
Journal of Computational and Applied Mathematics 00 (2024) 1–23

Journal
Logo

On the convergence of orthogonalization-free conjugate gradient
method for extreme eigenvalues of Hermitian matrices: a

Riemannian optimization interpretation

Shixin Zhenga, Haizhao Yangb, Xiangxiong Zhangc

aDepartment of Mathematics, Purdue University, West Lafayette, IN, USA, zheng513@purdue.edu
bDepartment of Mathematics, University of Maryland College Park, MD, USA, hzyang@umd.edu

cDepartment of Mathematics, Purdue University, West Lafayette, IN, USA, zhan1966@purdue.edu

Abstract
In many applications, it is desired to obtain extreme eigenvalues and eigenvectors of large Hermitian matrices by efficient and
compact algorithms. In particular, orthogonalization-free methods are preferred for large-scale problems for finding eigenspaces
of extreme eigenvalues without explicitly computing orthogonal vectors in each iteration. For the top p eigenvalues, the simplest
orthogonalization-free method is to find the best rank-p approximation to a positive semi-definite Hermitian matrix by algorithms
solving the unconstrained Burer-Monteiro formulation. We show that the nonlinear conjugate gradient method for the uncon-
strained Burer-Monteiro formulation is equivalent to a Riemannian conjugate gradient method on a quotient manifold with the
Bures-Wasserstein metric, thus its global convergence to a stationary point can be proven. Numerical tests suggest that it is effi-
cient for computing the largest k eigenvalues for large-scale matrices if the largest k eigenvalues are nearly distributed uniformly.

Keywords:
Hermitian matrices, extreme eigenvalues, orthogonalization free, conjugate gradient, Riemannian optimization, quotient manifold,
Bures-Wasserstein metric

1. Introduction

1.1. The eigenvalue problem of Hermitian positive definite matrices
In this paper, we are interested in solving the eigenvalue problem for a Hermitian matrix B ∈ Cn×n to find its

largest p eigenvalues and the corresponding eigenvectors. For large enough µ > 0, A := B + µI ∈ Cn×n is a positive
definite Hermitian matrix with the same extreme eigenspaces. Thus we focus only on Hermitian positive definite or
semi-definite matrices.

Extreme eigenvalue problems for Hermitian matrices naturally arise in many applications [1, 2, 3, 4, 5, 6, 7].
For example, many problems can be cast as a graph, for which the adjacency matrix and the graph Laplacian are
real symmetric thus Hermitian [8]. The extreme eigenvalues and eigenvectors of these matrices contain information
about the graph and the point cloud data such as diffusion maps [9]. Notice that the discussion in this paper also
applies to the smallest k eigenvalues for a positive definite Hermitian matrix B by considering either A = µI − B with
large enough µ or A = B−1 if an efficient implementation of linear system solver for Bx = b is available, i.e., the
matrix-vector multiplication B−1b can be efficiently implemented.

The extreme eigenvalue problem can be written as an optimization problem, with many different cost functions to
consider. The most well-known one is to minimize the multicolumn Rayleigh quotient

minimize
x∈Cn×p

f (x) := tr
(
(x∗x)−1x∗Ax

)
. (1)

1

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 2

If assuming the spectrum of x∗x is bounded by one and take the inverse of x∗x as the first order approximation of the
Neumann series expansion, then as an approximation to multicolumn Rayleigh quotient, a popular method known as
orbital minimization method (OMM) is to minimize the cost function [10]:

minimize
x∈Cn×p

f (x) := tr ((2I − x∗x)x∗Ax) . (2)

Another simple formulation is to consider optimization over the noncompact Stiefel manifold Cn×p
∗ = {X ∈ Cn×p:

rank(X)=p}:
minimize

x∈Cn×p
∗

f (x) := 1
2 ∥xx∗ − A∥2F , (3)

where ∥ · ∥F is the matrix Frobenius norm. Various orthogonalization-free algorithms for solving both (2) and (3) were
considered and compared numerically in [11].

A third choice is LOBPCG method first introduced in [12]. A critical step in the LOBPCG method is a Rayleigh-
Ritz procedure in which an orthonormal basis is computed to simplify calculations and ensure numerical stability
and it is the only orthogonalization step. LOBPCG without orthogonalization also gives an orthogonalization-free
method, which may still work well for many problems in practice, though it might suffer from some instability when
the number of eigenpairs to be computed becomes large. Careful base selection strategies [13] [14] can improve its
robustness.

1.2. The real inner product and Fréchet derivatives

In this paper, we mainly focus on the cost function (3) and consider the nonlinear conjugate gradient (CG) methods
solving (3).

Since f (x) is real-valued and thus not holomorphic, f (x) does not have a complex derivative with respect to
x ∈ Cn×p. The linear spaces of complex matrices will therefore be regarded as vector spaces over R. For any real
vector space E, the inner product on E is denoted by ⟨., .⟩E. For real matrices A, B ∈ Rn×p, the Hilbert–Schmidt inner
product is ⟨A, B⟩Rn×p = tr(AT B). Letℜ(A) and ℑ(B) represent the real and imaginary parts of a complex matrix A. For
A, B ∈ Cn×p, the real inner product for the real vector space Cn×p then equals

⟨A, B⟩Cn×p := ℜ(tr(A∗B)), (4)

where ∗ is the conjugate transpose. We emphasize that (4) is a real inner product, rather than the complex Hilbert—
Schmidt inner product. It is straightforward to verify that (4) can be written as

⟨A, B⟩Cm×n = tr(ℜ(A)Tℜ(B)) + tr(ℑ(A)Tℑ(B)) =
〈
ℜ(A),ℜ(B)

〉
Rm×n +

〈
ℑ(A),ℑ(B)

〉
Rm×n .

With the real inner product (4) for the real vector space Cn×p, a Fréchet derivative for the real-valued function f (x)
can be defined as

∇ f (x) = ∇ fℜ(x)(x) + i∇ fℑ(x)(x) ∈ Cn×p, (5)

where ∇ fℜ(x)(x),∇ fℑ(x)(x) ∈ Rn×p are the gradient of the cost function f with respect to the real and imaginary parts of
x, respectively. In particular, for f (x) = 1

2∥A(xx∗) − b∥2F with a linear operatorA, the Fréchet derivative (5) becomes

∇ f (x) = 2A∗(A(xx∗) − b)x,

whereA∗ is the adjoint operator ofA. See Appendix in [15] for details.

1.3. The conjugate gradient method solving the Burer-Monteiro formulation

Notice that Cn×p
∗ is an open set in the Euclidean space Cn×p, thus any line search method xk+1 = xk + αkηk starting

with the iterate xk ∈ Cn×p
∗ and a small enough step size αk will give xk+1 ∈ Cn×p

∗ . Therefore, any such line search
algorithm can be regarded as the same algorithm solving an unconstrained problem with a non-degenerate xk ∈ Cn×p

∗ :

minimize
x∈Cn×p

f (x) := 1
2 ∥xx∗ − A∥2F . (6)

2

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 3

In the literature, the formulation (6) is often called the Burer-Monteiro method for Hermitian positive semi-definite
(PSD) fixed rank p constraint, i.e., for minimizing ∥X − A∥2F where X is a Hermitian PSD matrix of rank p.

The nonlinear conjugate gradient method for (6) can be written asxk+1 = xk + αkηk,

ηk+1 = −∇ f (xk) + βkηk = −2(xx∗ − A)x + βkηk,
(7)

where αk is the step size, βk is a nonlinear coefficient computed by various formulae, and ηk is the search direction in
CG method. In this paper, we only consider two variants for how to compute βk: one is the Polak–Ribiére CG method,
and the other one is the Fletcher-Reeves CG method for computing the conjugate direction [16].

1.4. The main result: the convergence of Riemannian conjugate gradient method via quotient geometry

The CG method (7) for finding top p eigenvalues of Hermitian PSD matrix A has been considered in [11]. In
particular, (7) does not require any orthogonalization operation in each iteration, and its performance is superior
especially for uniformly distributed eigenvalues in numerical tests.

The landscape of (6) has been well studied in [11, 17, 18, 19] and its local minimizers must also be global
minimizers. Theorem 2.1 in [11] implies that, if x̂ ∈ Cn×p

∗ satisfies ∇ f (x̂) = 0 for f (x) = 1
2∥xx∗ − A∥2F , then x̂ = UO

where O ∈ Cp×p is a unitary matrix, and U ∈ Cn×p has orthogonal columns as some eigenvectors of A. Furthermore,
any local minimum is a global minimum, i.e., any local minimizer of (6) in Cn×p

∗ has the form x̂ = UO with columns
of U being eigenvectors of a Hermitian PSD matrix A corresponding to its top p eigenvectors.

However, the convergence of CG method (7) for (6) has never been rigorously justified.
Notice that there is an ambiguity up to unitary matrices in both formulations (6) and (3), that is f (xO) = f (x)

for any O ∈ Op, where Op are all p × p unitary matrices. To this end, mathematically it is proper to consider an
equivalence class for each x ∈ Cn×p

∗ :
[x] = {xO : ∀O ∈ Op},

and a quotient set
Cn×p
∗ /Op := {[x] : ∀x ∈ Cn×p

∗ }.

The quotient set with a proper metric becomes a quotient manifold. It is not uncommon to abuse notation by
letting x denote the equivalent class [x], and x denote one representation of this equivalent class. So we can instead
consider the optimization over the quotient manifold:

minimize
x∈Cn×p

∗ /Op

h(x) := f (x) = 1
2

∥∥∥xx∗ − A
∥∥∥2

F . (8)

Following the recent progress in [15] for Riemannian optimization over Hermitian PSD fixed rank manifolds, we
first show that the simple unconstrained Burer-Monteiro CG method (7) is equivalent to a Riemannian CG method
solving (8) over the quotient manifold Cn×p

∗ /Op with the Bures-Wasserstein metric [20] and proper retraction and
vector transport operators. Then with existing Riemannian optimization convergence theory, we can establish the
global convergence of the simple algorithm (7) to a stationary point of (3). We emphasize that the main result of this
paper is the global convergence proof for the classical simple algorithm (7), and we do not modify the algorithm (7)
at all. The Riemannian optimization is used only for proving convergence of (7), and (7) should not be implemented
via much more complicated Riemannian optimization over a quotient manifold.

1.5. Related work and contributions

To be more specific, we will show that both the Polak–Ribiére CG method and the Fletcher-Reeves CG method in
(7) are equivalent to their Riemannian variants over the quotient manifold Cn×p

∗ /Op with the Bures-Wasserstein metric
[20].

Moreover, this equivalence allows us to establish the global convergence of the conventional Fletcher-Reeves CG
method (7) to a stationary point of (3), following the convergence of the Riemannian Fletcher-Reeves CG method in
[21]. For the problem (6), it has been well known that local minima are also global minima [17, 18, 19, 11], e.g.,
critical points are either global minima or saddle points. Combined with the result that first-order methods almost

3

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 4

always avoid strict saddle points [22], we obtain a justification of the global convergence of the conventional Fletcher-
Reeves CG method (7) to the global minimizer of (3). For the Polak–Ribiére CG method, the convergence is much
harder to establish, but its numerical performance is often superior.

In the literature, notable convergence results for orthogonalization-free methods include global convergence of
perturbed gradient descent for (6) in [18] and global convergence of TriOFM in [23].

The same CG algorithm (7) was also considered in [11] for real symmetric matrices. Both our algorithm and
convergence proof also apply to the Hermitian matrices. We also verify the numerical performance of the discussed
algorithms on large matrices of the size millions by millions. In particular, our numerical tests for large matrices are
consistent with the observation in [11] that the simple CG method (7) is superior for nearly uniformly distributed
extreme eigenvalues.

This paper mainly focuses on the convergence analysis of the simplest orthogonalization-free method (7) which
is fully scalable in parallel computing. Developing distributed and parallel numerical implementation will be left as
future work. In the literature, most numerical solvers for eigenvalue problems rely on orthogonalization to achieve
high efficiency in sequential computing. Well-developed algorithms with orthogonalization include [12, 24, 25, 26].
To achieve better parallel efficiency for a full eigendecomposition, spectrum slicing can be applied to estimate different
eigenpairs in different spectrum regions simultaneously [27, 28, 29, 30, 31, 32].

1.6. Outline of this paper

We first review basic concepts and known results for Riemannian quotient manifolds Cn×p
∗ /Op in Section 2. Then

we review the equivalence of the conventional CG method to the Riemannian CG method in Section 3. The conver-
gence proof of the Riemannian CG method is provided in Section 4. In Section 5, we show that the simple coordinate
descent method of minimizing (6) is also equivalent to a coordinate Riemannian gradient descent method. Section 6
includes numerical tests. Concluding remarks are given in Section 7.

2. Preliminaries: Riemannian Quotient Manifold Cn×p
∗
/Op

In this section, we briefly review some known results of the Riemannian geometry of Cn×p
∗ /Op that will be used

in this paper. Any missing details can be found in [15].

2.1. Cn×p
∗ /Op as a quotient manifold

Define Cn×p
∗ = {X ∈ Cn×p : rank(X) = p} and an equivalence relation on Cn×p

∗ through the smooth Lie group action
of unitary matrices Op on the manifold Cn×p

∗ :

Cn×p
∗ × Op → Cn×p

∗ , (x,O) 7→ xO.

This action defines an equivalence relation on Cn×p
∗ by setting x1 ∼ x2 if there exists an O ∈ Op such that x1 = x2O.

Hence we have constructed a quotient space Cn×p
∗ /Op that removes this ambiguity. The set Cn×p

∗ is called the total
space of Cn×p

∗ /Op.
Denote the natural projection as

π : Cn×p
∗ → Cn×p

∗ /Op, x 7→ x.

We denote the equivalence class containing x as

[x] = π−1(x) =
{
xO|O ∈ Op

}
.

Following Corollary 21.6 and Theorem 21.10 of [33], Cn×p
∗ /Op is a smooth manifold as stated in the following

theorem.

Theorem 2.1. The quotient space Cn×p
∗ /Op is a quotient manifold over R of dimension 2np − p2 and has a unique

smooth structure such that the natural projection π is a smooth submersion.

4

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 5

2.2. Vertical space

The equivalence class [x] = π−1(x) is an embedded submanifold of Cn×p
∗ ([34, Prop. 3.4.4]). The tangent space of

[x] at x is therefore a subspace of Cn×p called the vertical space at x and is denoted byVx. The following proposition
characterizesVx.

Proposition 2.2. The vertical space at x ∈ [x] =
{
xO|O ∈ Op

}
, which is the tangent space of [x] at x is

Vx =
{
xΩ|Ω∗ = −Ω,Ω ∈ Cp×p} .

2.3. Riemannian metric

A Riemannian metric g is a smoothly varying inner product defined on the tangent space. That is, gx(·, ·) is an
inner product on TxCn×p

∗ . Once we choose a Riemannian metric g for Cn×p
∗ , we can obtain the orthogonal complement

in TxCn×p
∗ of Vx with respect to the metric. In other words, we choose the horizontal distribution as orthogonal

complement w.r.t. Riemannian metric, see [34, Section 3.5.8]. This orthogonal complement toVx is called horizontal
space at x and is denoted byHx. We thus have

TxCn×p
∗ = Hx ⊕Vx. (9)

Once we have the horizontal space, there exists a unique vector ξx ∈ Hx that satisfies D π(x)[ξx] = ξx for each
ξx ∈ TxCn×p

∗ /Op. This ξx is called the horizontal lift of ξx at x.
In this paper, we consider the Riemannian metric on Cn×p

∗ to be the canonical Euclidean inner product on Cn×p

defined by
gx(A, B) := ⟨A, B⟩Cn×p = ℜ(tr(A∗B)), ∀A, B ∈ TxCn×p

∗ = Cn×p. (10)

Proposition 2.3. Under metric g defined in (10), the horizontal space at x satisfies

Hx =
{
z ∈ Cn×p : x∗z = z∗x

}
=

{
x(x∗x)−1S + x⊥K|S ∗ = S , S ∈ Cp×p,K ∈ C(n−p)×p

}
.

2.4. Projections onto vertical space and horizontal space

Due to the direct sum property (9), for our choices of HY , there exist projection operators for any z ∈ TYCn×p
∗ =

Cn×p toHY as
z = PVx (z) + PHx (A).

It is straightforward to verify the following formulae for projection operators PVY and PHY .

Proposition 2.4. The orthogonal projections of any z ∈ Cn×p toVx andHx are

PVx (z) = xΩ, PHx (z) = z − xΩ,

where Ω is the skew-symmetric matrix that solves the Lyapunov equation

Ωx∗x + x∗xΩ = x∗z − z∗x.

Remark 2.5. The solution X to the Lyapunov equation XE + EX = Z for a Hermitian E is unique if E is Hermitian
positive-definite [35, Section 2.2]. Let E = UΛU∗ be the SVD, then the Lyapunov equation XE + EX = Z becomes

(U∗XU)Λ + Λ(U∗XU) = U∗ZU,

which gives the solution
(U∗XU)i, j = (U∗ZU)i, j/(Λi,i + Λ j, j).

5

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 6

2.5. Cn×p
∗ /Op as Riemannian quotient manifold

First, we show in the following lemma the relationship between the horizontal lifts of the quotient tangent vector
ξx lifted at different representatives in [x].

Lemma 2.6. Let η be a vector field on Cn×p
∗ /Op, and let η be the horizontal lift of η. Then for each x ∈ Cn×p

∗ , we have

ηxO = ηxO, ∀O ∈ Op.

Proof. See [35, Prop. A.8]

Recall from [34, Section 3.6.2] that if the expression gx(ξx, ζ x) does not depend on the choice of x ∈ π−1(x) for
every x ∈ Cn×p

∗ /Op and every ξx, ζx ∈ TxCn×p
∗ /Op, then

gx(ξx, ζx) := gx

(
ξx, ζ x

)
(11)

defines a Riemannian metric on the quotient manifold Cn×p
∗ /Op. By Lemma 2.6, it is straightforward to verify that

the Riemannian metric (10) on Cn×p
∗ induces a Riemannian metric on Cn×p

∗ /Op defined as (11). The quotient manifold
Cn×p
∗ /Op endowed with a Riemannian metric defined in (11) is called a Riemannian quotient manifold. By abuse

of notation, we use g for denoting Riemannian metrics on both total space Cn×p
∗ and quotient space Cn×p

∗ /Op. This
particular metric is also call the Bures-Wasserstein metric for PSD matrices of fixed-rank [20].

2.6. Riemannian gradient

The cost function of (6) induces a cost function on Cn×p
∗ /Op.

h : Cn×p
∗ /Op → C, x 7→ f (x). (12)

That is, f = h ◦ π. Notice when we solve (3), we restrict f on the noncompact Stiefel manifold Cn×p
∗ , which is a

submanifold of Cn×p. Hence the Riemannian gradient of f on Cn×p
∗ at x is the projection of the Fréchet gradient of

f on Cn×p, denoted by ∇ f (x), onto the tangent space TxCn×p
∗ = Cn×p. Since ∇ f is already in Cn×p, the projection is

identity. That is,
grad f (x) = ∇ f (x). (13)

Remark 2.7. One can refer to [15, Appendix A] for more details about Fréchet derivative. A Fréchet gradient for
any real-valued function f (X) at X ∈ Cm×n can be defined as

∇ f (X) = ∇ fℜ(X)(X) + i∇ fℑ(X)(X) ∈ Cm×n, (14)

where ∇ fℜ(X)(X),∇ fℑ(X)(X) ∈ Rm×n are the gradient of f with respect to the real and imaginary parts of X, respec-
tively. In particular, for the cost function considered in this paper f (x) = 1

2∥xx∗ − A∥2F , the Fréchet gradient (14)
becomes

∇ f (x) = 2(xx∗ − A)x.

Now consider the Riemannian gradient of h at x ∈ Cn×p
∗ /Op. grad h(x) is a tangent vector in TxCn×p

∗ /Op . The next
theorem shows that the horizontal lift of grad h(x) can be obtained from the Riemannian gradient of f .

Theorem 2.8. The horizontal lift of the Riemannian gradient of h at x is the Riemannian gradient of f at x. That is,

grad h(x)x = grad f (x).

Therefore, although grad f (x) belongs in Cn×p, it is automatically inHx.

Proof. See [34, Section 3.6.2].

6

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 7

2.7. Retraction

The retraction on the quotient manifold Cn×p
∗ /Op can be defined using the retraction on the total space Cn×p

∗ . Let
Y ∈ Cn×p

∗ , for any Z ∈ Cn×p and a step size τ > 0,

RY (τZ) := Y + τZ,

is a retraction on Cn×p
∗ if Y + τZ remains full rank, which is ensured for small enough τ. Then Lemma 2.6 indicates

that R satisfies the conditions of [34, Prop. 4.1.3], which implies that

Rx(τηx) := π(Rx(τηx)) = π(x + τηx) (15)

defines a retraction on the quotient manifold Cn×p
∗ /Op for a small enough step size τ > 0.

2.8. Vector transport

We use differentiated retraction as our vector transport [34, Section 8.1.4].

Tηx (ξx) := D Rx(ηx)[ξx] =
d
dt

∣∣∣∣∣
t=0

Rx(ηx + tξx). (16)

Notice that

Tηx (ξx) = D Rx(ηx)[ξx] = D π
(
Rx(ηx)

)
[D Rx(ηx)[ξx]] = D π

(
x + ηx

) [d
dt

∣∣∣∣∣
t=0

Rx

(
ηx + tξx

)]
= D π

(
x + ηx

) [d
dt

∣∣∣∣∣
t=0

(
x + ηx + tξx

)]
= D π

(
x + ηx

) [
ξx

]
= D π

(
x + ηx

) [
PHx+ηx

(
ξx

)]
.

Hence the horizontal lift of a transported vector is simply the projection of the original horizontal lift to the new
horizontal space, as shown in the following formula.

Tηx (ξx)x+ηx
= PHx+ηx

(ξx). (17)

3. The Conjugate Gradient Methods

We first recall the traditional conjugate gradient method for solving (6), which is summarized as Algorithm 1. We
present the abstract Riemannian conjugate gradient method for solving (8) over the quotient manifold as Algorithm 2,
with Wolfe conditions

h(Rxk (αkηk)) ≤ h(xk) + c1αkgxk (grad h(xk), ηk), (18)∣∣∣gRxk (αkηk)(grad h(Rxk (αkηk)),D Rxk (αkηk)[ηk])
∣∣∣ ≤ c2

∣∣∣gxk (grad h(xk), ηk)
∣∣∣ . (19)

0 < c1 < c2 < 1.
The abstract Algorithm 2 can be implemented as Algorithm 3, in which each tangent vector is treated as horizontal

lift and each iterate is a representative of its equivalence class, and it is independent of the choice of the representative
of the equivalent class.

7

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 8

Algorithm 1 (Polak–Ribiére or Fletcher-Reeves) Conjugate Gradient on Cn×p

Require: initial iterate x0 ∈ Cn×p, tolerance ε > 0, initial descent direction as negative gradient η0 = −∇ f (x0) =
−2(x0x∗0 − A)x0

1: for k = 0, 1, 2, . . . do
2: Use backtracking to compute the step size αk > 0 satisfying the strong Wolfe conditions
3: Obtain the new iterate by

xk+1 = xk + αkηk

4: Compute the gradient
ξk+1 := ∇ f (xk+1)

5: Check for convergence
if ∥ξk+1∥F < ε, then break

6: Compute a conjugate direction by the Polak–Ribiére method or the Fletcher-Reeves method
ηk+1 = −ξk+1 + βk+1ηk

where βk+1 =

max

(
0,
⟨∇ f (xk+1),∇ f (xk+1) − ∇ f (xk)⟩

⟨∇ f (xk),∇ f (xk)⟩

)
if using Polak–Ribiére

⟨∇ f (xk+1),∇ f (xk+1)⟩
⟨∇ f (xk),∇ f (xk)⟩

if using Fletcher-Reeves.

7: end for

Algorithm 2 Riemannian Conjugate Gradient on the quotient manifold Cn×p
∗ /Op with metric g

Require: initial iterate x0 ∈ Cn×p
∗ /Op, tolerance ε > 0, tangent vector η0 = −grad h(x0)

1: for k = 0, 1, 2, . . . do
2: Compute the step size αk > 0 satisfying the strong Wolfe conditions (18) and (19)
3: Obtain the new iterate by retraction

xk+1 = Rxk (αkηk)

4: Compute the gradient
ξk+1 := grad h(xk+1)

5: Check for convergence
if ∥ξk+1∥ :=

√
gxk+1 (ξk+1, ξk+1) < ε, then break

6: Compute a conjugate direction by the Polak–Ribiére (PR+) method or the Fletcher-Reeves (FR) method, and
vector transport

ηk+1 = −ξk+1 + βk+1Tαkηk (ηk)

where βk+1 =

max

0, gxk+1

(
grad h(xk+1), grad h(xk+1) − Tαkηk (ξk)

)
gxk

(
grad h(xk), grad h(xk)

) PR+

gxk+1

(
grad h(xk+1), grad h(xk+1)

)
gxk

(
grad h(xk), grad h(xk)

) FR

7: end for

8

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 9

Algorithm 3 Implementation for Riemannian Conjugate Gradient on the quotient manifold Cn×p
∗ /Op with metric g

Require: initial iterate x0 ∈ Cn×p
∗ , tolerance ε > 0, initial descent direction as η0 = −grad f (x0) = −2(x0x∗0 − A)x0

1: for k = 0, 1, 2, . . . do
2: Compute the step size αk > 0 satisfying the strong Wolfe conditions
3: Obtain the new iterate by retraction

xk+1 = Rxk (αkηk) = xk + αkηk

4: Compute the horizontal lift of gradient
ξk+1 := grad f (xk+1) = 2(xk+1x∗k+1 − A)xk+1

5: Check for convergence

if
∥∥∥ξk+1

∥∥∥ :=
√

gxk+1 (ξk+1, ξk+1) < ε, then break
6: Compute a conjugate direction by PR+ or by FR and vector transport

ηk+1 = −ξk+1 + βk+1Tαkηk (ηk)xk+1

where βk+1 =

max

0, gxk+1

(
grad f (xk+1), grad f (xk+1) − Tαkηk (ξk)xk+1

)
gxk

(
grad f (xk), grad f (xk)

) PR+

gxk+1

(
grad f (xk+1), grad f (xk+1)

)
gxk

(
grad f (xk), grad f (xk)

) FR

7: end for

The following results were first proven in [15]. For completeness, we include a detailed proof.

Lemma 3.1. Let ηk be the descent direction generated by Algorithm 2. Then we have

Tαkηk (ηk)xk+1
= PHxk+αkηk

(
ηk

)
= ηk. (20)

Proof. The first equality follows from (17). Recall the projection formula given in proposition 2.4. Denote xk+1 =

xk + αkηk. Then we have
PHxk+αkηk

(
ηk

)
= ηk − xk+1Ωk. (21)

Hence in order to show PHxk+αkηk

(
ηk

)
= ηk, it is equivalent to show the Lyapunov equation

Ωk x∗k+1xk+1 + x∗k+1xk+1Ωk = x∗k+1ηk − η
∗
k xk+1 (22)

only has trivial solution Ωk = 0 for all k ≥ 0.
The solution X to the Lyapunov equation XE + EX = Z for a Hermitian E is unique if E is Hermitian positive-

definite [35, Section 2.2]. Thus (22) has a unique solution if x̄k+1 ∈ Cn×p
∗ . Thus we only need to show the right-hand

side of the equation is zero. We prove this by induction.
When k = 0, the right hand side of (22) is

x∗1η0 − η
∗
0x1 = (x0 + α0η0)∗η0 − η

∗
0(x0 + α0η0) = x∗0η0 − η

∗
0x0 = −2x∗0(x0x∗0 − A)x0 + 2x∗0(x0x∗0 − A∗)x0 = 0.

Now suppose x∗kηk−1 − η
∗
k−1xk = 0 and hence PHxk

(ηk−1) = ηk−1. Then

x∗k+1ηk − η
∗
k xk+1 = (xk + αkηk)∗ηk − η

∗
k(xk + αkηk) = x∗kηk − η

∗
k xk

= x∗k
(
−ξk + βkPHxk

(ηk−1)
)
−

(
−ξk + βkPHxk

(ηk−1)
)∗

xk = x∗k
(
−ξk + βkηk−1

)
−

(
−ξk + βkηk−1

)∗
xk

= −x∗kξk + ξ
∗

k xk = −2x∗k(xk x∗k − A)xk + 2x∗k(xk x∗k − A∗)xk = 0.

Hence PHxk+1
(ηk) = ηk also holds and we have proved this lemma.

9

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 10

We can now state our first main result:

Theorem 3.2. Algorithm 3 is equivalent to Algorithm 1, which is the conjugate gradient method solving (6), in the
sense that they produce exactly the same iterates if started from the same initial point.

Proof. By (13), the gradients generated by Algorithm 1 and Algorithm 3 are the same. By Lemma 3.1 and the
equivalence between the Riemannian metric on Cn×p

∗ and the inner product on Cn×p, we see that βk generated by these
two algorithms are also equivalent. Hence the conjugate directions are also the same. So the two algorithms generate
the same iterates.

4. The Convergence of the Fletcher-Reeves Conjugate Gradient Method

In this section, we will prove that the Riemannian Fletcher-Reeves Conjugate Gradient method converges to a
stationary point thus Algorithm 1 also converges by the equivalence Theorem 3.2.

The discussion in this section follows the same lines as in standard convergence theory, e.g., [21]. The cost
function and vector transport considered in this paper satisfy the conditions for convergence analysis in [21]. Many
results in this section are standard convergence results for a line search method, see [16]. For completeness, we
include the full proof.

Let ηk ∈ TxkC
n×p
∗ /Op be a descent direction. Define the angle θk between −grad h(xk) and ηk by

cos θk = −
gxk

(
grad h(xk), ηk

)∥∥∥grad h(xk)
∥∥∥

xk
∥ηk∥xk

. (23)

Let L := {x ∈ Cn×p
∗ /Op : 0 ≤ h(x) ≤ h(x0)} and π−1(L) = {x ∈ Cn×p

∗ : 0 ≤ f (x) ≤ f (x0)}. We can show that π−1(L)
is bounded.

Lemma 4.1. There is a constant C such that ∥x̄∥F ≤ C, ∀x̄ ∈ π−1(L).

Proof. Assume it is not true, then ∀n ∈ N,∃x̄n ∈ π
−1(L) such that ∥x̄n∥F ≥ n. Let yn =

x̄n
∥x̄n∥F

, then ∥yn∥F = 1 and
x̄n = ∥x̄n∥Fyn = anyn with an ≥ n. Thus f (x̄n) = 1

2∥a
2
nyny∗n − A∥2F → ∞ since an → ∞ and ∥yn∥F = 1. On the other

hand, x̄n ∈ π
−1(L) implies that f (x̄n) should be bounded, which is a contradiction.

Lemma 4.2. The Riemannian gradient of f , i.e., grad f (x) = 2(xx∗ − A)x is Lipschitz continuous on π−1(L). That is,
there exists a constant L > 0 such that

∥grad f (y) − grad f (x)∥F ≤ L ∥y − x∥F , for all x, y ∈ π−1(L). (24)

Proof. It suffices to show that q : x 7→ xx∗x is Lipschitz continuous on π−1(L). Let x, y ∈ π−1(L). Then ∥x∥F ≤
C, ∥y∥F ≤ C by Lemma 4.2.

∥q(x) − q(y)∥F =
∥∥∥xx∗x − yy∗y

∥∥∥
F =

∥∥∥xx∗x − xx∗y + xx∗y − yy∗y
∥∥∥

F

≤
∥∥∥xx∗x − xx∗y

∥∥∥
F +

∥∥∥xx∗y − yy∗y
∥∥∥

F =
∥∥∥xx∗x − xx∗y

∥∥∥
F +

∥∥∥xx∗y − yx∗y + yx∗y − yy∗y
∥∥∥

F

≤
∥∥∥xx∗x − xx∗y

∥∥∥
F +

∥∥∥xx∗y − yx∗y
∥∥∥

F +
∥∥∥yx∗y − yy∗y

∥∥∥
F

≤
∥∥∥xx∗

∥∥∥ ∥x − y∥F + ∥x − y∥F
∥∥∥x∗

∥∥∥
F ∥y∥F + ∥y∥F

∥∥∥x∗ − y∗
∥∥∥

F ∥y∥F ≤ 3C2 ∥x − y∥F .

Theorem 4.3 (Zoutendijk’s theorem on manifold). Let ηk be a descent direction and let αk satisfy the strong Wolfe
conditions (18) and (19). Then for the cost function h defined in 12, the following series converges.

∞∑
k

cos2 θk ∥grad h(xk)∥2xk
< ∞.

10

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 11

Proof. From the strong Wolfe condition (19) we have

(c2 − 1)gxk (grad h(xk), ηk) ≤ gxk+1

(
(grad h(Rxk (αkηk),D Rxk (αkηk)[ηk]

)
− gxk

(
grad h(xk), ηk

)
= gxk+1

(
grad f (xk + αkηk), PHxk+αkηk

(ηk)
)
− gxk

(
grad f (xk), ηk

)
= gxk+1

(
grad f (xk + αkηk), ηk

)
− gxk

(
grad f (xk), ηk

)
.

Notice that our Riemannian metric g is simply the inner product on the Euclidean space Cn×p, hence

gxk+1

(
grad f (xk + αkηk), ηk

)
− gxk

(
grad f (xk), ηk

)
=

〈
grad f (xk + αkηk) − grad f (xk), ηk

〉
. (25)

From Lemma 4.2 we know 〈
grad f (xk + αkηk) − grad f (xk), ηk

〉
≤ αkL

∥∥∥ηk

∥∥∥2
F .

Hence for any k we have

αk ≥
(c2 − 1)gxk (grad h(xk), ηk)

L
∥∥∥ηk

∥∥∥2
F

. (26)

Now it follows from (18) and (26) that

0 ≤ h(xk+1) ≤ h(xk) + c1αkgxk (grad h(xk), ηk)

≤ h(xk) −
c1(1 − c2)

L
cos2 θk

∥∥∥grad h(xk)
∥∥∥2

xk
≤ h(x0) −

c1(1 − c2)
L

k∑
j=0

cos2 θ j

∥∥∥grad h(x j)
∥∥∥2

x j
.

Hence
∞∑

k=0

cos2 θk
∥∥∥grad h(xk)

∥∥∥2
xk
≤

L
c1(1 − c2)

h(x0) < ∞. (27)

Lemma 4.4. If using Fletcher-Reeves method in Algorithm 2, then for 0 < c1 < c2 < 1/2, the search direction ηk is a
descent direction satisfying

−
1

1 − c2
≤

gxk (grad h(xk), ηk)

∥grad h(xk)∥2xk

≤
2c2 − 1
1 − c2

. (28)

Proof. We prove it by induction on k.
When k = 0, (28) holds since

gx0 (grad h(x0), η0)∥∥∥grad h(x0)
∥∥∥2

x0

=
gx0 (grad h(x0),−grad h(x0))∥∥∥grad h(x0)

∥∥∥2
x0

= −1.

Now suppose (28) holds for some k ≥ 0.
Recall that we use differentiated retraction as our vector transport:

Tαkηk (ηk) = D Rxk (αkηk)[ηk].

And the βk+1 in Fletcher-Reeves method is defined as

βk+1 =
gxk+1

(
grad h(xk+1), grad h(xk+1)

)
gxk

(
grad h(xk), grad h(xk)

) .

Hence the middle term in (28) for k + 1 is

gxk+1 (grad h(xk+1), ηk+1)∥∥∥grad h(xk+1)
∥∥∥2

xk+1

=
gxk+1

(
grad h(xk+1),−grad h(xk+1) + βk+1Tαkηk (ηk)

)
∥∥∥grad h(xk+1)

∥∥∥2
xk+1

11

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 12

=
gxk+1

(
grad h(xk+1),−grad h(xk+1) + βk+1D Rxk (αkηk)[ηk])

)∥∥∥grad h(xk+1)
∥∥∥2

xk+1

= −1 +
gxk+1

(
grad h(xk+1)),D Rxk (αkηk)[ηk]

)∥∥∥grad h(xk)
∥∥∥2

xk

. (29)

From the strong Wolfe condition (19) we have

c2gxk (grad h(xk), ηk) ≤ gxk+1 (grad h(xk+1),D Rxk (αkηk)[ηk]) ≤ −c2gxk (grad h(xk), ηk). (30)

Hence from (29) and (30) we have

−1 + c2
gxk (grad h(xk), ηk)∥∥∥grad h(xk)

∥∥∥2
xk

≤
gxk+1 (grad h(xk+1), ηk+1)∥∥∥grad h(xk+1)

∥∥∥2
xk+1

≤ −1 − c2
gxk (grad h(xk), ηk)∥∥∥grad h(xk)

∥∥∥2
xk

.

And the result (28) follows from the induction hypothesis.

Theorem 4.5. For cost function h in (12), the Algorithm 2 with Fletcher-Reeves method generates iterates xk such
that

lim inf
k→∞

∥grad h(xk)∥xk
= 0. (31)

Proof. If grad h(xk) = 0 for some k = k0. Then grad h(xk) = 0 for all k ≥ k0.
So we consider grad h(xk) , 0 for all k. We shall prove (31) by contradiction. Suppose (31) does not hold. Then

there exists a constant c > 0 such that ∥∥∥grad h(xk)
∥∥∥

xk
≥ c > 0, ∀k ≥ 0. (32)

From (23) and (28) we have

cos θk ≥
1 − 2c2

1 − c2

∥∥∥grad h(xk)
∥∥∥

xk

∥ηk∥xk

. (33)

It follows by Theorem 4.3 that the following series converges.

∞∑
k=0

∥∥∥grad h(xk)
∥∥∥4

xk

∥ηk∥
2
xk

< ∞. (34)

For k ≥ 1, the strong Wolfe condition (19) and (28) gives rise to∣∣∣∣gxk

(
grad h(xk),Tαk−1ηk−1 (ηk−1)

)∣∣∣∣ ≤ −c2gxk−1

(
grad h(xk−1), ηk−1

)
≤

c2

1 − c2

∥∥∥grad h(xk−1)
∥∥∥2

xk−1
.

Hence we have the following recurrence equation for ∥ηk∥
2
xk

.

∥ηk∥
2
xk
=

∥∥∥−grad h(xk) + βkTαk−1ηk−1 (ηk−1)
∥∥∥2

xk

≤
∥∥∥grad h(xk)

∥∥∥2
xk
+ 2βk

∣∣∣∣gxk

(
grad h(xk),Tαk−1ηk−1 (ηk−1)

)∣∣∣∣ + β2
k

∥∥∥Tαk−1ηk−1 (ηk−1)
∥∥∥2

xk

≤
∥∥∥grad h(xk)

∥∥∥2
xk
+

2c2

1 − c2
βk

∥∥∥grad h(xk−1)
∥∥∥2

xk−1
+ β2

k

∥∥∥Tαk−1ηk−1 (ηk−1)
∥∥∥2

xk

=
∥∥∥grad h(xk)

∥∥∥2
xk
+

2c2

1 − c2

∥∥∥grad h(xk)
∥∥∥2

xk
+ β2

k

∥∥∥Tαk−1ηk−1 (ηk−1)
∥∥∥2

xk

=
1 + c2

1 − c2

∥∥∥grad h(xk)
∥∥∥2

xk
+ β2

k

∥∥∥Tαk−1ηk−1 (ηk−1)
∥∥∥2

xk
. (35)

12

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 13

Recall that we use differentiated retraction as our vector transport:

Tαk−1ηk−1 (ηk−1) = D Rxk−1 (αk−1ηk−1)[ηk−1] = D π(xk−1 + αk−1ηk−1)
[
PHxk−1+αk−1ηk−1

(ηk−1)
]
.

Hence∥∥∥Tαk−1ηk−1 (ηk−1)
∥∥∥2

xk
= gxk

(
Tαk−1ηk−1 (ηk−1),Tαk−1ηk−1 (ηk−1)

)
= gxk

(
Tαk−1ηk−1 (ηk−1)xk

,Tαk−1ηk−1 (ηk−1)xk

)
= gxk

(
PHxk−1+αk−1ηk−1

(ηk−1), PHxk−1+αk−1ηk−1
(ηk−1)

)
= gxk−1

(
ηk−1, ηk−1

)
= ∥ηk−1∥

2
xk−1
.

Hence (35) becomes the following recurrence formula for ∥ηk∥
2
xk

.

∥ηk∥
2
xk
≤

1 + c2

1 − c2

∥∥∥grad h(xk)
∥∥∥2

xk
+ β2

k ∥ηk−1∥
2
xk−1
. (36)

By recursively using (35) and recall the definition of βk in Fletcher-Reeves method we obtain

∥ηk∥
2
xk
≤

1 + c2

1 − c2

(∥∥∥grad h(xk)
∥∥∥2

xk
+ β2

k

∥∥∥grad h(xk−1)
∥∥∥2

xk−1
+ · · · + β2

kβ
2
k−1 . . . β

2
2

∥∥∥grad h(x1)
∥∥∥2

x1

)
+β2

kβ
2
k−1 . . . β

0
0 ∥η0∥

2
x0

=
1 + c2

1 − c2

∥∥∥grad h(xk)
∥∥∥4

xk

(∥∥∥grad h(xk)
∥∥∥−2

xk
+

∥∥∥grad h(xk)
∥∥∥−2

xk−1
+ · · · +

∥∥∥grad h(xk)
∥∥∥−2

x1

)
+

∥∥∥grad h(xk)
∥∥∥4

xk

∥∥∥grad h(x0)
∥∥∥−2

x0

<
1 + c2

1 − c2

∥∥∥grad h(xk)
∥∥∥4

xk

k∑
j=0

∥∥∥grad h(x j)
∥∥∥−2

x j
≤

1 + c2

1 − c2

∥∥∥grad h(xk)
∥∥∥4

xk

k + 1
c2 ,

where we have used the contradiction assumption (32) in the last inequality. (37) results in the divergence of the
following series.

∞∑
k=0

∥∥∥grad h(xk)
∥∥∥4

xk

∥ηk∥
2
xk

≥ c2 1 − c2

1 + c2

∞∑
k=0

1
k + 1

= ∞. (37)

This contradicts to (34) and hence we have completed the proof.

In general, it is more difficult to prove the convergence of the Riemannian PR+ CG method. It is possible to extend
the convergence proof of PR+ CG method in [36] to Riemannian PR+ CG method, but it is beyond the scope of this
paper.

5. Coordinate Riemannian Gradient Descent (CRGD)

The orthogonalization-free methods are preferred for large scale problems. For much larger problems, the coor-
dinate descent method is favored, since the full gradient can be too large to even store. For instance, the coordinate
gradient descent method for finding leading eigenvalue in [19] is the coordinate descent method for minimizing (6)
with rank p = 1. In this section, following the same Riemannian manifold notation as in previous sections, we show
that the a Riemmanian coordinate descent method is also equivalent to the coordinate descent method for minimizing
(6) with any rank p > 0, which is the generalization of the algorithm in [19].

In [37], a method called the tangent subspace descent method was proposed: this method generalized the block
coordinate descent method to manifold settings. Instead of updating the full gradient at each iteration, the tangent
direction in each update is a projected vector of the full Riemannian gradient to a subspace of the tangent space by
some subspace selection rule Pk. In the specific case of Cn×p

∗ /Op considered in this paper, this method is written as
Algorithm 4 and we denote it as Coordinate Riemannian Gradient Descent (CRGD).

13

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 14

Since the horizontal lift of grad h(xk) is a n-by-p matrix, we can simply choose the subspace selection rule by
cyclically selecting the N-column block of the n-by-p matrix grad f (xk). Let Mk denote the mask that evaluates the
k-th N-column block of a n-by-p matrix cyclically. That is, if Z is a n-by-p matrix, then

Mk(Z) = ZkN+1:(k+1)N,: (38)

where ZkN+1:(k+1)N,: denotes the N-by-p matrix that takes the (kN + 1)-th to (k + 1)N-th columns of Z. And the index
that exceeds the matrix range is understood as modulo by the matrix size, namely, cyclically. Then our update to xk is
written through the following

xk+1 = Rxk (αMk(grad f (xk))), (39)

where α is a constant step size.
With the simple retraction as in Section 2.7, (39) simply reduces to

xk+1 = xk+1 − αMk(2(xk x∗k − A)xk). (40)

Notice that (40) with p = 1 and N = 1 reduces to the coordinate descent method for the leading eigenvalue in [19]. In
particular, if p = 1 and we set N = 1 and Pk in Algorithm 4 to be Mk, defined in (38), then Algorithm 4 is equivalent
to Algorithm 2 in [19]. So the generalization of the method in [19] to top p eigenvalues can be equivalently written as
(40) or (39), which is a Riemannian coordinate descent method.

To take the advantage of CRGD to solve large-scaled problems, one should implement it through compact imple-
mentation. That is, each update should only depend on the block size N and should be independent of the problem
size n. In the case of eigenvalue problem, f (x) = 1

2

∥∥∥xx∗ − A
∥∥∥2

F . If we assume that A is a sparse matrix such that we
can achieve Mk(Av) in O(N), then we can indeed achieve a compact implementation of CRGD as in Algorithm 5.

Algorithm 4 Coordinate Riemannian gradient descent (CRGD) on the quotient manifold Cn×p
∗ /Op with metric g

Require: initial iterate x0 ∈ Cn×p
∗ /Op, tolerance ε > 0, tangent vector ξ0 = −grad h(x0), subspace selection rule Pk,

δ0 := P0(ξ0), stepsize α > 0.
1: for k = 0, 1, 2, . . . do
2: Obtain the new iterate by retraction

xk+1 = Rxk (αδk)

3: Compute the projection of ξk+1 := −grad h(xk+1) to a subspace of Txk+1Cn×p/Op

δk+1 := Pk+1(ξk+1)
4: Check for convergence

if ∥δk+1∥ :=
√

gxk+1 (δk+1, δk+1) < ε, then break
5: end for

6. Numerical Experiments

The numerical performance of the simple CG methods (7) has been well studied in the literature, e.g., see [11] for
a comparison with other orthogonalization-free methods. In general, the performance of (7) for solving (6) depends
on the spectrum of the matrix A. For completeness, in this section we verify the numerical performance of the simple
CG methods (7) on large matrices A.

6.1. Real symmetric PSD matrices
We consider two types of matrices A. The first type is a 2D Laplacian matrix, which has a nearly uniform

eigenvalue gap for a few top eigenvalues. Consider the discretization of a 2D Poisson equation with homogeneous
Dirichlet boundary conditions on [0, 1] × [0, 1] using m-by-m interior grid points. Then the matrix representing the
Laplacian operator is a 2D Laplacian matrix A of size m2-by-m2 given as

A =
1
∆x2 K ⊗ Im + Im ⊗

1
∆y2 K, (41)

14

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 15

Algorithm 5 Compact implementation for cyclic coordinate Riemannian gradient descent on the quotient manifold
Cn×p
∗ /Op with metric g

Require: initial iterate x0 ∈ Cn×p
∗ , η0 = −grad f (x0) ∈ Cn×p, first N columns of η0: δ0 = M0(η0), a0 = x∗0x0,

b0 = δ
∗
0x0, c0 = δ

∗
0δ0, stepsize α > 0, s0 = a0 + αb0 + αb∗0 + α

2c0, tolerance ε > 0.
1: for k = 0, 1, 2, . . . do
2: Obtain the new iterate by retraction

xk+1 = Rxk (αδk) = xk + αδk

3: Cyclically compute the next N columns of ηk+1 = −grad f (xk+1)
δk+1 := −2Mk+1(xk sk) − 2αMk+1(δk sk) + 2Mk+1(Axk) + 2αMk+1(Aδk)

4: Check for convergence

if
∥∥∥δk+1

∥∥∥ :=
√

gxk+1 (δk+1, δk+1) < ε, then break
5: Compute and update ak+1, bk+1, ck+1

ak+1 = ak + αx∗kδk + αδ
∗

k xk + α
2δ
∗

kδk

bk+1 = δ
∗

k+1xk+1

ck+1 = δ
∗

k+1δk+1

6: Compute temporary variable sk+1 ∈ Cp×p

sk+1 = ak+1 + αbk+1 + αb∗k+1 + α
2ck+1

7: end for

where ∆x = ∆y = 1
m+1 and K is a m-by-m tridiagonal matrix.

K =

2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2

(42)

The second type is constructed by eigenvalue decomposition A = VΛV−1 where eigenvectors V are given by
discrete cosine transform. We assign Λ so that the eigenvalues λi have four types of distribution of eigenvalues,
similar to the numerical experiments considered in [11] but with a much larger matrix size:

1. (random) λi ∼ |N(0, 1)|, where N(0, 1) is standard normal distribution.
2. (uniform) λi = 1 − i−1

n , 1 ≤ i ≤ r.
3. (u-shape) λ1 =

14
16 , λ2 =

10
16 , λ3 =

8
16 , λ4 =

7
16 , λ5 =

5
16 , λi =

1
16 .

4. (logarithm) λi =
21+⌊log2 n⌋

n
1
2i , 1 ≤ i ≤ r.

We first compare the simple CG methods (7) with the TriOFM method in [23] for a 2D discrete Laplacian matrix,
shown in Figure 1.

Next, we compare TriOFM, CG and LOBPCG for different distributed eigenvalues. We use Algorithm 1 in [14] as
the orthogonalization-free LOBPCG method in numerical tests. The comparison is shown for randomly distributed
eigenvalues in Figure 2, uniformly distributed eigenvalues in Figure 3, U-shape distribution of eigenvalues in Figure 4,
and log distribution of eigenvalues in Figure 5. In all these comparisions, the orthogonalization-free LOBPCG method
is the most efficient one. Notice that the simple CG-PR method is much less efficient than the TriOFM method for the
log distribution of eigenvalues. However, this slowness is due to the eigenvalue gap between σp and σp+1. In Figure
6, the top p eigenvalues with p = 5 have a log distribution but the gap between σp and σp+1 is enlarged by shifting
the top p eigenvalues from the same matrix in Figure 5, and we observe that the simple CG-PR method is efficient in

15

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 16

this scenario. In other words, the matrix in Figure 5 has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, and the matrix in Figure 6
has eigenvalues λ1 +C ≥ λ2 +C ≥ · · · ≥ λp +C ≥ λp+1 ≥ · · · ≥ λn.

0 0.5 1 1.5 2 2.5

Iteration 104

10-8

10-6

10-4

10-2

100

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

CG-FR

(a) Relative error vs iteration

0 5000 10000 15000

CPU Time

10-8

10-6

10-4

10-2

100

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

CG-FR

(b) Relative error vs CPU time

Figure 1. Comparison for computing the top-10 eigenvalues of a 2D Laplacian matrix of size 106 × 106.

0 50 100 150 200 250

Iteration

10-6

10-4

10-2

100

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

LOBPCG

(a) Relative error vs iteration

0 1 2 3 4

CPU Time

10-6

10-4

10-2

100

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

LOBPCG

(b) Relative error vs CPU time

Figure 2. Comparison for computing the top-10-eigenvalue problem of a 104-by-104 matrix with randomly distributed eigenvalues.

16

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 17

0 1000 2000 3000 4000

Iteration

10-6

10-4

10-2

100

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

LOBPCG

(a) Relative error vs iteration

0 10 20 30 40 50

CPU Time

10-6

10-4

10-2

100

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

LOBPCG

(b) Relative error vs CPU time

Figure 3. Comparison for computing the top-10-eigenvalue problem of a 104-by-104 matrix with uniformly distributed eigenvalues.

0 5 10 15 20 25

Iteration

10-15

10-10

10-5

100

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

LOBPCG

(a) Relative error vs iteration

0 0.2 0.4 0.6

CPU Time

10-15

10-10

10-5

100

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

LOBPCG

(b) Relative error vs CPU time

Figure 4. Comparison for computing the top-10-eigenvalue problem of a 104-by-104 matrix with U-shape distributed eigenvalues.

17

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 18

0 10 20 30 40 50

Iteration

10-8

10-6

10-4

10-2

100

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

LOBPCG

(a) Relative error vs iteration

0 0.2 0.4 0.6 0.8

CPU Time

10-8

10-6

10-4

10-2

100

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

LOBPCG

(b) Relative error vs CPU time

Figure 5. Comparison for computing the top-5-eigenvalue problem of a 104-by-104 matrix with logarithm distributed eigenvalues.

0 10 20 30 40

Iteration

10-15

10-10

10-5

100

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

LOBPCG

(a) Relative error vs iteration

0 0.1 0.2 0.3 0.4 0.5

CPU Time

10-15

10-10

10-5

100

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

LOBPCG

(b) Relative error vs CPU time

Figure 6. Comparison for computing the top-5-eigenvalue problem of a 104-by-104 matrix with eigenvalues λ1 + C ≥ λ2 + C ≥ · · · ≥ λ5 + C ≥
λ5+1 ≥ · · · ≥ λn, where C = λ1 and λ1 ≥ λ2 ≥ · · · ≥ λn has a log distribution.

6.2. Hermitian PSD matrices

It is shown in [15] that Algorithm 2 can be used for finding the top eigenvalues of a Hermitian PSD matrix. We
test Algorithm 2 on 6 for a matrix A with eigenvectors defined by 2D Fast Fourier Transform. Namely, the linear
operator of applying A to a 2D array u is defined by

Au = i f f t2(Σ. ∗ f f t2(u)),

where .∗ denotes the entrywise product and Σ is a 2D array consisting of nonnegative eigenvalues of A.
The performance of the CG-PR method is shown in Figure 7 for four kinds of eigenvalue distributions in such a

Hermitian PSD matrix.

18

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 19

0 100 200 300 400

Iteration

10
-10

10
-5

10
0

R
e
la

ti
v
e
 E

rr
o
r

logarithm

random

uniform

ushape

(a) Relative error vs iteration

0 200 400 600 800 1000

CPU Time

10-10

10-5

100

R
e
la

ti
v
e
 E

rr
o
r

logarithm

random

uniform

ushape

(b) Relative error vs CPU time

Figure 7. The CG-PR method for the top-10-eigenvalue problem with rank-1000 Hermitian matrices of 106-by-106 with different distributions of
eigenvalues.

6.3. Smallest eigenvalues

6.3.1. Inverse 2D Laplacian matrix
One technique to find the smallest eigenvalues of a given invertible matrix A is through the shift-and-inverse

method. That is, to find the largest eigenvalues of (A+ µI)−1, where µ > 0 is a shift constant such that A+ µI becomes
positive definite. We use this method to find the smallest eigenvalues of the 2D Laplacian matrix A as in (41).

Notice that the top eigenvalues of A−1 almost follow a logarithm distribution. Based on our observation, we
can choose µ appropriately to make the top eigenvalues of (A + µI)−1 have a uniform distribution to accelerate the
convergence of the CG method. Since we know the true eigenvalues of A, we shift it by choosing µ to be the smallest
desired eigenvalue. That is, suppose the smallest r eigenvalues of A is σ1 ≤ σ2 ≤ · · · ≤ σr. Then we choose µ = σ1.
As a result the top eigenvalues of (A + µI)−1 would be 1

σ1+σ1
≥ 1
σ2+σ1

≥ · · · ≥ 1
σr+σ1

that almost follows a uniform
distribution. A fast matrix inversion is implemented by using the eigendecomposition of the matrix. The performance
is shown in Figure 8 and Figure 9.

0 50 100 150

Iteration

10-10

10-5

100

105

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

CG-PR-Shift

(a) Relative error vs iteration

0 100 200 300 400

CPU Time

10-10

10-5

100

105

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

CG-PR-Shift

(b) Relative error vs CPU time

Figure 8. The shift-and-inverse method on the smallest-10-eigenvalue problem of a 106-by-106 2D-Laplacian matrix.

19

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 20

0 10 20 30

Iteration

10-10

10-5

100

105

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

CG-PR-Shift

(a) Relative error vs iteration

0 5 10 15

CPU Time

10-10

10-5

100

105

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR

CG-PR-Shift

(b) Relative error vs CPU time

Figure 9. The shift-and-inverse method on the smallest-3-eigenvalue problem of a 106-by-106 2D-Laplacian matrix.

6.3.2. Negative 2D Laplacian matrix
Another way to find the smallest eigenvalues of a given matrix A is through the negative-shift method. That is,

to consider finding the largest eigenvalues of µI − A, where µ > 0 is a shift constant such that µI − A is positive
semi-definite. We use this method to find the smallest eigenvalues of the 2D Laplacian matrix defined in (41).

Notice we need to shift at least the largest eigenvalue of A to ensure that µI − A is PSD. And once we find the top
eigenvalues of µI − A we need to shift back and extract the smallest eigenvalues of A by computing µ− (µ−σ), where
σ’s are the smallest eigenvalues of A. Hence when the condition number of A is bad, i.e., if µ >> σ, then we might
lose a significant number of digits of accuracy for computing µ− (µ−σ). In our numerical tests, we did not encounter
this numerical accuracy issue. The performance is shown in Figure 10. Notice that the negative-shift method is much
slower than the shift-and-inverse method, because of the different distributions of the largest eigenvalues of µI − A
and (A + µI)−1.

0 0.5 1 1.5 2 2.5

Iteration 104

10-10

10-5

100

105

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR-Shift

(a) Relative error vs iteration

0 2000 4000 6000 8000 10000

CPU Time

10-10

10-5

100

105

R
e
la

ti
v
e
 E

rr
o
r

TriOFM-obj2(OMM)

CG-PR-Shift

(b) Relative error vs CPU time

Figure 10. The negative-shift method on the smallest-10-eigenvalue problem of a 106-by-106 2D-Laplacian matrix.

20

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 21

6.4. Negative 3D Laplacian matrix

We repeat the same test as in previous subsection for a larger problem of finding the smallest eigenvalues of a
3D discrete Laplacian on a 5003 grid, which corresponds to a matrix of size 1.25E8×1.25E8. We implement both the
simple CG method (7) and TriOFM method on a Nvidia GPU A100 80G.

0 500 1000

Iteration

10 -2

10 0

10 2

10 4

R
e

la
ti
v
e

 E
rr

o
r

TriOFM-obj2(OMM)

CG-PR-Shift

(a) Relative error vs iteration

0 1000 2000 3000 4000

GPU Time

10 -2

10 0

10 2

10 4

R
e

la
ti
v
e

 E
rr

o
r

TriOFM-obj2(OMM)

CG-PR-Shift

(b) Relative error vs GPU time

Figure 11. The shift-and-inverse method on the smallest-3-eigenvalue problem of a 3D-Laplacian matrix on a 5003 grid. The matrix size is
1.25E8×1.25E8. Computation was done on Nvidia GPU A100 80G.

6.5. Coordinate Riemannian gradient descent

We consider applying the coordinate Riemannian gradient descent method described in Section 5 to a 1D Laplacian
matrix of size n-by-n given byA = 1

∆x2 K,where ∆x = 1
n+1 and K is the tridiagonal matrix defined in (42). This example

is only for the demonstration purpose of the coordinate gradient descent method. Choosing this simple A makes it
easy for the compact implementation of the matrix-vector multiplication of Au. One can also apply this method to any
sparse matrix A as long as one has the compact implementation of Mk(Au) in O(N), where N is a constant independent
of the problem size n.

As we can see from Figure 12, the CPU time for running the first 3000 iterations is independent of problem size.
This demonstrated the O(1) computational complexity of the coordinate Riemannian gradient descent method for
leading eigenpairs.

7. Conclusions

In this paper we have studied the orthogonalization-free method to find leading eigenpairs of a positive semi-
definite Hermitian matrix via an unconstrained Burer-Monteiro formulation. For this optimization problem, we have
shown the equivalence between the nonlinear conjugate gradient method and a Riemannian conjugate gradient method
on a quotient manifold with the Bures-Wasserstein metric, leading to a new understanding of the global convergence
of the nonlinear conjugate gradient method in Burer-Monteiro formulation to a stationary point. We have also shown
that the simple coordinate descent method in Burer-Monteiro formulation is equivalent to a coordinate Riemannian
gradient descent method. Numerical tests on large scale matrices have verified the numerical performance of the sim-
ple conjugate gradient method in Burer-Monteiro formulation for computing leading eigen-pairs, which is consistent
with findings in the literatue.

21

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 22

10
4

10
5

10
6

10
7

n

0

2

4

6

8

10

C
P

U
 T

im
e

(a) CPU time of the first 3000 iterations vs problem size n = 100 ∗
2k for k goes from 4 to 13. Each iteration cyclically updates N =
1000 columns.

0 1 2 3

Iteration 10
4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 E
rr

o
r

(b) Relative error vs iteration. Problem size n = 100 ∗ 29. Each
iteration cyclically updates N = 100 columns with constant step
size 10−10.

Figure 12. Coordinate Riemannian gradient descent for solving the top-10 eigenvalues of a Laplacian matrix.

Acknowledgement

S. Zheng and X. Zhang are supported by NSF DMS-2208518. H. Yang thanks Oracle Labs, part of Oracle
America, Inc., for providing funding that supported research in the area of leading eigenvalue problems. The authors
are grateful to Yingzhou Li for providing the MATLAB code of TirOFM.

References

[1] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Transactions on pattern analysis and machine intelligence 22 (8) (2000)
888–905.

[2] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, in: Problems in analysis, Princeton University Press, 2015, pp.
195–200.

[3] W. E. Donath, A. J. Hoffman, Algorithms for partitioning of graphs and computer logic based on eigenvectors of connection matrices, IBM
Technical Disclosure Bulletin 15 (3) (1972) 938–944.

[4] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak mathematical journal 23 (2) (1973) 298–305.
[5] J. Lu, H. Yang, Preconditioning orbital minimization method for planewave discretization, Multiscale Modeling & Simulation 15 (1) (2017)

254–273.
[6] J. Lu, H. Yang, A cubic scaling algorithm for excited states calculations in particle–particle random phase approximation, Journal of Compu-

tational Physics 340 (2017) 297–308.
[7] Z. Wang, Y. Li, J. Lu, Coordinate descent full configuration interaction, Journal of chemical theory and computation 15 (6) (2019) 3558–3569.
[8] Q. Pang, H. Yang, A distributed block chebyshev-davidson algorithm for parallel spectral clustering, arXiv preprint arXiv:2212.04443.
[9] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, S. W. Zucker, Geometric diffusions as a tool for harmonic analysis

and structure definition of data: Diffusion maps, Proceedings of the national academy of sciences 102 (21) (2005) 7426–7431.
[10] F. Corsetti, The orbital minimization method for electronic structure calculations with finite-range atomic basis sets, Computer Physics

Communications 185 (3) (2014) 873–883.
[11] W. Gao, Y. Li, B. Lu, Triangularized orthogonalization-free method for solving extreme eigenvalue problems, Journal of Scientific Computing

93 (3) (2022) 1–28.
[12] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method, SIAM

Journal on Scientific Computing 23 (2) (2001) 517–541.
[13] U. Hetmaniuk, R. Lehoucq, Basis selection in LOBPCG, Journal of Computational Physics 218 (1) (2006) 324–332.
[14] J. A. Duersch, M. Shao, C. Yang, M. Gu, A robust and efficient implementation of LOBPCG, SIAM Journal on Scientific Computing 40 (5)

(2018) C655–C676.
[15] S. Zheng, W. Huang, B. Vandereycken, X. Zhang, Riemannian optimization using three different metrics for Hermitian PSD fixed-rank

constraints: an extended version (2023).
[16] J. Nocedal, S. J. Wright, Numerical optimization, Springer, 1999.
[17] X. Liu, Z. Wen, Y. Zhang, An efficient Gauss–Newton algorithm for symmetric low-rank product matrix approximations, SIAM Journal on

Optimization 25 (3) (2015) 1571–1608.
[18] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, M. I. Jordan, How to escape saddle points efficiently, in: International Conference on Machine

Learning, PMLR, 2017, pp. 1724–1732.
22

S. Zheng, H. Yang and X. Zhang / Journal of Computational and Applied Mathematics 00 (2024) 1–23 23

[19] Y. Li, J. Lu, Z. Wang, Coordinatewise descent methods for leading eigenvalue problem, SIAM Journal on Scientific Computing 41 (4) (2019)
A2681–A2716.

[20] E. Massart, J. M. Hendrickx, P.-A. Absil, Curvature of the manifold of fixed-rank positive-semidefinite matrices endowed with the Bures–
Wasserstein metric, in: Geometric Science of Information: 4th International Conference, GSI 2019, Toulouse, France, August 27–29, 2019,
Proc., Springer, 2019, pp. 739–748.

[21] H. Sato, T. Iwai, A new, globally convergent Riemannian conjugate gradient method, Optimization 64 (4) (2015) 1011–1031.
[22] J. D. Lee, I. Panageas, G. Piliouras, M. Simchowitz, M. I. Jordan, B. Recht, First-order methods almost always avoid strict saddle points,

Mathematical programming 176 (1) (2019) 311–337.
[23] W. Gao, Y. Li, B. Lu, Global Convergence of Triangularized Orthogonalization-free Method, arXiv preprint arXiv:2110.06212.
[24] Y. Zhou, Y. Saad, M. L. Tiago, J. R. Chelikowsky, Self-consistent-field calculations using chebyshev-filtered subspace iteration, Journal of

Computational Physics 219 (1) (2006) 172–184.
[25] K. Neymeyr, A geometric theory for preconditioned inverse iteration IV: On the fastest convergence cases, Linear Algebra and its Applications

415 (1) (2006) 114–139, special Issue on Large Scale Linear and Nonlinear Eigenvalue Problems.
[26] E. S. Coakley, V. Rokhlin, A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices, Applied

and Computational Harmonic Analysis 34 (3) (2013) 379–414.
[27] H. M. Aktulga, L. Lin, C. Haine, E. G. Ng, C. Yang, Parallel eigenvalue calculation based on multiple shift–invert Lanczos and contour

integral based spectral projection method, Parallel Computing 40 (7) (2014) 195–212, 7th Workshop on Parallel Matrix Algorithms and
Applications.

[28] R. Li, Y. Xi, E. Vecharynski, C. Yang, Y. Saad, A Thick-Restart Lanczos Algorithm with Polynomial Filtering for Hermitian Eigenvalue
Problems, SIAM Journal on Scientific Computing 38 (4) (2016) A2512–A2534.

[29] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Physical Review B 79 (2009) 115112.
[30] T. Sakurai, H. Tadano, CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems, Hokkaido Mathemati-

cal Journal 36 (4) (2007) 745 – 757.
[31] Y. Xi, Y. Saad, Computing partial spectra with least-squares rational filters, SIAM Journal on Scientific Computing 38 (5) (2016) A3020–

A3045.
[32] X. Ye, J. Xia, R. H. Chan, S. Cauley, V. Balakrishnan, A Fast Contour-Integral Eigensolver for Non-Hermitian Matrices, SIAM Journal on

Matrix Analysis and Applications 38 (4) (2017) 1268–1297.
[33] J. M. Lee, Introduction to Smooth Manifolds, Vol. 218 of Graduate Texts in Mathematics, Springer New York, New York, NY, 2012.
[34] P.-A. Absil, R. Mahony, R. Sepulchre, Optimization algorithms on matrix manifolds, Princeton University Press, Princeton, N.J. ; Woodstock,

2008, oCLC: ocn174129993.
[35] E. Massart, P.-A. Absil, Quotient Geometry with Simple Geodesics for the Manifold of Fixed-Rank Positive-Semidefinite Matrices, SIAM

Journal on Matrix Analysis and Applications 41 (1) (2020) 171–198.
[36] J. C. Gilbert, J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM Journal on optimization 2 (1)

(1992) 21–42.
[37] D. H. Gutman, N. Ho-Nguyen, Coordinate descent without coordinates: Tangent subspace descent on riemannian manifolds, Mathematics of

Operations Research 48 (1) (2022) 127–159.

23

	Introduction
	The eigenvalue problem of Hermitian positive definite matrices
	The real inner product and Fréchet derivatives
	The conjugate gradient method solving the Burer-Monteiro formulation
	The main result: the convergence of Riemannian conjugate gradient method via quotient geometry
	Related work and contributions
	Outline of this paper

	Preliminaries: Riemannian Quotient Manifold C*np/Op
	C*np/Op as a quotient manifold
	Vertical space
	Riemannian metric
	Projections onto vertical space and horizontal space
	Cnp*/Op as Riemannian quotient manifold
	Riemannian gradient
	Retraction
	Vector transport

	The Conjugate Gradient Methods
	The Convergence of the Fletcher-Reeves Conjugate Gradient Method
	Coordinate Riemannian Gradient Descent (CRGD)
	Numerical Experiments
	Real symmetric PSD matrices
	Hermitian PSD matrices
	Smallest eigenvalues
	Inverse 2D Laplacian matrix
	Negative 2D Laplacian matrix

	Negative 3D Laplacian matrix
	Coordinate Riemannian gradient descent

	Conclusions

