
AN EFFICIENT AND ROBUST SAV BASED ALGORITHM FOR

DISCRETE GRADIENT SYSTEMS ARISING FROM OPTIMIZATIONS

XINYU LIU1, JIE SHEN1, AND XIAONGXIONG ZHANG1

Abstract. We propose in this paper a new minimization algorithm based on a slightly
modified version of the scalar auxialiary variable (SAV) approach coupled with a relaxation
step and an adaptive strategy. It enjoys several distinct advantages over popular gradient
based methods: (i) it is unconditionally energy diminishing with a modified energy which is
intrinsically related to the original energy, thus no parameter tuning is needed for stability;
(ii) it allows the use of large step-sizes which can effectively accelerate the convergence rate.
We also present a convergence analysis for some SAV based algorithms, which include our
new algorithm without the relaxation step as a special case. We apply our new algorithm
to several illustrative and benchmark problems, and compare its performance with several
popular gradient based methods. The numerical results indicate that the new algorithm
is very robust, and its adaptive version usually converges significantly faster than those
popular gradient descent based methods.

1. Introduction

Minimization plays an important role in many branches of science and engineering. In

particular, how to accelerate the convergence rate of the minimization process is a cen-

tral issue in data science and machine learning problems. We consider in this paper an

unconstrained minimization problem

min
θ∈RN

f(θ) (1.1)

which arises in many applications, including particularly machine learning problems. For

large scale minimization problems, the first order methods such as gradient descent, its

variants such as stochastic gradient descent [21], Nesterov’s accelerated gradient descent

[17], adaptive momentum estimation method [15, 24, 10], are popular choices. We refer

to [19, 18, 23], and the references therein, for more detail on the design and analysis of

gradient descent method and its various variants.

The vanilla gradient descent method for (1.1) is

θk+1 = θk − ηk∇f(θk), (1.2)

2020 Mathematics Subject Classification. 65K10,49M05,90C26.
Key words and phrases. discrete gradient system; optimization; scalar auxiliary variable; adaptive;

stability; convergence.
1Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA (liu1957@purdue.edu,

shen7@purdue.edu, zhan1966@purdue.edu).

1



2 XINYU LIU1, JIE SHEN1, AND XIAONGXIONG ZHANG1

which can also be regarded as a numerical scheme for the gradient flow

θt = −∇f(θ), (1.3)

with time step ηk. The gradient flow (1.3) is energy diminishing in the sense that

d

dt
f(θ) = (∇f(θ), θt) = −(θt, θt) = −∥θt∥2 ≤ 0,

where (·, ·) (resp. ∥·∥) denotes the l2 inner product (resp. norm). However, gradient decent

type schemes are not necessarily energy diminishing, and may blow up if the time step is

too large. Although the stability of gradient descent based methods is well understood,

the main challenge in practice is how to choose the step-size, i.e. learning rate, to balance

between stability and efficiency [22].

We propose in this paper a different class of minimization algorithms inspired from the

recently developed scalar auxiliary variable (SAV) approach for gradient flows [25, 26]. The

SAV approach enjoys a particular advantage of unconditional energy diminishing compared

to popular gradient decent based methods. This advantage avoids tuning step sizes and

allows the use of large step sizes, which may effectively accelerate the convergence rate.

Assume the cost function has a splitting

f(θ) =
1

2
(Lθ, θ) + [f(θ)− 1

2
(Lθ, θ)] := 1

2
(Lθ, θ) + g(θ), (1.4)

where L is a self-adjoint positive semi-definite linear operator. Note that L = 0 is a trivial

splitting. Then, the gradient flow (1.3) becomes

θt + Lθ +∇g(θ) = 0. (1.5)

Inspired by the IEQ and SAV approaches [28, 25], assuming there exists C > 0 such that

g(θ) > −C for all θ, we introduce a scalar auxiliary variable r(t) =
√

g(θ) + C, and expand

(1.5) to: θt + Lθ + ∇g(θ)√
g(θ)+C

r = 0,

rt =
1

2
√

g(θ)+C
(∇g(θ), θt).

(1.6)

Obviously, with r(0) =
√

g(θ|t=0) + C, the above system admits a solution r(t) =
√
g(θ) + C

with θ being the solution of (1.5). The main advantage of the expanded system, which in-

cludes an energy evolution equation, is that it allows us to construct simple numerical

schemes with modified energy diminishing. For example, the following scheme
θk+1−θk

δt + Lθk+1 +
∇g(θk)√
g(θk)+C

rk+1 = 0,

rk+1−rk
δt =

(
∇g(θk)

2
√

g(θk)+C
,
θk+1−θk

δt

)
,

(1.7)

can be easily implemented by solving only two linear systems of the form (I + δtL)x = b,

and is unconditionally energy stable with a modified energy [26].

While the scheme (1.7) has been shown to be very effective for gradient flows, it is not

particularly suitable for the minimization problem (1.1). Indeed, for any fixed δt, assuming



A SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS 3

θk → θ∗ and rk → r∗, then
rk√

g(θk)+C
→ r∗√

g(θ∗)+C
which is usually not equal to 1, and

consequently, the first equation of (1.7) leads to

0 = Lθ∗ +
r∗√

g(θ∗) + C
∇g(θ∗) = Lθ∗ +

r∗√
g(θ∗) + C

(−Lθ∗ +∇f(θ∗)) .

If L ̸= 0, we observe from the above that in general ∇f(θ∗) ̸= 0 thus θ∗ is not a solution

for (1.1). Another complication of this approach is that it is not obvious how to choose L
such that g(θ) is bounded from below for all θ. The main goal of this paper is to design

suitable SAV based schemes for (1.1), develop their convergence theory, and validate them

through extensive numerical experiments.

The rest of the paper is organized as follows. In Section 2, we first discuss a suitable SAV

algorithm for minimization, introduce its relaxed version RSAV, and discuss the adaptive

rule and choices for the non-negative operator L(θ). Then, we present in Section 3 several

numerical results to show the performance of the RSAV in different optimization problems.

We provide a convergence study in Section 4, some concluding remarks in Section 5.

2. A new SAV approach and its relaxed version

We have observed in the last section that the standard SAV approach is not suitable for

the minimization problem (1.1). In this section, we propose a different SAV approach and

its related version which are well suited for (1.1).

2.1. A modified SAV approach. We still assume the splitting (1.4), and rewrite (1.3)

as

θt + Lθ +∇f(θ)− Lθ = 0. (2.1)

Since f(θ) in a minimization problem should always be bounded from below, there exists

C > 0 such that f(θ) > −C for all θ. We introduce r(t) =
√
f(θ) + C, and expand (2.1)

to: θt + Lθ + ∇f(θ)√
f(θ)+C

r − Lθ = 0,

rt =
1

2
√

f(θ)+C
(∇f(θ), θt).

(2.2)

Then, a simple SAV scheme to approximate the above is
θk+1−θk

δt + Lθk+1 +
∇f(θk)√
f(θk)+C

rk+1 − Lθk = 0,

rk+1−rk
δt =

(
∇f(θk)

2
√

f(θk)+C
,
θk+1−θk

δt

)
.

(2.3)

Note that if θk → θ∗ and rk → r∗, then (2.3) leads to ∇f(θ∗) = 0, and consequently θ∗ is a

solution of (1.1).

The scheme (2.3) leads to a coupled linear system for (θk+1, rk+1), but it can be imple-

mented explicitly after solving a linear system as will be shown in the Section 4.1. Let



4 XINYU LIU1, JIE SHEN1, AND XIAONGXIONG ZHANG1

A = I + δtL, then (2.3) can be equivalently implemented as

rk+1 =
1

1 + δt (∇f(θk),A−1∇f(θk))
2[f(θk)+C]

rk,

θk+1 = θk −
rk+1√

f(θk) + C
δtA−1∇f(θk).

Moreover, taking the discrete inner product of the first (resp. second) equation in (2.3)

with θk+1 − θk (resp. 2rk+1), summing up the results, we obtain the following:

Theorem 1. If L is non-negative, then for any δt > 0, the modified energy r2 in the scheme

(2.7) is unconditionally diminishing in the sense that

r2k+1 − r2k = − 1

δt
∥θk+1 − θk∥2 − (L(θk+1 − θk), (θk+1 − θk))− (rk+1 − rk)

2.

The above result shows the key advantage of (2.3): the energy dissipation holds for any

δt > 0 and any splitting with non-negative L.
As we shall demonstrate in numerical tests in Section 3, when the cost functional f(θ) has

a suitable splitting, the above algorithm usually converge much faster the vanilla gradient

decent method. When the cost function does not have any obvious quadratic part, we can

either choose any suitable non-negative linear operator L in (1.4), or simply take L = 0,

which results in a fully explicit method:
θk+1−θk

δt + ∇f(θk)√
f(θk)+C

rk+1 = 0,

rk+1−rk
δt =

(
∇f(θk)

2
√

f(θk)+C
,
θk+1−θk

δt

)
,

(2.4)

which, we refer as the SAV gradient descent method. As will be shown in the Section 4.1,

the scheme (2.4) can be decoupled and implemented as

rk+1 =
rk

1 + δt (∇f(θk),∇f(θk))
2(f(θk)+C)

,

θk+1 = θk − δt
rk+1√

f(θk) + C
∇f(θk).

(2.5)

Compared with the vanilla gradient descent method (1.2), there are extra computational

costs of computing both f(θk) and (∇f(θk),∇f(θk)) in (2.5), but Theorem 1 ensures

stability for any δt. In contrast, δt in (1.2) needs to be small enough to ensure stability.

2.2. A relaxed version of the modified SAV approach. While for fixed δt, the so-

lution of the SAV scheme (2.3) converges to a solution of the minimization problem (1.1),

the evolution of rk+1 is not directly linked to
√
f(θk+1) + C, and its value may decrease

rapidly to ensure stability when ∥∇f(θk) − Lθk∥ becomes large. In this case, the ratio
rk+1√

f(θk+1)+C
may deviate significantly from 1, which indicates that rk+1 is no longer a good

approximation of
√
f(θ(tk+1)) + C, thus θk+1 will not be a good approximation of θ(tk+1).

For dynamic simulation of gradient flows, a remedy is to monitor the ratio
rk+1√

f(θk+1)+C
and



A SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS 5

adjust the time step so that it stays close to 1. For the minimization problem (1.1), since

we are mainly interested in the steady steady state solutions of (1.3), it is found in [32]

that setting rk+1 =
√
f(θk+1) + C at each time step is also very effective. More precisely,

we can use the following modified SAV scheme:
θk+1−θk

δt + Lθk+1 +
∇f(θk)√
f(θk)+C

r̃k+1 − Lθk = 0,

r̃k+1−rk
δt =

(
∇f(θk)

2
√

f(θk)+C
,
θk+1−θk

δt

)
,

rk+1 =
√

f(θk+1) + C.

(2.6)

However, the above modified SAV scheme is no longer energy diminishing. Recently, an-

other way to link rk+1 with
√

f(θk+1) + C while still being energy diminishing is proposed

in [30] (see also [14, 29]). When applied to (2.1), the relaxed SAV method takes the following

form: 
θk+1−θk

δt + Lθk+1 +
∇f(θk)√
f(θk)+C

r̃k+1 − Lθk = 0,

r̃k+1−rk
δt =

(
∇f(θk)

2
√

f(θk)+C
,
θk+1−θk

δt

)
,

rk+1 = ξr̃k+1 + (1− ξ)
√
f(θk+1) + C.

(2.7)

Here, the relaxation parameter ξ is a scalar chosen from the set

V = {ξ ∈ [0, 1] : (rk+1)
2 − (r̃k+1)

2 − (r̃k+1 − rk)
2 ≤ ηG(θk+1, θk)} (2.8)

where G(θk+1, θk) = 1
δt ((θk+1 − θk), A(θk+1 − θk)) with A = I + δtL, and η ∈ [0, 1] is an

artificial parameter with default value η = 0.99. In particular, it is shown in [14] that we

can choose

ξ = max{0, −b−
√
b2 − 4ac

2a
}, (2.9)

with the coefficients that

a = (r̃k+1 −
√
f(θk+1) + C)2 (2.10)

b = 2
(
r̃k+1 −

√
f(θk+1) + C

)√
f(θk+1) + C (2.11)

c = f(θk+1) + C − (r̃k+1)
2 − (r̃k+1 − rk)

2 − ηG(θk+1, θk). (2.12)

Taking the discrete inner product of the first (resp. second) equation in (2.7) with

θk+1 − θk (resp. 2r̃k+1), summing up the results, we get

G(θk+1, θk) =
1

δt
((θk+1 − θk), A(θk+1 − θk)) = −2(r̃k+1 − rk)r̃k+1, (2.13)

then the non-zero choice of ξ can be rewritten as

ξ =
−b−

√
b2 − 4ac

2a
=

√
f(θk+1) + C −

√
(r̃k+1)2 + (r̃k+1 − rk)2 + ηG(θk+1, θk)√
f(θk+1) + C − r̃k+1

=

√
f(θk+1) + C −

√
(1− η)r̃2k+1 + ηr2k + (1− η)(r̃k+1 − rk)2√
f(θk+1) + C − r̃k+1

.



6 XINYU LIU1, JIE SHEN1, AND XIAONGXIONG ZHANG1

The implementation of (2.7) is summarized in Algorithm 1.

Theorem 2. If L is non-negative and linear, then for any δt > 0, the modified energy r2

in the scheme (2.7) is unconditionally diminishing in the sense that

r2k+1 − r2k = −(1− η)G(θk+1, θk) ≤ 0.

Proof. By (2.13), we obtain

r̃2k+1 − r2k = − 1

δt
∥θk+1 − θk∥2 − (L(θk+1 − θk), (θk+1 − θk))− (r̃k+1 − rk)

2.

Adding r2k+1 − r̃2k+1 on both sides, noticing

G(θk+1, θk) =
1

δt
∥θk+1 − θk∥2 + (L(θk+1 − θk), (θk+1 − θk)),

we obtain

r2k+1 − r2k = −G(θk+1, θk)− (r̃k+1 − rk)
2 + r2k+1 − r̃2k+1,

which implies the desired result thanks to (2.8). □

Algorithm 1 The basic RSAV scheme

1: Inputs:
δt: step-size,
C: constant to guarantee the positivity of f(x) + C,
A = I + δtL : the linear operator,
θ0: initial parameter vector

2: r0 ←
√

f(θ0) + C
3: for k = 0, 1, 2, ...,M − 1 do

4: gk = ∇f(θk)√
f(θk)+C

5: ĝk = A−1gk
6: r̃k+1 =

rk
1+ δt

2
(gk,ĝk)

7: θk+1 = θk − δtr̃k+1ĝk

8: ξ =

√
f(θk+1)+C−

√
(1−η)r̃2k+1+ηr2k+(1−η)(r̃k+1−rk)2√
f(θk+1)+C−r̃k+1

9: ξ = max{0, ξ}
10: rk+1 = ξr̃k+1 + (1− ξ)

√
f(θk+1) + C

return θM

2.3. Selection of the operator L. In the SAV approach for gradient flows [26], it is found

that a proper choice of the splitting (1.4), i.e., the choice of the quadratic term 1
2(Lθ, θ),

can significantly increase the robustness and efficiency of the SAV schemes. For gradient

flows coming from materials science or fluid dynamics, there are usually obvious candidates

in the free energy. However, for minimization problems, particularly those from machine

learning problems, there are usually no obvious quadratic terms in the energy functions.



A SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS 7

In these cases, we can artificially choose some simple operators. In this paper, we consider

two simple operators below, for which the inverse operator (I + δtL)−1 can be efficiently

implemented.

2.3.1. Diagonal Matrix. In many optimization problems, an l2 regularization term is often

added into the loss function to avoid overfitting to the data in training sets, namely,

J(x) = f(x) +
λ

2
∥x∥2. (2.14)

In this case, a natural choice is to set L = λI. More generally, we can use L = D with

D being a diagonal matrix with positive entries, e.g., D can be the diagonal entries of the

Hessian of the cost function.

2.3.2. Discrete Laplacian Matrix. In some machine learning problems, the discrete Lapla-

cian matrix is used as a smoothing operator which can reduce the variance during the

mini-batch training process [20]. This corresponds to L = −σ∆ where σ is a positive pa-

rameter and ∆ is a discrete Laplacian matrix, and (I + δtL)−1 can be efficiently inverted

by FFT based methods. The acceleration by using discrete Laplacian in classical primal

dual algorithms has been also justified in [13].

2.4. An adaptive algorithm based on the RSAV scheme (2.7). Similar to the mod-

ified SAV scheme (2.3), the RSAV scheme (2.7) is also unconditionally energy diminishing.

A main advantage of unconditionally stable schemes is that one can adaptively adjust the

time step size to achieve faster convergence. In particular, we can use

Ik(r, θ) =
rk√

f(θk) + C
(2.15)

as an indicator to control the deviation between modified energy and true energy. For

solving differential equations θt = −∇f(θ), Ik(r, θ) should be as close as to 1 for the sake of

the time accuracy. But for a minimization problem, there is no time accuracy issue thus we

can allow Ik(r, θ) to deviate from 1 to achieve faster convergence. However, Ik(r, θ) needs

to be away from zero to avoid slow convergence, as the SAV and RSAV algorithms may

converge much slower than the vanilla gradient descent when the ratio Ik(r, θ) becomes too

small.

We observe from (2.7) that the true step-size for the gradient ∇f(θk) is
r̃k+1√
f(θk)+C

δt.

Thus if the ratio is small i.e. Ik(r, θ) < γ, the true step-size for the gradient would be too

small resulting in slow convergence. To this end, we present a simple adaptive rule with an

adaptive constant ρ > 1 with default value ρ = 1.1 described in Algorithm 2.

Remark 1. Note that in many applications of neural networks and machine learning, the

cost of computing the full batch is generally too high. In these cases, we can adopt the

mini-batch approach commonly used in stochastic gradient decent, and restart the RSAV

scheme at the beginning of each mini-batch.



8 XINYU LIU1, JIE SHEN1, AND XIAONGXIONG ZHANG1

Algorithm 2 The adaptive RSAV scheme

1: Inputs:
δt0: initial step-size, δtmin: the lower bound of step-size,
C: constant to guarantee the positivity of f(x) + C,
A = I + δtL : the linear operator,
θ0: initial parameter vector,
ρ: adaptive constant which is greater than 1,
γ: threshold for the indicator I(r, θ).

2: r0 ←
√

f(θ0) + C: Initialize the SAV,
3: for k = 0, 1, 2, ...,M − 1 do

4: if rk√
f(θk)+C

< γ and δt > δtmin then

5: δtk+1 = max{ rk√
f(θk)+C

δtk, δtmin}
6: else
7: δtk+1 = ρδtk

8:

9: gk = ∇f(θk)√
f(θk)+C

10: ĝk = A−1gk
11: r̃k+1 =

rk

1+
δtk+1

2
(gk,ĝk)

12: θk+1 = θk − δtk+1r̃k+1ĝk

13: ξ =

√
f(θk+1)+C−

√
(1−η)r̃2k+1+ηr2k+(1−η)(r̃k+1−rk)2√
f(θk+1)+C−r̃k+1

14: ξ = max{0, ξ}
15: rk+1 = ξr̃k+1 + (1− ξ)

√
f(θk+1) + C

return θM

Remark 2. As a further generalization, we may replace the operator L in (2.3) and (2.7)

by a linear nonnegative operator Lk which may depend on θk at each step. Then, Theorems

1 and 2 still hold with L replaced by Lk.

3. Numerical Results

We present in this section several illustrative numerical experiments by using our RSAV

approach, and compare it with popular gradient based approaches.

In order to present a fair comparison to gradient descent (GD), we consider a composite

gradient method. By abuse of notation, we shall refer to GD with L as the following method

for the splitting (1.4):

θk+1 + δtLθk+1 = θk + δt(Lθk −∇f(θk)),

which is equivalent to

θk+1 = θk − δt(I + δtL)−1∇f(θk). (3.1)



A SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS 9

The scheme (3.1) can also be regarded as the forward-backward splitting scheme

θk+1 = θk − δt∇F (θk)− δt∇G(θk+1)

for minimizing a composite function F (θ) + G(θ) with F (θ) = f(θ) − 1
2θ

TLθ and G(θ) =
1
2θ

TLθ.
Note that the scheme (3.1) reduces to the vanilla gradient descent (1.2) if setting L = 0,

and (3.1) reduces to the vanilla gradient descent (1.2) with step size δt
1+δt if setting L = I.

Therefore, we do not consider GD with L = I, and we compare the adaptive RSAV in

Algorithm 2 to the following algorithms:

(1) GD with L = 0, which is the vanilla gradient descent (1.2).

(2) GD with L = −σ∆ with discrete Laplacian ∆, which is similar to the Laplacian

Smoothing Gradient Descent [20].

(3) ADAM [15]

(4) Nesterov accelerated gradient decent (NAG) [16].

Unless specified otherwise, we use ADAM and NAG with the default parameter settings as

in [22]: NAG with γ = 0.9, and ADAM with β1 = 0.9, β2 = 0.999, ε = 10−8.

3.1. A quadratic cost function. We start with a quadratic loss function from [20]:

f(θ1, θ2, . . . , θ100) =
50∑
i=1

θ22i−1 +
50∑
i=1

1

100
θ22i. (3.2)

For this simple function, we take either L = 0 or L = D where the diagonal matrix D is

chosen to be the Hessian ∇2f(θ).

To demonstrate the unconditional stability of SAV-based approaches, in Table 1 and

Figure 1 we show the results of different initial step sizes δt for the vanilla gradient descent,

i.e., GD with L = 0, as well as GD with L = D. We observe that the vanilla gradient

descent blows up for the constant step size δt = 1, while the adaptive RSAV works quite

well.

(initial) step-size δt 0.01 0.1 1
GD (L = 0) 0.3351 0.009121 50

adaptive RSAV (L = 0) 6.34e-12 5.749e-12 2.264e-18
GD (L = D) 0.3352 0.009194 3.152e-18

adaptive RSAV (L = D) 0 0 0

Table 1. Loss of quadratic function after 1000 iterations.



10 XINYU LIU1, JIE SHEN1, AND XIAONGXIONG ZHANG1

Figure 1. Loss curves for GD and adaptive RSAV with different splits and
(initial) step-sizes δt.

Next we consider the gradient perturbed by a Gaussian noise

∇ϵf(x) := ∇f(x) + ϵN (0, I), (3.3)

where ϵ controls the noise level, N (0, I) is the Gaussian noise vector with zero mean and

unit variance in each coordinate. The comparison is given in Table 2 and Figure 2 where

L = 0 is used for both GD and adaptive RSAV. We observe that the adaptive RSAV

converges much faster than GD. The fast convergence of adaptive RSAV is partly due to

the indicator Ik(r, θ) which can give a proper step size. Especially in the noisy case, the

true step size is given at a proper level to reach a better convergence than GD and reduce

the oscillation in the loss curves.

(initial) step-size δt 0.01 0.1 1
GD (ϵ = 0.01) 0.335 0.009223 58.58

adaptive RSAV (ϵ = 0.01) 0.0002283 0.0002298 0.0002251
GD (ϵ = 0.05) 0.3348 0.01584 diverge

adaptive RSAV (ϵ = 0.05) 0.004934 0.005023 0.004889
GD (ϵ = 0.1) 0.3354 0.03808 diverge

adaptive RSAV (ϵ = 0.1) 0.01746 0.01924 0.0188

Table 2. Loss of quadratic function after 1000 iterations with different
noise levels ϵ and (initial) step-sizes δt. L = 0 is used for both GD and
adaptive RSAV.



A SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS 11

(a) ϵ = 0.01 (b) ϵ = 0.05 (c) ϵ = 0.1

Figure 2. Loss curves for GD and adaptive RSAV with different noise
levels. The learning rate (lr) refers to the step size δt for GD and the initial
step size δt in the adaptive RSAV.

3.2. Rastrigin function. Consider

f(x) = f(θ1, θ2, . . . , θn) =

n∑
i=1

θ2i + 10n− 10

n∑
i=1

cos(2πθi), (3.4)

which has many local minima. The function can be defined on any input domain but it

is usually evaluated on x ∈ [−5.12, 5.12] for i = 1, 2, . . . , n. The function has a global

minimum at f(x∗) = 0 located at x∗ = (0, 0, . . . , 0). In this example, we compare the

adaptive RSAV with popular optimization methods ADAM and NAG with their default

parameter settings as in [22]: NAG with γ = 0.9, and ADAM with β1 = 0.9, β2 = 0.999, ε =

10−8. We shall keep using these default settings in all following experiments.

initial stepsize δt 0.001 0.01 0.1 1
GD (L = 0) 12.93 37.86 109.2 diverge

adaptive RSAV (L = 0) 13.05 13.03 12.95 2.608e-9
NAG 12.93 152 505.1 diverge
ADAM 32.28 12.94 12.93 8.958

Table 3. Loss of Rastrigin function after 100 iterations in 2D.

We plot in the left of Fig. 3 the convergence curves of different methods, and observe

that the RSAV converges much faster than ADAM with the same initial step-size. We

also plot in the right of Fig. 3 the paths towards the minimum by different methods. We

observe that RSAV enjoys a fast convergence if using a large initial step size δt.

3.3. Rosenbrock function. This is a benchmark problem for optimization of non-convex

functions. We first consider the 2D case with

f(x, y) = (a− x)2 + b(y − x2)2, (3.5)



12 XINYU LIU1, JIE SHEN1, AND XIAONGXIONG ZHANG1

Figure 3. Rastrigin function: Left: Convergence curves with 100 itera-
tions; Right: Paths with first 10 iterations. The learning rate (lr) refers to
the initial step size δt in the adaptive RSAV.

it has a global minimum at (x, y) = (a, a2), which is inside a long narrow, parabolic shaped

flag valley. To find the valley is trivial, but to converge to the global minimum is usually

difficult.

We set a = 1 and b = 100 in the following experiments and other parameters the same

as in [20], and start with the initial point with coordinate (−3,−4). In Table 4, we observe

that a large step size can lead to blow-up for other methods except for RSAV. Thus in

Figure 4, we only show the results with the largest suitable step sizes for other algorithms.

For adaptive RSAV, we just use the same initial step size as ADAM. This example reveals

the benefits of modified energy decreasing property of the RSAV. Although ADAM can

get close to the global minimum at first, it still goes to the wrong direction caused by the

momentum and eventually goes back after wasting many iterations. Only RSAV converges

to the global minimum directly with the guide of decreasing (modified) energy.

step-size δt 10−4 10−2 1
GD (L = 0) 0.7142 diverge diverge

adaptive RSAV (L = 0) 0.01086 0.01122 0.0107
NAG 5.326 diverge diverge
ADAM 15198 12.5 1.2

Table 4. Loss of Rosenbrock function after 1000 iterations in 2D



A SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS 13

Figure 4. 2D Rosenbrock problem: Left: Convergence curves; Right:
Paths with 1000 iterations in the (θ1, θ2) domain.

Next, we consider the high dimensional cases with

f(x) =
n∑

i=1

(a− θi)
2 + b

n−1∑
i=1

(θi+1 − θ2i )
2, (3.6)

with the global minimum f(x∗) = 0 at x∗ = (a, a2, a, a2, . . . , a, a2). We take a = 1 and

b = 100, and the initial point (0, . . . , 0). The results with the dimension equal to 10, 100

and 1000 are shown in Fig. 5. We observe similar convergence behavior for all cases as in

the two dimensional case.

(a) n = 10 (b) n = 100 (c) n = 1000

Figure 5. Loss of Rosenbrock function with dimension n.



14 XINYU LIU1, JIE SHEN1, AND XIAONGXIONG ZHANG1

Remark 3. If we compare the adaptive RSAV with Nesterov accelerated gradient decent,

the results are still quite good especially when the dimension is 1000. Thanks to the adaptive

scheme, the performance of RSAV in this problem independent of the dimension.

3.4. Phase Retrieval. The phase retrieval problem [5] can be formulated as

min
z∈CN

f(z) :=
1

2
∥A(z∗z)− b∥2

where z∗ ∈ C1×N is the conjugate transpose of z, b ∈ RM and A : CN×N −→ RM is

a linear operator. For the real-valued function f(z) with complex variable z := a + ib,

where i is the imaginary unit and a, b ∈ R are real and imaginary parts of z, we can define

the Fréchet derivative induced by the natural choice of real inner product for CN as the

following [31]:

∇f(z) := ∂f(z)

a
+ i

∂f(z)

b
= 2A∗(A(z∗z − b))z,

where A∗ is the adjoint operator of A. Then the vanilla gradient descent algorithm for

minz∈CN f(z) can be defined as in (1.2) using ∇f(z) above. The gradient descent method

with a suitable step sizing rule is also also referred to as the Wirtinger flow [6].

In particular, f(z) is a non-convex quartic polynomial function of z. For the theorectical

convergence of minimizing such a non-convex function, with a spectral initialization, i.e., z0
being the leading eigenvector of A∗(b), the convergence of Wirtinger flow with high proba-

bility can be proven for a very special class of phase retrieval problems [6, 4]. For solving

phase retrieval with random initial guess, the convergence for minimizing a smoothed am-

plitude flow based model was proven in [3]. In terms of practical performance with only

random initialization, state-of-the-art algorithms such as the Riemannian LBFGS method

could be much more efficient than gradient descent algorithms [6].

We emphasize that we only use such phase retrieval problems as a testing example to

validate the performance of the RSAV method. So we test the algorithms with a random

initialization.

We compare vanilla gradient descent (GD), adaptive RSAV with L = 0, and steepest

descent (SD) [8, 2]. The steepest descent method is to use the optimial step size in (1.2),

and it is possible to compute such an optimal step size for a polynomial cost function. We

test the performance of RSAV algorithm on the following phase retrieval problem. Let

Mi ∈ CN be i.i.d Gaussian and ◦ denote the entrywise product. Let F denote the Fourier

transform. The linear operator A is defined by assigning ∥F(Mi ◦ z)∥2 to b, e.g., M
N = m.

We consider the test case for the true solution z∗ being an image of size n×n with n = 256.

So the size of unknown is N = n2 = 2562. We consider two test cases:

(1) The true minimizer z∗ is a real image of camera man with size 256× 256 as shown

in Figure 6, m = 6 Gaussian random masks and a random initial guess.

(2) The true minimizer z∗ is a complex image of golden ball with size 256 × 256, see

[12] for details, m = 10 Gaussian random masks and a random initial condition.



A SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS 15

See Figure 7 for the comparision of the performance of gradient based algorithms. For the

vanilla gradient descent (GD), we use the nearly largest stable constant step size δt = 0.5.

In Figure 8, we list a comparsion of the step size δk in the adaptive RSAV method with the

optimital step size in the steepest descent method. We can see the performance of adaptive

RSAV has the closest performance to the steepest descent. For the real image case, SD

converged after 10000 iterations and RSAV converged after 20000 iterations. However, to

compute the optimal step size in the steepest descent, at least two more evaluations of

A are needed, thus quite expensive. More importantly, for a general cost function, it is

difficult to find the optimal step size. See Section 4.4 for an analysis of the step size in the

explicit SAV gradient descent with restarting rk every iteration for quadratic functions.

(a) GD (b) adaptive RSAV (c) SD

Figure 6. Results after 20000 iterations for a phase retrieval problem with
z∗ being a 256 × 256 real image of camera man, m = 6 Gaussian random
masks and a random initial guess. The vanilla gradient descent (GD) uses
nearly largest stable constant step size δt = 0.5



16 XINYU LIU1, JIE SHEN1, AND XIAONGXIONG ZHANG1

Figure 7. (Left) Loss of different optimization algorithms V.S. number of
iteration for phase retrieval: the real image of camera man using 6 Gauss-
ian masks; (Middle) Loss of different optimization algorithms V.S. number
of iteration for phase retrieval: the complex image of golden balls using
10 Gaussian masks. (Right) Loss of different optimization algorithms V.S.
number of iteration for phase retrieval: the complex image of golden balls
using 10 Gaussian masks. The vanilla gradient descent (GD) uses nearly
largest stable step size δt = 0.5.

Figure 8. The value of δk in each iteration for phase retrieval: Left: the
real image of camera man using 6 Gaussian masks; Right: the complex
image of golden balls using 10 Gaussian masks.

3.5. Recommendation System. Consider applying the optimization scheme to train a

recommendation system based on matrix factorization model. Given a rate matrix R ∈
Rm×n wherem is the number of users and n is the number of items, the model learns the user

embedding matrix X ∈ Rm×d and item embedding matrix Y ∈ Rn×d such that the product

XY T is a good approximation for R. Here, d is the embedding dimension and usually much



A SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS 17

smaller than m and n. Denote the user and item matrix by X = [X1, . . . , Xu, . . . , Xm]T

and Y = [Y1, . . . , Yi, . . . , Yn]
T , we have the loss function as

f(X,Y ) =
1

Nκ

∑
(u,i)∈κ

(Ru,i −XuY
T
i )2 + λu

∑
u

∥Xu∥22 + λi

∑
i

∥Yi∥22, (3.7)

where κ the training set that the (u, i) pairs for which Ru,i is known, Nκ is the number of

training data, λu and λi are the penalty parameters for embedding matrix. We train the

model with the MovieLens 100K dataset [11] which contains 100, 000 ratings (1− 5) from

943 users on 1682 movies. There is 80% data split as the training data and the rest date is

used for the testing data, e.g., the training data set κ has size 80, 000. All algorithms use

the mini-batch gradient with batch size 80. For l2 regularization, we set λu = λi = 10−4.

For the linear operator L = λI − σ∆ in GD and RSAV, we let λ = 10−4 and σ = 0.1. In

Figure 9, for the training step, we run 10, 000 iterations for the mini-batch gradient based

methods with batch size 80, which is equal to 10 epochs. The result on the test data is

shown in Table 5. We can see that RSAV performs well in the training step, though its

testing result is not the best, which suggests issues of overfitting during the training step.

This is more or less a modelling issue, rather than the optimizaiton issue.

Figure 9. The training loss curve of different optimization algorithms for
Recommendation System. Here GD refers to GD (L = λI−σ∆) and RSAV
refers to the adaptive RSAV (L = λI − σ∆).



18 XINYU LIU1, JIE SHEN1, AND XIAONGXIONG ZHANG1

step-size δt 0.01 0.1 1 10
GD (L = λI − σ∆) 4.6504 2.1465 1.6438 diverge

NAG 2.1451 1.6439 diverge diverge
ADAM 1.8820 4.7194 diverge diverge

adaptive RSAV (L = λI − σ∆) 1.9090 1.9102 1.9156 1.9156

Table 5. The loss function on the test data after 10, 000 training iterations
(10 epochs) with different step-sizes. Here diverge means that the training
step already diverges.

4. Convergence study for some SAV based algorithms

In this section, we consider a more general version of the SAV scheme based on the

following expanded system{
θt = −

(
r

[f(θ)+C]q∇f(θ) + Lθ − Lθ
)

rt = q[f(θ) + C]q−1(∇f(θ), θt),
(4.1)

where r(t) = [f(θ) + C]q and q ∈ (0, 1). Note that (2.2) is a special case of the above

formulation with q = 1
2 . Similar to (2.3), we can construct a SAV scheme for (4.1) as

follows: {
θk+1−θk

δt = −
(

rk+1

[f(θk)+C]q∇f(θk) + L(θk+1 − θk)
)

rk+1−rk
δt = q[f(θk) + C]q−1(∇f(θk), θk+1−θk

δt ).
(4.2)

4.1. Interpretation of the SAV method as a line search method. Let A = (I+δtL).
The system (4.2) can be rewrite as[

A δt ∇f(θk)
[f(θk)+C]q

−q[f(θk) + C]q−1∇f(θk) 1

] [
θk+1

rk+1

]
=

[
Aθk

rk − q[f(θk) + C]q−1(∇f(θk), θk)

]
After a simple Gaussian elimination, we obtain an explicit update formula for (4.2):rk+1 = 1

1+δtq
(∇f(θk),A−1∇f(θk))

f(θk)+C

rk

θk+1 = θk − rk+1

[f(θk)+C]q δtA
−1∇f(θk)

.

Notice that the scheme above can be regarded as a line search method:

θk+1 = θk + αkPk

Pk = −A−1∇f(θk)

αk =
δt

1 + δtq (∇f(θk),A−1∇f(θk))
f(θk)+C

rk
[f(θk) + C]q

> 0,

with a search direction Pk and step size αk.

The step size αk is guranteed to be positive. On the other hand, it is difficult to establish

any a priori control of αk, and in practice αk could become very small if rk becomes very



A SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS 19

small. To avoid small rk, we consider a special version of SAV method by redefining

rk = [f(θk) + C]q, then we have

αk =
δt

1 + δtq (∇f(θk),A−1∇f(θk))
f(θk)+C

.

In this case, we can view q as a parameter, and the SAV method with rk = [f(θk) +C]q at

every iteration becomes the following line search method:

θk+1 = θk + αkPk (4.4a)

Pk = −A−1∇f(θk) (4.4b)

αk =
δt

1 + δtq (∇f(θk),A−1∇f(θk))
f(θk)+C

, (4.4c)

which is equivalent to
rk = [f(θk) + C]q

θk+1−θk
δt = −

(
r̃k+1

[f(θk)+C]q∇f(θk) + L(θk+1 − θk)
)

r̃k+1−rk
δt = q[f(θk) + C]q−1(∇f(θk), θk+1−θk

δt ).

(4.5)

In particular, for any L ≥ 0, A−1 is always positive definite, thus the search direction

Pk = −A−1∇f(θk) is always a descent direction, i.e., −∇fT (θk)Pk = ∇f(θk)TA−1∇f(θk) >
0. The Wolfe condition [27] for the line search method (4.4) is: there exists 0 < c1 < c2 < 1

such that

f(θk + αkPk) ≤ f(θk) + c1αk∇f(θk)TPk (4.6a)

∇f(θk + αkPk)
TPk ≥ c2∇f(θk)TPk. (4.6b)

We recall first the following result [19]:

Theorem 3. Assume f(θ) ∈ C1 and f(θ) is bounded from below. For any descent direction

Pk, there exist intervals of step lengths satisfying the Wolfe condition.

Notice that α(δt, q) = δt

1+δtq
(∇f(θk),A−1∇f(θk))

f(θk)+C

is an increasing function of δt and an de-

creasing function of q, thus there exists δt and q such that αk = δt

1+δtq
(∇f(θk),A−1∇f(θk))

f(θk)+C

satisfies the Wolfe conditions (4.6).

We recall below another result [19]:

Theorem 4. Assume f(θ) ∈ C1, f(θ) is bounded from below and ∇f(θ) is Lipschitz con-

tinuous. Let cosϕk = −∇f(θk)
TPk

∥∇f(θk)∥∥Pk∥ . If Pk is a descent direction and αk satisfies the Wolfe

Conditions, then the iteration θk+1 = θk + αkPk satisfies∑
k≥0

cos2 ϕk∥∇f(θk)∥2 <∞. (4.7)



20 XINYU LIU1, JIE SHEN1, AND XIAONGXIONG ZHANG1

Let λmin(A) and λmax(A) be the smallest and largest eigenvalues of the real symmetric

positive definite matrix A, then by the Courant-Fischer-Weyl min-max principle [7] and

the spectral norm ∥A∥ = λmax(A), we have

P T
k APk

∥Pk∥2
≥ λmin(A), ∥APk∥ ≤ ∥A∥∥Pk∥ = λmax(A)∥Pk∥,

thus

cosϕk =
P T
k APk

∥APk∥∥Pk∥
=

P T
k APk

∥Pk∥2
∥Pk∥
∥APk∥

≥ λmin(A)

λmax(A)
.

Therefore, the uniform lower bound on cosϕk and (4.7) implies that ∥∇f(θk)∥ → 0.

Thus the convergence of the SAV method (4.4) is ensured if using a line search to find

δt, q such that αk satisfies the Wolfe condition (4.6). We observe that the above algorithm

involves computing A−1∇f(θk), and evaluation of f(θk) and f(θk+1).

Remark 4. In practice, one can use backtracking line search on αk to ensure that the

Wolfe conditions are satisfied. This in general it does not seem advantageous over a simple

backtracking line search on α. However, for the SAV gradient descent method (2.4), i.e.,

A = I, our numerical observation is that the SAV scheme is often more efficient than the

backtracking line search on α. With A = I, the scheme (4.4) reduces to the following SAV

gradient descent method with two parameters δt > 0 and qk > 0:

θk+1 = θk − αk∇f(θk) (4.8a)

αk =
δt

1 + δtqk
∥∇f(θk)∥2
f(θk)+C

(4.8b)

4.2. Standard convergence results. We recall that if αk in the line search method (4.4)

satisfies the Goldstein-Armijo rule [1, 9]: there exists 0 < c1 < c2 < 1 such that

f(θk)− c2αk∥∇f(θk)∥2 ≤ f(θk − αk∇f(θk)) ≤ f(θk)− c1αk∥∇f(θk)∥2, (4.9)

then it is shown (cf. Theorem 2.1.14 in [17]) that ∥∇f(θk)∥ → 0.

Theorem 2.1.14 in [17] can be easily adapted to prove the following result for the line

search method (4.4):

Theorem 5. Assume that f(θ) is convex and ∇f(θ) is Lipshitz continuous with the Lipshitz

constant L, i.e., ∥∇f(y)−∇f(x)∥ ≤ L∥x− y∥. If ∇f(θ∗) = 0 and αk ∈ (0, 2
L), then

∥θk+1 − θ∗∥2 ≤ ∥θk − θ∗∥2 − αk(
2

L
− αk)∥∇f(θk)∥2

and

f(θk)− f(θ∗) ≤
1

[f(θ0)− f(θ∗)]−1 + ∥θ0 − θ∗∥−2
∑

k αk(1− L
2αk)

.

So for convergence, we need
∞∑
k=0

αk(1− L
2αk) = +∞, which can be ensured if αk ∈ [a, b] ∈

(0, 2
L) for constant bounds a > 0 and b < 2

L . Also, αk < 2
L will ensure f(θk+1) < f(θk).



A SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS 21

4.3. Decreasing step sizes for the SAV gradient descent method. We derive from

(4.8) that

αk =
δt

1 + δtqk
∥∇f(θk)∥2

f(θk)

=
1

1/δt+ qk
∥∇f(θk)∥2

f(θk)

≤ min

{
δt,

f(θk)

qk∥∇f(θk)∥2

}
.

For fixed δt, the above is often sufficient to ensure f(θk+1) < f(θk) when θk is far away

from the minimizer. It can be understood as follows.

Theorem 6. Assume that f(θ) is strongly convex, i.e., (∇f(y)−∇f(x), y−x) ≥ m∥x−y∥2

with m > 0, and ∇f(θ) is Lipshitz continuous with the Lipshitz constant L. Let θ∗ be the

minimizer and assume f(θ∗) = 0. Then the following are sufficient conditions to ensure

αk < 2
L for the SAV gradient descent method with two parameters (4.8):

(1) For any δt > 0, qk > L2

4m2 .

(2) Let δt ≡ a 2
L where a > 0, qk > a−1

a
L2

4m2 .

Remark 5. The first sufficient condition implies that αk = δt

1+δtqk
∥∇f(θk)∥2

f(θk)

will be a de-

creasing step size for any δt if qk ≡ q > L2

4m2 . Of course, finding 1
q < 4m2

L2 in general is not

easier than finding δt < 2
L . But if 2m2 > L, then 4m2

L2 > 2
L implies 1

q < 4m2

L2 is easier to

achieve.

Remark 6. As an example of the second sufficient condition, if we pick qk ≡ 1
2 , and a = 2,

then 1
2 > 1

2
L2

4m2 ⇔ L < 2m is sufficient to ensure the SAV gradient descent method with

qk ≡ 1
2 is decreasing with δt = 4

L , instead of δt < 2
L in (1.2).

Proof. First, by the strong convexity and Lipschitz continuity, we have

f(x) ≥ f(y) + (∇f(y), x− y) +
m

2
∥x− y∥2,

f(x) ≤ f(y) + (∇f(y), x− y) +
L

2
∥x− y∥2.

Since θ∗ is the minimizer, ∇f(θ∗) = 0. For any θ, we have

(∇f(θ)−∇f(θ∗), θ − θ∗) ≥ m∥θ − θ∗∥2 ⇒ (∇f(θ), θ − θ∗) ≥ m∥θ − θ∗∥2

⇒ m
∥θ − θ∗∥
∥∇f(θ)∥

=
(∇f(θ), θ − θ∗)

∥θ − θ∗∥∥∇f(θ)∥
≤ 1⇒ ∥∇f(θ)∥ ≥ m∥θ − θ∗∥.

Hence,

m∥θ − θ∗∥ ≤ ∥∇f(θ)∥ ≤ L∥θ − θ∗∥,
and

m

2
∥θ − θ∗∥2 ≤ f(θ)− f(θ∗) ≤

L

2
∥θ − θ∗∥2.

With strong convexity m > 0, we have

2m2

L
≤ ∥∇f(θ)∥2

f(θ)− f(θ∗)
≤ 2L2

m



22 XINYU LIU1, JIE SHEN1, AND XIAONGXIONG ZHANG1

thus
2m2

L
≤ ∥∇f(θ)∥

2

f(θ)
≤ 2L2

m
.

Finally,

f(θk)

qk∥∇f(θk)∥2
<

2

L
⇔ 1

qk
<
∥∇f(θk)∥2

f(θk)

2

L
⇐ 1

qk
<

4m2

L2
.

□

Remark 7. In general, if f(θ) is only convex but not strong convex, i.e., m = 0, and

f(θ) + C > 0, then we only have

∥∇f(θ)∥2

f(θ) + C
≤ L2∥θ − θ∗∥2

f(θ∗) + C
.

This gives a lower bound control on step size:

αk =
δt

1 + δtqk
∥∇f(θk)∥2
f(θk)+C

≥ δt

1 + qkδt
L2∥θk−θ∗∥2
f(θ∗)+C

.

In this case, we can set qk ≡ q and do back tracking on δt for αk to satisfy the convergence

condition or Goldstein-Armijo rule.

4.4. The step size for quadratic functions. To see why the step size αk = δtk

1+δtkqk
∥∇f(θk)∥2
f(θk)+C

could be a good step size to use, at least for a quadratic cost function, consider a cost func-

tion f(θ) = 1
2∥Aθ − b∥2 with a square and positive definite matrix A > 0. The steepest

descent algorithm can be written as

θk+1 = θk − βk∇f(θk), βk =
∥AT (Aθk − b)∥2

[AT (Aθk − b)]TATA[AT (Aθk − b)]
.

The method (4.8) with C = 0 is

θk+1 = θk − αk∇f(θk), αk =
1

1
δtk

+ qk
∥AT (Aθk−b)∥2

1
2
(Aθk−b)T (Aθk−b)

.

Then for a very large δtk and qk ≡ 1
2 , we have

αk ≈
(Aθk − b)T (Aθk − b)

(Aθk − b)TAAT (Aθk − b)
, βk =

(Aθk − b)TAAT (Aθk − b)

(Aθk − b)TAATAAT (Aθk − b)
.

Let vi be orthornormal eigenvectors of A with eigenvalues of λi. Since vi form a basis for

RN , let Aθk − b = r =
∑

i rivi. Let z = AT (Aθk − b), then z = AT
∑

i rivi =
∑

i riλivi and

Az =
∑

i riλ
2
i vi . We get

αk ≈
rT r

rTAAT r
=

rT r

zT z
=

[
∑

i rivi]
T [
∑

i rivi]

[
∑

i riλivi]T [
∑

i riλivi]
=

∑
i r

2
i∑

i λ
2
i r

2
i

, βk =
zT z

(Az)T (Az)
=

∑
i λ

2
i r

2
i∑

i λ
4
i r

2
i

.

We can see that αk is very similar to the optimal step size βk but not the same. In practice,

a random initial guess θ0 usually makes αk a descent step size in the first few or many

iterations for δtk ≡ 1 and qk ≡ q = 1
2 .



A SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS 23

5. Concluding remarks

We proposed in this paper a new minimization algorithm inspired by the scalar auxil-

iary variable (SAV) approach for gradient flows. Since the direct application of the SAV

approach to minimization problems may converge to wrong solutions, we developed a mod-

ified version of the SAV approach coupled with a relaxation step and an adaptive stradegy.

The new algorithm enjoys several distinct advantages, including unconditionally energy di-

minishing with a modified energy, and empirical better performance than many first order

methods. In particular, it overcomes the difficulty in selecting proper step sizes associ-

ated with the usual gradient based algorithms. The energy diminishing property ensures

the convergence, and the relaxation step, built on a connection between the decreasing

modified energy and the original energy, helps to accelerate the convergence.

We also presented a converence analysis for some SAV based algorithms which include the

new algorithm without the relaxation step as a special case. Numerical results for several

illustrative and benchmark problems indicates that the new algorithm is very robust and

usually converges significantly faster than those popular gradient decent based methods.

While we only considered a basic version of the SAV based approach which already

showed its promise, it is clear that this approach can be combined with other techniques

of acceleration and generalization to the gradient decent methods. How to further improve

the robustness and accelerate the convergence rate of the SAV based approach will be the

subject of a future study.

Acknowledgement

This work is partially supported by AFOSR FA9550-16-1-0102, NSF DMS-2012585 and

DMS-2208518.

References

[1] Larry Armijo. Minimization of functions having Lipschitz continuous first partial derivatives. Pacific
Journal of mathematics, 16(1):1–3, 1966.

[2] Arthur Earl Bryson andWalter F Denham. A steepest-ascent method for solving optimum programming
problems. 1962.

[3] Jian-Feng Cai, Meng Huang, Dong Li, and Yang Wang. Solving phase retrieval with random initial
guess is nearly as good as by spectral initialization. Applied and Computational Harmonic Analysis,
58:60–84, 2022.

[4] T Tony Cai, Xiaodong Li, and Zongming Ma. Optimal rates of convergence for noisy sparse phase
retrieval via thresholded Wirtinger flow. The Annals of Statistics, 44(5):2221–2251, 2016.

[5] Emmanuel J Candes, Yonina C Eldar, Thomas Strohmer, and Vladislav Voroninski. Phase retrieval via
matrix completion. SIAM review, 57(2):225–251, 2015.

[6] Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval via wirtinger flow: Theory
and algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007, 2015.

[7] Richard Courant and David Hilbert. Methods of mathematical physics: partial differential equations.
John Wiley & Sons, 2008.

[8] Haskell B Curry. The method of steepest descent for non-linear minimization problems. Quarterly of
Applied Mathematics, 2(3):258–261, 1944.



24 XINYU LIU1, JIE SHEN1, AND XIAONGXIONG ZHANG1

[9] Allen A Goldstein. On steepest descent. Journal of the Society for Industrial and Applied Mathematics,
Series A: Control, 3(1):147–151, 1965.

[10] Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. A novel convergence analysis for
algorithms of the Adam family. arXiv preprint arXiv:2112.03459, 2021.

[11] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm trans-
actions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

[12] Wen Huang, Kyle A Gallivan, and Xiangxiong Zhang. Solving phaselift by low-rank riemannian
optimization methods for complex semidefinite constraints. SIAM Journal on Scientific Computing,
39(5):B840–B859, 2017.

[13] Matt Jacobs, Flavien Léger, Wuchen Li, and Stanley Osher. Solving large-scale optimization problems
with a convergence rate independent of grid size. SIAM Journal on Numerical Analysis, 57(3):1100–
1123, 2019.

[14] Maosheng Jiang, Zengyan Zhang, and Jia Zhao. Improving the accuracy and consistency of the scalar
auxiliary variable (SAV) method with relaxation. Journal of Computational Physics, 456:110954, 2022.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[16] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence
o (1/kˆ 2). In Doklady an ussr, volume 269, pages 543–547, 1983.

[17] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

[18] Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.
[19] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006.
[20] Stanley J. Osher, Bao Wang, Penghang Yin, Xiyang Luo, Minh Pham, and Alex Tong Lin. Laplacian

smoothing gradient descent. CoRR, abs/1806.06317, 2018.
[21] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical

statistics, pages 400–407, 1951.
[22] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747, 2016.
[23] Ernest K Ryu and Wotao Yin. Large-Scale Convex Optimization: Algorithms & Analyses via Monotone

Operators. Cambridge University Press, 2022.
[24] J Reddi Sashank, Kale Satyen, and Kumar Sanjiv. On the convergence of adam and beyond. In Inter-

national Conference on Learning Representations, volume 5, page 7, 2018.
[25] Jie Shen, Jie Xu, and Jiang Yang. The scalar auxiliary variable (sav) approach for gradient flows.

Journal of Computational Physics, 353, 10 2017.
[26] Jie Shen, Jie Xu, and Jiang Yang. A new class of efficient and robust energy stable schemes for gradient

flows. SIAM Review, 61(3):474–506, 2019.
[27] Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–235, 1969.
[28] Xiaofeng Yang. Linear, first and second-order, unconditionally energy stable numerical schemes for the

phase field model of homopolymer blends. Journal of Computational Physics, 327:294–316, 2016.
[29] Yanrong Zhang and Jie Shen. A generalized sav approach with relaxation for dissipative systems.

Journal of Computational Physics, page 111311, 2022.
[30] Jia Zhao. A revisit of the energy quadratization method with a relaxation technique. Appl. Math. Lett.,

120:Paper No. 107331, 11, 2021.
[31] Shixin Zheng, Wen Huang, Bart Vandereycken, and Xiangxiong Zhang. Riemannian optimization using

three different metrics for Hermitian PSD fixed-rank constraints: an extended version. arXiv preprint
arXiv:2204.07830, 2022.

[32] Qingqu Zhuang and Jie Shen. Efficient SAV approach for imaginary time gradient flows with applica-
tions to one- and multi-component Bose-Einstein condensates. J. Comput. Phys., 396:72–88, 2019.


	1. Introduction
	2. A new SAV approach and its relaxed version
	2.1. A modified SAV approach
	2.2. A relaxed version of the modified SAV approach
	2.3. Selection of the operator 
	2.4. An adaptive algorithm based on the RSAV scheme 

	3. Numerical Results
	3.1. A quadratic cost function
	3.2. Rastrigin function
	3.3. Rosenbrock function
	3.4. Phase Retrieval
	3.5. Recommendation System

	4. Convergence study for some SAV based algorithms
	4.1. Interpretation of the SAV method as a line search method
	4.2. Standard convergence results
	4.3. Decreasing step sizes for the SAV gradient descent method
	4.4. The step size for quadratic functions

	5. Concluding remarks
	Acknowledgement
	References

