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Abstract We prove an explicit local linear rate for ADMM solving the isotropic
Total Variation (TV) norm compressed sensing problem in multiple dimen-
sions, by analyzing the auxiliary variable in the equivalent Douglas-Rachford
splitting on a dual problem. Numerical verification on large 3D problems and
real MRI data will be shown. Though the proven rate is not sharp, it is close
to the observed ones in numerical tests.
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1 Introduction

1.1 The isotropic TV norm compressed sensing

The isotropic total variation (TV) norm compressed sensing (CS) [30] is

min
u

∥u∥TV subject to û(k) = bk, ∀k ∈ Ω = {0, i2, · · · , im}, (1a)

where u is a d-dimensional image of size n1×n2×· · ·×nd = N , û denotes the
d-dimensional discrete Fourier transform of u, Ω is a set of observed frequency
indices with m < N , and b ∈ Cm denotes the observed data. In (1a), 0 ∈ Ω
means that given observed data should include the zeroth frequency of u.

We also regard u as a vector u ∈ RN ⋍ Rn1×n2×···×nd . Let K : RN → [RN ]d

denote the discrete gradient operator, which will be defined in Section 2. Then
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the isotropic TV norm is defined as ∥u∥TV := ∥Ku∥1,2 and ∥ · ∥1,2 norm is

∥v∥1,2 =

N∑
j=1

√√√√ d∑
i=1

|vij |2, v =

v
1

...
vd

 ∈ [RN ]d, vi =

 vi1
...
viN

 ∈ RN , (1b)

which reduces to the classical ℓ1 norm for RN when d = 1.
For processing images, the isotropic TV norm was introduced for denoising

in [32], and used in many applications such as deconvolution and zooming,
image in-painting and motion estimation [7], as well as compressed sensing [6].
TVCS has been used practically in the areas of nuclear medicine and limited
view angle tomosynthesis studies [29,24,21,35]. Though in this paper we only
focus on the Fourier measurements, e.g., MRI Imaging [28], the algorithm
and our analysis may also be also useful for for applications using the Radon
Transform [22] and radio interferometry [36] since the sampling process can
be modeled as samples of the Fourier transform [22,36].

1.2 ADMM for TV norm minimization

For solving (1), we focus on the alternating direction method of multipliers
(ADMM) [12], and study its asymptotic linear convergence rate. Though the
local linear convergence has been established for ADMM solving TV norm
minimization [25] and [1], no explicit rates were given for multiple dimensional
case due to the fact that ∥ · ∥1,2 is no longer locally polyhedral for d ≥ 2.
There are other popular first order splitting methods, such as the primal dual
hybrid gradient (PDHG) method [7]. For problem (1), it has been well known
[16,15,18,10,11] that ADMM is also equivalent to quite a few popular first
order methods with special choice of parameters including Douglas-Rachford
splitting (DRS) [26] and split Bregman method [19]. In Section 3.1, we will
show that ADMM is also equivalent to G-prox PDHG method introduced in
[20], which was proven and shown to be efficient for very large images.

ADMM can be applied to any problem in the following form:

min
u∈X

f(Ku) + g(u), (2a)

where X,Y are two finite-dimensional real Hilbert spaces, the map K : X → Y
is a continuous linear operator, g : X → R and f : Y → R are proper, convex,
and lower semi-continuous functions. For the problem (1), we have

X = RN , K : RN → [RN ]d, f(v) = ∥v∥1,2, g(u) = ι{u:Au=b}(u), (2b)

where ιC(u) =

{
0, u ∈ C

+∞, u /∈ C
is the indicator function of a set C, and Au = b

denotes measurements ûk = bk, k ∈ Ω in (1). ADMM for (2) is described as:
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Algorithm 1 ADMM with step-size γ.

1: xk+1 = argminx g(x) + ⟨Kx, zk⟩+ γ
2
∥Kx− yk∥2

2: yk+1 = argminy f(y)− ⟨y, zk⟩+ γ
2
∥y −Kxk+1∥2

3: zk+1 = zk − γ
(
yk+1 −Kxk+1

)

1.3 The main result: a local linear rate of ADMM

The Fenchel dual problem to (2) can be written as:

min
p∈RN×d

f∗(p) + h∗(−p), h∗(−p) := g∗(−K∗p), (3)

where f∗, g∗ are convex conjugates of f, g, and K∗ is the adjoint operator of
K. For analyzing Algorithm 1, we will consider the Fenchel dual problem to
(3). As shown in Appendix A, the dual problem to (3) can be given as

min
v∈RN×d

f(v) + h(v), f(v) = ∥v∥1,2, h(v) = ιK{u:Au=b}(v), (4)

where K{u : Au = b} := {v : v = Ku,Au = b}. It is well known that the
ADMM on (2) with a step size γ is equivalent to DRS on (3) with a step size
γ, which is also equivalent to DRS on (4) with a step size 1

γ as reviewed in

Appendix B. Next we describe DRS solving (4) which will be used to analyze
Algorithm 1. Let I be the identity operator. Define the proximal and reflection
operators with a step size τ > 0 respectively as

Proxτf (x) = argminz f(z) +
1

2τ
∥z − x∥2, Rτ

f = 2Proxτf −I. (5)

DRS on problem (4) is defined by a fixed point iteration of the operator

Hτ =
I+Rτ

h Rτ
f

2 . In particular, in Algorithm 2, qk is an auxiliary variable and vk
converges to the minimizer to (4). The equivalence between Algorithm 1 and
Algorithm 2 will be reviewed in Section 3.

The function f(v) = ∥v∥1,2 is sparsity promoting [33], and its proxi-
mal operator Proxτf is the well known Shrinkage operator in multiple di-
mensions. Let Sτ denote the shrinkage operator with step size τ . For any
q = [q1 · · · qd]T ∈ [RN ]d with qi = [qi1 · · · qiN ]T ∈ RN , we introduce the
notation qj = [q1j · · · qdj ] ∈ Rd and we will call the subscript the spatial index.

Then the shrinkage operator Proxτf (q) = Sτ (q) ∈ [RN ]d can expressed as

Proxτf (q)j = Sτ (q)j =

{
0, if ∥qj∥ ≤ τ

qj − τ
qj

∥qj∥ , otherwise
. (6)

We need proper assumptions so that (4) has a unique minimizer.
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Algorithm 2 Douglas-Rachford splitting (DRS) on Problem 4 with a step
size τ > 0.

1: qk+1 = Hτ (qk) =
I+Rτ

h Rτ
f

2
(qk) = Proxτh(R

τ
f (qk)) + qk − Proxτf (qk)

2: vk+1 = Proxτf (qk+1)

Assumption 1.1 Let u∗ be the true image, s > 0 be a fixed accuracy param-
eter, Ku∗ be the gradient of the image, and S be the support of Ku∗. Let |S|
denote the number of nonzero entries in Ku∗. Assume Ω is chosen uniformly
at random from sets of size |Ω| = m ≥ C−1

s · |S| · log(N) for some constant Cs.

Theorem 1.1 (Theorem 1.5 in [6]) Under Assumption 1.1 in which Cs ≈
1

23(s+1) for |Ω| ≤ N/4, s ≥ 2, and N ≥ 20, with probability at least 1−O(N−s),

the minimizer v∗ to (4) is unique and v∗ = Ku∗.

Assume the minimizer v∗ to (4) vanishes at r spatial indices, i.e., (v∗)j =
[(v∗)1j · · · (v∗)dj ] = 0 for j = j1, · · · , jr. Let ei ∈ RN be the standard basis

in RN . Denote the basis vectors corresponding to zero components in v∗ as ei
(i = j1, · · · , jr). Let B = [ej1 , ... , ejr ]

T ∈ Rr×N be selector matrix of the

zero components of v∗. Let B̃ be a block diagonal matrix:

B̃ =

B
. . .

B

 ∈ Rdr × RdN . (7)

For the Algorithm 2, its fixed point q∗ is not unique, depending on the
initial guess q0, even if the minimizer v∗ to Problem (4) is unique. Our main
result is a local linear rate of Algorithm 2 solving problem (4) for standard
fixed points similar to the ones defined in [9], in the sense of the following.

Definition 1.1 For TVCS (1) with measurements denoted as Au = b, con-
sider its equivalent problem (4) with a solution v∗. Let Bτ (0) be the closed ball

in Rd of radius τ centered at 0, and Bτ (0)
c
be its complement. Define

Qi =

Bτ (0), if (v∗)j =
[
(v∗)1j · · · (v∗)dj

]T
= 0

Bτ (0)
c
, if (v∗)j =

[
(v∗)1j · · · (v∗)dj

]T
̸= 0

⊂ Rd,

Q = {v ∈ [RN ]d : Sτ (v)j = 0 ⇐⇒ (v∗)j = 0} ⋍ Q1 ⊕ . . .⊕QN ,

which is the preimage of the shrinkage operator (6) on vectors with the same
support set as v∗. Let q0 be the initial value in DRS, and q∗ = limk→∞ Hk

τ (q
0).

We call (b, A; q0) a standard problem for the DRS if q∗ belongs to the interior
of Q. In this case, we call q∗ an interior fixed point. Otherwise, we say that
(b, A; q0) is nonstandard for DRS and that q∗ is a boundary fixed point.

Now the main result of this paper can be stated as follows:
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Theorem 1.2 Let θ1 be the smallest non-zero principal angle between the two
linear spaces KKernelA = {Ku : u ∈ Kernel(A)} and Kernel(B̃) with B̃ defined
in (7). Consider ADMM (Algorithm 1) solving (1) with a step size γ = 1

τ > 0,
which is equivalent to DRS (Algorithm 2) solving (4) with a step size τ . The
convexity of the problem (4) implies that DRS iterates qk converges to a fixed
point q∗. Assume that q∗ is a standard fixed point. Under Assumption 1.1, with
probability 1−O(N−s), for small enough τ > 0, there is an integer K such that

for all k ≥ K, ∥qk − q∗∥ ≤
[
cos θ1 +maxj:∥(v∗)j∦=0

2τ
∥(v∗)j∥2

]k−K

∥qK − q∗∥.

We remark that the local linear rate above looks similar to the one proven for
ℓ1-norm compressed sensing in [9], but with two differences. The first differ-
ence is that the angle θ1 in this paper for the TV-norm is different from the
angle in [9] due to the fact that the set Q is more complicated for TV norm.
The second difference is the term maxj:∥(v∗)j∦=0

2τ
∥(v∗)j∥ , which arises only in

multiple dimensions, d ≥ 2. When d = 1, this additional term can be removed
in the proof and the main result proven in this paper reduces to the same
local linear rate convergence rate in [9]. Hence, the novelty comes in providing
an estimate for the linear rate of TVCS in higher dimensions albeit it is not
sharp. On the other hand, as shown in Figure 1, even though the proven rate
is not sharp, it is not far from a sharp rate for 3D problems of a large size.
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Fig. 1: The local linear rate of uk − u∗ for TVCS. Here u∗ is the true image
and uk is the image at k-th iteration of ADMM, i.e., xk in Algorithm 1. Left:
a 2D Shepp–Logan phantom image of size 64 × 64 with a step size γ = 1

τ =
100. Right: a 3D Shepp–Logan phantom image of size 5123, with a step size
γ = 1

τ = 10. In both tests, about 30% of the Fourier frequencies are observed.

1.4 Related work, contributions and outline

Convergence rates of DRS and ADMM have been studied in different settings.
In [26], a global linear convergence was shown when one of the two functions
is strongly convex with a Lipschitz continuous gradient. In [17,8], local linear
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convergence was shown under the assumptions of smoothness and strong con-
vexity. For ℓ1-norm compressed sensing, local linear rate is related to the first
principle angle between two subspaces in [9]. In [5], local linear convergence
of ADMM was shown for quadratic and linear programs as long as the solu-
tion is unique and strict complimentary condition holds. By the idea of partial
smoothness developed in [23], the results of [9,2,5] can be unified under a gen-
eral framework in [25], which shows the existence of local linear convergence
for many problems, and provides explicit convergence rates if the cost func-
tions are locally polyhedral. In [1], it was proved that applying DR or ADMM
to composite problems consisting of a convex function and a convex function
composed with an injective linear map yields local linear rates.

The main contribution of this paper is to provide an explicit rate for the
local linear convergence of ADMM applied to isotropic TV-norm compressed
sensing problem. Our explicit rate, albeit not sharp mathematically, provides
some insights into behavior of ADMM for TV-norm minimization. On the
other hand, the proven rate matches well with observed rate for ADMM with
a large step size γ for large 3D problems as real 3D MRI data. Moreover,
while our proof is largely based on the work in [9], we introduce some novel
ideas for the istropic TV-norm which might be also useful for other problems
such as second order cone programs. Our main techniques include exploiting
the specific structure of the DRS fixed points for specific problems, and using
the equivalencies of algorithms to study the local linear convergence through
the equivalent problem (4). Other contributions consist of adding the recently
developed algorithm G-prox PDHG [20], to the already known equivalencies
among ADMM, DRS and Split-Bregman method, which will be summarized
in Table 1 in Section 3.1 with derivations in the Appendix C.

The rest of this paper is organized as follows. Section 2 contains some
preliminaries and notation needed. In Section 3, we provide the equivalence
between ADMM and G-prox PDHG for general problems and give an explicit
implementation formula for the problem (1). In Section 4, we provide the the-
orem and proof of our main result. Section 5 includes numerical experiments,
which validate the theoretical results and show what performance we can ex-
pect for 2D and 3D problems. Section 6 gives concluding remarks.

2 Preliminaries

2.1 Notation and preliminaries

Let I be the identity operator. Let I be the identity matrix and In denote
the identity matrix of size n×n. For any matrix A, AT denotes its transpose,
A∗ denotes its conjugate transpose and A+ denotes its pseudo inverse. For a
linear operator K, K∗ denotes its adjoint operator. For any v = [v1 · · · vN ]T ∈
[RN ]d, the ∥ · ∥1,2 norm is defined in (1b) and its dual norm is ∥v∥∞,2 =

maxi=1,...,N

√∑N
i=1 v

T
i vi. For convenience, we will also regard any q ∈ [RN ]d

as a vector in RNd, then ∥q∥ denotes the 2-norm in RNd.
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All functions considered in this paper are closed, convex, and proper [31,
3]. A closed extended function is also a lower semi-continuous function [3,
Theorem 2.6]. If C is a closed convex set, the indicator function ιC(x) is a
closed convex proper function thus also lower semi-continuous. For a function
f , its subgradient is a set ∂f(x). We summarize a few useful results, see [3].

Theorem 2.1 A closed convex proper function f satisfies:

(i) Proxτf◦(−I)(x) = −Proxτf (−x).
(ii) f∗∗(x) = f(x).
(iii) ⟨x, y⟩ = f(x) + f∗(y) ⇔ x ∈ ∂f∗(y) ⇔ y ∈ ∂f(x).
(iv) x∗ = argminx⟨x, y∗⟩+ f(x) ⇐⇒ −y∗ ∈ ∂f(x∗).

(v) Moreau Decomposition: Proxγf (x) + γ Prox
1
γ

f∗

(
x
γ

)
= x.

2.2 Discrete Fourier transform and differential operators

Notation for one dimensional problems: Let F denote the normalized dis-
crete Fourier transform (DFT) operator, and û denote the normalized dis-
crete transform of u ∈ RN ⋍ Rn1×n2×···×nd . We also let F denote the DFT
matrix, i.e., û = F(u) = Fu ∈ CN . Let v̌ denote the inverse DFT of v,
then v̌ = F∗v. We have ⟨u, v⟩RN = ⟨Fu,Fv⟩CN ,∀u, v ∈ RN and ⟨u, v⟩CN =
⟨F∗u,F∗v⟩CN ,∀u, v ∈ CN . For the discrete gradient operator, we first consider
the 1D periodic case. For u ∈ Rn, define the forward difference matrix as,

K =


−1 1

. . .
. . .

−1 1
1 −1

 , (8)

then its transpose KT approximates the negative derivative and D = KTK is
the negative discrete Laplacian. For a one-dimensional image u, the operators
K and K∗ can be expressed as Ku = Ku and K∗u = KTu. Let T be the
normalized DFT matrix for 1D, i.e., û = Fu = Tu, and T ∗T = I, where T ∗ is
the conjugate transpose of T . Notice that the matrix K in (8) is circulant, thus
K can be diagonalized by DFT matrix, i.e., K = T ∗ΛT where Λ is diagonal.

Notation for multiple dimensional problems: For multiple dimensions, we focus
on d = 2 as an example of introducing notation. For simplicity, we assume n1 =
n2 for a two-dimensional image. For U ∈ Rn×n, let u = vec(U) ∈ RN be the
column-wise vectorization of the matrix, then (A⊗B)u = vec(BUAT ),∀A,B ∈
CN×N . Define discrete gradient and negative discrete divergence as follows,

∇hu =

(
K ⊗ I
I ⊗K

)
u =

(
vec(UKT )
vec(KU)

)
,−∇h ·

(
u
v

)
=

(
KT ⊗ I I ⊗KT

)(u
v

)
,

where U, V ∈ Rn×n, u = vec(U), v = vec(V ). The operators K and K∗ can be
expressed by Ku = ∇hu ∈ RN⊕RN , ∀u ∈ RN , and K∗p = −∇h ·p ∈ RN , ∀p ∈
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RN ⊕ RN . Let F be the DFT matrix for 2D image u = vec(U) ∈ RN where
U ∈ Rn×n, then û = Fu = (T ⊗ T )u = vec(TUTT ). With the fact

K ⊗ I = (T ∗ΛT )⊗ (T ∗IT ) = (T ∗ ⊗ T ∗)(Λ⊗ I)(T ⊗ T ) = F∗(Λ⊗ I)F ,

the operator K : RN → R2N ∼= RN ⊕ RN can be decomposed as:

K = ∇h =

(
F∗ 0
0 F∗

)(
Λ⊗ I
I ⊗ Λ

)
F =

(
F∗ 0
0 F∗

)
ΛF , Λ =

(
Λ⊗ I
I ⊗ Λ

)
, (9)

K∗ = −∇h· = F∗ (Λ∗ ⊗ I I ⊗ Λ∗)(F 0
0 F

)
= F∗Λ∗F̃ , F̃ =

(
F 0
0 F

)
. (10)

The d-dimensional case can be defined similarly. We refer to [27, Section
2.4] for how to define vec(U) for a three-dimensional image U . Let Kn be the
matrix in (8) of size n × n, then consider the matrix constructed by one K
matrix and d− 1 identity matrices via Kronecker product:

K = ∇h =

K1

...
Kd

 , Ki = In1
⊗ · · · ⊗Kni

⊗ · · · ⊗ Ind
∈ RN×N .

Recall K in (8) has an eigenvalue decomposition K = T ∗ΛT . Let Λn be the
same diagonal eigenvalue matrix of size n× n. We construct the matrix:

Λ =

Λ1

...
Λd

 , Λi = In1 ⊗ · · · ⊗ Λni ⊗ · · · ⊗ Ind
∈ RN×N ,

and let λi
k (k = 1, · · ·N) be the diagonal entries of Λi.

2.3 The constraint of partially observed Fourier frequencies

For simplicity, we focus on the case d = 2 and the discussion for d ≥ 3 is
similar. In (1), the constraint û(k) = bk, ∀k ∈ Ω = {1, i2, · · · , im} can be
denoted as an affine constraint Au = b by a linear operator A : RN → Cm with
m < N , where the linear operator A = MF is a composition of a mask M and
the 2D DFT matrix F such that FF∗ = I. The mask matrix M ∈ Rm×N is
the submatrix of the IN . We define Ω = {1, i2 . . . , im} ⊂ {1, . . . , N} to be the
indicator of which frequencies we know a priori, thenM = [e1; ei1 ; ... ; eim ]T ∈
Rm×N , where ek are the standard basis vectors in RN . Notice, AA∗ = Im×m,
hence its pseudo inverse is A+ = A∗. For convenience, we will use the notation

M̃ =

(
M 0
0 M

)
, Ã =

(
A 0
0 A

)
=

(
MF 0
0 MF

)
. (11)
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Since M is a submatrix of IN , M∗ = MT . Since Λ⊗ I ∈ RN×N is a diagonal
matrix, M∗M(Λ⊗ I) is a diagonal matrix of size N ×N . Therefore, we have
M∗M(Λ⊗ I) = [M∗M(Λ⊗ I)]T = (Λ⊗ I)M∗M , thus

M̃∗M̃Λ =

(
M∗ 0
0 M∗

)(
M 0
0 M

)(
Λ⊗ I
I ⊗ Λ

)
= ΛM∗M. (12)

Similarly, Λ∗Λ = Λ∗Λ⊗ I + I ⊗ Λ∗Λ is a diagonal matrix, thus

M∗M(Λ∗Λ)+ = (Λ∗Λ)+M∗M. (13)

3 Equivalency to G-prox PDHG and an implementation formula

3.1 The equivalence between ADMM and G-prox PDHG

In this section, we first give an equivalent primal dual formulation of ADMM
then provide an implementation formula for TV compressed sensing problem.
The G-prox PDHG method introduced in [20] for solving a composite convex
minimization problem (2) can be written as Algorithm 3. The equivalence of G-
prox PDHG above and ADMM is stated in Theorem 3.1, which will be proven
in Appendix C. There are many known equivalent yet seemingly different
formulations of the ADMM in Algorithm 1. We provide a summary of the
variables that are equivalent in these algorithms in Table 1. These relations
can be modified to extend to the generalized forms of these algorithms.

Algorithm 3 G-prox PDHG with step sizes τ, σ > 0.
Initial guess u0 ∈ RN , v0, w0 ∈ [RN ]d.

1: uk+1 = argminu g(u) + ⟨Ku,wk⟩+ 1
2τ

∥K(u− uk)∥2

2: vk+1 = argmaxv −f∗(v) + ⟨Kuk+1, v⟩ − 1
2σ

∥v − vk∥2

3: wk+1 = 2vk+1 − vk

Theorem 3.1 Algorithm 1 (ADMM) with a step size γ > 0 is equivalent to
Algorithm 3 (G-prox PDHG) with τ = 1

σ = 1
γ via the change of variables:

uk := xk, pk := zk, wk := 1
τKxk + zk − 1

τ yk.

3.2 An explicit implementation formula of G-prox PDHG

For any vector v =
[
v1 . . . vd

]T ∈ [RN ]d with vi =
[
vi1 . . . v

i
N

]T ∈ RN , let

vj denote vj =
[
v1j · · · vdj

]T ∈ Rd. Define |v| :=
[
∥v1∥ . . . ∥vN∥

]T ∈ RN , and
vi

max(1,|v|) =
[
vi1/max(1, ∥v1∥) . . . viN/max(1, ∥vN∥)

]T ∈ RN . Then we define,

v

max(1, |v|) :=

v
1/max(1, |v|)

...
vd/max(1, |v|)

 ∈ [RN ]d.
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Table 1: A summarization of equivalent variables in ADMM, DRS and Gprox
PDHG algorithms with proper step sizes: variables in each row are equivalent.

Method ADMM for (2) Douglas-Rachford for (4) G-prox PDHG for (2)
Formula Alg. 1 for (2) Alg. 2 on (4) Alg. 3 on (2)

Step Size γ = 1
τ

τ σ = 1
τ

Primal Iterate Kxk qk − (qk−1 − vk−1) Kuk

Dual Iterate zk
qk−vk

τ
pk

Extragradient 1
τ
Kxk + zk − 1

τ
yk

2qk−qk−1

τ
− 2vk−vk−1

τ
wk

Let λ denote the complex conjugate of λ. For wn ∈ [RN ]d, where n will be the

iteration index, we also denote it by wn =
[
(wn)

1 · · · (wn)
d
]T

with (wn)
i ∈

RN and (̂wn)i being the d-dimensional discrete Fourier transform of (wn)
i.

With the notation in Section 2.2, for the TV compressed-sensing problem (1),
Algorithm 3 can be explicitly implemented in Fourier space as described by
Algorithm 4. The derivation of Algorithm 4 will be given in Appendix D.

Algorithm 4 An implementation formula of G-prox PDHG with a step size
τ > 0 and σ = 1

τ (or equivalently ADMM in Algorithm 1 with γ = 1
τ ) for

TV-norm compressed sensing.
Initial guess: u0 ∈ RN , v0, w0 ∈ [RN ]d

1:


ûn+1(k) = bk, k ∈ Ω

ûn+1(k) = ûn(k)− τ

[
d∑

i=1
λi
k (̂wn)i(k)

]
/

[
d∑

i=1
|λi

k|
2

]
, k /∈ Ω

2: vk+1 =
vk+σKuk+1

max(1,|vk+σKuk+1|)
,

3: wn+1 = 2vn+1 − vn.

Notation: n is the iteration index and k is the frequency index. For any wn ∈ [RN ]d, let

wn =
[
(wn)1 · · · (wn)d

]T
with (wn)i ∈ RN , then (̂wn)i denotes the discrete Fourier

transform of (wn)i, and (̂wn)i(k) denotes the component of (̂wn)i at the k-th frequency.
As defined in Section 2.2, λi

k (k = 1, · · · , N) are diagonal entries of Λi.

4 The main result on an explicit local linear rate

We prove the main result in this section. For simplicity, we focus on the case
d = 2, and extensions to higher dimensions are straightforward.

4.1 DRS on the equivalent problem

In order to analyze the local linear convergence of ADMM, we will utilize some
of the equivalent formulations. Recall that TVCS problem (1) can be written
as the primal formulation (2), and its Fenchel dual formulation is given as
(3). The dual formulation of (3) can be written as (4). We first make a few
remarks about total duality. We have strong duality between the primal and
dual problem due to Slater’s conditions, which are satisfied if ∃ x s.t. x ∈
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ri(domf) = RN and Ax = b. For strong duality between (3) and (4), Slater’s
conditions are satisfied by choosing p = 0 ∈ R2N which implies ∥p∥∞,2 < 1,
i.e p = 0 ∈ ri(domf∗), and K∗p ∈ Range(A∗). To show total duality, we need
existence of a solution of (4). By Theorem 1.1, under Assumption 1.1, with
high probability, (4) has a unique minimizer. Thus total duality holds.

4.2 The proximal operators

For the two functions f and h in (4), we need their proximal operators for
studying DRS. Since the function h(v) = ιK{u:Au=b}(v) is an indicator function
to an affine set, the proximal operator is the Euclidean projection to the set.
With derivation shown in Appendix A, the projection formula can be given as

Proxτh(q) = F̃∗(I − M̃∗M̃)ΣF̃q + F̃∗M̃∗M̃ΛM∗b, Σ = Λ(Λ∗Λ)+Λ∗,
(14)

where (Λ∗Λ)+ is the pseudo inverse of Λ∗Λ. Next, we discuss Sτ .

Definition 4.1 For any q = [q1 · · · qd]T ∈ [RN ]d with qi = [qi1 · · · qiN ]T ∈ RN ,
which can also be represented by qj = [q1j · · · qdj ] ∈ Rd with a spatial index

j = 1, · · · , N , define an operator N : [RN ]d → [RN ]d via the spatial index as

N (q)j =

{
0, if qj = 0,
qj

∥qj∥ otherwise
∈ Rd, j = 1, · · · , N.

Recall that we have defined B = [ej1 , ... , ejr ]
T ∈ Rr×N to be the selector

matrix of the zero components of v∗. For any q ∈ Q, with Q in Definition 1.1,
it is straightforward to verify that the shrinkage operator can be written as

Sτ (q) = (I − B̃+B̃)(q − τN (q)), ∀q ∈ Q, (15)

in which we regard q and N (q) as column vectors in RNd.

Lemma 4.1 Under Assumption 1.1, with probability 1−O(N−s), KKernel(A)∩
Kernel(B̃) = {0}, where KKernel(A) = {v ∈ RN×d : v = Ku, u ∈ Kernel(A)}.

Proof Consider any z ∈ KKernel(A) ∩Kernel(B̃). First,

z ∈ KKernel(A) ⇒ z = Ku, u ∈ Kernel(A).

By the fact that MM∗ = Im×m and the notation in (9) and (11),

ÃK =

(
MF 0
0 MF

)(
F∗ 0
0 F∗

)
ΛF =

(
M 0
0 M

)
ΛF = M̃ΛF = (M̃M̃∗)M̃ΛF .

By the property (12) and u ∈ Kernel(A), we have

Ãz = ÃKu = M̃M̃∗M̃ΛFu = M̃ΛM∗MFu = M̃ΛM∗Au = 0.
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Second, z ∈ Kernel(B̃) implies the support of z is contained in the same
support, S, as the unique solution v∗ to (4). Let AS denote the partial Fourier
Transform restricted to signals with the support included in the set S. Then(

AS 0
0 AS

)
z =

(
A 0
0 A

)
z = Ãz = 0.

By Theorem 3.1 in [6], AS is injective, which implies z = 0. ⊓⊔

Remark 4.1 For ℓ1-norm compressed sensing, there are necessary [38] and
sufficient [14] conditions to ensure a unique solution to (2), and the same tech-

niques can be used to show KKernel(A)∩Kernel(B̃) = {0} for one-dimensional
TVCS problem, i.e., Problem (2) with d = 1. However, such a proof breaks

down for d ≥ 2. As shown in Lemma 4.1 above, KKernel(A)∩Kernel(B̃) = {0}
can be ensured by the robust uncertainty principle in [6].

4.3 Characterization of the fixed points to DRS

For the function h(v) = ιK{u:Au=b}(v), we have

∂h(q) = {q : K∗q ∈ Range(A∗)} = (K∗)−1
[
Range(A∗)

]
,

where (K∗)−1
[
Range(A∗)

]
denotes the pre-image of Range(A∗) under the

operator K∗. By the optimality condition of (4), its minimizer v∗ satisfies
0 ∈ ∂f(v∗)+ (K∗)−1

[
Range(A∗)

]
, therefore ∂f(v∗)∩ (K∗)−1

[
Range(A∗)

]
̸= ∅.

Any vector η ∈ ∂f(v∗) ∩ (K∗)−1
[
Range(A∗)

]
is called a dual certificate. The

subgradient of f = ∥ · ∥1,2 is given below as

∂f(v∗) =

{
w ∈ RNd : wj ∈

{
(v∗)j

||(v∗)j || if (v∗)j ̸= 0

B1(0) else

}
. (16)

Theorem 1.1 (Theorem 1.5 in [6]) gives existence and uniqueness of the
minimizer v∗, which implies the existence of a dual certificate.

Lemma 4.2 The set of fixed points of DRS iteration operator Hτ =
I+Rτ

h Rτ
f

2
for the problem (4) is given by:

{v∗ + τη : η ∈ ∂f(v∗) ∩ (K∗)−1
[
Range(A∗)

]
}, (17)

and the fixed point is unique if and only if (K∗)−1
[
Range(A∗)

]
∩Range(B̃T ) =

{0} where B̃T is the transpose matrix of B̃ with B̃ defined in (7).

Proof Consider any η ∈ ∂f(v∗) ∩ (K∗)−1
[
Range(A∗)

]
. First, since Sτ is the

proximal operator of f(v), η ∈ ∂f(v∗) implies Sτ (v∗ + τη) = v∗. Second, by
(10) and A = MF , we have

η ∈ (K∗)−1
[
Range(A∗)

]
⇒ K∗η ∈ Range(A∗) ⇒ F∗Λ∗F̃η ∈ Range(F∗M∗),
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⇒ Λ∗F̃η ∈ Range(M∗) ⇒ (I −M∗M)Λ∗F̃η = 0.

By (12) and (13), we have

(I − M̃∗M̃)Λ(Λ∗Λ)+Λ∗ = Λ(Λ∗Λ)+(I −M∗M)Λ∗

⇒ (I − M̃∗M̃)Λ(Λ∗Λ)+Λ∗F̃η = Λ(Λ∗Λ)+(I −M∗M)Λ∗F̃η = 0.

Since v∗ = Ku∗ and Au∗ = b, by (14) and (9), we have

Proxτh(v∗ − τη) =F̃∗(I − M̃∗M̃)Λ(Λ∗Λ)+Λ∗F̃(v∗ − τη) + F̃∗M̃∗M̃ΛM∗b

=F̃∗(I − M̃∗M̃)Λ(Λ∗Λ)+Λ∗F̃Ku∗ + F̃∗M̃∗M̃ΛM∗Au∗

=F̃∗(I − M̃∗M̃)Λ(Fu∗) + F̃∗M̃∗M̃ΛFu∗ = F̃∗ΛFu∗ = Ku∗ = v∗.

Moreover, Proxτf (v∗ + τη) = v∗ implies Rτ
f (v∗ + τη) = v∗ − τη. Thus,

Hτ (v∗ + τη) = Proxτh(R
τ
f (v∗ + τη)) + v∗ + τη − Proxτf (v∗ + τη)

= Proxτh(v∗ − τη) + τη = v∗ + τη.

Conversely, suppose Hτ (q) = q and define η = q−v∗
τ . We want to show

η ∈ ∂f(v∗) ∩ (K∗)−1
[
Range(A∗)

]
. By the convergence of the DRS iteration

[26], Proxτf (q) = v∗, which implies that η = q−v∗
τ ∈ ∂f(v∗). Second, Hτ (q) = q

and Proxτf (q) = v∗ imply v∗ = Proxτh(2v∗ − q), which gives −η ∈ ∂h(v∗) =

(K∗)−1
[
Range(A∗)

]
thus η ∈ (K∗)−1

[
Range(A∗)

]
.

To discuss uniqueness, let q1 = v∗ + τη1, q2 = v∗ + τη2 be two fixed points
of Hτ . Then q1− q2 = τ(η1−η2), where η1, η2 ∈ ∂f(v∗)∩ (K∗)−1

[
Range(A∗)

]
.

From (16), note that η1, η2 ∈ ∂f(v∗) implies that ±(η1 − η2) ∈ Range(B̃T ).

Hence, q1−q2 ∈ (K∗)−1
[
Range(A∗)

]
∩Range(B̃T ), so the fixed point is unique

if and only if (K∗)−1
[
Range(A∗)

]
∩ Range(B̃T ) = {0}. ⊓⊔

4.4 Characterization of the DRS operator Hτ

Next, we estimate the nonlinear DRS operator Hτ .

Lemma 4.3 For any fixed point q∗ of Hτ =
I+Rτ

h Rτ
f

2 , it satisfies

∥(I− B̃+B̃)N (q)−N (q∗)∥ ≤ max
j:∥(v∗)j∦=0

2

∥(v∗)j∥
∥q−q∗∥, ∀q ∈ [RN ]d ⋍ RNd,

where ∥ · ∥ is the 2-norm in RNd.

Proof By Definition 4.1 and the definition of B̃ in (7), we have

∥(I − B̃+B̃)N (q)−N (q∗)∥2 =
∑

i:(v∗)i ̸=0

∥∥∥∥ qi
∥qi∥

− (q∗)i
∥(q∗)i∥

∥∥∥∥2 .
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For any nonzero a, b ∈ Rd, we have
∥∥∥ a
∥a∥ − b

∥b∥

∥∥∥ ≤
∥∥∥ a
∥a∥ − b

∥a∥

∥∥∥+∥∥∥ b
∥a∥ − b

∥b∥

∥∥∥ =

1
∥a∥ ∥a− b∥ + ∥b∥

∣∣∣∥b∥−∥a∥
∥a∥∥b∥

∣∣∣ = 1
∥a∥

(
∥a− b∥ +

∣∣∥b∥ − ∥a∥
∣∣) ≤ 2

∥a∥ ∥a− b∥ . By
Lemma 4.2, q∗ = v∗ + τη for a dual certificate η. For any index i satisfying

(v∗)i ̸= 0, we have q∗i = (v∗)i + τ (v∗)i
∥(v∗)i∥ , which is implied by η ∈ ∂∥v∗∥1,2.

Hence, ∥(q∗)i∥ ≥ ∥(v∗)i∥. If we also use the inequality above with a = qi, b =

(q∗)i, we obtain
∥∥∥ qi
∥qi∥ − (q∗)i

∥(q∗)i∥

∥∥∥ ≤ 2
∥(v∗)i∥∥qi − (q∗)i∥. ⊓⊔

Lemma 4.4 For any q ∈ Q with Q and any DRS fixed point q∗,

Hτ (q)−Hτ (q∗) = H̃(q − q∗) + τ
[
(I − 2C)(I − B̃+B̃)

]
(N (q)−N (q∗)),

where H̃ =
[
C(I−B̃+B̃)+(I−C)B̃+B̃

]
and C = F̃∗(I−M̃∗M̃)Λ(Λ∗Λ)+Λ∗F̃ .

Proof By (15), we have Proxτf (q) = Sτ (q) = (I − B̃+B̃)
(
q − τN (q)

)
, thus

Rτ
f (q) = 2(I − B̃+B̃)

(
q − τN (q)

)
− q. By (14) and C in Lemma 4.4, we have

Proxτh(q) = Cq + b̃, b̃ = F̃∗M̃∗M̃ΛM∗b. Hence,

Hτ (q) = Proxτh
(
Rτ

f (q)
)
+ q − Proxτf (q)

= C
[
(I − 2B̃+B̃)q − 2τ(I − B̃+B̃)N (q)

]
+ b̃+ B̃+B̃q + τ(I − B̃+B̃)N (q),

Hτ (q)−Hτ (q∗)

=
[
C(I − B̃+B̃) + (I − C)B̃+B̃

]
(q − q∗) + τ

[
(I − 2C)(I − B̃+B̃)

]
(N (q)−N (q∗))

=H̃(q − q∗) + τ
[
(I − C)(I − B̃+B̃)− C(I − B̃+B̃)

]
(N (q)−N (q∗)).

This concludes the proof. ⊓⊔

Notice that C in Lemma 4.4 is the projection matrix onto KKernel(A), and

I−C is the projection matrix onto (K∗)−1
[
Range(A∗)

]
. Since B and B̃ in (7)

are also projection matrices, we may rewrite them as follows. Define C0 as the
2N×(N−m) matrix whose columns form an orthonormal bases of KKernel(A),
and C1 the 2N × (N +m) matrix whose columns form an orthonormal bases
of (K∗)−1

[
Range(A∗)

]
. Similarly we define the 2N × 2(N − r) matrix B0 and

2N × 2r matrix B1 to be the matrices whose columns are orthonormal bases
of Kernel(B̃) and Range(B̃∗) respectively. Therefore, we have

C0C
∗
0 + C1C

∗
1 = I, B0B

∗
0 +B1B

∗
1 = I, (18)

and we can rewrite expression in Lemma 4.4 as:

Hτ (q)−Hτ (q∗) =
[
C0C

∗
0B0B

∗
0 + C1C

∗
1B1B

∗
1

]
(q − q∗) (19)

+ τ
[
C1C

∗
1B0B

∗
0 − C0C

∗
0B0B

∗
0

]
(N (q)−N (q∗)).
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Definition 4.2 [4] Let U and V be two subspaces of a linear space with
dim(U) = s ≤ dim(V). The principal angles θk ∈ [0, π

2 ] (k = 1, . . . , p) between
U and V, and principal vectors vectors uj and vj are defined recursively as:

cos θk = max
u∈U

max
v∈V

⟨uk, vk⟩, ∥u∥ = ∥v∥ = 1, ⟨uk, uj⟩ = ⟨vk, vj⟩ = 0, ∀j < k.

Without loss of generality, assumeN−m ≤ 2(N−r). Let θi (i = 1, . . . , N−
m) be the principal angles between KKernel(A) and Kernel(B̃). Then θ1 > 0

since KKernel(A)∩Kernel(B̃) = {0} by Lemma 4.1. Let cosΘ be the (N−m)×
(N −m) diagonal matrix with diagonal entries (cos θ1, . . . , cos θN−m). By [4,
Theorem 1], the Singular Value Decomposition (SVD) of the (N−m)×2(N−r)
matrix E0 = C∗

0B0 is E0 = U0 cosΘV ∗, with V ∗V = U∗
0U0 = I(N−m), and

columns of C0U0 and B0V give the principal vectors. By the definition of SVD,
V is a matrix of size 2(N − r)× (N −m), with orthonormal columns. Let V ′

be a matrix of size 2(N−r)× (N−2r+m) whose columns are normalized and

orthogonal to columns of V . Define Ṽ = (V |V ′), then Ṽ is a unitary matrix
of size 2(N − r)× 2(N − r). Now consider E1 = C∗

1B0, then by (18) we have

E∗
1E1 = B∗

0C1C
∗
1B0 = B∗

0B0 −B∗
0C0C

∗
0B0 = I(2N−2r) − E∗

0E0

= I(2N−2r) − V cos2 ΘV ∗ = Ṽ

(
sin2 Θ 0

0 I(N−2r+m)

)
Ṽ ∗,

which implies the SVD E1 = U1

(
sinΘ 0
0 I(N−2r+m)

)
Ṽ ∗. Thus we have

E0E
∗
0 = U0 cos

2 ΘU∗
0 , E1E

∗
1 = U1

(
sin2 Θ 0

0 I(N−2r+m)

)
U∗
1 ,

E1E
∗
0 = U1

(
sinΘ cosΘ

0

)
U∗
0 , E0E

∗
1 = U0

(
cosΘ sinΘ 0

)
U∗
1 .

Notice that B0 = (C0C
∗
0 + C1C

∗
1 )B0 = C0E0 + C1E1, so we obtain

B0B
∗
0 = (C0|C1)

(
E0E

∗
0 E0E

∗
1

E1E
∗
0 E1E

∗
1

)
(C0|C1)

∗

= (C0U0|C1U1)

 cos2 Θ cosΘ sinΘ 0

sinΘ cosΘ sin2 Θ 0
0 0 I(N−2r+m)

 (C0U0|C1U1)
∗.

Define C̃0 = C0U0 and C̃1 = C1U1, which are 2N×(N−m) and 2N×2(N−r)

matrices respectively. Then the columns of C̃0 form a basis of KKernel(A), and

columns of C̃1 are orthonormal vectors in (K∗)−1
[
Range(A∗)

]
. Let D denote

the orthogonal complement of (K∗)−1
[
Range(A∗)

]
∩ Range(B̃∗) in the sub-

space (K∗)−1
[
Range(A∗)

]
. Then dim(D) = 2(N − r). Since θ1 > 0, the largest

angle between (K∗)−1
[
Range(A∗)

]
and Kernel(B̃) is less than π/2. So none of

the column vectors of C̃1 are orthogonal to Kernel(B̃). Hence, by counting the
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dimension of D and columns of C̃1, we conclude that columns of C̃1 form an
orthonormal basis of D. Define C̃2 to be the 2N × (m+2r−N) matrix whose

columns form an orthonormal basis of Range(B̃∗)∩(K∗)−1
[
Range(A∗)

]
. Then,

B0B
∗
0 = (C̃0|C̃1|C̃2)


cos2 Θ cosΘ sinΘ 0 0

sinΘ cosΘ sin2 Θ 0 0
0 0 I(N−2r+m) 0
0 0 0 0

 (C̃0|C̃1|C̃2)
∗.

By (18), B1B
∗
1 = I −B0B

∗
0 , thus

B1B
∗
1 = (C̃0|C̃1|C̃2)


sin2 Θ − cosΘ sinΘ 0 0

− sinΘ cosΘ cos2 Θ 0 0
0 0 0 0
0 0 0 I(m+2r−N)

 (C̃0|C̃1|C̃2)
∗,

H̃ = C0C
∗
0B0B

∗
0 + C1C

∗
1B1B

∗
1

= (C̃0|C̃1|C̃2)


cos2 Θ cosΘ sinΘ 0 0

− sinΘ cosΘ cos2 Θ 0 0
0 0 0 0
0 0 0 I(m+2r−N)

 (C̃0|C̃1|C̃2)
∗,

(20)

C1C
∗
1B0B

∗
0 − C0C

∗
0B0B

∗
0

=(C̃0|C̃1|C̃2)


− cos2 Θ − cosΘ sinΘ 0 0

sinΘ cosΘ sin2 Θ 0 0
0 0 I(N−2r+m) 0
0 0 0 0

 (C̃0|C̃1|C̃2)
∗.

We now summarize the discussion above as the following result:

Lemma 4.5 For any q ∈ Q and any DRS fixed point q∗,

Hτ (q)−Hτ (q∗) = C̃


cos2 Θ cosΘ sinΘ 0 0

− sinΘ cosΘ cos2 Θ 0 0
0 0 0 0
0 0 0 I(m+2r−N)

 C̃∗(q − q∗)

+ C̃


− cos2 Θ − cosΘ sinΘ 0 0

sinΘ cosΘ sin2 Θ 0 0
0 0 I(N−2r+m) 0
0 0 0 0

 C̃∗τ
[
N (q)−N (q∗)

]
,

where C̃ = (C̃0|C̃1|C̃2) and C̃2 is the 2N × (m+2r−N) matrix with columns

forming an orthonormal basis of Range(B̃∗) ∩ (K∗)−1
[
Range(A∗)

]
.
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Lemma 4.6 Assume DRS iterates qk converge to an interior fixed point q∗.
Then there exists K ∈ N such that for all k ≥ K, P(qk − q∗) = 0, where P is

the Euclidean projection to Range(B̃∗) ∩ (K∗)−1[Range(A∗)].

Proof Since q∗ is in the interior ofQ, there existsK such that qk ∈ Q for all k ≥
K. Since columns of C̃2 span the subspace Range(B̃∗) ∩ (K∗)−1[Range(A∗)],
Lemma 4.5 and Lemma 4.4 imply that P(qk−q∗) = P(qK−q∗) for all k ≥ K. If
P(qK−q∗) ̸= 0, then P(qk−q∗) is a constant for k ≥ K, which contradicts with
qk → q∗. So P(qK − q∗) = 0, which implies P(qk − q∗) = 0 for any k ≥ K. ⊓⊔

4.5 The proof of the main theorem

Now we are ready to prove Theorem 1.2.

Proof First of all, by Definition 1.1 and Lemma 4.2, any DRS fixed point is
in the set Q. The convexity of the problem (4) ensures that DRS iterates
converges to the minimizer v∗, i.e., qk converges to some fixed point q∗ to DRS
and Sτ (q∗) = Proxτf (q∗) = v∗. For a standard problem, q∗ is the interior of the

set Q. We first discuss a simple case that Range(B̃∗)∩ (K∗)−1
[
Range(A∗)

]
=

{0}. By Lemma 4.2 and the definition of C̃2, we deduce that the fixed point

is unique and m + 2r = N . Notice (20) shows that ∥H̃∥2 = cos θ1, where

∥H̃∥2 denotes the matrix spectral norm. For any q ∈ Q, by the fact that C is

a projection matrix and Lemma 4.3, we have ∥[(I − 2C)(I − B̃+B̃)](N (q) −
N (q∗))∥ ≤ maxj:∥(v∗)j∦=0

2
∥(v∗)j∥∥q − q∗∥, thus by triangle inequality

∥Hτ (q)−Hτ (q∗)∥ ≤ ∥H̃∥2∥q − q∗∥+ τ∥[(I − 2C)(I − B̃+B̃)](N (q)−N (q∗))∥

≤
(
cos θ1 + max

j:∥(v∗)j∦=0

2τ

∥(v∗)j∥

)
∥q − q∗∥.

Since qk converges to q∗ and q∗ is in the interior of Q, there exists K such that
for all k ≥ K, qk ∈ Q. Hence, there exists K such that for all k ≥ N , we have

∥Hτ (qk)−Hτ (q∗)∥ ≤
(
cos(θ1) + max

j:∥(v∗)j∦=0

2τ

∥(v∗)j∥

)k−K

∥qK − q∗∥.

Now we consider the case when Range(B̃∗)∩(K∗)−1
[
Range(A∗)

]
̸= {0} for

which DRS fixed points are not unique by Lemma 4.2. By Lemma 4.6, there
exists K such that PRange(B̃∗)∩(K∗)−1[Range(A∗)](qk − q∗) = 0, ∀k ≥ K. Since

C̃2 is the basis for Range(B̃∗)∩ (K∗)−1[Range(A∗)], the decomposition in (20)

implies ∥H̃(qk − q∗)∥ ≤ cos θ1∥qk − q∗∥ for k ≥ K, thus

∥Hτ (qk)−Hτ (q∗)∥ ≤ ∥H̃(qk − q∗)∥+ τ∥[(I − 2C)(I − B̃+B̃)](N (qk)−N (q∗))∥

≤
(
cos θ1 + max

j:∥(v∗)j∦=0

2τ

∥(v∗)j∥

)
∥qk − q∗∥.

This concludes the proof. ⊓⊔
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4.6 Remarks on possible further extensions

It is possible to extend the discussion to more general problems and algo-
rithms, but we do not pursue these extensions. The following extensions can
be considered:

1. In Theorem 1.2, we only considered the case that q∗ ∈ Q lies in the interior
of Q. For the non-standard cases, iterates qk converge to a fixed point lying
on the boundary of the set Q, and it is possible to have a similar result with
a redefined angle θ1 following the arguments for such non-standard cases
in [9]. For whether the converged fixed point is standard or non-standard,
it depends on the data (A, b) and initial guess q0 of the DRS iteration. In
our numerical tests, we have not observed non-standard cases.

2. The more general DRS operator can be written asHλ
τ = (1−λ)I+λ

I+Rτ
h Rτ

f

2
with a relaxation parameter λ ∈ (0, 2). Since Hλ

τ is very similar to Hτ , such
a discussion is quite straightforward.

3. One can also consider adding regularization [13] to the problem (1). One
suitable way of adding regularization is to add ℓ2 regularization to the
equivalent problem (4) with parameter α.

min
v∈RN×d

∥v∥1,2 + ιK{u:Au=b}(v) +
1

2α
∥v∥2, (21)

where ∥ · ∥ is the 2-norm for RNd. When α is large enough, (21) gives the
same minimizer [37]. We refer to [9] for techniques of incorporating the

relaxation λ and regularization into analyzing H̃, which seems possible to
be combined with the discussion in the previous subsection.

5 Numerical tests

We report numerical results of implementing Algorithm 4 with step sizes σ = 1
τ

for solving TVCS problem (1) which is equivalent to ADMM, with step-size
γ = 1

τ on (2) by the relations in Table 1. We construct TVCS problems
using 2D and 3D Shepp-Logan images [34] as well as some 3D MRI data. The
2D tests were performed on a MacBook Air with M1 Chip (8 core) with 16G
memory, while the 3D tests were performed on one Nvidia A100 GPU card with
80G memory, implemented in Python with single and double precision. Similar
to [27], the Python package JAX was used to achieve a simple implementation
on the GPU. Unless stated otherwise, the initial conditions used for all the tests
were the given data u0 = F∗MFu∗ and p0 = 0, where u∗ is the true image
(Shepp-Logan or MRI image). The mask matrix M is generated randomly.

5.1 2D Shepp-Logan image

We first study how sharp the estimate in Theorem 1.2 is for small τ . We
construct a TVCS testing problems by 2D Shepp-Logan image [34] with 30%
frequencies which are chosen randomly with the zeroth frequency included.
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5.1.1 Local linear rate validation

Figure 1 (left) shows result τ = 0.01 for 2D image of size 64×64. For computing
the angle θ1, we need the minimizer v∗, to (4), which is approximated by
running 10000 iterations of ADMM on (1) and then using Table 1 to transform
the ADMM variables into the physical variable for DR on (4). The angle

between the subspaces KKernel(A) and Kernel(B̃) is then computed by SVD
In Figure 1 (left), we observe that cos θ1 matches quite well with the actual
local linear rate. The estimate in Theorem 1.2 is more conservative, but for
τ = 0.01 it still seems a good estimate in practice. On the other hand, the
linear convergence regime is not reached until iteration number 4300, and the
number of iterations needed to enter the linear convergence regime can be
sensitive to τ in practice. A larger τ may give fewer iterations needed to enter
the linear convergence regime [25].

5.1.2 The effects of different step size τ

For the same 2D problem, Figure 2 shows that the results for different step
sizes ranging from τ = 0.01 to τ = 20, which does not induce a big change
in the local linear rate, even though our provable rate does contain τ in the
estimate. We remark that the dependence on τ in Theorem 1.2 can be removed
in our proof when d = 1, i.e., the local linear rate of Algorithm 1 for ℓ1-norm
CS problem does not depend on step size in both analysis and numerical tests
[9]. On the other hand, Figure 2 shows that different step sizes significantly
affect number of iterations needed to enter the linear convergence regime. As
shown in Figure 2, for τ = 20.0, the number of iterations it takes to enter
linear convergence regime is l = 0, i.e., numerically it seems a global linear
convergence.
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Comparison for Step-Size: Observed Frequencies = 30.00%

τ = 0.01, l = 4250

τ = 0.20, l = 150

τ = 0.80, l = 20

τ = 1.00, l = 0

τ = 20.00, l = 0

cos(θ1)k

Fig. 2: Algorithm 1 with γ = 1
τ for (1) with 30% observed frequencies for

a 2D Shepp-Logan image of size 64 × 64. Here k is not the iteration
number. Instead, k+ l is the iteration number where l is the number
of iteration needed to enter the linear convergence regime.
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5.2 Effects of regularization and relaxation

Consider a generalized version of ADMM by applying the general DRS oper-

ator Hλ
τ = (1 − λ)I + λ

I+Rτ
h Rτ

f

2 with a relaxation parameter λ ∈ (0, 2) to the
regularized problem (21) with a regularization parameter α. See Figure 3 for
results with different λ and a α = 100. For these tests, the 2D Shepp-Logan
image is 128×128, the step size is γ = 1

τ = 1
22 , and 30% of the frequencies are

observed. As proven in [9], special choices of parameters α and λ can speed
up the local linear convergence rate for ℓ1-norm CS problem. Figure 3 shows
that this is also the case for TVCS in two dimensions.
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Comparison for λ ∈ (0, 2): Observed Freq. = 30%, τ = 22.0, α = 100

λ = 0.25

λ = 0.50

λ = 0.75

λ = 1.00

λ = 1.25

λ = 1.50

λ = 1.75

Fig. 3: Local convergence rate of generalized ADMM (corresponding to the
general DRS operator Hλ

τ ) solving (21) with different parameters λ, α = 100.
A 2D Shepp-Logan image of size 128× 128 with 30% observed frequencies.

5.3 3D Images

Fig. 4: Left: The initial guess in ADMM. Middle: the non-zero entries of the
mask, observed frequencies is 30%. Right: the primal iterate output by ADMM
after 50 iterations u50 for a 3D Shepp-Logan image of size 5123.
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Fig. 5: 3D MRI image of size 5123. Left: slices of the initial condition for the
primal variable in ADMM. Middle: slices of the primal variable of ADMM
with γ = 1

22 after 50 iterations. Right: slices of the true MRI image.
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Fig. 6: 3D Shepp-Logan image of size 1283 with 30% observed frequencies.
ADMMwith γ = 1

τ = 1
22 . Performance of the algorithm using Double Precision

vs Single Precision (FP32 and TF32) in Python Jax on Nvidia A100.
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Table 2: GPU Time (minutes) vs. relative error
(

∥uk−u∗∥
∥u∗∥

)
of ADMM (Algo-

rithm 1 with step–size γ = 1
τ = 1

22 ) solving (1) with 30% observed frequencies
for real MRI data of size 5123. Double precision computation in Python Jax
on one Nvidia A100 card with 80G memory.

Iteration Number 1 10 20 80 350
GPU Time (min) 0.02 0.06 0.1 0.33 1.23
Relative Error 6.2× 10−1 2.9× 10−2 7.2× 10−3 8.7× 10−4 9.5× 10−5

Table 3: Comparison of the computational time (in seconds) of Algorithm
1 with γ = 1

τ = 1
22 to perform 250 iterations of ADMM implemented by

Python Jax on one Nvidia A100 80G card: double–precision (FP64) V.S.
single–precision (FP32 and TF32). 3D Shepp-Logan of different sizes with
30% observed frequencies. For FP64, memory is not sufficient to compute the
problem size 7003.

Problem Size 1283 2563 5123 7003

FP64 2.36 7.70 57.14 -
FP32 2.34 4.78 31.14 86.98
TF32 2.30 4.30 23.79 62.22

We test large 3D problems using the 3D Shepp-Logan image as well as some
MRI data with 30% observed frequencies. The step size is taken to be τ = 0.1.
An estimate of v∗ was obtained by running ADMM on 1 for 10,000 iterations
and then using the relations in Table 1 to obtain the physical variable of DR
vk. The angle between two subspaces is approximated by the procedure in [9,
Appendix B].

First, we consider a 3D Shepp-Logan image of size 5123, and the perfor-
mance is shown in Figure 1 (right) and also Figure 4. Next we verify the
performance on some MRI image of size 5123 with 30% frequencies observed.
Figure 5 shows that 50 iterations of ADMM with γ = 1

22 produce a result sat-
isfactory to the human eye. Table 2 shows the computational time on GPU,
and the reference u∗ is the numerical solution after 5000 ADMM iterations.

Finally, we consider single precision computation on GPU, which is suf-
ficient for many imaging purposes. Results in [27] show that single preci-
sion computation allows computation of larger problems on one GPU card
due to the consumption of less memory. The python package JAX offers
two options for single-precision computing with default Float-32 (FP32), and
also TensorFloat-32 (TF32), see [27] for technical details. These tests were
conducted for 3D Shepp-Logan images with 30% observed frequencies, and
ADMM with γ = 1

τ = 1
22 . Figure 6 shows shows that single-precision computa-

tion does not affect the local linear rate. In Table 3, we see that single-precision
computing is not only faster than double-precision (FP64), but it also allows
us to compute problems of size 7003 while double-precision runs out of memory
for any problem larger than 5123 on one Nvidia A100 80G card. Moreover, the
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difference in speed between double-precision and single-precision is widened
as the size of the problem grows larger.

6 Concluding remarks

In this paper, we have provided an asymptotic linear convergence rate of
ADMM applied to the Total-Variation Compressed Sensing (TVCS) problem
by applying DRS to an equivalent problem. The explicit rate shows the sim-
ilarities and differences between TVCS and Basis Pursuit. The results were
validated with large three-dimensional tests, where a simple but efficient GPU
implementation was provided. Among these results, it was shown that the gen-
eralized version of ADMM on the regularized TVCS problem has the potential
to speed up the convergence rate as in Basis Pursuit. This intuition could shed
some light on how to choose parameters for the TVCS problem as well.
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Appendix

A Derivation of dual problems

For G∗ = g∗ ◦ (−K∗) where g = ι{u∈RN :Au=b}(u) as defined in Section 2.3, we derive its

convex dual function G = (G∗)∗. Let P(v) denote the projection of v ∈ RN onto the affine
set {u ∈ RN : Au = b}. Recall that A ∈ Cm×N defined in Section 2.3 satisfies AA∗ = I, thus
P(v) = v+A∗(AA∗)−1(b−Av) = v+A∗(b−Av). For any p ∈ Range(A∗), let p = A∗z, then
z = Ap due to the fact AA∗ = Im×m. The convex conjugate of g = ι{u∈RN :Au=b}(u) is the

support function of the affine set, which can be simplified as follows. For p ∈ Range(A∗),

g∗(p) = sup
u:Au=b

⟨u, p⟩ = sup
u:Au=b

⟨u,A∗z⟩ = sup
u:Au=b

⟨Au,Ap⟩ = ⟨b, Ap⟩ = ⟨A∗b, p⟩.

Thus g∗(p) =

{
⟨p,A∗b⟩RN , if p ∈ Range(A∗)

+∞, otherwise
.

Let (K∗)−1
[
Range(A∗)

]
be the pre-image of Range(A∗) under K∗. By the Lemma above,

g∗(−K∗p) =

{
−⟨K∗p,A∗b⟩ if K∗p ∈ Range(A∗)

+∞ otherwise.
= −⟨p,KA∗b⟩+ ι

(K∗)−1
[
Range(A∗)

](p).
Notice that ⟨p,KA∗b⟩ is continuous in p. Since Range(A∗) is a closed set andK∗ is a bounded
linear transformation, (K∗)−1

[
Range(A∗)

]
is a closed convex set. Since an indicator function
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of a closed convex set is a closed convex proper function, G∗ = g∗ ◦−K∗ is a closed convex
proper function. By the regularity condition Range(A∗) ∩ Range(K∗) ̸= ∅, we have

−K{u : Au = b} = −K∂g∗(−K∗p) = ∂(g∗ ◦ −K∗)(p) = ∂G∗(p), ∀p ∈ (K∗)−1
[
Range(A∗)

]
.

So G(v) = [G∗]∗(v) = supp[⟨v, p⟩R2N − G∗(p)] =

{
0 if v ∈ −K{u : Au = b}
+∞ otherwise

. Define

h(v) := G(−v) = ιK{u:Au=b}(v), then we have derived the formulation (4). Since G(v) is an
indicator function, its proximal operator is a projection, which can be written as

ProxγG∗ (q) = F∗
[
M̃∗M̃ + (I − M̃∗M̃∗)(I − Λ(Λ∗Λ)+Λ∗)

]
F(q + γKA∗b),

where M̃ is defined in (11). Then by Theorem 2.1 (iv), we obtain Proxτh as (14).

B Equivalence of DRS on primal and dual problems

Consider (P )minx f(x) + g(x) and (D)minp f∗(p) + g∗(−p) for two closed convex proper
functions f(x) and g(x). DRS with a step size γ > 0 and a relaxation parameter λ for (P) is{

sk+1 = sk − λtk + λProxγg (2tk − sk), λ ∈ (0, 2)

tk = Proxγf (sk)
. (22)

With the fact Proxτg∗◦(−I)(p) = −Proxτg∗ (−p), DRS with a step size 1
γ

and a relaxation

parameter λ for the dual problem can be written asqk+1 = qk − λpk − λProx
1
γ

g∗ (−2pk + qk), λ ∈ (0, 2)

pk = Prox
1
γ

f∗ (qk)
. (23)

With Moreau Decomposition, (22) is equivalent to (23) via qk = sk
γ
, pk = sk−tk

γ
.

C Proof of equivalence of G-prox PDHG and ADMM

We give the proof of Theorem 3.1 The main tool we will need is the following lemma:

Lemma C.1 For a closed convex proper function h, β > 0, and a matrix K,

p̂ = argmin
p

h(p) +
β

2
||Kp− q||2 =⇒ β(Kp̂− q) = Proxβ

h∗◦(−K∗)(−βq).

Proof By Theorem 2.1 (iii), we have 0 ∈ ∂h(p̂)+βK∗(Kp̂−q), which holds if and only if p̂ ∈
∂h∗

(
−βK∗(Kp̂−q)

)
. Multiplying both sides by −K, we get −Kp̂ ∈ −K∂h∗

[
−βK∗(Kp̂−q)

]
.

Let y = β
(
Kp̂− q

)
and g(x) = −K∗x. By chain rule, we have

−K∂h∗
[
g(y)

]
= ∂(h∗◦g)(y) = ∂[h∗◦(−K∗)]

(
β[Kp̂−q]

)
⇒ −Kp̂ ∈ ∂[h∗◦(−K∗)]

(
β[Kp̂−q]

)
.

By adding Kp̂− q then multiplying β to both sides, we get

−βq ∈ β(Kp̂− q) + β∂(h∗ ◦ −K∗)
[
β(Kp̂− q)

]
=

[
I + β∂[h∗ ◦ (−K∗)]

](
τ(Kp̂− q)

)
,

which implies β(Kp̂− q) =
[
I + β∂(h∗ ◦ −K∗)

]−1
(−βq) = Proxβh∗◦−K∗ (−βq). ⊓⊔
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The first line of G-prox PDHG with step-size τ in Algorithm 3 can be written as uk+1 =
argminu g(u)+ 1

2τ
||Ku−(Kuk−τwk)||2. Apply Lemma C.1 to the line above with h = g, p̂ =

uk+1, β = 1
τ
, and q = Kuk−τwk, we get Kuk+1−Kuk+τwk = τ Prox

1
τ
g∗◦(−K∗)(wk− 1

τ
Kuk).

By Moreau Decomposition, the second line of G-prox PDHG with τ = 1
σ

can be written as

vk+1 = argmin
v

f∗(v) +
τ

2
||v − (vk +Kuk+1)||2 = vk +

1

τ
Kuk+1 −

1

τ
Proxτf (τvk +Kuk+1).

Thus the G-prox PDHG in Algorithm 3 with τ = 1
σ

gives:

Kuk+1 −Kuk + τwk = τ Prox
1
τ
g∗◦(−K∗)(wk −

1

τ
Kuk) (24a)

τvk+1 = τvk +Kuk+1 − Proxτf (τvk +Kuk+1) (24b)

wk+1 = 2vk+1 − vk. (24c)

The first line in Algorithm 1 can be written as xk+1 = argminx g(x)+ γ
2
||Kx−(yk− 1

γ
zk)||2.

By Lemma C.1 with h = g, β = γ, and p̂ = yk − 1
γ
zk, we get

−γKxk+1 − (zk − γyk) = Proxγg∗◦K∗
[
γyk − zk

]
⇐⇒ γKxk+1 + (zk − γyk) = Proxγ

g∗◦(−K∗)

[
zk − γyk

]
.

By the definition of the proximal operator, the second line of in Algorithm 1 reduces to

yk+1 = argmin
y

f(y)− ⟨y, zk⟩+
γ

2
||y −Kxk+1||2 = Prox

1
γ

f

[ 1
γ
(zk + γKxk+1)

]
.

Thus the ADMM in Algorithm 1 is equivalent to

γKxk+1 + (zk − γyk) = Proxγg∗◦−K∗
[
zk − γyk

]
(25a)

yk+1 = Prox
1
γ

f

[ 1
γ
(zk + γKxk+1)

]
(25b)

zk+1 = zk − γ(yk+1 −Kxk+1). (25c)

Finally, we prove the equivalence between (24) and (25). Define the following variables,

τ :=
1

γ
, vk := zk, uk := xk, τwk := Kxk + τzk − yk,

then (25a) becomes (24a) by

1

τ
Kxk+1 + (zk −

1

τ
yk) = Prox

1
τ
g∗◦(−K∗)

[
zk −

1

τ
yk

]
⇐⇒ Kxk+1 + τzk − yk = τ Prox

1
τ
g∗◦(−K∗)

[
zk −

1

τ
yk

]
⇐⇒ Kuk+1 + τvk −

[
Kuk + τ(vk − wk)

]
= τ Prox

1
τ
g∗◦(−K∗)

[
vk −

1

τ

(
Kuk + τ(vk − wk)

)]
⇐⇒ K(uk+1 − uk) + τwk = τ Prox

1
τ
g∗◦(−K∗)

[
wk −

1

τ
Kuk

]
,

(25b) becomes (24b) by

yk+1 = Prox
1
γ

f

[ 1
γ
(zk + γKxk+1)

]
⇐⇒ Kuk+1 + τ(vk+1 − wk+1) = Proxτf

[
τvk +Kuk+1

]
,

and (25c) becomes (24c) by

zk+1 = zk −
1

τ
(yk+1 −Kxk+1) ⇐⇒ vk+1 = vk + (wk+1 − vk+1) ⇐⇒ wk+1 = 2vk+1 − vk.
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D Derivation of the explicit implementation formula

With g(u) = ι{u∈RN :û(k)=bk,k∈S}(u), f∗(v) = ι{v∈[RN ]d:||v||∞,2≤1}(v), we reformulate

(1) into (2), then we apply G-prox PDHG to (2) to obtain:

un+1 = argmin
{u∈RN :û(k)=bk,k∈S}

⟨Ku,wn⟩+
1

2τ
||K(u− un)||2 (26a)

vn+1 = argmax
{v∈[RN ]d:||v||∞,2≤1}

⟨Kun+1, v⟩ −
1

2σ
||v − vn||2 (26b)

wn+1 = 2vn+1 − vn. (26c)

From now on, we focus on the two-dimensional problem and the extension to higher
dimensions is straightforward. We first derive an explicit formula of (26a). With the notation
in Section 2, let Fu and û be the normalized discrete Fourier transform, i.e., Fu = û and
⟨u, v⟩RN = ⟨Fu,Fv⟩CN . Notice that the matrix K is circulant thus diagonalizable by the
1D normalized DFT matrix T , which implies that the discrete gradient matrix K and the
2D DFT matrix F commute. Regard F as an N ×N matrix, then with (9), we get

argmin
{u∈RN :û(k)=bk,k∈S}

⟨Ku,wn⟩R2N +
1

2τ
||K(u− un)||2R2N

= argmin
{u:û(k)=bk,k∈S}

⟨
(
F 0
0 F

)
Ku,

(
F 0
0 F

)
wn⟩C2N +

1

2τ
||
(
F 0
0 F

)
K(u− un)||2C2N

= argmin
{u:û(k)=bk,k∈S}

⟨u,F∗Λ∗
(
F 0
0 F

)
wn⟩C2N +

1

2τ
||ΛF(u− un)||2C2N

Let v̄ denote the complex conjugate of v. Since both F∗Λ∗
(
F 0
0 F

)
= K∗ and F∗Λ∗ΛF =

K∗K are real-valued matrices, by taking the derivative with respect to u ∈ RN , we get

τF∗Λ∗
(
F 0
0 F

)
wn + F∗Λ∗ΛF(un+1 − un) = 0. For w ∈ R2N , let w =

(
w1

w2

)
with

w1, w2 ∈ RN . With the notation Fw = ŵ, we have F∗Λ∗
(
F 0
0 F

)
w = F∗Λ∗

(
ŵ1

ŵ2

)
=

F∗
(
(Λ⊗ I)ŵ1

(I ⊗ Λ)ŵ2

)
. Let λ1

k (k = 1, · · · , N) be the diagonal entries of Λ ⊗ I and λ2
k (k =

1, · · · , N) be the diagonal entries of I ⊗ Λ, we obtain the update rule in Fourier domain:

ûn+1(k) = bk, k ∈ S

ûn+1(k) = ûn(k)− τ
λ1
kŵ

1
n(k) + λ2

kŵ
2
n(k)

|λ1
k|2 + |λ2

k|2
, k /∈ S

Since (26b) can be rewritten as vn+1 = argmin{v∈[RN ]d:||v||∞,2≤1} ||v−(vn+σKun+1)||2,
(26b) can be implemented as the projection of vk + σKuk+1 onto the ∥ · ∥∞,2 ball:

vk+1 = Projection{v:∥v∥∞,2≤1}(vk + σKuk+1) =
vk + σKuk+1

max(1, |vk + σKuk+1|)
.
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