methods in Section[I.3|can all be regarded as Riemannian optimization
algorithms on a quotient manifold with three different metrics, such a comparison is meaningful.

In certain problems, such as PhaseLift [5] and interferometry recovery [8], the rank 7 of the minimizer of (2)) is known.
However, it has been observed in practice that the basin of attraction is larger when solving the nonconvex problems
@) or @ with rank p > r instead of with rank p = r; see [8, 13]. We will also demonstrate this in the numerical
tests in Section[8l Under suitable assumptions, we will show that the condition number of the Riemannian Hessian on
the quotient manifold (C}*”/O,, g') can be unbounded if p > r. On the other hand, the condition numbers of the
Riemannian Hessians on the quotient manifold C3*” /O, with metrics g' and g? are still bounded. This is consistent
with the numerical observation that the Burer—Monteiro approach has a much slower asymptotic convergence rate
than the Riemannian optimization approach on the embedded manifold and the quotient manifold (C3*”/ 0,,9%)
when p > r.

1.7 Organization of the paper

The outline of the paper is as follows. We summarize the notation in Section Then we discuss the geometric
operators such as the Riemannian gradient and vector transport in Section 3] for the embedded manifold ' and in
Section @] for the quotient manifold C{*” /O, In Section [, we outline the Riemannian Conjugate Gradient (RCG)
methods on different geometries and discuss equivalences among them. In particular, we show that RCG on the
quotient manifold (C}*?/ O,, g") is exactly the Burer-Monteiro CG method, that is, CG directly on (&). We also
show that Riemannian CG on the embedded manifold for solving () is equivalent to RCG on the quotient manifold
(CY*? /O, g* with a specific retraction and vector transport for solving (7). Implementation details are given in
Section[fl In Section[7] we analyze and compare the condition numbers of the Riemannian Hessian operators, which
can be used to understand the difference in the asymptotic convergence rates between using the simple Burer—Monteiro
method and the more sophisticated Riemannian optimization using an embedded geometry or a quotient geometry with
metric g2. Numerical tests are given in Section|[8]

2 Notation

Let C™*™ denote all complex matrices of size m x n. Let p < n and define

Cr*? = {X e C"P:rank(X) = p},

St(p,n) = {XeC?:X*X =1,},
HYP = {XeC": X" =X,X > 0,rank(X) = p},
SPP = {XeRY: X7 =X, X = 0,rank(X) = p},



0, = {0eCr?.0%0=00"=1I},

where St (p, n) is also called the compact Stiefel manifold. For a matrix X, X* denotes its conjugate transpose and X
denotes its complex conjugate. If X is real, X* becomes the matrix transpose and is denoted by X 7. We define

X X" X -X*

Herm(X) : 5 Skew(X) := 5

Let #(X) and (X)) denote the real and imaginary part of X respectively so that X = R(X) +13(X). Let I, be the
identity matrix of size p-by-p. For any n-by-p matrix Z, Z, denotes the n-by-(n — p) matrix such that Z1 Z | = I,,_,
and 27 Z = 0.

Let Diag(m, n) be the set of all m-by-n diagonal matrices. Let diag(M) be the n-by-1 vector that is the diagonal of
the n-by-n matrix M. Given a vector v, Diag(v) is a square matrix with its ith diagonal entry equal to v;. Given a
matrix A, tr(A) denotes the trace of A and A,; denotes the (4, j)th entry of A.

For any X € H'*, its eigenvalues coincide with its singluar values. The compact singular value decomposition
(SVD) of X is denoted by X = UXU*, where U € St(p,n) and ¥ = Diag(c) with ¢ = (01, ,0,)T and
o1 > -+ > 0, > 0. In the rest of the paper, U and ¥ are reserved for denoting the compact SVD of X € #*.

In this paper, all manifolds of complex matrices are viewed as manifolds over R unless otherwise specified. Given a
Euclidean space &, the inner product on € is denoted by (.,.).. Specifically, (A, B)pnx. = tr(ATB) for A,B €
R™*™ and (A, B) cmxn = R(tr(A*B)) for A, B € C™*™ denotes the canonical inner product on R”*"™ and C™*",
respectively.

3 Embedded geometry of "

The results in this section are natural extensions of results for S?_’p in [12]. Such an extension is not entirely obvious

since H'"" is treated as a real manifold and the real inner product (@) is not the complex Hilbert—Schmidt inner product.
For completeness, we thus discuss these extensions in details.

3.1 Tangent space
We first need to show that ’H’fr’p is a smooth embedded submanifold of C"*". See [20, Prop. 2.1] and [21l, Chap. 5]
for the case of S\"”.

Theorem 3.1. Regard C™*™ as a real vector space over R of dimension 2n®. Then M is a smooth embedded
submanifold of C™*"™ of dimension 2np — p>.

Proof. Let
Tpxp Opx (n—p)
= 9
On—p)xp  Om—p)x(n—p) ®
and consider the smooth Lie group action
& : GL(n,C) x C™*"™ — C™*"
(9, N) = gNg*
where
gNg* = (R(9RWV) — I(9)S(N)) R(9)" + (S(9)R(V) + R(9)S(N))3(g)"
+i ((S(9)R(NV) + R(9)S(N))R(9)" — (R(9)R(N) — (9)I(N))
It is easy to see that & is a rational mapping. Since GL(n, C) is a semialgebraic set by Lemma (B.T)) in the Appendix,
we have that GL(n, C) x C™*" is also a semialgebraic set [22, section 2.1.1]. It follows from (B1) in [23] that  is

a semialgebraic mapping. Observe that H'"” is the orbit of E through ®. It therefore follows from (B4) in [23] that
H'}P is a smooth submanifold of C™*".

Next, we compute the dimension of #'}'”. Consider the smooth surjective mapping

n:GL(n,C) = HIP v yEx™. (10)



The differential of 7 at v € GL(n,C) is the linear mapping Dn(y) : T,GL(n,C) = C"*" — TxH""*, where
X = n(y) = vE~*, by Dn(v)[A] = AE~y* + yEA*. Observe that the differential at arbitrary ~ is related to the
differential at I,, by a full-rank linear transformation:

Dn(y)[A] = vDn(L,) [y~ Aly*. (11)

Recall that the rank of a differentiable mapping f between two differentiable manifolds is the dimension of the image
of the differential of f. So, from equation (IT) we see that the rank of 7 is constant. It follows from Theorem 4.14 in
[24] that 7 is a smooth submersion. As a consequence D7)(y) maps 7,GL(n,C) = C™*™ surjectively onto T'x H'}"”
and we obtain

TxH? = {AX +XA*: A€ (C"X"} . (12)

ANFRVANT

... . .. . I 0 .
Let A = [ Aoy AQQ} be partitioned according to the partition of £ = diag(l,x,) = [ poxp O]. Then it can be

easily verified that A € KerDn([) if and only if
All = —ATl, Agl = 0.

This implies that Ay is a skew-Hermitian matrix, hence its diagonal entries are purely imaginary and its off diagonal
entries satisfy a;; = —a;;. This givesus p+2 x (1+2+-- -4 (p—1)) degrees of freedom. For A5 and Ay, there are
2n(n — p) degrees of freedom. So, the dimension of Ker(Dn(I)) is 2n(n — p) +p + 2p(p — 1)/2 = 2n? — 2np + p?
and by rank-nullity we get

dimDn(I) = 2n* — dimker D (1) = 2np — p*. (13)
Since 7 is of constant rank, the dimension of TX’H,i’p is therefore 2np — p?. Remember that the dimension of the
tangent space at every point of a connected manifold is the same as that of the manifold itself. Let GL " (n, C) denote
the connected subset of GL(n, C) with positive determinant, then H'"* is the image of the connected set GL™ (n, C)
under a continuous mapping 7, so 7}"* is connected. We conclude that the dimension of '} is 2np — p2. O

The next result characterizes the tangent space. See [10, Proposition 2.1] for the tangent space of S
Theorem 3.2. Let X = UXU* € H'}'P. Then the tangent space of H'}'* at X is given by

rose={u walf 515

where H = H* € CP*?, K € C(n—p)xp,

Remark 3.3. Notice that there is no need to compute and store U, € C**("=P) and it suffices to store U K € C"*P,
See Sectionlllfor the implementation details.

Proof. Let t — U(t) be any smooth curve in St (p,n) through U at ¢ = 0 such that U(t) € C**?,U(0) = U and
U@)*U(t) = I, for all t. Lett — 3(t) be any smooth curve in Diag(p, p) through ¥ at t = 0. Then X (¢) :=
U(t)X(t)U(t)* defines a smooth curve in H’"” through X It follows by differentiating X (¢) := U (¢)X(¢)U (t)* that

X't)=U0ZOU®)* + U (U @) +U)Z()U'(t)*. (15)

Without loss of generality, since U’ (t) is an element of C"*? and U (¢) has full rank, we can set
U'(t) = U(t)A(t) + UL(t)B(t). (16)
Hence, we have
o AD)B() +X(t) + B)AR)* Z@)B()*| | UR)*
. . H K*||\U*| . y
Thus we consider the tangent vectors in the form of [U U} | {K 0 } {U*} with H = H*. Forany H = H* €
1

CP*P and K € C("~P)XP taking A = (UH /2 + UL K)X~Y(U*U)~*U* in (I2), we see that

{[U U] {g Iﬂ {gj} C TxHTP. (18)

Now counting the real dimension we see that H has p + 2 x @ = p? number of freedom and K has 2 x p(n — p)

number of freedom. So the LHS of the inclusion (I8) has freedom 2np — p?, which is equal to the dimension of
TxM'}'". Hence, the inclusion in (I8) is an equality. O



3.2 Riemannian gradient

The Riemannian metric of the embedded manifold at X € Hi’p is induced from the Euclidean inner product on C™*",

QX(§17C2) = <<17 <2>(Cn><n - %(tr(<f<2))u <17C2 S TXHi)p' (19)

Let f(X) be a smooth real-valued function for X € C"*" and Fréchet gradient (d)), denoted by V f (X ). See Appendix
for more details about Fréchet gradient.

The Riemannian gradient of f at X € H'}'*, denoted by grad f(X), is the projection of grad f(X) onto Tx 1} (

[25, Sect. 3.6.1]):

grad f(X) = Px (V£(X)), (20)
where P% denotes the orthogonal projection onto T'x H'’”. In order to get a closed-form expression of P, we should
characterize the normal space to H''? at X, denoted by (Tx H'yP)* or NxH''P,

NxHi’p = {§X S TX(Can : <§X7 nX>(Cn><n = 0 for all nx € Tx(cnxn}, (21)

which is the orthogonal complement of Tx 1 in C"*".

Lemma 3.4. The normal space NX’Hi’p at X =UXU* € ’Hi’p is given by

Q —-L*||\U*
XH =V Ul m | ot (22)
where Q = —Q* € CP*?, M € C(n=P)X(n=P)gnd [, € C(n—P)*P,

Proof. First we show that every vector in (22) is orthogonal to TxH'["?. Since U is orthonormal, we only need to

show that < [g Ig ] , [% _]\2 ] > = 0 forall H,K,Q, L and M defined in Theorem [3.2] and Lemma [3.4]
(Cnxn

Indeed we have
H K* Q -L*
K o0|’|L M Cnxn

Next, we count the real dimension of Nx7{""*. Remember that a skew-Hermitian matrix has purely imaginary num-
bers on its diagonal entries, and w;; = —w;; on its off diagonal entries. So the number of degree of freedoms in €2 is

<Q,H>(Cn><n - <L*,K*>Cn><n + <L,K>(Cn><n (23)

= (Q,H)cnxn = 0. (24)

p+2 X @ = p?. The number of degree of freedoms in L is 2 X p(n — p), and the number of degree of freedoms
in M is 2 x (n — p)?. So, the dimension of NxH'}"” is 2n? 4+ p* — 2np. This gives us the desire dimension since the
sum of the dimension of the tangent space and its normal space should be 2n2. o

The orthogonal projection from C™*"™ onto T'x H'"* is given the following theorem.

Theorem 3.5. Let X = YY* = UXU* be the compact SVD for X € H'"" withY € C"*P. Let Z € C"*". Then
the operator P% defined below is the orthogonal projection onto TxHP:

Pi(Z) = = (Py(Z+Z")Py +PF(Z+Z*)Py + Py(Z+ Z*)Py)

N = N =

(Pu(Z+Z*)Py + Py (Z+ Z*)Py + Pu(Z + Z*)Py) (25)

U*
url’

where Py =Y (Y*Y)"'Y*, P =TI —Py =Py, Py =UU* and P& = I — Py = Py,.

« (Z+2* « (Z+2*
Ur g g2y,

= [U U .
[ 1] UI(ZJ;Z)U 0

Proof. First, observe that

Z+7* Z+7Z" P
PLz) = [P Py [zfz* H Y}
2



U*(ZJFZ)U U*( )UL
UL<Z+QZ U 0

= [U U]

i

is a normal vector. Write Z as Z = Py ZPy +

is a tangent vector at X. So it suffices to show that Z — P% (2)
PyZPy, + Py, ZPy + Py, ZPy, =[Py Py, {Z } |:PY ] Then we have
L
Z

Z
Z-Pi(Z P Polloz Py
Rz = v ralZe )[R
«(Z2=2") «(Z2=2") *
SO =i a4
vty uizul | VI
Hence, Z — P% (Z) is a normal vector, which completes the proof. O
Remark 3.6. We can write Py = P§ + P% by introducing the two operators
Z+ 7z
Py :Z— Py i Py (26)
4z 4z
P% :ZHPULTPU+PU Py, (27)

3.3 A retraction by projection to the embedded manifold

A retraction is essentially a first-order approximation to the exponential map; see [25, Def. 4.1.1]. Suppose M is an
embedded submanifold of a Euclidean space £, then by [26, Props. 3.2 and 3.3], the mapping R from the tangent
bundle 7'M to the manifold M defined by

RZ{TM—)M

(x,u) = Ppm(z + u) (28)

is a retraction, where Py is the orthogonal projection onto the manifold M with respect to the Euclidean distance,
that is, the closest point. In our case M = H''* and € = C™*". Hence, a retraction on H’"” is defined by the
truncated SVD:

P
Rx(Z) i= Pyro(X + 2) =Y oi(X + Z)v},
i=1
where v; is the singular vector of X + Z corresponding to the ith largest singular value o; (X + Z).

H K*} [U*

Let X = UXU* € H'''? be the compact SVD and let Z = [U U .
¥ P U UL {K 0| |uz

} € TxH''". Then
X+Z=[U U [H;E K} {gj U(H +S)U* + U KU* + UK*U?. (29)

Consider the compact QR factorization of U K = Qg Rx where Qx isn X p and Rg is p X p. Then becomes

H+% R}] [U}

X+ Z=UH+2)U"+QrRxU* + (QxRxU*)* = [U Qx] { o o (30)

H+Y Ry
Rk 0
compute its SVD as

Now notice that { ] from the RHS of (30) is a small 2p x 2p Hermitian matrix. We can therefore efficiently

H 2 * *
{ Rt( ROK] — Vi Vi {%1 5(32] [%] 31)

where S; and S, are p X p diagonal matrices that contain the singular values of {HRZZ ROK ] in descending order.

The matrices V; and V5 are 2p X p contain the corresponding singular vectors. Combining (31)) and (30), we can write
X+ Z as

werew anm f3 8]



with [U  Qx][Vi V2] aunitary matrix. So (32)) is the SVD of X + Z with singular values in descending order. The

orthogonal projection of X + Z onto the manifold 7—[?_”’ is therefore given by
Punr(X+2) = (U Qx]VI)SI([U Qk]V1)™ (33)

3.4 Vector transport
The vector transport is a mapping that transports a tangent vector from one tangent space to another tangent space.
Definition 3.1 ([25, definition 8.1.1]). A vector transport on a manifold M is a smooth mapping

TMSTM = TM: (n3,&) — T, (&) € TM (34)
satisfying the following properties for all v € M.:

1. (Associated retraction) There exists a retraction R, called the retraction associated with T, such that the
following diagram commutes

(&) —— To. (&)
|n
e —— (T, (&)
where I1(T,, (£)) denotes the foot of the tangent vector T, (& ).
2. (Consistency) To,&x = & forall &, € Ty M;
3. (Linearity) Ty, (ae + 0C:) = aTy, (&) + 0Ty, (Co)-

Letéx,nx € TXHi’p and let R be a retraction on Hi’p . By [25, section 8.1.3], the projection of one tangent vector
onto another tangent space is a vector transport,

._ pt

Tox€x = Ph (o )Ex (35)
where P}, is the projection operator onto TzH'P. Namely, we first apply retraction to X 4 7x to arrive at a new point
on the manifold, then we project the old tangent vector { x onto the tangent space at that new point.

Now, we derive the expression of the vector transport (33) in closed form. Given X; = U;Y, Uj € Hi’p , the

retracted point Xy = UpXoUs € H'P'P, and a tangent vector vy = [Uy Uy ] {gi Igl] [U[']ll*} = U HWUy +
1

U, KGhUY + UL KUy, € TXI’H,i’p , we need to determine Hs and Ko of the transported tangent vector v =

Hy K3||Us n,p
[UQ UQJ_] |:K2 0 :| |:U2*L:| S TX2H+ .

By the projection formula (23), we have

_ pt o U;VlUQ U;VlUQL UQ*
v =Pl () =V Uai] |30 . k| (36)
Hence, Hy and K5 are satisfy
Hy = Uz*l/lUg = U;UlHlUikUg + U;UllKlUl*Ug + U;UlKTUljUQ,
K2 = Ugil/lUg = UnglHlUikUQ + UgiUllKlUl*Ug + UszleUljUg

In implementation, we observe a better numerical performance if we only keep the first term in the above sum of H>
and the second term of K. That is, we define H5 and K5 by

H2 = U;UlHlUl*UQ (3721)
Ky, = Uy U K\UUs. (37b)

It is straightforward to verify that this choice of Hs and K> also defines a vector transport:

Proposition 3.7. The operation defined by (31) is a vector transport.
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One can verify that the vector transport in (37) is a vector transport by parallelization in [27].

In numerical tests we have observed that the nonlinear conjugate gradient method using this simpler version of vector
transport is usually more efficient. So in all our numerical tests, we do not use the more complicated (33), instead we
use the following simplified vector transport:

1. Given X; = U1 XU} € H'P, and nx,, Ex, € Tx, ", first compute
Xy = Rx, (nx,) == Pyne (X1 +1x1) = U2X0U5 € HYP.

H, Kf] [ Uy

2. Letéy, = [Ur Upy] |:K1 0 Uli] € Tx, H'}'", then compute

H, KQ} { Us

Tox, 61 = Uz Ual] [Kz 0 Uﬂ]eTxﬂi”’- (37¢)

3.5 Riemannian Hessian operator

For a real-valued function f(X) defined on the Euclidean space C™*", the Hessian V2 f(X) is defined in the sense of
the Fréchet derivative; see Appendix[A.2]for the definition of the Fréchet Hessian.

The following proposition gives the Riemannian Hessian of f. The proof follows similar ideas as in [4, Prop. 5.10]
and [28, Prop. 2.3] where a second-order retraction based on a simple power expansion is constructed. We will leave
the outline of the proof to Appendix[B.1l

Proposition 3.8. Ler f(X) be the a real-valued function defined on H'}'". Let X € HP and £x € TxH}". Then
the Riemannian Hessian operator of f at X is given by

Hess [ (X)[éx] = PX (V2 F(X)[€x]) + P (VA(X)(XTER)" + (- XT) V(X)) (38)
4 The quotient geometry of C}*? /O, using three Riemannian metrics

Besides being regarded as an embedded manifold in C™*", H'"” can also be viewed as a quotient set CY*? /0O, since
any X € H'}'P can be written as X = YY" with Y € C{*P. We define an equivalence relation on C}** through the
smooth Lie group action of O,, on the manifold C}*?:
CY*P x O, — C}*P
(Y,0)— YO.
This action defines an equivalence relation on crer by setting Y7 ~ Y5 if there exists an O € O, such that Y7 = Y50.
Hence we have constructed a quotient space Ci*” /O, that removes this ambiguity. The set Cy ™" is called the total
space of (Cpr/Op.

Denote the natural projection as

(39)

7 CYP L CPRP )0,
Forany Y € C!™?, 7(Y) is an element in C{ " /O,,. We denote the equivalent class containing Y as
Y] =77 (x(Y)) ={YO|O € Op}.
Define 5 p
B:CyP = H
Y —YY™

Then $ is invariant under the equivalence relation ~ and induces a unique function B on C}*P/ O,, called the pro-

jection of 3, such that 5 = 3 o [23, section 3.4.2]. One can easily check that Bisa bijection. For any real-valued
function f(X) definedon X = YY* € P, F(Y) := foB(Y) = f(YY™*) is a real-valued function defined on

C3*? and F induces f. This is summarized in the diagram below:

cy*?P
l” T Bi=Por (40)
5 7
CHP/0, +— HIP —— R

11



The next theorem shows that C} *? /0O, is a smooth manifold.

Theorem 4.1. The quotient space Ci*? /O, is a quotient manifold over R of dimension 2np — p* and has a unique
smooth structure such that the natural projection T is a smooth submersion.

Proof. The proof follows from Corollary 21.6 and Theorem 21.10 of [24]. O

The next theorem shows that /" and CL*? /O, are essentially the same in the sense that there is a diffeomorphism
between them. The proof uses the same technique in [1,, Prop. A.7]

Theorem 4.2. The quotient manifold C3? /O, is diffeomorphic to the embedded manifold H'YP under B.

Proof. Recall from Theorem[3.2] any tangent vector in Tz(y) ;" can be written as
GByy=YHY" "+ Y, KY"+YK"YT. (41)
LetV =YH/2+ Y, K, then DF(Y)[V] = (g(y). This implies that 3 is a submersion.

Now notice that T = B—l ofand B = B om. By [29, Prop. 6.1.2], we conclude that B_l and B are both differentiable.
So (3 is a diffeomorphism between C} ¥ /O,, and 1" O

4.1 Vertical space, three Riemannian metrics and horizontal space

The equivalence class [Y] is an embedded submanifold of C} *?([23, Prop. 3.4.4]). The tangent space of [Y] at Y’
is therefore a subspace of Ty C} *” called the vertical space at Y and is denoted by Vy. The following proposition
characterizes Vy .

Proposition 4.3. The vertical space atY € [Y] = {YO|O € O,}, which is the tangent space of [Y| at Y is
Vy = {YQIQ* = —Q,Q € CP**}. (42)

Proof. The tangent space of O, at I, is T;,0, = {Q : Q" = —Q,Q € CP*P}, which is also the set
{7/(0) : yisacurvein Op,v(0) = I,}. Hence Ty {YO|O € O,} = {Y+/(0) : visacurvein Op,v(0) = I,} =
{(YQ|O* = —Q,Q € Cr¥P). O

A Riemannian metric g is a smoothly varying inner product defined on the tangent space. That is, gy (-, ) is an inner
product on Ty C}*?. Once we choose a Riemannian metric g for C}*?, we can obtain the orthogonal complement
in Ty C?*? of Vy with respect to the metric. In other words, we choose the horizontal distribution as orthogonal
complement w.r.t. Riemannian metric, see [25, Section 3.5.8]. This orthogonal complement to Vy is called horizontal
space at Y and is denoted by Hy. We thus have

TyCl*? = Hy & Vy. (43)

Once we have the horizontal space, there exists a unique vector £y € Hy that satisfies D 7(Y)[£y] = &x(v) for each

Er(y) € Tﬂ-(y)CZZXP/OP. This &y is called the horizontal lift of &x(v) at Y. The next lemma shows the relationship
between the horizontal lifts of the quotient tangent vector &y lifted at different representatives in [Y].

Lemma 4.4. Let 1) be a vector field on C}*? /O, and let 7] be the horizontal lift of n. Then for each Y € CL*P, we
have

yo = my0O
forall O € O,,.

Proof. See [, Prop. A.8] and [13, Lemma 5.1]. O

There exist more than one choice of Riemannian metric on C;*”. Different Riemanian metrics do not affect the
vertical space, but generally result in different horizontal spaces. In this paper, we discuss three Riemannian metrics
on C}”? and study how each metric affects the convergence of Riemannian optimization algorithms.

The most straightforward choice of a Riemannian metric on crer
defined by

is the canonical Euclidean inner product on C"*P

9y (A, B) == (A, B)cnx, = R(tr(A*B)), VA,B € TyCl*P = C"*?. (44)
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Proposition 4.5. Under metric g', the horizontal space atY satisfies
Hy = {ZeC™:Y*Z=2Y)}
= {Y(Y*Y)—ls FYLK|ST = 8,5 € CPP K ¢ C(n_mp} '

Another Riemannian metric used in [[17,/13] is defined by
9y (A, B) := (AY*, BY ") cuxn = R(tr((Y*Y)A*B)), VA,B € TyC!*? =C""?. (45)
Proposition 4.6. Under metric g2, the horizontal space atY satisfies
HY = {ZeC™? . (YY) WWZ=2Y(YY) '}
_ {YS +YLK|S*=8,8€CPP K e <c<"*P>XP} .
i

The third Riemannian metric for C is motivated by the Riemannian metric of H'"” and the diffeomorphism be-

tween C{ "7 /0O, and H''P. We know that 3 is a submersion. Every tangent vector of H''" therefore corresponds
to a tangent vector of C}*”. We can use the Riemannian metric of H'P and the correspondence of tangent vectors
between """ and C*” to define a Riemannian metric for C}*”. A natural first attempt would be to use

+ p

gy (4. B) = (D BY)[ALD B(Y)[Bl)grxr = (YA  + AY* YB" + BY "), (46)

which is however not a Riemannian metric because it is not positive-definite. To see this, notice that ker(D S(Y')[]) =
Vy-. Consider C' # 0 € Vy, then g3-(C, C) = 0. To modify this definition for g®, we can use the Riemannian metric

g* and the decomposition Ty C{™? = H2. & Vy, by which A € Ty C{ ™" can be uniquely decomposed as

A=AV + AM (47)

where AY € Vy and A € H3 . Now define g° as

-(A,B): = (DBW)A¥).DAY)BY]) + g} (47, BY)
(D B(Y)[A],D BY)[Bl) e + (PAY ", PYB)Y g

= (YA* 4+ AY*YB* + BY")c.un + (PY(A)Y*, PY(B)Y™)

(C'n.Xn

where P}} is the projection of any tangent vector of C}™” to the vertical space Vy-. It is straightforward to verify that
g2 defined above is now a Riemannian metric.

Proposition 4.7. Under metric g3, the horizontal space at'Y is the same set as H3-. That is,
H?f — {Z c (Cn><p . (Y*Y)—ly*Z — Z*Y(Y*Y)_l}
= [Ys+YiK|S' =550 K ecmr)

42 C?*?/0, as Riemannian quotient manifold

If the expression gy (£y,Cy) does not depend on the choice of Y € [Y] for every 7(Y) € C:*?/0, and every
Ex(v)s Cn(v) € Trn(v)C2™F /Oy, then

9 &r vy, Grvy) = gy &y, Cy) (48)

defines a Riemannian metric on the quotient manifold C ™/ Op, see [25, Section 3.6.2]. By Lemma[4.4] it is straight-
forward to verify that each Riemannian metric g° C1”™” induces a Riemannian metric on C}”*/O,. The quotient
manifold C{*”/O,, endowed with a Riemannian metric defined in [@8) is called a Riemannian quotient manifold. By
abuse of notation, we use g’ for denoting Riemannian metrics on both total space C} ** and quotient space C} **/ Op.
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4.3 Projections onto vertical space and horizontal space

Due to the direct sum property (#3), for our choices of H?,, there exist projection operators for any A € Ty C}*? to
Hi, as »
A=PY(A)+ P} (A).

It is straightforward to verify the following formulae for projection operators Py and P;E‘

Proposition 4.8. If we use g* as our Riemannian metric on C} ™", then the orthogonal projections of any A € C"*P
to Vy and M, are

PY(A)=YQ, PH(A)=A-YQ,

where () is the skew-symmetric matrix that solves the Lyapunov equation
QY'Y +Y'YQ=Y"A- A"Y. (49)
Remark 4.9. The solution X to the Lyapunov equation X E+ EX = Z for a Hermitian E is unique if E is Hermitian
positive-definite [, Section 2.2]. Let E = UAU™ be the SVD, then the Lyapunov equation XE + EX = Z becomes
(U*XU)AN+ ANU*XU)=U"ZU,

which gives the solution

(U*XU)i; = (U"2U)i5/(Nii + Ajj)-

Proposition 4.10. If we use g? as our Riemannian metric on C; ™", then the orthogonal projection of any A € C"*P
to vertical space Vy satisfies

PY(A) =Y ((Y*Y)_lY*A ; A*Y(Y*Y)_l) — ¥ Skew (YY) 'Y A),

and the orthogonal projection of any A € C"*? to the horizontal space H3 is
PF(4) = A-P)(4)
v YY) 'Y*A+ AV (YY) !
2
= YHerm ((Y*Y) 'Y*A) + Y Y[ A.

) + YJ_YIA

Proposition 4.11. If we use g° as our Riemannian metric on Cy*?, then the orthogonal projection of any A € C"*P
to vertical space Vy satifies

PY(A) =Y ((Y*Y)ly*A - A*Y(Y*Y)l) — Yskew((Y*Y)"'Y* A),

and the orthogonal projection of any A € C"*? to the horizontal space H3 is
PF(A) = A-PY(4)
v (YY) ly*A+ A*Y(Y*Y)~!
2
= YHerm (YY) 'Y*4) + Y, YA

) + YJ_YIA

4.4 Riemannian gradient
Recall that C2*? /O, is diffeomorphic to #'"” under 3. Given a smooth real-valued function f(X)on X € H'”, the
corresponding cost function on C} ™7/ O,, satisfies
h:C*?/0, - R
. ) (50)
(V) = f(B(r(Y)) = F(BY)) = fF(YYT).
Observe that the function F/(Y') := f(YY™) satisfies F(Y) =hon(Y) = f o 5(Y).

The Riemannian gradient of h at w(Y) is a tangent vector in Tﬂ-(y)CZZXP /Op . The next theorem shows that the
horizontal lift of grad h((Y")) can be obtained from the gradient of F' defined on C}*”.

14



Theorem 4.12. The horizontal lift of the gradient of h at w(Y") is the Riemannian gradient of F atY. That is,

gradh(n(Y))y = grad F(Y') (51)
Proof. See [25, Section 3.6.2]. O

The next proposition summarizes the expression of grad F'(Y") under different metrics.

Proposition 4.13. Let f be a smooth real-valued function defined on H'"* and let I : CYP 5 R:Y = f(YY™).
Assume YY™* = X. Then the Riemannian gradient of F' is given by

(VYY) +VFYYH)Y, ifusing metric g*
(VYY) + VY)Y YY), ifusing metric g*

grad F(Y) = vy vy (52)
(I — %Py) Vi ) —;Vf( ) Y(Y*Y)™!  if using metric g°
where V f denotes Fréchet gradient @) and Py =Y (Y*Y)~1Y*.
Proof. Let A € Ty C}™". By chain rule, we have
DF(Y)[A] =D f(YY*)[Y A* + AY™]. (53)
This yields to
9y (grad F(Y),A) = gx (grad f(YY ™), Y A" + AY™), (54)

where gx is the metric (I9). Since Y A* + AY™* € Tyy-H'}'?, we have

gx (grad f(YY™),YA* + AY*) = (P{y. (VF(YY™)),YA* + YA") =(VFYY"),YA" + AY ")k -

(C'n.X'n.

It is straightforward to verify that
(VIYY?),YA" + YA ) e = gy (VFYYT) + VY Y)Y, A)

gy
g5 (VYY) + VYY" )Y (YY) ' A),

which yields the expression of grad F(Y) under g* and g°.

The Riemannian gradient for g is due to

(Phy o (VIYY"), YA +YA ). = g

e

I— %Py) P)Q(f')y(y*y)—l,A)

1 F I ey —
(I—§Py> 5 Y(Y*Y) 1,A).

~w

= 9

(
(

4.5 Retraction

The retraction on the quotient manifold C%*” /O, can be defined using the retraction on the total space C *”. For any
A € Ty Cy*P and a step size 7 > 0,

Ry (TA) =Y +TA, (55)
is a retraction on CY*Pif Y 4 7A remains full rank, which is ensured for small enough 7. Then Lemma .4l indicates
that R satisfies the conditions of [25, Prop. 4.1.3], which implies that

Ry (Thi(y)) := m(Ry (17ly)) = ©(Y + 77]y) (56)

defines a retraction on the quotient manifold C*?/O,, for a small enough step size 7 > 0. With Lemma 4] it is
straightforward to verify that the retraction (36) does not depend on the choice of Y for the same equivalent class.
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4.6 Vector transport
A vector transport on C} ™7/ O,, introduced in [23, Section 8.1.4] is projection to horizontal space.

(7;71r(Y)§7T(Y))Y+ﬁY = P)’;/—LJrﬁy (EY) (57

It can be shown that this vector transport is actually the differential of the retraction R defined in (36) (see [23, Section
8.1.2]) since

D R.vy(n=(v))érvy] = Dm (Ry(7y)) [DRy (Ty)[Ev]]
— Dr(Y +7y) [% Tt tfy)}

= Dna(Y +7y) |:P;;l+ﬁy (gy)} -

Based on the projection formulae in Section [£3] we can obtain formulae of vector transports using different Rieman-
nian metrics. Denote Yo = Y7 + My, - If we use metric gl, then

(ﬁ]ﬂ(yl)gw(Yl))YlJrﬁYl = fyl - YQQa (58)
where (2 solves the Lyapunov equation
Va0 4+ QY;Ys = ViEy, — €, %2,
See Remark [4.9] for the expression of ).
If we use metric g2 or g3, then
= &, — PY(¢
(T o)y = 0~ RAED)
= &y, — Skew ((}/2*}/2)71}/2*ng)

YY) Y€y + Ev Yo(YiYs) ™! _
- Y, <( 2 2) 25)/12 le 2( 2 2) +Y2LY215y1-

4.7 Riemannian Hessian operator

Recall that the cost function h on C7*? /Oy, is defined in (30). In this section, we summarize the Riemannian Hessian
of h under the three different metrics g*. The proofs are tedious calculations and given in Appendix [C.1]

Proposition 4.14. Using g*, the Riemannian Hession of h is given by

(Hess h(w(Y))[&rr))y = PP (2Herm{V2 FYY)YE + &V }Y + 2Herm(V f(YY*))ZY) . (59)

Proposition 4.15. Using g, the Riemannian Hession of h is given by

(Hess h(mM)rer])y = P {2Herm{V2 /(Y ")[YEy + &Y Y (YY) !
+Herm(Vf(YY*)PFey (YY) + P Herm(VF(YY*)Ey (YY) !
+2skew(Ey Y ) Herm(Vf(YY*))Y (Y*Y) 2
+ 2skew{&y (YY) 'Y*Herm(Vf(YY*)}Y (YY) '},

Proposition 4.16. Using g3, the Riemannian Hession of h is given by

(Hessh(n(Y)[€xv])y = P (Hess F(Y)[Ey])
- <I - %Py) Herm{V2f(YY*)[YEy + & Y}V (YY)

+(I = Py)Herm(VF(YY*))(I - Py )y (Y*Y) .
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5 The Riemannian conjugate gradient method

For simplicity, in this paper we only consider the Riemannian conjugate gradient (RCG) method described as Algo-
rithm 1 in [[10] with the geometric variant of Polak—Ribiére (PR+) for computing the conjugate direction. It is possible
to explore other methods such as the limited-memory version of the Riemannian BFGS method (LRBFGS) as in [30].
However, RCG performs very well on a wide variety of problems.

In this section, we focus on establishing two equivalences. First, we show that the Burer—Monteiro CG method, which
is simply applying CG method for the unconstrainted problem (3), is equivalent to RCG on the quotient manifold
(CE*? /O, g") with our retraction and vector transport. Second, we show that RCG on the embedded manifold H','"*
is equivalent to RCG on the quotient manifold (C}*?/0O,, ¢*) with a specific retraction and vector transport.
For convenience, let Tx, _, x, denote a vector transport that maps tangent vectors from T'x, _, H''"* to Tx, H''",
defined as
. n,p n,p
TXk,lﬂXk . TX;C,1H+ — TX;C,HJr ) Ckal — TR;(;—I (Xk)(CXk—l)v (60)

where R)_(1 exists locally for every X € H'[" by the inverse function theorem. Hence T, _, -, x, should be understood
locally in the sense that X, is sufficiently close to Xj. See [28, Section 2.4].

Similarly, Let Ty, _, .y, denote a vector transport that maps tangent vectors from Hy, , to Hy, as

TYkil_}Yk : IHYk71 7 IHYM €Yk71 "~ (TR""(IYkl)gﬂ(Yk)>Yk’ (61)
where R;(ly) also exists locally for every 7(Y) € C:*?/O,. Ty, _, v, and should again be understood locally in the

sense that w(Yy_1) is sufficiently close to 7(Yy).

We first summarize two Riemannian CG algorithm in Algorithm[Iland Algorithm2lbelow. Algorithm[T]is the RCG on

the embedded manifold for solving[Iland Algorithm[lis the RCG on the quotient manifold (C%*?/O,, g*) for solving
([@). We remark that the explicit constants 0.0001 and 0.5 in the Armijo backtracking are chosen for convenience.

Algorithm 1 Riemannian Conjugate Gradient on the embedded manifold #'}"”

Require: initial iterate X; € H'?, tolerance ¢ > 0, tangent vector 19 = 0
1: for k=1,2,... do

2: Compute gradient

& := grad f(Xy) > See Algorithm[3]
3: Check convergence

if ||k || := V9x. €k, &) < €, then break
4: Compute a conjugate direction by PR and vector transport

e == —&k + BeTx_y—x, (Mk—1) > See Algorithm ??

By = 9x; (6167 &k — Tkalﬂxk (gkfl))
9x5_1 (Ek—1,&k-1)

5: Compute an initial step ;. For special cost functions, it is possible to compute:

t, = argmin, f(Xy + tng) > See Algorithm[g]
6: Perform Armijo backtracking to find the smallest integer m > 0 such that

F(Xk) — f(Rx, (0.5™trmi)) > —0.0001 x 0.5™trgx, (&, k) (62)

7: Obtain the new iterate by retraction

Xi41 = Rx, (0.5™timy) > See Algorithm[3]
8: end for

5.1 Equivalence between Burer-Monteiro CG and RCG on the quotient manifold (C}*?/O,, g')
Theorem 5.1. Using retraction (36), vector transport (57) and metric g*, Algorithm2is equivalent to the conjugate

gradient method solving (3)) in the sense that they produce exactly the same iterates if started from the same initial
point.
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Algorithm 2 Riemannian Conjugate Gradient on the quotient manifold C*? /O,, with metric g*

Require: initial iterate Y; € 7~ !(7(Y7)), tolerance £ > 0, tangent vector 19 = 0
1: for k=1,2,... do
2: Compute the horizontal lift of gradient

&k = (grad h(m(Yy)))y, = grad F'(Yy) > See Algorithm[G]
3: Check convergence

if [|€k |l := \/gg (&k,&r) < €, then break
4: Compute a conjugate direction by PR and vector transport

Mk = =&k + B Tvi_y—vi (Mk—1) > See Algorithm[7]

9y, (grad F(Yy), grad F(Yy) — Ty, v, (6-1))

Bk = -
9%, _, (grad F(Yy—1), grad F(Yy—1))
5: Compute an initial step ;. For special cost functions, it is possible to compute:
ty, = argmin, F(Yj + tny) > See Algorithm[9]

6: Perform Armijo backtracking to find the smallest integer m > 0 such that
F(Y},) — F(Ry, (0.5™tgny,)) > —0.0001 x 0.5™txgy, (ks r)

7: Obtain the new iterate by the simple retraction
Yk+1 = ]%y,C (O.5mtk’l7k) = Yk + O.5mtk77k
8: end for

Proof. First of all, for ¢!, grad F(Y) = (Vf(YY*) + Vf(YY*)*)Y, is equal to the Fréchet gradient of F(Y) :=
f(YY*) atY. Since vector transport is the orthogonal projection to the horizontal space, the PR ; used in Rieman-
nian CG becomes
1
g¥; (erad F(¥3), grad F(v}) — PJ{ (grad F(¥i 1))

= . 63
P 9y, _, (grad F(Y},_1), grad F(Y}—1)) (63)

Now observe that .
Pl (grad F(Yy—1)) = grad F(Yi—1) — Py, (grad F(Yj,_1)) (64)

and g' is equivalent to the classical inner product for C**?. Hence S, computed by (63) is equal to PRy j34 in
conjugate gradient for (3.

The first conjugate direction is 7, = —grad F(Y1) = —VF (Y1), so Burer-Monteiro CG coincides with Riemannian
CG for the first iteration. It remains to show that 7, generated in Riemannian CG by
1
e = =&k + BePYE (1)
is equal to 7, generated in Burer—-Monteiro CG for each k > 2. It suffices to show that
1
P (p—1) = m—1,  Vk > 2.

Equivalently we need to show that for all £ > 2, the Lyapunov equation

(YYe)Q + QY Ye) = Yime—1 — 51 Ya (65)

only has trivial solution 2 = 0. By invertibility of the equation, this means that we only need to show the right hand
side is zero. We prove it by induction.

Fork = 2,1 = m = —& = —grad F(Y1). The following computations show that the RHS of (63)) satisfies

Yom —mYs = Y56 +&Ye

-1 —c&)" &+ (N — &)

fiﬁYl - Y1*§1

Y [VIYYY) + VYD) Y = YT IVIWYT) + VYY) Y
0.

Hence €2 = 0 and P;,'il (Mk—1) = M—1 for k = 2.
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Now suppose for k > 2, the RHS of (63) is 0 and hence P;))‘: (Mk—1) = nr—1 holds. Then the RHS of the Lyapunov
equation of step k + 1 is

Yiganme — meYerr = (Y +oene)™ne — 5 (Ye + enk)
= Y — Yk
= Yk* (_gk + BkP)?/-él (77[671)) — (—gk + ﬂkpg;il (’I]k,l)) Yk
= V(=& + Brmk—1) — (=& + Bremw—1)"Ys
= Y&+ &Y
= “YJ[IVIYYY) + VYY) Y + Y VYY) + VYY) Ve
= 0.

Hence P;))‘CL (n) = n, also holds. We have thus proven that Riemannian CG is equivalent to Burer—-Monteiro CG. [

Since the gradient descent corresponds to 3 = 0, the same discussion also implies the following

Theorem 5.2. Using retraction (36) and metric g', the Riemannian gradient descent on the quotient manifold is
equivalent to the Burer—Monteiro gradient descent method with suitable step size (6) in the sense that they produce
exactly the same iterates.

5.2 Equivalence between RCG on embedded manifold and RCG on the quotient manifold (C:*?/0,, ¢%)

In this subsection we show that Algorithm[Ilis equivalent to Algorithm 2] with Riemannian metric g3, a specific initial
line-search in step 5, a specific retraction and a specific vector transport. The idea is to take the advantage of the
diffeomorphism 3 between C2*? /Op and H['P, as well as the fact that the metric g% of C*? /O, is induced from the
metric of H'}'”.

The Lemma below shows that there is a one-to-one correspondence between grad f and grad h.

Lemma 5.3. If we use g° as the Riemannian metric for Ci P /O, then the Riemannian gradient of f and h is related
by the diffeomorphism (3 in the following way:

D B(n(Y))lgrad h(n(Y))] = grad f(YY™). (66)
Proof. Recall that § = B o and we have Theorem[4.12] By chain rule and the definition of horizontal lift we have
LHS =D f(n(Y))grad h(x(Y))] = DA(x(Y)) [Dr(¥) [gradh(z(V))y]]

DA(Y) [gradh(x(V))y |
DY) [erad F(Y)].

Now recall that F' = f o 3. Let A € C™*P then
DEFY)[A =D f(YY*)[YA* + Y A"].

Let X = YY*. Then we have

gy (grad F(Y), A) = gx(grad f(YY™), Y A* + AY™).
Since grad F(Y') € H3., we have

gx (DB(Y)[grad F(Y)], Y A" + AY™) = gx (grad f(YY ™), Y A* + AY™),

> gx (LHS,YA" + AY") = gx (RHS, Y A* + AY™).
I]\%(}}Nsnotice that A is arbitrary and Y A* + AY™* can be any tangent vector in TX’H,i’p . Hence we must have LH S E

Remark 5.4. Since f3 is a diffeomorphism bewteen Ct*? | O, and HP, DB(n(Y))[-] defines an isomorphism between
the two tangent space T,r(y)(Cpr/Op and Ty y ’Hi’p. We denote this isomorphism by L. yy. When the tangent space
is clear from the context, w(Y') is omitted and we only use the notation L for simplicity. The previous lemma then simply

reads
Ly (grad h(z(Y))) = grad f(B(x(Y))). 67)
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In Algorithm[Il we have a retraction R” and a vector transport 7 ¥ on the embedded manifold HP, with the super-
script E for Embedded, such that RE is the retraction associated with 7F. Then we claim that there are a retraction
R and a vector transport 7@, with the superscript ) denoting Quotient, on the quotient manifold C}*? /0, with

metric g2, such that AlgorithmDlis equivalent to Algorithm (I). The idea is again to use the diffeomorphism B and the
isomorphism L (yy. We give the desired construction of R® and T as follows.

RS(Y) (fﬂ-(y)) = ﬁ_l (Rg(,,(y)) (L(gw(Y)))) : (68)

7:763(3/) (gﬂ'(y)) = 71-(Y2) (7—[4 777\'(Y)) (L(gﬂ'(Y)))) Y (69)
where 3(m(Y2)) denotes the foot of the tangent vector TE L(neey) (L({W(y))).

Next we need to show that R? defined in (68) and 7 defined in (69) are indeed a retraction and a vector transport,
respectively.

Theorem 5.5. R€ defined in (63) is a retraction.

Proof. First it is easy to see that Rg(y) (Ox(yy) = m(Y). Then we also have for all v,(yy € Tr(y)Ci*? /O,

DRS(y)(OTr(Y))[Uﬂ'(Y)] = DA'(B(r(Y)) [D RE( vy (0) [DL(0) [”w(Y)m
= DA (B() [DRE, ) (O) [L(airy)]

D5 (B(r(Y)) [L(vsy))

= (DBE()) " Llesr)

L™ (L(vr(v)))
Ur(Y)

Hence D R% vy (0 ~(v))[] is an identity map. O
Theorem 5.6. 77 defined in (69) is a vector transport and R is the retraction associated with TF.

Proof. Consistency and linearity are straightforward. It thus suffices to verify that the foot of ’T (Y)(g,r(

Y)
(L&)
is equal to Rﬁ( ¥) (L(nr(v))), which we denote by B(m(Y2)) for some w(Y3). Hence Rﬁ(y)( (Y)) =

B (RE v (L)) ) = m(¥2).

Furthermore, we have that 7;7?(,,) rvy) = L;(1Y2) (7}4E(77W(Y)) (L({W(y)))) is a tangent vector in Thr(y,)CL " /O,
Hence, the foot of 7;]?(,/) (Er(yy) s also m(Ya). O

)
is equal to RQ(Y) (M=(vy). Since R¥ is the associated retraction with 7%, the foot of ’TE ) )

Finally, in order to reach an equivalence, we also need the initial step size to match the one in step 5 of Algorithm 2l
We simply replace the original initial step size ¢ by

by = arg min (VY + (Yiny + 0sY)). (70)
This value of ¢, now is equivalent to the initial step size in step 5 of Algorithm[Il This gives us the following result:

Theorem 5.7. With the newly constructed initial step size, retraction and vector transport in this subsection, Algorithm
Qfor solving @) is equivalent to Algorithm[l solving (1) in the sense that they produce exactly the same iterates.
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6 Implementation details

The algorithms in this paper can be applied for minimizing any smooth function f(X) in (I). For problems with
large n, however, it is advisable to avoid constructing and storing the Fréchet derivative V f(X) € C™*™ explicitly.
Instead, one directly computes the matrix-vector multiplications V f (X)U and (V f(X))*U. In the PhaseLift problem
[5], for example, these matrix-vector multiplications can be implemented via the FFT at a cost of O(pn logn) when
U € C™*P; see [13].

Below, we detail the calculations needed in Algorithms[[land2l When giving flop counts, we assume that V f (X)U
and (Vf(X))*U € C™ P can be computed in spn logn flops with s small. For g and ¢® in Algorithms[@and[7} we
use forwardslash "/" and backslash "\" in Matlab command to compute the inverse of Y *Y".

6.1 Embedded manifold

Algorithm 3 Calculate the Riemannian gradient grad f(X)
Require: X = UXU* € H}P
Ensure: grad f(X) = UHU* + U,U* + UU, € TxH}"”

T« 3(VF(X)+ V(X))U > # 2spn logn flops
H <+ U*T > # 2np? flops
Uy «T-UH > # 2np? + np flops

Algorithm 4 Calculate the embedded vector transport P}Q (v)

Require: X| = U1X,U7, Xo = UpXoUs; and tangent vector v = Uy H1UY + Uy, U + U1 Uy | € Tx, H}P.
Ensure: Py (v) = UaHoUs + Uy, Us + UsUpy)

A+ UiUsy > # 2np? flops
HY « A H A, U « Uy(H A) > # 6p3 + 2np? flops
HQ(Q) — UsUp, A, UISQ) +—Up, A > # 4np? + 2p3 flops
Y « 52", U « U, (U0) > # dnp? flops
Hy « H" + B + HY > # dnp? flops
Upy  USY + U + UP, Uy < Upy — Us(Uz Upy) > # dnp? flops

Algorithm 5 Calculate the retraction Py;»» (X+2)

Require: X = UXU* € H'”, tangent vector Z = UHU* 4+ Up,U* + UU;;.
Ensure: PHi’P(X +7Z)=U;X U}

(Q,R) < qr(U,,0) M « {E EH % } > # 10np? flops
[V, S] « eig(M) > O(p?) flops
Y+« S(1:p,1:p), Up«~[U QV(,1:p) > # 4np? flops
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6.2 Quotient manifold

Algorithm 6 Calculate the Riemannian gradient grad F'(Y)

Require: Y ¢ C;*”
Ensure: T = grad F(Y)
1: if metric is g* then
T+ (VFYY*)+VfYY*)")Y.
2: else if metric is g2 then
Z 4« Y(Y*Y) !
T+ (VFYY*)+VfYY*)*)Z
3: else if metric is g° then
Z e Y(Y*Y) !
T+ (VFYY*)+VfYY*)*)Z
M« Y*T, T«T-1zM
4: end if

> # 2spn logn flops

> # 4np® + O(p?) flops
> # 2spn logn flops

> # 4np? + O(p?) flops
> # 2spn logn flops
> # 4np? + np + p* flops

Algorithm 7 Calculate the quotient vector transport P% (h1)

Require: Y; € C7*P, Yy € C*P and horizontal vector hy € Hy;.

Ensure: hy = Pl (h1) € Hy,.

1: if metric is g* then
E < Y3Ys
(Q,S) « eig(E), d+« diag(S)
Aed[1,1,-- 1)+ [1,1,--,1) 47
A« Q" (Y5 hy — hiY2)Q
Q+ Q(A./NQ”
ho < h1 — S/QQ

2: else if metric is g2 or g° then
Q+ (YY) (Y5 hy)

Q+ Q-0
hQ — hl — }/QQ
3: end if

> # 2np? flops

> # O(p®) flops

> # 2p? flops

> # 4np?® + 4p> flops
> # p? + 4p3 flops

> # np + 2np? flops

> # 4np® + O(p?) flops
> # 2p? flops
> # np + 2np? flops

6.3 Initial guess for the line search

The initial guess for the line search generally depends on the expression of the cost function f(X). For the important
case of f(X) = 3 [|A(X) — bH; where A is a linear operator and b is a matrix, the initial guess for embedded CG
requires solving a linear equation and for quotient CG it requires solving a cubic equation. Below this calculation is
detailed for b of size mn for some m and assuming that A(X) can be evaluated in sp®nlogn flops for X € H''?,

A(T) for T € TxH'? and A(Yn*) for Y, n € CY*P.

Algorithm 8 Calculate the initial guess ¢, = argmin, f(X +¢T)
Require: X € H''" and a descend direction T € Tx H'}"”
Ensure: ¢, = argmin, f(X + tT) = argmin, & || A(X + tT) — b||%

R+ AX)—b > # sp®nlogn + mn flops
S« A(T) > # sp®nlogn flops
t*F_% > # 2mn + 1 flops
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Algorithm 9 Calculate the initial guess ¢, = argmin, F'(Y + t7)

Require: Y € C}*”, a descend direction n € Hy,
Ensure: ¢, = argmin, F(Y + tn) = argmin, 5 [[A((Y + tn)(Y + tn)*) — b1%

co+— AYY*)—b > # sp®nlogn + mn flops
cgl) +— A(Yn*), 652) — AY™),  + cgl) + 052) > # 2sp®nlogn + mn flops
co +— A(nn*) > # sp*nlogn flops
dy < {ca,c0), d3  2{ca,c1) > # 2mn flops
d2 (—2<02,Co>+<01701>, dl (—2<61,C()> ># 3mn ﬂOpS

C «~ [4d4 3d3 2ds dl]
S < roots(C), t. < the smallest real positive root in S

7 Estimates of Rayleigh quotient for Riemannian Hessians

In many applications, (1) or (7) is often used for solving @). In [14], it was proven that first-order and second-order
optimality conditions for the nonconvex Burer—Monteiro approach are sufficient to find the global minimizer of certain

convex semi-definite programs under certain assumptions. In practice, even if the minimizer X of @) has a known
rank 7, one might consider solving or (@) for Hermitian PSD matrices with fixed rank p > r. For instance, in
PhaseLift [5] and interferometry recovery [8], the minimizer to (@) is has rank one, but in practice optimization over
the set of PSD Hermitian matrices of rank p with p > 2 is often used because of a larger basin of attraction [, [13].

If p > 7, then an algorithm that solves or (@) can generate a sequence that goes to the boundary of the manifold.
Numerically, the smallest p — r singular values of the iterates X, will become very small as & — oo. In this section,
we analyze the eigenvalues of the Riemannian Hessian. In particular we will obtain upper and lower bounds of the

Rayleigh quotient at the point X = Y'Y* (or 7(Y)) that is close to the global minimum X = YY* (or 7(Y)). We
assume that the Fréchet Hessian V2 f is well conditioned when restricted to the tangent space. Formally, our bounds
will be stated in terms of the constants A, B defined in the following assumption:

Assumption 7.1. For a fixed ¢ > 0, there exists constants A > 0 and B such that for all X with HX — XH < €, the
F
following inequality holds for all {(x € TxH}".

Allex e < (V2FXOx],Cx Y pnnn < BllCx 17 (71)

An important case for which this assumption holds is f(X) = 3 [| X — H HQF with H a given Hermitian PSD matrix.

In this case, V2 f(X) is the identity operator and thus A = B = 1.

We summarize the main result in the following theorem. Its proof is outlined the subsections below.

Theorem 7.1. Let X = YY* be a minimizer of with rank r < p. Fgr X = YY* near X where Y € CY*P) let
Er(y) € Tﬁ(y)(Cpr/(’)p be any quotient tangent vector at w(Y') and let &, € H?, be its horizontal lift at Y w.rt. the
metric g'. Define the Rayleigh quotient of the Riemannian Hessian of (C1*? /O, ¢') as

iy (Hess M (V) [er(v)], &n(ry)

vy Er(v) En(v))

p'(Y) =

Then, under Assumption[Z_1) it holds
0< lim piY)<4B||X|, 24< lim p*Y)<4B, A< lim p3(Y)<B,

IY =Y r—0 IY =Y [l r—0 Y =Y —0

where || X || is the spectral norm, that is, the largest eigenvalue of X.

7.1 Quotient manifold

Let 7(Y) € C2*P /O, such that each Y € [Y] gives YY* close enough to X. Let énv) € Try)Ci™P /O, be any
quotient tangent vector at 7(Y') and let &, € H, be its horizontal lift at Y w.r.t. the metric g°. We calculate the
Rayleigh quotients‘pi defined in Theorem [Z.1] for the three metrics g, i = 1,2, 3. Observe first that by definition of h,
we have for each ¢* that

pl(Y) _ ggf(HeSS F_‘(Y)_[EYLZY)
9%/(5)/751/)
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Simple calculations for g' then gives

PLY) = g%,(?Herm{V?f(YY_*)[l_/E;+Zyy*]}Y,EY) n g%(?Herm(V_f(}iY*))EY,ZY).
9y €y, &y) 9 &y, &y)

Likewise, for g2 we obtain

g} 2Herm{V2f(YY*)[VEy + &V Y (YY) "1 &)

g%/(EszY)
+g?/(H6Tm(Vf(YYi))P_#EY(Y*Y)’l,Ey) n gy (Py Herm(VF(YY*)ey (Y*Y) 1, &)

9)2/(53/751/) g%(fyfy)

| B @skew(@ Y Harm(VI(YY )Y (YY) 2 &)

932/ (EYaEY)
n 2skew{&y (Y*Y)71Y*HerCn(V_f(YY*))}Y(Y*Y)fl &y) .

9)2/(5% y)

PPy =

Finally, for g3, we get

g% (1= 4Py) Ham{ V2 [ (Y V)Y Ey + §Y Y (YY) LGy )

P = G By 72
Y\SY»SY
(L= Py)Herm(Vf(YY*)(I ~ Pr)Ey (YY) &) 73
gg/(vafy)

Observe that when we use metric g° for any 4, the leading term in the Rayleigh quotient takes the same form
(VEFOY)YE 4 &Y YE + EY)
ggf (EYv ZY)

By Theorem 4.3 in [13], all other terms become arbitrarily small as ¥ — Y. Therefore, it suffices to analyze the

fraction near the true solution 7(Y). Observe that Y&y + &y Y* € Tyy~H''". Hence Assumption [Z.1] also
applies and becomes the following:

e (74)

Lemma 7.2. For a fixed € > 0, there exists constants A and B such that for allY € CY*P with HYY* — XH < €,
_ . F
the following inequality holds for all &, € Hs,:

v s * 2 * ra ra * ra ra * =¥ ra * 2
A Hyfy +&yY HF < <V2f(YY W + &Y YE +&Y >¢;an <B Hyfy +&yY = (75)
where'Y € [Y] is a representation of [Y].
Equation (74) therefore satisfies
—% — 2 2 —% — —x — —% — 2
AHm 67| (VROYIYE + G YLYE &Y BHny A PR
— < ——— < —
gé/(ngé.Y) g%/(fYafy) g;/ (ngé.Y)
and it suffices to estimate the fraction
P 2
V& + &y
E (77)

g;/ (ng EY)

for different g°. Below, we will bound this fraction as &y varies in H!. for each g°. The cases of g* and g° are simple
while the case of g! involves more analysis.
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7.2 Riemannian metric 1

For ¢!, write £, = Y/(Y*Y)™1S + Y| K for some S = S* € CP*P and K € C"*P. Then (77) becomes

—% — * 2
HYéerﬁyY HF ) ts + s(yry) Y HF+2HKY*HF (78)

i Ev.&y) 1Y (V<Y) 1S 7+ || Kl

Notice that the Rayleigh quotient is independent of the representative for [Y]. Hence, we can choose Y = U VE
where YY™* = UXU"* is the SVD of YY*.

Let K; denote the ¢th column of K. Let o; denote the ¢th diagonal entry of ¥ with oy > 090 > --- > 0, > € > 0.

Similarly for X, let USU* be its SVD and let 61 > -+ ,> &, > 0 be the singular values of X. Define Omax =
max{d1,- - ,6y} and Gpin = min{é1,-- -, G, }. Then ([Z8) can be simplied to
ey s s vl vapergy [Brset e sissl valesd]
v 1an2
Y (YY) LS5 + 1K Hz 2SHF+||KHF
Py (24 2T 180l + 25 o K
= " EFE (80)
P 3 |IKE
Do (2 + 2 4+2) 185 + 2500, o 1Kl .
= S”
fj 1 | UJ + 2 1K ||F
2
_ 2 syl +22 ISP+ 2300 o K ®2)

P Bl s K

Recall that X has rank 7. By Weyl’s theorem for the singular values of perturbed matrices [31], as 7(Y") approaches
the true solution W(Y) in the sense that HYY* - X HF goes to 0, the last p — r eigenvalues in X will tend to 0, and

the first r eigenvalues in X will approach the eigenvalues of X. That is, 0; = 0; for1 <4 < rand o; — 0 for
r+1 < j < p. To simplify the formula from (82), introduce the two terms

_22 7 1 J| 1J| +22|517| +2ZUz |K||F (83)

3,7=1

r p
N = Z ”' +) K- (84)
=1

and

prZr—i—l,wecanrewrite([Q])as
22” 10 |SZJ| +2Z 7 1|S1J| +2Z _1 06 || K ”F

(85)
51 o +Z 1HKHF
ZIEIRIE 2 2
_ 2(3 i+ r+1)#+22” ST +230 o | Kill (86)
a DD - 118517
D e 117]"‘21 r+117j+2 1||KHF
221 r+1 % + M
- > |§ B ' &7)
€:T+1 =L +N
If p = r + 1, then the limit of (87) as HYY* — XHF 5 0is
> 04|Sp,0° rooa 2
. 2 lo; ==+ M _ 223‘:1 65 |Sp,l (88)
cimb, i lSpil? TS 08,40
o0 o — N J=11°p.3
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If S, ; =0forall1 < j <randS,, # 0, then the above limit equals zero. Otherwise it will be a nonzero constant.

If p > r + 2, the limit of (7)) as

YY*— X H — 0 does not exist in general since the following ordered limit is
F

dependent by its order that 0,1, --- , 0 goes to 0.
p 2
p 2 j=1 93154l p—1 2
. . . . i=r+1 o + M . . . . 2 Zj:l ;| Sp.;l
lim -+ lim lim --- lim = > = lim --- lim lim --- lim 5
o161 =6y Ory1—0 ap—0 P iS4l N o161 Op—36y Trp1—0 Tp—1—0 P |S |
=1 T T §=117pd
r ~ 2
2> 52165 1Sl
p 2
i=1 5.4l

If Sp.; =0forall 1 < j <randS,; # 0forsomer+ 1 < j < p, then the above ordered limit is zero. Otherwise it
will be a nonzero constant. Therefore, when p = r, the fraction (Z7) can be bounded between 20 i, and 40,,. When
p > r, the range of the fraction (Z7) can be unbounded. This implies that the condition number of the Riemannian
Hessian can be large when p > r for metric g'.

7.3 Riemannian metric 2
For g%, write £, = Y'S + Y| K for some S = S* € CP*? and K € C™*P. Then (77) becomes
. 2
Y YH o2
S 5 >
95 &y, &y) [YSY*|[z + | KY*||%

When K is zero, (Z7) is upper bounded by 4. When S is a zero and K is nonzero, it is lower bounded by 2:

(PHOYIVE +EYLYE +EY)

2A < ==
gY(fYafY)

CnX" < 4B. (90)

Hence, the condition number of Hess i(m(Y)) is at most 22 when 7(Y) — (V).

7.4 Riemannian metric 3

For g3, (T7) reduces to
[ve +& v,
g;’/ (EYa EY)

oD

Hence we get directly

(VIOY)YEy + &Y YE + &)
g;’/ (ZYa EY)

The condition number of Hess i(7(Y")) therefore is bounded by £ when 7(Y) — x(Y).

A< Cnxn < B.

8 Numerical experiments

In this section, we report on the numerical performance of the the conjugate gradient methods on three kinds of cost
functions of f(X): eigenvalue problem, matrix completion, phase-retrieval, and interferometry. In particular, we
implement and compare the following four algorithms:

1. Riemannian CG on the quotient manifold (C}*?/0,, g'), i.e., Algorithm 2 with metric g'. This algorithm
is equivalent to Burer-Monteiro CG, that is, CG applied directly to @).

2. Riemannian CG on the quotient manifold (C%}*?/ 0,, g?), i.e., Algorithm 2l with metric g2. The same metric
g2 was used in [13].
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3. Riemannian CG on the quotient manifold (C}*?/0O,, ¢), i.e., Algorithm 2] with metric g>, and also a spe-
cific retraction, vector transport and initial step as described in Section This special implementation is
equivalent to Riemannian CG on embedded manifold, i.e., Algorithm[Il

4. Burer-Monteiro L-BFGS method, that is, using the L-BFGS method directly applied to (3). This method was
used in [18].

8.1 Eigenvalue problem

For any n-by-n Hermitian PSD matrix A, its top p eigenvalues and associated eigenvectors can be found by solving
the following minimization problem:

minimize  f(X) = 3 [ X - All%
subject to X € H'P

)

or equivalently
min(im)ize hr(Y)) =3 [YY* — A|l%
(Y .

subject to  7(Y) € C*?/0,

It is easy to verify that
VIX)=X -4, Vf(X)x]=Cx, (xeC™™

We consider a numerical test for a random Hermitian PSD matrix A of size 50 000-by-50000 with rank 10. We solve
the minimization problem above with p = 15. Obivously, the minimizer is rank-10 thus rank deficient for C**/0,,
with p = 15. This corresponds to a scenario of finding the eigenvalue decomposition of a low rank Hermitian PSD
matrix A with estimated rank at most 15. The results are shown in Figure[[l The initial guess is the same random
initial matrix for all four algorithms. We see that the simpler Burer—Monteiro approach, including the L-BFGS method
and the CG method with metric ¢', is significantly slower.
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Figure 1: Eigenvalue problem of a random 50 000-by-50000 PSD matrix of rank 10 on the rank 15 manifold.
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8.2 Matrix completion

Let Q) be a subset of of the complete set {1,--- ,n} x {1,--- ,n}. Then the projection operator onto (2 is a sampling
operator defined as
X, if(4,5) €Q
P :(Cnxn N (Cnxn . Xz N ) ’ ) 92
¢ J { 0 if (i,5) ¢ Q. ©2)

The original matrix completion problem has no symmetry or Hermitian constraint. Here, we just consider an artificial
Hermitian matrix completion problem for a given A € 7}

minimize  f(X) := 3 [ Pa(X — A7

n ; 93)
subject to X € HP

or equivalently

minimize  h(7(Y)) = L [|[Po(YY* — A)|
nim (m(Y)) := 5 [ Pa( i ' 4
subject to  w(Y) € CY*7/0O,

Straightforward calculation shows

VHX) = Pa(X — 4), V2f(X)[cx] = PalCx), ¢x €C™™

We consider a Hermitian PSD matrix A € C"*™ with n = 10000 and Py, a random 90% sampling operator. In the
first test of Figure[2] the minimizer has rank » = 25, and the fixed rank for the manifold is set to p = 30. In the second
test of Figure[3] the minimizer has rank r = 25, and the fixed rank for the manifold is set to p = 25. The initial guess
is the same random matrix for all four algorithms. For both cases, we see that the simpler Burer—Monteiro approach,
including the L-BFGS method and the CG method with metric g', is significantly slower.
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Figure 2: Matrix completion of a random 10 000-by-10000 PSD matrix of rank 25 observed at random 90% entries.
The algorithms are solved on the rank 30 manifold.
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Figure 3: Same setting as in Figure[2but minimized on the rank 25 manifold.

8.3 The PhaseLift problem

We now solve the phase retrieval problem as described in [S]: Take an image 2z € CV *x1 and a collection of masks
denoted by {M;}™, where N2 = n is the size of the flattened image. Each M; is of the same size as = and the
elements in each M are real or complex numbers with both real and imaginary parts between 0 and 1. We can choose

M to be random numbers or i.i.d. Gaussian. We have m number of observations for each mask ¢ = 1,--- ,m:

d' = N(z) := |(DFT(Diag(M;)  z)|?,

95)

where N denotes the nonlinear operator. The squared power is taken element-wisely. Diag()/;) denotes the diagonal
matrix whose diagonal is M;. DFT denotes the n x n discrete fourier transform matrix. Therefore, d’ is vector of size

n x 1.

Now we lift z so that A/ can be treated as a linear operator. Let dz- denote the jth component of d’. Let 2~ denote

DFT - Diag(M;) and z;* denote the jth row of DFT - Diag(M;). Then equation (93)) can be written as

(=5, @)* = 2}

s zx¥z;=d;, j=1,...n

j j Lo ny

Denoting X := xz*, the nonlinear operator A/ can be rewritten as the linear operator

A:CVm S R X s [tr(zizl X)), - tr(2R2) X)), - tr (22 X)), - (22 X))

| i
Let Z* := DFT - Diag(M;) = | --- |, then we have alternatively
I

A:CVm 5 R X [diag(Z21X 21, - - diag(Z2m X Z2m)) T

Denote b = [d*, -+ ,d™]" . Then the cost function can be written as

F) = 5 A = b

29

(96)

o7

(98)



The conjugate of operator A, detoted by .A* is given by

3OS bizizi =3 7 Diag(b) 2, if domain of A is C""

i=1 j=1 i=1

R ZZb;iz;iz;i* _%<ZZi*Diag(bi)Zi>, if domain of A is R™*".

=1

Straightforward calculation shows

VIX) = A"(AX) = 1), V2f(X)[(x] = A"(A(Cx)) forall (x € C™™.

For the numerical experiments, we take the phase retrieval problem for a complex gold ball image of size 256 x 256 as
in [13]. Thus n = 2562 = 65,536 in @) or (I). We consider two different kinds of operator A: the first corresponds
to 6 Gaussian random masks and the second one to 8 Gaussian random masks. Hence, the size of b is 8n = 524, 288.
Remark that problem is easier to solve with more masks.

We first test the algorithms on the rank 1 manifold, and then on the rank 3 manifolds. The results are visible in Figures
M7 The initial guess is randomly generated. First, we observe that solving the PhaseLift problem on the rank p
manifold with p > 1 can accelerate the convergence, compared to solving it on the rank 1 manifold. Second, when
p = r = 1, the asymptotic convergence rates of all algorithms are essentially the same, though the algorithms differ
in the length of their convergence "plateaus". When p = 3 > r = 1, we can see that the Burer—-Monteiro approach has
slower asymptotic convergence rates.
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Figure 4: Phase retrieval of a 256-by-256 image with 6 Gaussian masks. The algorithms are solved on the rank 3
manifold.
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Figure 5: Phase retrieval of a 256-by-256 image with 8 Gaussian masks. The algorithms are solved on the rank 3
manifold.
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Figure 6: Same phase retrieval problem setting as in Figure d but The algorithms are solved on the rank 1 manifold.
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Figure 7: Same phase retrieval problem setting as in Figure 3l but The algorithms are solved on the rank 1 manifold.

8.4 Interferometry recovery problem

As last example, we consider solving the interferometry recovery problem described in [8]. Consider solving the linear
system F'z = d where F' € C"™*"™ with m > n and x € C"*!. For the sake of robustness, the interferometry recovery
[8] requires solving the lifted problem

minmize  f(X) = § | Pa(FXF" — dd*)|[3

n ) (99)
subject to X € H'P

where (2 is a sparse and symmetric sampling index that includes all of the diagonal.

Straightforward calculation again shows

VF(X) = F*Po(FXF* — dd*)F, V*f(X)[(x] = F*Po(F(xF*)F forall (x € C"*™.

We solve an interferometry problem with a randomly generated F' € C10000x1000 Hence n = 1000 in @) or (). The
sampling operator {2 is also randomly generated, with 70% density. In Figurd8] p = 3 and r = 1 and we can see that
the Burer-Monteiro approach has slower asymptotic convergence rates. In Figurddl p = » = 1 and we can see now
that all algorithms have more or less the same asymptotic convergence rates.
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Figure 8: Interferometry recovery of a random 10 000-by-1000 F' with 70% sampling. The algorithms are solved on
the rank 3 manifold

-©-L-BFGS Burer Monteiro
100 % - CG quotient manifold metric 1 (Burer Monteiro) i
CG quotient manifold metric 2
% CG quotient manifold metric 3 (Embedded geometry)

c
5]
=]
o
c
5
(I
-

8 10°" 1
O
gl
7]
N
©
£
o
Z

10—10 L 4

0 50 100 150 200
Iteration Number

Figure 9: Same setting as in Figure[§]but on the rank 1 manifold.
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9 Conclusion

In this paper, we have shown that the nonlinear conjugate gradient method on the unconstrained Burer—Monteiro
formulation for Hermitian PSD fixed-rank constraints is equivalent to a Riemannian conjugate gradient method on a
quotient manifold C%*” /0, with a specific metric g', retraction, and vector transport. We have also shown that the
Riemannian conjugate gradient method on the embedded geometry of 7'}’ is equivalent to a Riemannian conjugate
gradient method on a quotient manifold C}*” /O,, with a metric g*, a special retraction, and a special vector transport.
We have analyzed the condition numbers of the Riemannian Hessians on (C3*? /0O, ¢*) for these metrics ¢', g and
another metric g2 used in the literature. As notheworthy result, we have show that when the rank p of the optimization
manifold is larger than the rank of the minimizer to the original PSD constrained minimization, the condition number

of the Riemannian Hessian on (C%”?/0O,, g') can be unbounded, which is consistent with the observation that the
Burer—Monteiro approach often has a slower asymptotic convergence rate in numerical tests.
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Appendix A Derivatives

See A.5 in [25] for more details in this section.

A.1 Fréchet derivatives

For any two finite-dimensional vector spaces { and V over R, a mapping F' : Y — V is Fréchet differentiable at x € U
if there exists a linear operator
DF(z): U —V
h +— DF(x)[h]
such that
F(x 4+ h) = F(z) 4+ DF(x)[h] + o(||h]]).
The operator DF'(z) is called the Fréchet differential and DF (x)[h] is called the directional derivative of F' at x along
h. The derivative satisfies the chain rule

D(f o g)(x)[h] = Df(g(x))[Dg(z)[h]].

For a smooth real-valued function f : U — R, the Fréchet gradient of f at z;, denoted by V f(z), is the unique element
in U satisfying
where (-, -)z/ is the inner product in .
In particular, consider i/ = C™*" as a vector space over R with the standard inner product (X, Y)cnxn = R(tr(X*Y)).
Then the expression

of(X)  .9f(X)

ViX)=
I =5 T
defines a Fréchet gradient. To see this, view X as (®(X), 3(X)) and apply the multivariate Taylor theorem to f:
[f(X +h) = f(X) = (VF(X), h)grxn| =

FOREX) + R, 300 +3(00) — 160,300 - ({ s R0 ) + (5,900 )

where X and h are n-by-n complex matrices. The last line is o(||h||cnx. ) due to the multivariate Taylor theorem.

(101)

)

Now let g : C"*P — C™*" : Y +— YY™ and the the inner product on C"*P as the standard inner product
(A, B)nxp = R(tr(A*B)). Then the Fréchet gradient of ¢ := f o g satisfies

d(Y) = 2Herm(Vf(YY*))Y. (102)
Indeed, by the chain rule of Fréchet derivative we have
Dg(Y)[n] =D f(g(Y)) Dg(Y)[hl], VheC" . (103)
Hence
(@' V), h) g = (VFYY"), D g(Y)[A]) g - (104)
One can check by definition that D g(Y')[h] = Yh* + hY™*. Hence
(@ (Y), W) cnxp = (VYY) YR +hY*)cuxn = QHerm(Vf(YY™))Y, h)cnxp - (105)
This proves (102).
Theorem A.1. The Fréchet gradient of f(X) = 3| A(X) — b||% for a linear operator A is given by
VA(X)=A"(AX) —D). (106)

Proof. We know by the definition of Fréchet gradient (see[A.T) that
of . of

VX)) = oy oy (107)
Now for f(X) = 1| A(X) — b]|? = 1 (A(X) — b, A(X) — b), by the linearity of A, we have
1 0 1 9
VX)) = - ==(AX)—-0b,AA)-b + = —(AX) - b, A(A) = b
FX) = 3 g A = b A) <8 5 SRl - b))
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A.2 Hessian

For a Euclidean space £ and a twice-differentiable, real-valued function f on &£, the Fréchet Hessian operator of f at
x is the unique symmetric operator V2 f(x) : £ — £ defined by

V2 f(x)[h] = D (f')(x)[h] (108)
forall h € €.

A.3 Taylor’s formula

Let £ be finite-dimensional Euclidean space. Let f be a twice-differentiable real-valued function on an open convex
domain Q2 C £. Thenforall z and z + h € Q,

Fla+h) = f@) + (V). B + 5 (P F @) B +0 (I0]2). (109)

Appendix B Embedded manifold 7"

The geometry of the real case, i.e., S_?_’p has been explored in [12]. However, it is not straightforward to extend these
results directly to the complex case. Although the methods of proofs of the complex case turn out to be similar to the
real case, we still need to provide. In this paper, recall that a complex matrix manifold is viewed as a manifold over R
instead of C. One way is to identify a complex matrix with the pair of its real and imaginary part; another way is to
identify the matrix with its realification.

Definition B.1 (Realification). The realification is an injective mapping R : C**™ — R2"*2" defined by replacing

N QA
eachentry A;; of A € C™"*" by the 2 X 2 matrix i}f(A”) S(Ayg) . It can be shown that R preserves the algebraic
' S(4ij)  R(Aij)

structure:
* R(A+ B) =R(A) + R(B)
* R(AB) = R(A)R(B)
* R(aA) =aR(A) YaeR
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s R(I)=1
* R(A%) = (R(A))"
Hence A € C™*" is invertible if and only if R(A) is invertible.

C™ ™ is a vector space of dimension 2n? over R, and thus a smooth manifold of dimension 2n?. We will show in
Theorem[3.T]that #'["" is a smooth embedded submanifold of C"*" of dimension 2np — 2.

Lemma B.1. Let GL(n, C) be the general linear group viewed as a real Lie group. Then it is a semialgebraic set.

Proof. Recall that a subset of R™ is a semialgebraic set if it can be obtained by finitely many intersections, union and
set differences starting from sets of the from {x € R™ : P(x) > 0} with P a polynomial on R [23, Appendix B].
Since GL(n, C) is viewed as a real Lie group, GL(n, C) is understood as a subset of GL(2n, R) through realification.
It can be shown that

GL(n,C) ={X € GL(2n,R) : XJ = JX}, withJ=R(1). (110)
We know that GL(2n, R) is a semialgebraic set since it is the non-vanishing points of determinant; and { X € R?7x2" :
X J = JX} is also a semialgebraic set by definition. Hence GL(n, C) is a semialgebraic set. O

B.1 Riemannian Hessian operator

Let f be a smooth real-valued function on Hi’p . In this section we derive the Riemannian Hessian operator of f.
By [26, section 4] we know that R defined in (28) is a second-order retraction. One can also see this from the following
remark.

Remark B.2. Since ’Hi’p is a Riemannian submanifold of the Euclidean space C"*", the Riemannian connection on
H'PP satisfies t

Vix§ = Px(DE(X)nx]), (11D
On other words, it is a classical directional derivative followed by an orthogonal projection to tangent space.(See [25,
Proposition 5.3.2])

The definition of a second-order retraction in [26, Equation 2.3] is equivalent with the definition in [25, Proposition
5.5.5] as one can simply check the following. For all §x € TxH'}'", we have

D? D[d d
d2
= P& (ﬁ t_OR(t§X)> =0. (113)

Proposition 5.5.5 in [25] states that if R is a second-order retraction, then the Riemannian Hessian of f can be com-
puted in the following nice way:
Hess f(X) = Hess (f o Rx)(0x). (114)

Notice that now f o Ry is a smooth function defined on a vector space. Hence, we obtain
2

gx (Hess f(X)[Ex].€x) = L f(Ry (téx)

o (115)

t=0
However, it is difficult to obtain a second-order derivative of f o Rx using the retraction Rx defined in (28). The

references [4] and [10] proposed a method to compute Hess f(X) by constructing a second-order retraction R(?) that

)

has a second-order series expansion which makes it simple to derive a series expansion of f o fo up to second order

and thus obtain the Hessian of f. We will summarize the derivation below.

Lemma B.3. Forany X € H'}'? with XT the pseudoinverse, the mapping Rg?) s TxHY? — HIP given by
1 1 1
Ex o wXTw', withw = X + S8 + €& — g XTek - S XTey, (116)
where £ = P%(Ex) and €% = P (Ex) (seel20) is a second-order retraction on H''P. Moreover we have

RY(ex) = X +&x + €5 X el + O(léx]). (117)
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Proof. 1t follows the same proof of [4, Proposition 5.10] . O

From this the Riemannian Hessian operator of f can be computed in essentially the same way as in [28, Section

A.2] but applied to the general cost function f(X). Consider the Taylor expansion of f )((2 ) = fo Rg?), which is a
real-valued function on a vector space. We get

P60 = FED )
= (X +ex+ &XTE +0llex]”)

FX) +(VF(X), Ex + ERXTER ) e + % (V2F(X)[ex +ERXTER], Ex +EXXTER ) o + O(ExI")

f(X) + <vf(X)7§X>(Cn><n + <vf(X)7§§(XT§pX>(Can + % <v2f(X)[§X]7§X>(Cn><n + O(”é-XHg)

We can immediately recognize the first order term and the second order term that contribute to the Riemannian gradient
and Hessian, respectively. That is,

gx (grad f(X),&x) = (VF(X), €x)nxn 5 (118)
gx (Hess f(X)[¢x],€x) =2 <Vf(X),§§(XT§§(>CnM + <v2f(X)[§X]7§X>Can - (119)
fri=(H1(€x),Ex ) enxn for=(H2(Ex),Ex ) enxn

The first equation immediately gives us
grad f(X) = PY (Vf(X)). (120)

For the second equation, the inner product of the Riemannian Hessian consists of the sum of f; and fo; and the
Riemannian Hessian operator is the sum of two operators #H; and #o. Since {x is already separated in fa, the
contribution to Riemannian Hessian from s is readily given by

Ha(éx) = PX (V2 F(X)[Ex]). (121)

Now, we still need to separate £x in f7 to see the contribution to Riemannian Hessian from H;. Since we can choose
to bring over £§ X T or X T¢%., we write H1(€x) as the linear combination of both:

f1 =2 (VF(X)XTER)* 8 ) pnnn +2(1 =€) (XX VF(X), €5 ) g - (122)

Operator H is clearly linear. Since H; is symmetric, we must have (H1(£x ), Vx )cnxn = (Vx, H1(§x)) cnxn for all
vx . Hence we must have ¢ = % and we obtain

Hi(éx) = Py (VA(X)(XTER)" + (5 XT) V(X)) (123)
Putting H; and H2 together, we obtain
Hess f(X)[gx] = P (V2 F(X)[ex]) + P (VF(X)(XT€R)" + (€ X V(X)) . (124)

Appendix C  Quotient manifold C*?/0O,,

C.1 Calculations for the Riemannian Hessian

In this section, we outline the computations of the Riemannian Hessian operators of the cost function h defined on
CL*? /O,, under the three different metrics g'.

Definition C.1. [25, Definition 5.5.1] Given a real-valued function f on a Riemannian manifold M, the Riemannian
Hessian of f at a point x in M is the linear mapping Hess f(x) of T, M into itself defined by

Hess f(z)[&s) = Ve, grad f(z) (125)
forall &, in T, M, where V is the Riemannian connection on M.

Lemma C.1. The Riemannian Hessian of h : C1** /O, — R is related to the Riemannian Hessian of F : C.*? — R
in the following way:

(Hess h(m(Y))[€xv)])y = P (Hess F(Y)[Ey]) , (126)
where &y is the horizontal lift of &ryyatY.

Proof. The result follows from [25, Proposition 5.3.3] and the definition of the Riemannian Hessian. O
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C.1.1 Riemannian Hessian for the metric g'

Using the Riemannian metric g*, C*? is a Riemannian submanifold of a Euclidean space. By [25, Proposition 5.3.2],
the Riemannian connection on C}*? is classical the directional derivative

Vi & =DEY) Iy ]. 127)

Recall that for g%, grad F(Y) = (Vf(YY*) + Vf(YY*)*)Y. Hence, the Riemannian Hessian of F at Y is given by
Hess F(Y)[{y] = Ve, gradF (128)

— Degrd F(Y)[éy] (129)

= 2Herm{V2f(YY*)[YE& + &Y }Y + 2Herm(VF(YY ™))y (130)

The last line is by product rule and chain rule of differential. Therefore we obtain

(Hess h(w (V) (e )))y = P (2Herm{V2 FYYN)YEy + &Y VY + 2Herm(V f(YY*))ZY) . (131

C.1.2 Riemannian Hessian under metric g>

First, for any Riemannian metric g, g satisfies the Koszul formula
29:(Ve, Ame) = &eg(Am) + Aag(n, §) = n29(&, A)
_gm(gwu [)‘7 n]m) + gm(/\acu [777 g]m) + gw(nv [57 )‘]1)
= Dg(A\n)(@)[E] +Dgn, &) (@)[Az] = Dg(& ) ()]
_gm(gwu [)‘7 n]m) + gm(/\acu [777 g]m) + gw(nv [57 )‘]w)a
where the Lie bracket [-, -] is defined in [23].

In particular, for g2 the above Koszul formula turns into

267 (Ve, Ay) = Dg*(A\n)(Y)[év] +Dg*(n,€)(YV)[\v] = Dg*(&, \)(Y)[ny] (132)
_932/(63’7 [/\777]3/) + 932/()‘1/7 [7775]1/) + 9%/(777 [57 )‘]Y) (133)

Recall that g*(\,n)(Y) = R(¢tr(Y*Y A\;-ny)). Hence, the first term in the above sum equals

A n)(Y)[Ev] = g3 DY) [Ev] ny) +g7 Ay, Dn(Y) [y )+ R(Er (&Y ALy ) +R(tr (Y * ey Ayny)). (134)
Following [23, Section 5.3.4], since CY*P is an open subset of C"*P, we also have
Ay =Dn(Y)Ay] = DAY )ny]. (135)
Summarizing, we get

205 (Vey Amy) = DA n)(YV)[&v] +Dg*(n,¢
—g*(&,Dn(Y)[Ay] = DAY
9° (v, DEY)[ny] = Dn(
9>y, DAY)[¢y] —DEY
g3 (ny, DA(Y)[év])
+R(Er(ny Ay (Y + Yy ) + & (Y Ay + AVY) =Y ALy — YR Ay)))
= 293 (ny,DAY)[v])

195y, A (Y +Y ) + & (Y Ay + A3Y) =Y A&y — YA ) (YY) ).

. . . . . X
We therefore obtain a closed-form expression for Riemannian connection on C%*? for g

(Y)v] =D g?(&N)(Y)ny]
[

I
Yo+ 4

Ve A =DAWEy] + 3 Ow (6 Y +Y76) + & (Y Ay +X0Y) = VA& —YEA) (YY) (136)

Recall that for the Riemannian metric g, we have grad F(Y) = (Vf(YY*) + VA(YY*)*)Y (Y*Y)~!. Hence we
have

Hess F(Y)[{y] = Ve, gradF(Y)
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= Dygrad F(Y)[¢y]
-l—%{gradF(Y)(g{,Y +Y*y) + & (Vigrad F(Y) + grad F(Y)'Y) —
Yerad F(Y)* ¢y — Y& grad F(Y) (YY)t
= 2Herm{V2f(YYN[YE& + &Y Y (YY) + 2Herm(Vf(YY )&y (YY) !
—2Herm(VF(YY* )Y (YY) L (V*y + &Y (YY) ™!
+Herm(VfYY)Y (YY) LYy + &Y) (YY)t
+& Y Herm(Vf(YY* )Y (YY) L+ (YY) 'Y Herm(Vf(YY*)Y H YY) ™!
—~{Y (YY) W Herm(Vf(YY*)éy + Y& Herm(Vf(YY*)Y (YY) 1} (Y*Y) !
= 2Herm{V2f(YY*)[YE& + &Y Y (YY) L+ 2Herm(VF(YY*)éy (YY) 7!
—Herm(Vf(YY"))Y (YY) Yy + & Y)(Y'Y) ™
+& Y Herm(VYY))Y (Y*Y) L + (YY) 'Y Herm(VF(Y*Y)YHY*Y) !
YY) 'YW Herm(VF(YY*)ey + YE Herm(V(YY )Y (YY) L (Y*Y) !
= 2Herm{V2f(YY")[YE& + &Y Y (YY) + 2Herm(VF(YY*)éy (YY) 7!
—Herm(Vf(YY*))Py&y (YY) — Herm(Vf(YY*)Y(Y*Y) L&Y (YY) !
+& Y Herm(Vf(YY )Y (YY) + & (YY) 'Y Herm(Vf(YY*)Y (YY) !
~PyHerm(Vf(YY* )y (YY) — Y& Herm(Vf(YY*))Y (YY) 2
= 2Herm{V2f(YY Y& + &Y Y (YY)t
+Herm(VfYY* )y (YY) — Herm(VF(YY™))Py&y (YY) !
+Herm(VfYY )Ny (Y*Y) L = Py Herm(Vf(Y*Y)&y (YY) !
+2skew(&yY* ) Herm(Vf(YY*))Y (YY) ™2
+2skew{&y (YY) 'Y*Herm(Vf(YY*) Y (YY) ™!
= 2Herm{V2f(YY")[Y& + &Y Y (YY) !
+Herm(VF(YY*)Piéy (YY) + PEHerm(VF(YY)éy (YY) ™!
+2skew(&yY*)Herm(Vf(YY*))Y (Y*Y) ™2
+2skew{&y (YY) 'Y * Herm(Vf(YY*) )Y (YY)~ .

To conclude, we obtain

(Hess h(n(Y))[n=)])y = P {2H erm{V2f(YY")[YEy + &V IV (YY)~
+Herm(Vf(YY*) P&y (YY) + PrHerm(VF(YY*)E (YY) !
+2skew(Ey Y Y Herm(Vf(YY*)Y (Y*Y) 2
+ 2skew{&y (YY) 'Y*Herm(Vf(YY ™)}V (Y*Y) "'},

C.1.3 Riemannian Hessian under metric ¢°

Recall that the Riemannian metric ¢> on C}*? satisfies

gy (&yony) = Gy(Ev,my) + g (PY (&), PY(ny)) (137)
= 2R(tr(Y*& Y ny + Y'Y Erny)) + R(tr(Y Py (Sv ) Py (ny)Y'™)) (138)
where
gy (&y.my) = (Y& + &Y™ Y05 + 0y Y ) cnsn - (139)
PY(\y) = Yskew((Y*Y) 1Y *\y). (140)
Hence

Dg* (A n)(Y)[év]
= gy(DAY)Ey]ny) + Ay, Dn(Y)[Ev]) + 2R(tr (& Ay Y ny + Y Av&yny + YAy ny + Y 8y Ayny))
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+95 (Py (A\y), DPY (ny)[&v]) + ¢ (D PY (Ay) &y ], P (ny))
+R(tr(Ey PY (A ) PY (ny )Y + YPY (A\y ) Py (ny)&5/)).-

Suppose A, n and £ are horizontal vector fields, then many terms in the above equation vanish:

Dg*(,

nNY)&] = gyDOAY)Ev],mv) + gy (Av,Day[§y])
+2§R(f7‘(€;)\yy*7’]y + Y*)\yg;ny + g;Y)\;/ny + Y*fyA;ny))

Combining the above equation and the Koszul formul with &, , A horizontal vector fields, we obtain

295 (Vey A my)

= Dg3(/\,n)(Y)[§y]+D93(n,§)(Y)
—g5 (&, Dn(Y)[Ay] = DAY
+9y (Ay, DEY)[ny] — D(
+9v (ny, DA(Y)[éy] —

= gy(DAY)[Ev]ny) +
+gy (Dn(Y)[Av], &y
=gy (DEY)ny], A
=gy (§y,Dn(Y
+3y (Ay, DY) Iy
+gy (ny, DA(Y)[€y]

= 29y(DAY)[Ev ], ny

It follows that

Dyl =D g* (&N (Y)[ny]
)nv])
Y)[éy])
DY) [Av])
gy Ay, Dn(Y)[§v]) + 2R(tr (& Ay Y ny + Y Ay Eony + Y APy + Y v Ayny )
+ gy (ny,DEY +2R(tr( Ay ny Y &y + Y 'y Ay &y + A3 Y np&y + Y Ay ny&y))
V) —
+

)[A
: Gy &y, DAY )[ny]) = 2R(tr(ny- &y Y™ Ay + Y Eyny Ay + 0y YAy + Y 'y &3 Ay))
)y )

(
gy (&, DA(Y)[n
gy (Ay,Dn(Y)[¢
gy (ny, DEY)[Av])
AR(tr (Y v A\yny + Y Ay Egny ).

)
)
) 0%
) Y
) -

)+

95 (Vey Any) = Gy (DAY)[Ev], ny) + 2R(tr (Y & Apny + Y Ay Eny)). (141)

By definition, we have Hess F'(Y)[{y] = V¢, grad F. By Lemma (CI), it suffices to assume that &y is a horizontal
vector in order to obtain the Hessian operator of h. Therefore,

gv (Hess F(Y)[¢v],nv) (142)
= 9y (Veygrad Fny) (143)
= g(ny,Dgrad F(Y)[&y]) + 2R(tr (Y Ey grad F(Y)*ny + Y grad F(Y )&y ) (144)
= gy, Degrad F(Y)[§y]) + R(tr((Yny +nyY™)(grad F(Y)&y + &y grad F(Y)"))) (145)
= g(ny,Dgrad F(Y)[¢y]) (146)
+g (ny, (I — %Py (grad F(Y)&y +§YgradF(Y)*)Y(Y*Y)_1> . (147)
Recall that for Riemannian metric g, we have grad F(Y) = (I — $Py) HermV f(Y*Y)Y (Y*Y)~!. Hence
D grad F(Y)[¢y] (148)
- (I - %Py) Herm{V?f(Y*Y)[Y& + &Y Y (YY)~} (149)
5 (D (Py) e ) Herm(V (VY)Y (¥°Y) (150)
# (1 3B ) Herm(TH VDY) e (s
where we have
D (Py)lgy] =D (Y (YY)~ 'V") [y ] (152)
= &YY)Y YY) N GY +YG)(YY) Y Y (YY) T (153)
and
DY (YY) eyl = &Y) YY) HGY +Y &) Y) T (154)
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Combining these equations we have

gy (Hess F(Y)[&v],ny)
= ( (I - %Py) Herm{V2f(Y*Y)[Y& + §yY*]}Y(Y*Y)‘1)

-3 (ny, %(&y(Y*Y)’lY* —Y(YY)THEY + Y ) (YY) TV + Y(Y*Y)1€§)Herm(vf(YY*))Y(Y*Y)1>
43 (e (1= 57 ) Hem(TH0Y) (6 (') =Y (ry) 6 Y + V6 y) ™))
+3 (ny, (I - %Py) ((I - %Py) Herm(VfYY*)Y (YY) '&
+ & (YY) 'Y Herm(Vf(YY™)) (I — %Py)) Y(Y*Y)—l)
= 3 (o (1= 5B ) Herm{V2 I VY E + 6V YY) )

BE Y)Y YY) G 4V G YY) G Herm (VY)Y (r°Y) )

3 (m
+§ (ny, (I - %Py) Herm(Vf(YY™)) (& (YY) =Y (YY) (&Y + Y*gy)(y*y)1)>
+d (ny, (I - Zpy> Herm(Vf(YY*))Y(Y*Y)—lg;y(y*y)—l)

(o

; (1 - %Py) §y(Y*Y)_lY*Herm(Vf(YY*))Y(Y*Y)_l)

Il
N1

+9
< (I - —Py> Herm{V2f(Y*Y)[Y & + §YY*]}Y(Y*Y)1)

Qz

%gy(y Y)1Y*Herm(Vf(YY*))Y(Y*Y)1>

Ny, ;Y(Y*Y)—lg;Herm(Vf(YY*))Y(Y*Y)—l)

U:z

YY) P Herm (VY)Y (7))

+
S

+
K1

_|_
@
Do =

—_

s (1= 3 ) Herm(VAr ) (1= B () =Y (r ) g v () ) )

I- —Py> Herm(Vf(YY*)Y (YY) &Y (VYY) - iPyHerm(Vf(YY*))Y(Y*Y)_%{,Y(Y*Y)_l)

+
Es!

ny,

—_
[\]

(I-Py)& YY) 'YW Herm(VAYY*) )Y (YY) + iPy&/(Y*Y)_lY*Herm(Vf(YY*))Y(Y*Y)_l)

_|_

ny, =

l\D

o
3
(
(1 5P (Y)Y Herm(V (Y )y (7))
(
(
(

Il
N1

g
(- (1 37 ) Herm (T2 V)Y + 6V YY) )
g

(ny,(I = Py)Herm(Vf(YY*)(I — Py)& (YY) ™)

_|_

( Yskew )Y e (YY) 1Y*Herm(Vf(YY*))Y(Y*Y)1))
(ny, Yskew( )Y Herm(Vf(YY*))(I — Py)é&y (YY) ™))

+9
= ( (I - §PY> Herm{V*f(Y*Y)[Y¢& + §YY*]}Y(Y*Y)1)
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+3 (ny, (I = Py)Herm(Vf(YY™))(I — Py)é&y (YY) ™)
= ot (. (1= 37 ) Herm(V 07V G + 6V YY)
+(I = Py)Herm(Vf(YY*)(I — Py)éy (Y*Y) ™)

Hence for & € Hy, we have

Hess F(Y)[¢y] (155)
= <I - %Py) Herm{V?f(Y*'V)[Y& + &Y Y (YY) ! (156)
+(I = Py)Herm(Vf(YY*)(I = Py)éy (Y*Y)™! (157)
To summarize, we obtain
(Hess A((Y))nv)])y = P (Hess F(Y)[Ey])

<I - %Py) Herm{V2f(Y*Y)[Y&y 4 & Y}V (YY)

+(I = Py)Herm(VF(YY*))(I — Py )&y (Y*Y) .
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