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1. Introduction.13

1.1. The bound-preserving property. Consider the initial value problem for14

a scalar convection diffusion equation ut + f(u)x = a(u)xx, u(x, 0) = u0(x), where15

a′(u) ≥ 0. Assume f(u) and a(u) are well-defined smooth functions for any u ∈ [m,M ]16

where m = minx u0(x) and M = maxx u0(x). Its exact solution satisfies:17

(1.1) min
x
u0(x) = m ≤ u(x, t) ≤M = max

x
u0(x), ∀t ≥ 0.18

In this paper, we are interested in constructing a high order accurate finite difference19

scheme satisfying the bound-preserving property (1.1).20

For a scalar problem, it is desired to achieve (1.1) in numerical solutions mainly21

for the physical meaning. For instance, if u denotes density and m = 0, then negative22

numerical solutions are meaningless. In practice, in addition to enforcing (1.1), it23

is also critical to strictly enforce the global conservation of numerical solutions for24

a time-dependent convection dominated problem. Moreover, the computational cost25

for enforcing (1.1) should not be significant if it is needed for each time step.26

1.2. Popular methods for convection problems. For the convection prob-27

lems, i.e., a(u) ≡ 0, a straightforward way to achieve the above goals is to require28

a scheme to be monotone, total-variational-diminishing (TVD), or satisfying a dis-29

crete maximum principle, which all imply the bound-preserving property. But most30

schemes satisfying these stronger properties are at most second order accurate. For31

instance, a monotone scheme and traditional TVD finite difference and finite volume32

schemes are at most first order accurate [7]. Even though it is possible to have high33

order TVD finite volume schemes in the sense of measuring the total variation of34

reconstruction polynomials [12, 22], such schemes can be constructed only for the35

one-dimensional problems. The second order central scheme satisfies a discrete max-36

imum principle minj u
n
j ≤ un+1

j ≤ maxj u
n
j where unj denotes the numerical solution37

at n-th time step and j-th grid point [8]. Any finite difference scheme satisfying38
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2 H. LI, S. XIE AND X. ZHANG

such a maximum principle can be at most second order accurate, see Harten’s ex-39

ample in [24]. By measuring the extrema of reconstruction polynomials, third order40

maximum-principle-satisfying schemes can be constructed [9] but extensions to multi-41

dimensional nonlinear problems are very difficult.42

For constructing high order accurate schemes, one can enforce only the bound-43

preserving property for fixed known bounds, e.g., m = 0 and M = 1 if u denotes44

the density ratio. Even though high order linear schemes cannot be monotone, high45

order finite volume type spatial discretizations including the discontinuous Galerkin46

(DG) method satisfy a weak monotonicity property [23, 24, 25]. Namely, in a scheme47

consisting of any high order finite volume spatial discretization and forward Euler48

time discretization, the cell average is a monotone function of the point values of49

the reconstruction or approximation polynomial at Gauss-Lobatto quadrature points.50

Thus if these point values are in the desired range [m,M ], so are the cell averages51

in the next time step. A simple and efficient local bound-preserving limiter can be52

designed to control these point values without destroying conservation. Moreover, this53

simple limiter is high order accurate, see [23] and the appendix in [20]. With strong54

stability preserving (SSP) Runge-Kutta or multistep methods [4], which are convex55

combinations of several formal forward Euler steps, a high order accurate finite volume56

or DG scheme can be rendered bound-preserving with this limiter. These results can57

be easily extended to multiple dimensions on cells of general shapes. However, for a58

general finite difference scheme, the weak monotonicity does not hold.59

For enforcing only the bound-preserving property in high order schemes, efficient60

alternatives include a flux limiter [19, 18] and a sweeping limiter in [10]. These meth-61

ods are designed to directly enforce the bounds without destroying conservation thus62

can be used on any conservative schemes. Even though they work well in practice, it63

is nontrivial to analyze and rigorously justify the accuracy of these methods especially64

for multi-dimensional nonlinear problems.65

1.3. The weak monotonicity in compact finite difference schemes. Even66

though the weak monotonicity does not hold for a general finite difference scheme, in67

this paper we will show that some high order compact finite difference schemes satisfy68

such a property, which implies a simple limiting procedure can be used to enforce69

bounds without destroying accuracy and conservation.70

To demonstrate the main idea, we first consider a fourth order accurate compact71

finite difference approximation to the first derivative on the interval [0, 1]:72

1

6
(f ′i+1 + 4f ′i + f ′i−1) =

fi+1 − fi−1

2∆x
+O(∆x4),73

where fi and f ′i are point values of a function f(x) and its derivative f ′(x) at uniform74

grid points xi (i = 1, · · · , N) respectively. For periodic boundary conditions, the75

following tridiagonal linear system needs to be solved to obtain the implicitly defined76

approximation to the first order derivative:77

(1.2)
1

6


4 1 1
1 4 1

. . .
. . .

. . .

1 4 1
1 1 4




f ′1
f ′2
...

f ′N−1

f ′N

 =
1

2∆x


0 1 −1
−1 0 1

. . .
. . .

. . .

−1 0 1
1 −1 0




f1

f2

...
fN−1

fN

 .78

We refer to the tridiagonal 1
6 (1, 4, 1) matrix as a weighting matrix. For the one-79

This manuscript is for review purposes only.



A BOUND-PRESERVING COMPACT FINITE DIFFERENCE SCHEME 3

dimensional scalar conservation laws with periodic boundary conditions on [0, 1]:80

(1.3) ut + f(u)x = 0, u(x, 0) = u0(x),81

the semi-discrete fourth order compact finite difference scheme can be written as82

(1.4)
dūi
dt

= − 1

2∆x
[f(ui+1)− f(ui−1)],83

where ūi is defined as ūi = 1
6 (ui−1 + 4ui + ui+1). Let λ = ∆t

∆x , then (1.4) with the84

forward Euler time discretization becomes85

(1.5) ūn+1
i = ūni −

1

2
λ[f(uni+1)− f(uni−1)].86

The following weak monotonicity holds under the CFL λmaxu |f ′(u)| ≤ 1
3 :87

ūn+1
i =

1

6
(uni−1 + 4uni + uni+1) +

1

2
λ[f(uni+1)− f(uni−1)]88

=
1

6
[ui−1 − 3λf(uni−1)] +

1

6
[uni+1 + 3λf(uni+1)] +

4

6
uni = H(uni−1, u

n
i , u

n
i+1) = H(↑, ↑, ↑),8990

where ↑ denotes that the partial derivative with respect to the corresponding argu-91

ment is non-negative. Therefore m ≤ uni ≤ M implies m = H(m,m,m) ≤ ūn+1
i ≤92

H(M,M,M) = M, thus93

(1.6) m ≤ 1

6
(un+1
i−1 + 4un+1

i + un+1
i+1 ) ≤M.94

If there is any overshoot or undershoot, i.e., un+1
i > M or un+1

i < m for some i, then95

(1.6) implies that a local limiting process can eliminate the overshoot or undershoot.96

Here we consider the special case m = 0 to demonstrate the basic idea of this limiter,97

and for simplicity we ignore the time step index n+ 1. In Section 2 we will show that98
1
6 (ui−1 + 4ui + ui+1) ≥ 0,∀i implies the following two facts:99

1. max{ui−1, ui, ui+1} ≥ 0;100

2. If ui < 0, then 1
2 (ui−1)+ + 1

2 (ui+1)+ ≥ −ui > 0, where (u)+ = max{u, 0}.101

By the two facts above, when ui < 0, then the following three-point stencil limiting102

process can enforce positivity without changing
∑
i ui:103

vi−1 = ui−1 +
(ui−1)+

(ui−1)+ + (ui+1)+
ui; vi+1 = ui+1 +

(ui+1)+

(ui−1)+ + (ui+1)+
ui,104

replace ui−1, ui, ui+1 by vi−1, 0, vi+1 respectively.105

In Section 2.2, we will show that such a simple limiter can enforce the bounds106

of ui without destroying accuracy and conservation. Thus with SSP high order time107

discretizations, the fourth order compact finite difference scheme solving (1.3) can108

be rendered bound-preserving by this limiter. Moreover, in this paper we will show109

that such a weak monotonicity and the limiter can be easily extended to more general110

and practical cases including two-dimensional problems, convection diffusion prob-111

lems, inflow-outflow boundary conditions, higher order accurate compact finite differ-112

ence approximations, compact finite difference schemes with a total-variation-bounded113

(TVB) limiter [3]. However, the extension to non-uniform grids is highly nontrivial114

thus will not be discussed. In this paper, we only focus on uniform grids.115
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4 H. LI, S. XIE AND X. ZHANG

1.4. The weak monotonicity for diffusion problems. Although the weak116

monotonicity holds for arbitrarily high order finite volume type schemes solving the117

convection equation (1.3), it no longer holds for a conventional high order linear118

finite volume scheme or DG scheme even for the simplest heat equation, see the119

appendix in [20]. Toward satisfying the weak monotonicity for the diffusion operator,120

an unconventional high order finite volume scheme was constructed in [21]. Second121

order accurate DG schemes usually satisfies the weak monotonicity for the diffusion122

operator on general meshes [26]. The only previously known high order linear scheme123

in the literature satisfying the weak monotonicity for scalar diffusion problems is124

the third order direct DG (DDG) method with special parameters [2], which is a125

generalized version of interior penalty DG method. On the other hand, arbitrarily126

high order nonlinear positivity-preserving DG schemes for diffusion problems were127

constructed in [20, 15, 14].128

In this paper we will show that the fourth order accurate compact finite difference129

and a few higher order accurate ones are also weakly monotone, which is another class130

of linear high order schemes satisfying the weak monotonicity for diffusion problems.131

It is straightforward to verify that the backward Euler or Crank-Nicolson method132

with the fourth order compact finite difference methods satisfies a maximum principle133

for the heat equation but it can be used be as a bound-preserving scheme only for134

linear problems. The method is this paper is explicit thus can be easily applied to135

nonlinear problems. It is difficult to generalize the maximum principle to an implicit136

scheme. Regarding positivity-preserving implicit schemes, see [11] for a study on137

weak monotonicity in implicit schemes solving convection equations. See also [5] for a138

second order accurate implicit and explicit time discretization for the BGK equation.139

1.5. Contributions and organization of the paper. Although high order140

compact finite difference methods have been extensively studied in the literature, e.g.,141

[6, 1, 3, 16, 13, 17], this is the first time that the weak monotonicity in compact finite142

difference approximations is discussed. This is also the first time a weak monotonicity143

property is established for a high order accurate finite difference type scheme. The144

weak monotonicity property suggests it is possible to locally post process the numerical145

solution without losing conservation by a simple limiter to enforce global bounds.146

Moreover, this approach allows an easy justification of high order accuracy of the147

constructed bound-preserving scheme.148

For extensions to two-dimensional problems, convection diffusion problems, and149

sixth order and eighth order accurate schemes, the discussion about the weak mono-150

tonicity in general becomes more complicated since the weighting matrix may become151

a five-diagonal matrix instead of the tridiagonal 1
6 (1, 4, 1) matrix in (1.2). Nonethe-152

less, we demonstrate that the same simple three-point stencil limiter can still be used153

to enforce bounds because we can factor the more complicated weighting matrix as a154

product of a few of tridiagonal 1
c+2 (1, c, 1) matrices with c ≥ 2.155

The paper is organized as follows: in Section 2 we demonstrate the main idea156

for the fourth order accurate scheme solving one-dimensional problems with periodic157

boundary conditions. Two-dimensional extensions are discussed in in Section 3. Sec-158

tion 4 is the extension to higher order accurate schemes. Inflow-outflow boundary159

conditions and Dirichlet boundary conditions are considered in Section 5. Numerical160

tests are given in Section 6. Section 7 consists of concluding remarks.161

2. A fourth order accurate scheme for one-dimensional problems. In162

this section we first show the fourth order compact finite difference with forward Euler163

time discretization satisfies the weak monotonicity. Then we discuss how to design164
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A BOUND-PRESERVING COMPACT FINITE DIFFERENCE SCHEME 5

a simple limiter to enforce the bounds of point values. To eliminate the oscillations,165

a total variation bounded (TVB) limiter can be used. We also show that the TVB166

limiter does not affect the bound-preserving property of ūi, thus it can be combined167

with the bound-preserving limiter to ensure the bound-preserving and non-oscillatory168

solutions for shocks. High order time discretizations will be discussed in Section 2.5.169

2.1. One-dimensional convection problems. Consider a periodic function170

f(x) on the interval [0, 1]. Let xi = i
N (i = 1, · · · , N) be the uniform grid points on171

the interval [0, 1]. Let f be a column vector with numbers f1, f2, · · · , fN as entries,172

where fi = f(xi). Let W1, W2, Dx and Dxx denote four linear operators as follows:173

W1f =
1

6


4 1 1
1 4 1

. . .
. . .

. . .

1 4 1
1 1 4




f1

f2

...
fN−1

fN

 , Dxf =
1

2


0 1 −1
−1 0 1

. . .
. . .

. . .

−1 0 1
1 −1 0




f1

f2

...
fN−1

fN

 ,174

175

W2f =
1

12


10 1 1
1 10 1

. . .
. . .

. . .

1 10 1
1 1 10




f1

f2

...
fN−1

fN

 , Dxxf =


−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2




f1

f2

...
fN−1

fN

 .176

The fourth order compact finite difference approximation to the first order derivative177

(1.2) with periodic assumption for f(x) can be denoted as W1f
′ = 1

∆xDxf . The178

fourth order compact finite difference approximation to f ′′(x) is W2f
′′ = 1

∆x2Dxxf .179

The fourth compact finite difference approximations can be explicitly written as180

f ′ =
1

∆x
W−1

1 Dxf , f ′′ =
1

∆x2
W−2

2 Dxxf ,181

where W−1
1 and W−1

2 are the inverse operators. For convenience, by abusing notations182

we let W−1
1 fi denote the i-th entry of the vector W−1

1 f .183

Then the scheme (1.4) solving the scalar conservation laws (1.3) with periodic184

boundary conditions on the interval [0, 1] can be written as W1
d
dtui = − 1

2∆x [f(ui+1)−185

f(ui−1)], and the scheme (1.5) is equivalent to W1u
n+1
i = W1u

n
i − 1

2λ[f(uni+1) −186

f(uni−1)]. As shown in Section 1.3, the scheme (1.5) satisfies the weak monotonicity.187

Theorem 2.1. Under the CFL constraint ∆t
∆x maxu |f ′(u)| ≤ 1

3 ,if u
n
i ∈ [m,M ],188

then un+1 computed by the scheme (1.5) satisfies (1.6).189

2.2. A three-point stencil bound-preserving limiter. In this subsection,190

we consider a more general constraint than (1.6) and we will design a simple limiter191

to enforce bounds of point values based on it. Assume we are given a sequence of192

periodic point values ui (i = 1, · · · , N) satisfying193

(2.1) m ≤ 1

c+ 2
(ui−1 + cui + ui+1) ≤M, i = 1, · · · , N, c ≥ 2,194

where u0 := uN , uN+1 := u1 and c ≥ 2 is a constant. We have the following results:195

Lemma 2.2. The constraint (2.1) implies the following for stencil {i− 1, i, i+ 1}:196

This manuscript is for review purposes only.



6 H. LI, S. XIE AND X. ZHANG

(1) min{ui−1, ui, ui+1} ≤M, max{ui−1, ui, ui+1} ≥ m.197

(2) If ui > M , then (ui−M)+
(M−ui−1)++(M−ui+1)+

≤ 1
c .198

If ui < m, then (m−ui)+
(ui−1−m)++(ui+1−m)+

≤ 1
c .199

Here the subscript + denotes the positive part, i.e., (a)+ = max{a, 0}.200

Remark 2.3. The first statement in Lemma 2.2 states that there do not exist201

three consecutive overshoot points or three consecutive undershoot points. But it does202

not necessarily imply that at least one of three consecutive point values is in the bounds203

[m,M ]. For instance, consider the case for c = 4 and N is even, define ui ≡ 1.1 for204

all odd i and ui ≡ −0.1 for all even i, then 1
c+2 (ui−1 + cui + ui+1) ∈ [0, 1] for all i205

but none of the point values ui is in [0, 1].206

Remark 2.4. Lemma 2.2 implies that if ui is out of the range [m,M ], then we207

can set ui ← m for undershoot (or ui ←M for overshoot) without changing the local208

sum ui−1 + ui + ui+1 by decreasing (or increasing) its neighbors ui±1.209

Proof. We only discuss the upper bound. The inequalities for the lower bound210

can be similarly proved. First, if ui−1, ui, ui+1 > M then 1
c+2 (ui−1 + cui+ui+1) > M211

which is a contradiction to (2.1). Second, (2.1) implies ui−1 + cui + ui+1 ≤ (c+ 2)M ,212

thus c(ui − M) ≤ (M − ui−1) + (M − ui+1) ≤ (M − ui−1)+ + (M − ui+1)+. If213

ui > M , we get (M − ui−1)+ + (M − ui+1)+ > 0. Moreover, (ui−M)+
(M−ui−1)++(M−ui+1)+

=214

ui−M
(M−ui−1)++(M−ui+1)+

≤ 1
c .215

For simplicity, we first consider a limiter to enforce only the lower bound without216

destroying global conservation. For m = 0, this is a positivity-preserving limiter.217

Algorithm 2.1 A limiter for periodic data ui to enforce the lower bound.

Require: The input ui satisfies ūi = 1
c+2 (ui−1 + cui +ui+1) ≥ m, i = 1, · · · , N , with

c ≥ 2. Let u0, uN+1 denote uN , u1 respectively.

Ensure: The output satisfies vi ≥ m, i = 1, · · · , n and
∑N
i=1 vi =

∑N
i=1 ui.

First set vi = ui, i = 1, · · · , N . Let v0, vN+1 denote vN , v1 respectively.
for i = 1, · · · , N do

if ui < m then
vi−1 ← vi−1 − (ui−1−m)+

(ui−1−m)++(ui+1−m)+
(m− ui)+

vi+1 ← vi+1 − (ui+1−m)+
(ui−1−m)++(ui+1−m)+

(m− ui)+

vi ← m
end if

end for

Remark 2.5. Even though a for loop is used, Algorithm 2.1 is a local operation218

to an undershoot point since only information of two immediate neighboring points of219

the undershoot point are needed. Thus it is not a sweeping limiter.220

Theorem 2.6. The output of Algorithm 2.1 satisfies
N∑
i=1

vi =
N∑
i=1

ui and vi ≥ m.221

Proof. First of all, notice that the algorithm only modifies the undershoot points222

and their immediate neighbors.223

Next we will show the output satisfies vi ≥ m case by case:224

• If ui < m, the i-th step in for loops sets vi = m. After the (i+ 1)-th step in225

for loops, we still have vi = m because (ui −m)+ = 0.226

This manuscript is for review purposes only.



A BOUND-PRESERVING COMPACT FINITE DIFFERENCE SCHEME 7

• If ui = m, then vi = m in the final output because (ui −m)+ = 0.227

• If ui > m, then limiter may decrease it if at least one of its neighbors ui−1228

and ui+1 is below m:229

vi = ui −
(ui −m)+(m− ui−1)+

(ui−2 −m)+ + (ui −m)+
− (ui −m)+(m− ui+1)+

(ui −m)+ + (ui+2 −m)+
230

≥ ui −
1

c
(ui −m)+ −

1

c
(ui −m)+ > m,231

where the inequalities are implied by Lemma 2.2 and the fact c ≥ 2.232

Finally, we need to show the local sum vi−1 + vi + vi+1 is not changed during233

the i-th step if ui < m. If ui < m, then after (i − 1)-th step we still have vi = ui234

because (ui −m)+ = 0. Thus in the i-th step of for loops, the point value at xi is235

increased by the amount m− ui, and the point values at xi−1 and xi+1 are decreased236

by (ui−1−m)+
(ui−1−m)++(ui+1−m)+

(m − ui)+ + (ui+1−m)+
(ui−1−m)++(ui+1−m)+

(m − ui)+ = m − ui. So237

vi−1 + vi + vi+1 is not changed during the i-th step. Therefore the limiter ensures the238

output vi ≥ m without changing the global sum.239

The limiter described by Algorithm 2.1 is a local three-point stencil limiter in the240

sense that only undershoots and their neighbors will be modified, which means the241

limiter has no influence on point values that are neither undershoots nor neighbors242

to undershoots. Obviously a similar procedure can be used to enforce only the upper243

bound. However, to enforce both the lower bound and the upper bound, the discussion244

for this three-point stencil limiter is complicated for a saw-tooth profile in which both245

neighbors of an overshoot point are undershoot points. Instead, we will use a different246

limiter for the saw-tooth profile. To this end, we need to separate the point values247

{ui, i = 1, · · · , N} into two classes of subsets consisting of consecutive point values.248

In the following discussion, a set refers to a set of consecutive point values249

ul, ul+1, ul+2, · · · , um−1, um. For any set S = {ul, ul+1, · · · , um−1, um}, we call the250

first point value ul and the last point value um as boundary points, and call the other251

point values ul+1, · · · , um−1 as interior points. A set of class I is defined as a set252

satisfying the following:253

1. It contains at least four point values.254

2. Both boundary points are in [m,M ] and all interior points are out of range.255

3. It contains both undershoot and overshoot points.256

Notice that in a set of class I, at least one undershoot point is next to an over-257

shoot point. For given point values ui, i = 1, · · · , N , suppose all the sets of class I258

are S1 = {um1 , um1+1, · · · , un1}, S2 = {um2 , · · · , un2}, · · · , SK = {umK
, · · · , unK

},259

where m1 < m2 < · · · < umK
.260

A set of class II consists of point values between Si and Si+1 and two boundary261

points uni
and umi+1

. Namely they are T0 = {u1, u2, · · · , um1
}, T1 = {un1

, · · · , um2
},262

T2 = {un2
, · · · , um3

}, · · · , TK = {unK
, · · · , uN}. For periodic data ui, we can combine263

TK and T0 to define TK = {unK
, · · · , uN , u1, · · · , um1}.264

In the sets of class I, the undershoot and the overshoot are neighbors. In the sets265

of class II, the undershoot and the overshoot are separated, i.e., an overshoot is not266

next to any undershoot. We remark that the sets of class I are hardly encountered in267

the numerical tests but we include them in the discussion for the sake of completeness.268

When there are no sets of class I, all point values form a single set of class II. We269

will use the same procedure as in Algorithm 2.1 for Ti and a different limiter for Si270

to enforce both the lower bound and the upper bound.271
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Algorithm 2.2 A bound-preserving limiter for periodic data ui satisfying ūi ∈ [m,M ]

Require: the input ui satisfies ūi = 1
c+2 (ui−1 + cui + ui+1) ∈ [m,M ], c ≥ 2. Let u0,

uN+1 denote uN , u1 respectively.

Ensure: the output satisfies vi ∈ [m,M ], i = 1, · · · , N and
∑N
i=1 vi =

∑N
i=1 ui.

1: Step 0: First set vi = ui, i = 1, · · · , N . Let v0, vN+1 denote vN , v1 respectively.

2: Step I: Find all the sets of class I S1, · · · , SK (all local saw-tooth profiles) and
all the sets of class II T1, · · · , TK .

3: Step II: For each Tj (j = 1, · · · ,K), the same limiter as in Algorithm 2.1 (but
for both upper bound and lower bound) is used:

4: for all index i in Tj do
5: if ui < m then
6: vi−1 ← vi−1 − (ui−1−m)+

(ui−1−m)++(ui+1−m)+
(m− ui)+

7: vi+1 ← vi+1 − (ui+1−m)+
(ui−1−m)++(ui+1−m)+

(m− ui)+

8: vi ← m
9: end if

10: if ui > M then
11: vi−1 ← vi−1 + (M−ui−1)+

(M−ui−1)++(M−ui+1)+
(ui −M)+

12: vi+1 ← vi+1 + (M−ui+1)+
(M−ui−1)++(M−ui+1)+

(ui −M)+

13: vi ←M
14: end if
15: end for
16: Step III: for each saw-tooth profile Sj = {umj

, · · · , unj
} (j = 1, · · · ,K), let N0

and N1 be the numbers of undershoot and overshoot points in Sj respectively.
17: Set Uj =

∑nj

i=mj
vi.

18: for i = mj + 1, · · · , nj − 1 do
19: if ui > M then
20: vi ←M .
21: end if
22: if ui < m then
23: vi ← m.
24: end if
25: end for
26: Set Vj = N1M +N0m+ vmj

+ vnj
.

27: Set Aj = vmj
+ vnj

+N1M − (N1 + 2)m, Bj = (N0 + 2)M − vmj
− vnj

−N0m.
28: if Vj − Uj > 0 then
29: for i = mj , · · · , nj do
30: vi ← vi − vi−m

Aj
(Vj − Uj)

31: end for
32: else
33: for i = mj , · · · , nj do
34: vi ← vi + M−vi

Bj
(Uj − Vj)

35: end for
36: end if
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Theorem 2.7. Assume periodic data ui(i = 1, · · · , N) satisfies ūi = 1
c+2 (ui−1 +272

cui + ui+1) ∈ [m,M ], c ≥ 2 for all i = 1, · · · , N with u0 := uN and uN+1 := u1, then273

the output of Algorithm 2.2 satisfies
∑N
i=1 vi =

∑N
i=1 ui and vi ∈ [m,M ], ∀i.274

Proof. First we show the output vi ∈ [m,M ]. Consider Step II, which only275

modifies the undershoot and overshoot points and their immediate neighbors. Notice276

that the operation described by lines 6-8 will not increase the point value of neigh-277

bors to an undershoot point thus it will not create new overshoots. Similarly, the278

operation described by lines 11-13 will not create new undershoots. In other words,279

no new undershoots (or overshoots) will be created when eliminating overshoots (or280

undershoots) in Step II.281

Each interior point ui in any Tj belongs to one of the following four cases:282

1. ui ≤ m or ui ≥M .283

2. m < ui < M and ui−1, ui+1 ≤M .284

3. m < ui < M and ui−1, ui+1 ≥ m.285

4. m < ui < M and ui−1 > M,ui+1 < m (or ui+1 > M,ui−1 < m).286

We want to show vi ∈ [m,M ] after Step II. For the first three cases, by the same287

arguments as in the proof of Theorem 2.6, we can easily show that the output point288

values are in the range [m,M ]. For case (1), after Step II, if ui ≤ m then vi = m; if289

ui ≥M then vi = M . For case (2), vi 6= ui only if at least one of ui−1 and ui+1 is an290

undershoot. If so, then291

vi = ui −
(ui −m)+(m− ui−1)+

(ui−2 −m)+ + (ui −m)+
− (ui −m)+(m− ui+1)+

(ui −m)+ + (ui+2 −m)+
292

≥ ui −
1

c
(ui −m)+ −

1

c
(ui −m)+ > m.293

Similarly, for case (3), vi 6= ui only if at least one of ui−1 and ui+1 is an overshoot,294

and we can show vi < M .295

Notice that case (2) and case (3) are not exclusive to each other, which however296

does not affect the discussion here. When case (2) and case (3) overlap, we have297

ui, ui−1, ui+1 ∈ [m,M ] thus vi = ui ∈ [m,M ] after Step II.298

For case (4), without loss of generality, we consider the case when ui+1 > M,ui ∈299

[m,M ], ui−1 < m, and we need to show that the output vi ∈ [m,M ]. By Lemma300

2.2, we know that Algorithm 2.2 will decrease the value at xi by at most 1
c (ui −m)301

to eliminate the undershoot at xi−1 then increase the point value at xi by at most302
1
c (M − ui) to eliminate the overshoot at xi+1. So after Step II,303

vi ≤ ui +
1

c
(M − ui) ≤M (because c ≥ 2, ui < M);304

vi ≥ ui −
1

c
(ui −m) ≥ m (because c ≥ 2, ui > m).305

Thus we have vi ∈ [m,M ] after Step II. By the same arguments as in the proof of306

Theorem 2.6, we can also easily show the boundary points are in the range [m,M ]307

after Step II. It is straightforward to verify that
∑N
i=1 vi =

∑N
i=1 ui after Step II308

because the operations described by lines 6-8 and lines 11-13 do not change the local309

sum vi−1 + vi + vi+1.310

Next we discuss Step III in Algorithm 2.2. Let N̄ = 2 +N0 +N1 = nj −mj + 1311

be the cardinality of Sj = {umj
, · · · , unj

}.312

We need to show that the average value in each saw-tooth profile Sj is in the313

range [m,M ] after Step II before Step III. Otherwise it is impossible to enforce314
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10 H. LI, S. XIE AND X. ZHANG

the bounds in Sj without changing the sum in Sj . In other words, we need to show315

N̄m ≤ Uj =
∑
vi∈Sj

vi ≤ N̄M . We will prove the claim by conceptually applying the316

upper or lower bound limiter Algorithm 2.1 to Sj . Consider a boundary point of Sj ,317

e.g., umj
∈ [m,M ], then during Step II the point value at xmj

can be unchanged,318

moved down at most 1
c (umj −m) or moved up at most 1

c (M − umj ). We first show319

the average value in Sj after Step II is not below m:320

(a) Assume both boundary point values of Sj are unchanged during Step II. If321

applying Algorithm 2.1 to Sj after Step II, by the proof of Theorem 2.6, we322

know that the output values would be greater than or equal to m with the323

same sum, which implies that
∑
vi∈Sj

vi ≥ N̄m.324

(b) If a boundary point value of Sj is increased during Step II, the same discus-325

sion as in (a) still holds because an increased boundary value does not affect326

the discussion for the lower bound.327

(c) If a boundary point value vmj
of Sj is decreased during Step II, then with328

the fact that it is decreased by at most the amount 1
c (umj

−m), the same329

discussion as in (a) still holds.330

Similarly if applying the upper bound limiter similar to Algorithm 2.1 to Sj after331

Step II, then by the similar arguments as above, the output values would be less332

than or equal to M with the same sum, which implies
∑
vi∈Sj

vi ≤ N̄M .333

Now we can show the output vi ∈ [m,M ] for each Sj after Step III:334

1. Assume Vj = N1M + N0m + vmj
+ vnj

> Uj before the for loops in Step335

III. Then after Step III: if ui < m we get vi = m; if ui ≥ m we have336

M ≥vi−
vi −m
Aj

(Vj − Uj)337

=vi−
vi −m

vmj + vnj +N1M − (N1 + 2)m
(vmj + vnj +N1M +N0m− Uj)338

≥vi−
vi −m

vmj
+ vnj

+N1M − (N1 + 2)m
(vmj

+ vnj
+N1M +N0m− N̄m)339

=vi−(vi −m) = m.340

2. Assume Vj = N1M + N0m + vmj
+ vnj

≤ Uj before the for loops in Step341

III. Then after Step III: if ui > M we get vi = M ; if ui ≥M we have342

m ≤vi+
M − vi
Bj

(Uj − Vj)343

=vi+
M − vi

(N0 + 2)M − vmj
− vnj

−N0m
(Uj − vmj

− vnj
−N1M −N0m)344

≤vi+
M − vi

(N0 + 2)M − vmj − vnj −N0m
(N̄M − vmj

− vnj
−N1M −N0m)345

=vi+(M − vi) = M.346

Thus we have shown all the final output values are in the range [m,M ].347

Finally it is straightforward to verify that
∑N
i=1 vi =

∑N
i=1 ui.348

The limiters described in Algorithm 2.1 and Algorithm 2.2 are high order accurate349

limiters in the following sense. Assume ui(i = 1, · · · , N) are high order accurate350

approximations to point values of a very smooth function u(x) ∈ [m,M ], i.e., ui −351

u(xi) = O(∆xk). For fine enough uniform mesh, the global maximum points are well352

separated from the global minimum points in {ui, i = 1, · · · , N}. In other words,353
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there is no saw-tooth profile in {ui, i = 1, · · · , N}. Thus Algorithm 2.2 reduces to354

the three-point stencil limiter for smooth profiles on fine resolved meshes. Under355

these assumptions, the amount which limiter increases/decreases each point value is356

at most (ui −M)+ and (m− ui)+. If (ui −M)+ > 0, which means ui > M ≥ u(xi),357

we have (ui −M)+ = O(∆xk) because (ui −M)+ < ui − u(xi) = O(∆xk). Similarly,358

we get (m− ui)+ = O(∆xk). Therefore, for point values ui approximating a smooth359

function, the limiter changes ui by O(∆xk).360

2.3. A TVB limiter. The scheme (1.5) can be written into a conservation form:361

(2.2) ūn+1
i = ūni −

∆t

∆x
(f̂i+ 1

2
− f̂i− 1

2
),362

which is suitable for shock calculations and involves a numerical flux363

(2.3) f̂i+ 1
2

=
1

2
(f(uni+1) + f(uni )).364

To achieve nonlinear stability and eliminate oscillations for shocks, a TVB (total365

variation bounded in the means) limiter was introduced for the scheme (2.2) in [3].366

In this subsection we will show that the bound-preserving property of ūi (1.6) still367

holds for the scheme (2.2) with the TVB limiter in [3]. Thus we can use both the368

TVB limiter and the bound-preserving limiter in Algorithm (2.2) at the same time.369

The compact finite difference scheme with the limiter in [3] is370

ūn+1
i = ūni −

∆t

∆x
(f̂

(m)

i+ 1
2

− f̂ (m)

i− 1
2

),(2.4)371

where the numerical flux f̂
(m)

i+ 1
2

is the modified flux approximating (2.3).372

First we write f(u) = f+(u) + f−(u) with the requirement that ∂f+(u)
∂u ≥ 0,373

and ∂f−(u)
∂u ≤ 0. The simplest such splitting is the Lax-Friedrichs splitting f±(u) =374

1
2 (f(u)±αu), α = max

u∈[m,M ]
|f ′(u)|. Then we write the flux f̂i+ 1

2
as f̂i+ 1

2
= f̂+

i+ 1
2

+ f̂−
i+ 1

2

,375

where f̂±
i+ 1

2

are obtained by adding superscripts ± in (2.3). Next we define376

df̂+
i+ 1

2

= f̂+
i+ 1

2

− f+(ūi), df̂−
i+ 1

2

= f−(ūi+1)− f̂−
i+ 1

2

.377

Here df̂±
i+ 1

2

are the differences between the numerical fluxes f̂±
i+ 1

2

and the first-order,378

upwind fluxes f+(ūi) and f−(ūi+1). The limiting is defined by379

df̂
+(m)

i+ 1
2

= m̃(df̂+
i+ 1

2

,∆+f+(ūi),∆
+f+(ūi−1)), df̂

−(m)

i+ 1
2

= m̃(df̂−
i+ 1

2

,∆+f−(ūi),∆
+f−(ūi+1)),380

where ∆+vi ≡ vi+1 − vi is the usual forward difference operator, and the modified381

minmod function m̃ is defined by382

(2.5) m̃(a1, . . . , ak) =

{
a1, if |a1| ≤ p∆x2,
m(a1, . . . , ak), otherwise,

383

where p is a positive constant independent of ∆x and m is the minmod function384

m(a1, . . . , ak) =

{
smin1≤i≤k |ai|, if sign(a1) = · · · = sign(ak) = s,
0, otherwise.

385
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The limited numerical flux is then defined by f̂
+(m)

i+ 1
2

= f+(ūi) + df̂
+(m)

i+ 1
2

, f̂
−(m)

i+ 1
2

=386

f−(ūi+1)−df̂−(m)

i+ 1
2

,and f̂
(m)

i+ 1
2

= f̂
+(m)

i+ 1
2

+ f̂
−(m)

i+ 1
2

. The following result was proved in [3]:387

Lemma 2.8. For any n and ∆t such that 0 ≤ n∆t ≤ T , scheme (2.4) is TVBM388

(total variation bounded in the means): TV (ūn) =
∑
i |ūni+1 − ūni | ≤ C, where C is389

independent of ∆t, under the CFL condition maxu( ∂
∂uf

+(u)− ∂
∂uf

−(u)) ∆t
∆x ≤

1
2 .390

Next we show that the TVB scheme still satisfies (1.6).391

Theorem 2.9. If uni ∈ [m,M ], then under a suitable CFL condition, the TVB392

scheme (2.4) satisfies m ≤ 1
6 (un+1

i−1 + 4un+1
i + un+1

i+1 ) ≤M.393

Proof. Let λ = ∆t
∆x , then we have394

ūn+1
i = ūni − λ(f̂

(m)

i+ 1
2

− f̂ (m)

i− 1
2

)395

=
1

4
(ūni − 4λf̂

+(m)

i+ 1
2

) +
1

4
(ūni − 4λf̂

−(m)

i+ 1
2

) +
1

4
(ūni + 4λf̂

+(m)

i− 1
2

) +
1

4
(ūni + 4λf̂

−(m)

i− 1
2

).396

We will show ūn+1
i ∈ [m,M ] by proving that the four terms satisfy397

ūni − 4λf̂
+(m)

i+ 1
2

∈ [m− 4λf+(m),M − 4λf+(M)],398

ūi − 4λf̂
−(m)

i+ 1
2

∈ [m− 4λf−(m),M − 4λf−(M)],399

ūni + 4λf̂
+(m)

i− 1
2

∈ [m+ 4λf+(m),M + 4λf+(M)],400

ūi + 4λf̂
−(m)

i− 1
2

∈ [m+ 4λf−(m),M + 4λf−(M)],401

under the CFL condition402

(2.6) λmax
u
|f (±)(u)| ≤ 1

12
.403

We only discuss the first term since the proof for the rest is similar. We notice that404

u− 4λf+(u) and u− 12λf+(u) are monotonically increasing functions of u under the405

CFL constraint (2.6), thus u ∈ [m,M ] implies u − 4λf+(u) ∈ [m − 4λf+(m),M −406

4λf+(M)] and u − 12λf+(u) ∈ [m − 12λf+(m),M − 12λf+(M)]. For convenience,407

we drop the time step n, then we have408

ūi − 4λf̂
+(m)

i+ 1
2

= ūi − 4λ(f+(ūi) + df̂
+(m)

i+ 1
2

),409

where the value of df̂
+(m)

i+ 1
2

has four possibilities:410

1. If df̂
+(m)

i+ 1
2

= 0, then

ūi − 4λf̂
+(m)

i+ 1
2

= ūi − 4λf+(ūi) ∈ [m− 4λf+(m),M − 4λf+(M)].

2. If df̂
+(m)

i+ 1
2

= df̂+
i+ 1

2

, then we get411

ūi − 4λf̂
+(m)

i+ 1
2

=
1

6
(ui−1 + 4ui + ui+1)− 4λ

f+(ui) + f+(ui+1)

2
412

=
1

6
ui−1 +

2

3
(ui − 3λf+(ui)) +

1

6
(ui+1 − 12λf+(ui+1)).413

414
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By the monotonicity of the function u− 12λf+(u) and u− 3λf+(u), we have415

ui − 3λf+(ui) ∈ [m− 3λf+(m),M − 3λf+(M)],416

ui+1 − 12λf+(ui+1) ∈ [m− 12λf+(m),M − 12λf+(M)],417

which imply ūi − 4λf̂
+(m)

i+ 1
2

∈ [m− 4λf+(m),M − 4λf+(M)].418

3. If df̂
+(m)

i+ 1
2

= ∆+f+(ūi), ūi − 4λf̂
+(m)

i+ 1
2

= ūi − 4λf+(ūi+1). If ∆+f+(ūi) >419

0, ūi − 4λf+(ūi+1) < ūi − 4λf+(ūi) ≤ M − 4λf+(M), which implies the420

upper bound holds. Due to the definition of the minmod function, we can421

get 0 < ∆+f+(ūi) < df̂+
i+ 1

2

. Thus, f̂+
i+ 1

2

= f+(ui)+f
+(ui+1)

2 = f+(ūi) +422

df̂+
i+ 1

2

> f+(ūi) + ∆+f+(ūi) = f+(ūi+1). Then, ūi − 4λf+(ūi+1) > ūi −423

4λ f
+(ui)+f

+(ui+1)
2 ≥ m − 4λf+(m), which gives the lower bound. For the424

case ∆+f+(ūi) < 0, the proof is similar.425

4. If df̂
+(m)

i+ 1
2

= ∆+f+(ūi−1), the proof is the same as the previous case.426

2.4. One-dimensional convection diffusion problems. We consider the one-427

dimensional convection diffusion problems with periodic boundary conditions: ut +428

f(u)x = a(u)xx, u(x, 0) = u0(x), where a′(u) ≥ 0. Let fn denote the column vector429

with entries f(un1 ), · · · , f(unN ). By notations introduced in Section 2.1, the fourth-430

order compact finite difference with forward Euler can be denoted as:431

(2.7) un+1 = un − ∆t

∆x
W−1

1 Dxf
n +

∆t

∆x2
W−1

2 Dxxa
n.432

Recall that we have abused the notation by using W1f
n
i to denote the i-th entry of

the vector W1f
n and we have defined ūi = W1ui. We now define

ũi = W2ui.

Notice that W1 and W2 are both circulant thus they both can be diagonalized by the433

discrete Fourier matrix, so W1 and W2 commute. Thus we have434

˜̄ui = (W2W1u)i = (W1W2u)i = ¯̃ui.435

Let fni = f(uni ) and ani = a(uni ), then the scheme (2.7) can be written as436

¯̃un+1
i = ¯̃uni −

∆t

∆x
W2Dxf

n
i +

∆t

∆x2
W1Dxxa

n
i .437

438

Theorem 2.10. Under the CFL constraint ∆t
∆x maxu |f ′(u)| ≤ 1

6 ,
∆t

∆x2 maxu a
′(u) ≤439

5
24 , if uni ∈ [m,M ], then the scheme (2.7) satisfies that m ≤ ¯̃un+1

i ≤M.440

Proof. Let λ = ∆t
∆x and µ = ∆t

∆x2 . We can rewrite the scheme (2.7) as

un+1 =
1

2
(un − 2λW−1

1 Dxf
n) +

1

2
(un + 2µW−1

2 Dxxa
n),

W2W1u
n+1 =

1

2
W2(W1u

n − 2λDxf
n) +

1

2
W1(W2u

n + 2µDxxa
n),

¯̃un+1
i =

1

2
W2(ūni − 2λDxf

n
i ) +

1

2
W1(ũni + 2µDxxa

n
i ).
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By Theorem 2.1, we have ūni − 2λDxf
n
i ∈ [m,M ]. We also have441

ũni + 2µDxxa
n
i =

1

12
(un−1 + 10uni + uni+1) + 2µ(ani−1 − 2ani + ani+1)442

=

(
5

6
uni − 4µani

)
+

(
1

12
uni−1 + 2µani−1

)
+

(
1

12
uni+1 + 2µani+1

)
.443

444

Due to monotonicity under the CFL constraint and the assumption a′(u) ≥ 0, we get445

ũni + 2µDxxa
n
i ∈ [m,M ]. Thus we get ¯̃un+1

i ∈ [m,M ] since it is a convex combination446

of ūni − 2λDxf
n
i and ũni + 2µDxxa

n
i .447

Given point values ui satisfying ¯̃ui ∈ [m,M ] for any i, Lemma 2.2 no longer448

holds since ¯̃ui has a five-point stencil. However, the same three-point stencil limiter449

in Algorithm 2.2 can still be used to enforce the lower and upper bounds. Given450
¯̃ui = W2W1ui i = 1, · · · , N , conceptually we can obtain the point values ui by first451

computing ūi = W−1
2

¯̃ui then computing ui = W−1
1 ūi. Thus we can apply the limiter452

in Algorithm 2.2 twice to enforce ui ∈ [m,M ]:453

1. Given ¯̃ui ∈ [m,M ], compute ūi = W−1
2

¯̃ui which are not necessarily in the454

range [m,M ]. Then apply the limiter in Algorithm 2.2 to ūi, i = 1, · · · , N .455

Let v̄i denote the output of the limiter. Since we have456

¯̃ui = ˜̄ui =
1

c+ 2
(ūi−1 + cūi + ūi+1), c = 10,457

all discussions in Section 2.2 are still valid, thus we have v̄i ∈ [m,M ].458

2. Compute ui = W−1
1 v̄i. Apply the limiter in Algorithm 2.2 to ui, i = 1, · · · , N .459

Let vi denote the output of the limiter. Then we have vi ∈ [m,M ].460

2.5. High order time discretizations. For high order time discretizations, we461

can use strong stability preserving (SSP) Runge-Kutta and multistep methods, which462

are convex combinations of formal forward Euler steps. Thus if using the limiter in463

Algorithm 2.2 for fourth order compact finite difference schemes considered in this464

section on each stage in a SSP Runge-Kutta method or each time step in a SSP465

multistep method, the bound-preserving property still holds.466

In the numerical tests, we will use a fourth order SSP multistep method and a467

fourth order SSP Runge-Kutta method [4]. Now consider solving ut = F (u). The SSP468

coefficient C for a SSP time discretization is a constant so that the high order SSP469

time discretization is stable in a norm or a semi-norm under the time step restriction470

∆t ≤ C∆t0, if under the time step restriction ∆t ≤ ∆t0 the forward Euler is stable471

in the same norm or semi-norm. The fourth order SSP Multistep method (with SSP472

coefficient Cms = 0.1648) and the fourth order SSP Runge-Kutta method (with SSP473

coefficient Crk = 1.508) will be used in the numerical tests. See [4] for their definitions.474

In Section 2.2 we have shown that the limiters in Algorithm 2.1 and Algorithm475

2.2 are high order accurate provided ui are high order accurate approximations to a476

smooth function u(x) ∈ [m,M ]. This assumption holds for the numerical solution in477

a multistep method in each time step, but it is no longer true for inner stages in the478

Runge-Kutta method. So only SSP multistep methods with the limiter Algorithm479

2.2 are genuinely high order accurate schemes. For SSP Runge-Kutta methods, using480

the bound-preserving limiter for compact finite difference schemes might result in an481

order reduction. The order reduction for bound-preserving limiters for finite volume482

and DG schemes with Runge-Kutta methods was pointed out in [23] due to the same483

reason. However, such an order reduction in compact finite difference schemes is more484

prominent, as we will see in the numerical tests.485
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3. Extensions to two-dimensional problems. In this section we consider486

initial value problems on a square [0, 1] × [0, 1] with periodic boundary conditions.487

Let (xi, yj) = ( i
Nx
, j
Ny

) (i = 1, · · · , Nx, j = 1, · · · , Ny) be the uniform grid points488

on the domain [0, 1] × [0, 1]. For a periodic function f(x, y) on [0, 1] × [0, 1], let f be489

a matrix of size Nx × Ny with entries fij representing point values f(uij). We first490

define two linear operators W1x and W1y from RNx×Ny to RNx×Ny :491

W1xf =
1

6


4 1 1
1 4 1

. . .
. . .

. . .

1 4 1
1 1 4


Nx×Nx


f11 f12 · · · f1,Ny

f21 f22 · · · f2,Ny

...
...

. . .
...

fNx−1,1 fNx−1,2 · · · fNx−1,Ny

fNx,1 fNx,2 · · · fNx,Ny

 ,492

493

W1yf =


f11 f12 · · · f1,Ny

f21 f22 · · · f2,Ny

...
...

. . .
...

fNx−1,1 fNx−1,2 · · · fNx−1,Ny

fNx,1 fNx,2 · · · fNx,Ny


1

6


4 1 1
1 4 1

. . .
. . .

. . .

1 4 1
1 1 4


Ny×Ny

.494

We can define W2x, W2y, Dx, Dy, W2x and W2y similarly such that the subscript x495

denotes the multiplication of the corresponding matrix from the left for the x-index496

and the subscript y denotes the multiplication of the corresponding matrix from the497

right for the y-index. We abuse the notations by using W1xfij to denote the (i, j)498

entry of W1xf . We only discuss the forward Euler from now on since the discussion499

for high order SSP time discretizations are the same as in Section 2.5.500

3.1. Two-dimensional convection equations. Consider solving the two-dimensional501

convection equation: ut + f(u)x + g(u)y = 0, u(x, y, 0) = u0(x, y). By the our no-502

tations, the fourth order compact scheme with the forward Euler time discretization503

can be denoted as:504

(3.1) un+1
ij = unij −

∆t

∆x
W−1

1x Dxf
n
ij −

∆t

∆y
W−1

1y Dyg
n
ij .505

We define ūn = W1xW1yu
n, then by applying W1yW1x to both sides, (3.1) becomes506

(3.2) ūn+1
ij = ūnij −

∆t

∆x
W1yDxf

n
ij −

∆t

∆y
W1xDyg

n
ij .507

508

Theorem 3.1. Under the CFL constraint509

(3.3)
∆t

∆x
max
u
|f ′(u)|+ ∆t

∆y
max
u
|g′(u)| ≤ 1

3
,510

if unij ∈ [m,M ], then the scheme (3.2) satisfies ūn+1
ij ∈ [m,M ].511

Proof. For convenience, we drop the time step n in unij , f
n
ij , and introduce:512

U =

ui−1,j+1 ui,j+1 ui+1,j+1

ui−1,j ui,j ui+1,j

ui−1,j−1 ui,j−1 ui+1,j−1

 , F =

fi−1,j+1 fi,j+1 fi+1,j+1

fi−1,j fi,j fi+1,j

fi−1,j−1 fi,j−1 fi+1,j−1

 .513
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Let λ1 = ∆t
∆x and λ2 = ∆t

∆y , then the scheme (3.2) can be written as514

ūn+1
ij = W1yW1xu

n
ij − λ1W1yDxf

n
ij − λ2W1xDyg

n
ij ,515

=
1

36

1 4 1
4 16 4
1 4 1

 : U − λ1

12

−1 0 1
−4 0 4
−1 0 1

 : F − λ2

12

 1 4 1
0 0 0
−1 −4 −1

 : G,516

where : denotes the sum of all entrywise products in two matrices of the same size.517

Obviously the right hand side above is a monotonically increasing function with re-518

spect to ulm for i− 1 ≤ l ≤ i+ 1, j − 1 ≤ m ≤ j + 1 under the CFL constraint (3.3).519

The monotonicity implies the bound-preserving result of ūn+1
ij .520

Given ūij , we can recover point values uij by obtaining first vij = W−1
1x ūij then521

uij = W−1
1y vij . Thus similar to the discussions in Section 2.4, given point values uij522

satisfying ūij ∈ [m,M ] for any i and j, we can use the limiter in Algorithm 2.2 in a523

dimension by dimension fashion to enforce uij ∈ [m,M ]:524

1. Given ūij ∈ [m,M ], compute vij = W−1
1x ūij which are not necessarily in the525

range [m,M ]. Then apply the limiter in Algorithm 2.2 to vij (i = 1, · · · , Nx)526

for each fixed j. Since we have527

ūij =
1

c+ 2
(vi−1,j + cvi,j + vi+1,j), c = 4,528

all discussions in Section 2.2 are still valid. Let v̄ij denote the output of the529

limiter, thus we have v̄ij ∈ [m,M ].530

2. Compute uij = W−1
1y v̄ij . Then we have531

v̄ij =
1

c+ 2
(ui,j−1 + cui,j + ui,j+1), c = 4.532

Apply the limiter in Algorithm 2.2 to uij (j = 1, · · · , Ny) for each fixed i.533

Then the output values are in the range [m,M ].534

3.2. Two-dimensional convection diffusion equations. Consider the two-535

dimensional convection diffusion problem:536

ut + f(u)x + g(u)y = a(u)xx + b(u)xx, u(x, y, 0) = u0(x, y),537

where a′(u) ≥ 0 and b′(u) ≥ 0. A fourth-order accurate compact finite difference538

scheme can be written as539

du

dt
= − 1

∆x
W−1

1x Dxf −
1

∆y
W−1

1y Dyg +
1

∆x2
W−1

2x Dxxa +
1

∆y2
W−1

2y Dyyb.540

Let λ1 = ∆t
∆x , λ2 = ∆t

∆y , µ1 = ∆t
∆x2 and µ2 = ∆t

∆y2 . With the forward Euler time541

discretization, the scheme becomes542

(3.4) un+1
ij = unij − λ1W

−1
1x Dxf

n
ij − λ2W

−1
1y Dyg

n
ij + µ1W

−1
2x Dxxa

n
ij + µ2W

−1
2y Dyyb

n
ij .543

We first define ū = W1xW1yu and ũ = W2xW2yu, where W1 = W1xW1y and544

W2 = W2xW2y. Due to the fact W1W2 = W2W1, we have545

˜̄u = W2xW2y(W1xW1yu) = W1xW1y(W2xW2yu) = ¯̃u.546

The scheme (3.4) is equivalent to the following form:547

˜̄un+1
ij = ˜̄unij − λ1W1yW2xW2yDxf

n
ij − λ2W1xW2xW2yDyg

n
ij548

+ µ1W1xW1yW2yDxxa
n
ij + µ2W1xW1yW2xDyyb

n
ij .549
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Theorem 3.2. Under the CFL constraint550

(3.5)
∆t

∆x
max
u
|f ′(u)|+ ∆t

∆y
max
u
|g′(u)| ≤ 1

6
,

∆t

∆x2
max
u

a′(u) +
∆t

∆y2
max
u

b′(u) ≤ 5

24
,551

if unij ∈ [m,M ], then the scheme (3.4) satisfies ˜̄un+1
ij ∈ [m,M ].552

Proof. By using ˜̄unij = 1
2

˜̄unij + 1
2

¯̃unij , we obtain553

˜̄un+1
ij =

1

2
W2xW2y[ūnij − 2λ1W1yDxf

n
ij − 2λ2W1xDyg

n
ij ]554

+
1

2
W1xW1y[ũnij + 2µ1W2yDxxa

n
ij + 2µ2W2xDyyb

n
ij ].555

Let v̄ij = ūnij−2λ1W1yDxf
n
ij−2λ2W1xDyg

n
ij , w̃ij = ũnij+2µ1W2yDxxa

n
ij+2µ2W2xDyyb

n
ij .556

Then by the same discussion as in the proof of Theorem 3.1, we can show v̄ij ∈ [m,M ].557

For w̃ij , it can be written as558

w̃ij =
1

144

 1 10 1
10 100 10
1 10 1

 : U +
µ1

6

 1 −2 1
10 −20 10
1 −2 1

 : A+
µ2

6

 1 10 1
−2 −20 −2
1 10 1

 : B,559

560

A =

ai−1,j+1 ai,j+1 ai+1,j+1

ai−1,j ai,j ai+1,j

ai−1,j−1 ai,j−1 ai+1,j−1

 , B =

bi−1,j+1 bi,j+1 bi+1,j+1

bi−1,j bi,j bi+1,j

bi−1,j−1 bi,j−1 bi+1,j−1

 .561

Under the CFL constraint (3.5), w̃ij is a monotonically increasing function of unij562

involved thus w̃ij ∈ [m,M ]. Therefore, ˜̄un+1
ij ∈ [m,M ].563

Given ˜̄uij , we can recover point values uij by obtaining first ũij = W−1
1x W

−1
1y

˜̄uij564

then uij = W−1
2x W

−1
2y ũij . Thus similar to the discussions in the previous subsection,565

given point values uij satisfying ˜̄uij ∈ [m,M ] for any i and j, we can use the limiter566

in Algorithm 2.2 dimension by dimension several times to enforce uij ∈ [m,M ]:567

1. Given ˜̄uij ∈ [m,M ], compute ũij = W−1
1x W

−1
1y

˜̄uij and apply the limiting568

algorithm in the previous subsection to ensure ũij ∈ [m,M ].569

2. Compute vij = W−1
2x ũij which are not necessarily in the range [m,M ]. Then570

apply the limiter in Algorithm 2.2 to vij for each fixed j. Since we have571

ũij =
1

c+ 2
(vi−1,j + cvi,j + vi+1,j), c = 10,572

all discussions in Section 2.2 are still valid. Let ṽij denote the output of the573

limiter, thus we have ṽij ∈ [m,M ].574

3. Compute uij = W−1
2y ṽij . Then we have ṽij = 1

c+2 (ui,j−1+cui,j+ui,j+1), c =575

10. Apply the limiter in Algorithm 2.2 to uij for each fixed i. Then the output576

values are in the range [m,M ].577

4. Higher order extensions. The weak monotonicity may not hold for a578

generic compact finite difference operator. See [6] for a general discussion of com-579

pact finite difference schemes. In this section we demonstrate how to construct a580

higher order accurate compact finite difference scheme satisfying the weak mono-581

tonicity. Following Section 2 and Section 3, we can use these compact finite difference582

operators to construct higher order accurate bound-preserving schemes.583
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4.1. Higher order compact finite difference operators. Consider a com-584

pact finite difference approximation to the first order derivative in the following form:585

(4.1) β1f
′
i−2 + α1f

′
i−1 + f ′i + α1f

′
i+1 + β1f

′
i+2 = b1

fi+2 − fi−2

4∆x
+ a1

fi+1 − fi−1

2∆x
,586

where α1, β1, a1, b1 are constants to be determined. To obtain a sixth order accurate587

approximation, there are many choices for α1, β1, a1, b1. To ensure the approximation588

in (4.1) satisfies the weak monotonicity for solving scalar conservation laws under589

some CFL condition, we need α1 > 0, β1 > 0. By requirements above, we obtain590

(4.2) β1 =
1

12
(−1 + 3α1), a1 =

2

9
(8− 3α1), b1 =

1

18
(−17 + 57α1), α1 >

1

3
.591

With (4.2), the approximation (4.1) is sixth order accurate and satisfies the weak592

monotonicity as discussed in Section 2.1. The truncation error of the approximation593

(4.1) and (4.2) is 4
7! (9α1 − 4)∆x6f (7) +O(∆x8), so if setting594

(4.3) α1 =
4

9
, β1 =

1

36
, a1 =

40

27
, b1 =

25

54
,595

we have an eighth order accurate approximation satisfying the weak monotonicity.596

Now consider the fourth order compact finite difference approximations to the597

second derivative in the following form:598

β2f
′′
i−2 +α2f

′′
i−1 + f ′i +α2f

′′
i+1 + β2f

′′
i+2 = b2

fi+2 − 2fi + fi−2

4∆x2
+ a2

fi+1 − 2fi + fi−1

∆x2
,599

600

a2 =
1

3
(4− 4α2 − 40β2), b2 =

1

3
(−1 + 10α2 + 46β2).601

with the truncation error −4
6! (−2 + 11α2 − 124β2)∆x4f (6). The fourth order scheme602

discussed in Section 2 is the special case with α2 = 1
10 , β2 = 0, a2 = 6

5 , b2 = 0. If603

β2 = 11α2−2
124 , we get a family of sixth-order schemes satisfying the weak monotonicity:604

(4.4) a2 =
−78α2 + 48

31
, b2 =

291α2 − 36

62
, α2 > 0.605

The truncation error of the sixth order approximation is 4
31·8! (1179α2− 344)∆x6f (8).606

Thus we obtain an eighth order approximation satisfying the weak monotonicity if607

(4.5) α2 =
344

1179
, β2 =

23

2358
, a2 =

320

393
, b2 =

310

393
,608

with truncation error −172
5676885∆x8f (10).609

4.2. Convection problems. For the rest of this section, we will mostly focus on610

the family of sixth order schemes since the eighth order accurate scheme is a special611

case of this family. For ut + f(u)x = 0 with periodic boundary conditions on the612

interval [0, 1], we get the following semi-discrete scheme:613

d

dt
u = − 1

∆x
W̃−1

1 D̃xf ,614
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615

W̃1u =
β1

1 + 2α1 + 2β1



1
β1

α1

β1
1 1 α1

β1
α1

β1

1
β1

α1

β1
1 1

1 α1

β1

1
β1

α1

β1
1

. . .
. . .

. . .
. . .

. . .

1 α1

β1

1
β1

α1

β1
1

1 1 α1

β1

1
β1

α1

β1
α1

β1
1 1 α1

β1

1
β1





u1

u2

u3

...
uN−2

uN−1

uN


,616

617

D̃xf =
1

4(1 + 2α1 + 2β1)



0 2a1 b1 −b1 −2a1

−2a1 0 2a1 b1 −b1
−b1 −2a1 0 2a1 b1

. . .
. . .

. . .
. . .

. . .

−b1 −2a1 0 2a1 b1
b1 −b1 −2a1 0 2a1

2a1 b1 −b1 −2a1 0





f1

f2

f3

...
fN−2

fN−1

fN


,618

where fi and ui are point values of functions f(u(x)) and u(x) at uniform grid points619

xi (i = 1, · · · , N) respectively. We have a family of sixth-order compact schemes with620

forward Euler time discretization:621

(4.6) un+1 = un − ∆t

∆x
W̃−1

1 D̃xf .622

Define ū = W̃1u and λ = ∆t
∆x , then scheme (4.6) can be written as

ūn+1
i = ūni −

λ

4(1 + 2α1 + 2β1)
(b1f

n
i+2 + 2a1f

n
i+1 − 2a1f

n
i−1 − b1fni−2).

Following the lines in Section 2.1, we can easily conclude that the scheme (4.6) satisfies623

ūn+1
i ∈ [m,M ] if uni ∈ [m,M ], under the CFL constraint624

∆t

∆x
|f ′(u)| ≤ min{ 9

8− 3α1
,

6(3α1 − 1)

57α1 − 17
}.625

Given ūi ∈ [m,M ], we also need a limiter to enforce ui ∈ [m,M ]. Notice that ūi626

has a five-point stencil instead of a three-point stencil in Section 2.2. Thus in general627

the extensions of Section 2.2 for sixth order schemes are more complicated. However,628

we can still use the same limiter as in Section 2.2 because the five-diagonal matrix629

W̃1 can be represented as a product of two tridiagonal matrices.630

Plugging in β1 = 1
12 (−1 + 3α1), we have W̃1 = W̃

(1)
1 W̃

(2)
1 , where631

W̃
(1)
1 =

1

c
(1)
1 + 2


c
(1)
1 1 1

1 c
(1)
1 1
. . .

. . .
. . .

1 c
(1)
1 1

1 1 c
(1)
1

 , c
(1)
1 =

6α1

3α1 − 1
−
√

2
√

7− 24α1 + 27α2
1√

1− 6α1 + 9α2
1

,632
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W̃
(2)
1 =

1

c
(2)
1 + 2


c
(2)
1 1 1

1 c
(2)
1 1
. . .

. . .
. . .

1 c
(2)
1 1

1 1 c
(2)
1

 , c
(2)
1 =

6α1

3α1 − 1
+

√
2
√

7− 24α1 + 27α2
1√

1− 6α1 + 9α2
1

.633

In other words, ū = W̃1u = W̃
(1)
1 W̃

(2)
1 u. Thus following the limiting procedure634

in Section 2.4, we can still use the same limiter in Section 2.2 twice to enforce the635

bounds of point values if c
(1)
1 , c

(2)
1 ≥ 2, which implies 1

3 < α1 ≤ 5
9 . In this case we have636

min{ 9
8−3α1

, 6(3α1−1)
57α1−17 } = 6(3α1−1)

57α1−17 , thus the CFL for the weak monotonicity becomes637

λ|f ′(u)| ≤ 6(3α1−1)
57α1−17 . We summarize the results in the following theorem.638

Theorem 4.1. Consider a family of sixth order accurate schemes (4.6) with

β1 =
1

12
(−1 + 3α1), a1 =

2

9
(8− 3α1), b1 =

1

18
(−17 + 57α1),

1

3
< α1 ≤

5

9
,

which includes the eighth order scheme (4.3) as a special case. If uni ∈ [m,M ] for all639

i, under the CFL constraint ∆t
∆x maxu |f ′(u)| ≤ 6(3α1−1)

57α1−17 , we have ūn+1
i ∈ [m,M ].640

Given point values ui satisfying W̃
(1)
1 W̃

(2)
1 ui = W̃1ui = ūi ∈ [m,M ] for any i, we641

can apply the limiter in Algorithm 2.2 twice to enforce ui ∈ [m,M ]:642

1. Given ūi ∈ [m,M ], compute vi = [W̃
(1)
1 ]−1ūi which are not necessarily in the643

range [m,M ]. Then apply the limiter in Algorithm 2.2 to vi, i = 1, · · · , N .644

Let v̄i denote the output of the limiter. Since we have ūi = 1

c
(1)
1 +2

(vi−1 +645

c
(1)
1 vi + vi+1), c

(1)
1 > 2, all discussions in Section 2.2 are still valid, thus we646

have v̄i ∈ [m,M ].647

2. Compute ui = [W̃
(2)
1 ]−1v̄i. Apply the limiter in Algorithm 2.2 to ui, i =648

1, · · · , N . Since we have v̄i = 1

c
(2)
1 +2

(ui−1 + c
(2)
1 ui +ui+1), c

(2)
1 > 2, all discus-649

sions in Section 2.2 are still valid, thus the output are in [m,M ].650

4.3. Diffusion problems. For simplicity we only consider the diffusion prob-651

lems and the extension to convection diffusion problems can be easily discussed fol-652

lowing Section 2.4. For the one-dimensional scalar diffusion equation ut = g(u)xx653

with g′(u) ≥ 0 and periodic boundary conditions on an interval [0, 1], we get the sixth654

order semi-discrete scheme: d
dtu = 1

∆x2 W̃
−1
2 D̃xxg, where655

W̃2u =
β2

1 + 2α2 + 2β2



1
β2

α2

β2
1 1 α2

β2
α2

β2

1
β2

α2

β2
1 1

1 α2

β2

1
β2

α2

β2
1

. . .
. . .

. . .
. . .

. . .

1 α2

β2

1
β2

α2

β2
1

1 1 α2

β2

1
β2

α2

β2
α2

β2
1 1 α2

β2

1
β2





u1

u2

u3

...
uN−2

uN−1

uN


,656
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D̃xxg = 1
4(1+2α2+2β2)



−8a2 − 2b2 4a2 2b2 2b2 4a2
4a2 −8a2 − 2b2 4a2 2b2 2b2
2b2 4a2 −8a2 − 2b24a2 2b2

. . .
. . .

. . .
. . .

. . .

2b2 4a2−8a2 − 2b2 4a2 2b2
2b2 2b2 4a2 −8a2 − 2b2 4a2
4a2 2b2 2b2 4a2 −8a2 − 2b2





g1
g2
g3
...

gN−2

gN−1

gN


,657

where gi and ui are values of functions g(u(x)) and u(x) atxi respectively.658

As in the previous subsection, we prefer to factor W̃2 as a product of two tridi-659

agonal matrices. Plugging in β2 = 11α2−2
124 , we have: W̃2 = W̃

(1)
2 W̃

(2)
2 , where660

W̃
(1)
2 =

1

c
(1)
2 + 2


c
(1)
2 1 1

1 c
(1)
2 1
. . .

. . .
. . .

1 c
(1)
2 1

1 1 c
(1)
2

 , c
(1)
2 =

62α2

11α2 − 2
−
√

2
√

128− 726α2 + 2043α2
2√

4− 44α2 + 121α2
2

,661

W̃
(2)
2 =

1

c
(2)
2 + 2


c
(2)
2 1 1

1 c
(2)
2 1
. . .

. . .
. . .

1 c
(2)
2 1

1 1 c
(2)
2

 , c
(2)
2 =

62α2

11α2 − 2
+

√
2
√

128− 726α2 + 2043α2
2√

4− 44α2 + 121α2
2

.662

To have c
(1)
2 , c

(2)
2 ≥ 2, we need 2

11 < α2 ≤ 60
113 . The forward Euler gives663

(4.7) un+1 = un +
∆t

∆x2
W̃−1

2 D̃xxg.664

Define ũi = W̃2ui and µ = ∆t
∆x2 , then the scheme (4.7) can be written as665

ũn+1
i = ũni +

µ

4(1 + 2α2 + 2β2)

[
2b2g

n
i−2 + 4a2g

n
i−1 + (−8a2 − 2b2)gni + 4a2g

n
i+1 + 2b2g

n
i+2

]
.666

667

Theorem 4.2. Consider a family of sixth order accurate schemes (4.7) with

β2 =
11α2 − 2

124
, a2 =

−78α2 + 48

31
, b2 =

291α2 − 36

62
,

2

11
< α2 ≤

60

113
,

which includes the eighth order scheme (4.5) as a special case. If uni ∈ [m,M ] for all668

i, under the CFL ∆t
∆x2 g

′(u) < 124
3(116−111α2) , the scheme satisfies ũn+1 ∈ [m,M ].669

As in the previous subsection, given point values ui satisfying W̃
(1)
2 W̃

(2)
2 ui =670

W̃2ui = ũi ∈ [m,M ] for any i, we can apply the limiter in Algorithm 2.2 twice to671

enforce ui ∈ [m,M ]. The matrices W̃1 and W̃2 commute because they are both circu-672

lant matrices thus diagonalizable by the discrete Fourier matrix. The discussion for673

the sixth order scheme solving convection diffusion problems is also straightforward.674

5. Extensions to general boundary conditions. Since the compact finite675

difference operator is implicitly defined thus any extension to other type boundary676

conditions is not straightforward. In order to maintain the weak monotonicity, the677
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22 H. LI, S. XIE AND X. ZHANG

boundary conditions must be properly treated. In this section we demonstrate a678

high order accurate boundary treatment preserving the weak monotonicity for inflow679

and outflow boundary conditions. For convection problems, we can easily construct a680

fourth order accurate boundary scheme. For convection diffusion problems, it is much681

more complicated to achieve weak monotonicity near the boundary thus a straight-682

forward discussion gives us a third order accurate boundary scheme.683

5.1. Inflow-outflow boundary conditions for convection problems. For684

simplicity, we consider the following initial boundary value problem on the interval685

[0, 1] as an example: ut + f(u)x = 0, u(x, 0) = u0(x), u(0, t) = L(t), where we686

assume f ′(u) > 0 so that the inflow boundary condition at the left cell end is a well-687

posed boundary condition. The boundary condition at x = 1 is not specified thus688

understood as an outflow boundary condition. We further assume u0(x) ∈ [m,M ]689

and L(t) ∈ [m,M ] so that the exact solution is in [m,M ].690

Consider a uniform grid with xi = i∆x for i = 0, 1, · · · , N,N + 1 and ∆x = 1
N+1 .691

Then a fourth order semi-discrete compact finite difference scheme is given by692

d

dt

1

6

1 4 1
. . .

. . .
. . .

1 4 1


 u0

...
uN+1

 =
1

2∆x

−1 0 1
. . .

. . .
. . .

−1 0 1


 f0

...
fN+1

 .693

With forward Euler time discretization, the scheme is equivalent to694

(5.1) ūn+1
i = ūni −

1

2
λ(fni+1 − fni−1), i = 1, · · · , N.695

Here un0 = L(tn) is given as boundary condition for any n. Given uni for i =696

0, 1, · · · , N + 1, the scheme (5.1) gives ūn+1
i for i = 1, · · · , N , from which we still697

need un+1
N+1 to recover interior point values un+1

i for i = 1, · · · , N .698

Since the boundary condition at xN+1 = 1 can be implemented as outflow, we699

can use ūn+1
i for i = 1, · · · , N to obtain a reconstructed un+1

N+1. If there is a cu-700

bic polynomial pi(x) so that ui−1, ui, ui+1 are its point values at xi−1, xi, xi+1, then701
1

2∆x

∫ xi+1

xi−1
pi(x) dx = 1

6ui−1 + 4
6ui+

1
6ui+1 = ūi, due to the exactness of the Simpson’s702

quadrature rule for cubic polynomials. To this end, we can consider a unique cu-703

bic polynomial p(x) satisfying four equations: 1
2∆x

∫ xj+1

xj−1
p(x) dx = ūn+1

j , j = N −704

3, N−2, N−1, N. If ūn+1
j are fourth order accurate approximations to 1

6u(xj−1, t
n+1)+705

4
6u(xj , t

n+1) + 1
6u(xj+1, t

n+1), then p(x) is a fourth order accurate approximation to706

u(x, tn+1) on the interval [xN−4, xN+1]. So we get a fourth order accurate un+1
N+1 by707

(5.2) p(xN+1) = −2

3
ūN−3 +

17

6
ūN−2 −

14

3
ūN−1 +

7

2
ūN .708

Since (5.2) is not a convex linear combination, p(xN+1) may not lie in the bound709

[m,M ]. Thus to ensure un+1
N+1 ∈ [m,M ] we can define710

(5.3) un+1
N+1 := max{min{p(xN+1),M},m}.711

Obviously Theorem 2.1 still holds for the scheme (5.1). For the forward Euler712

time discretization, we can implement the bound-preserving scheme as follows:713

1. Given uni for all i, compute ūn+1
i for i = 1, · · · , N by (5.1).714

2. Obtain boundary values un+1
0 = L(tn+1) and un+1

N+1 by (5.2) and (5.3).715
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3. Given ūn+1
i for i = 1, · · · , N and two boundary values un+1

0 and un+1
N+1, recover716

point values un+1
i for i = 1, · · · , N by solving the tridiagonal linear system717

(the superscript n+ 1 is omitted):718

1

6


4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4




u1

u2

...
uN−1

uN

 =


ū1 − 1

6u0

ū2

...
ūN−1

ūN − 1
6uN+1

 .719

4. Apply the limiter in Algorithm 2.2 to the point values un+1
i for i = 1, · · · , N .720

5.2. Dirichlet boundary conditions for one-dimensional convection dif-721

fusion equations. Consider the initial boundary value problem for a one-dimensional722

scalar convection diffusion equation on the interval [0, 1]:723

(5.4) ut + f(u)x = g(u)xx, u(x, t) = u0(x), u(0, t) = L(t), u(1, t) = R(t),724

where g′(u) ≥ 0. We further assume u0(x) ∈ [m,M ] and L(t), R(t) ∈ [m,M ] so that725

the exact solution is in [m,M ].726

We demonstrate how to treat the boundary approximations so that the scheme727

still satisfies some weak monotonicity such that a certain convex combination of point728

values is in the range [m,M ] at the next time step. Consider a uniform grid with729

xi = i∆x for i = 0, 1, · · · , N,N + 1 where ∆x = 1
N+1 . The fourth order compact730

finite difference approximations at the interior points can be written as:731

W1


fx,1
fx,2

...
fx,N−1

fx,N

 =
1

∆x
Dx


f1

f2

...
fN−1

fN

+


− fx,0

6 −
f0

2∆x
0
...
0

− fx,N+1

6 + fN+1

2∆x

 ,732

733

W1 =
1

6


4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4

 , Dx =
1

2


0 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0

 ,734

735

W2


gxx,1
gxx,2

...
gxx,N−1

gxx,N

 =
1

∆x2
Dxx


g1

g2

...
gN−1

gN

+


− gxx,0

12 + g0
∆x2

0
...
0

− gxx,N+1

12 + gN+1

∆x2

 ,736

W2 =
1

12


10 1
1 10 1

. . .
. . .

. . .

1 10 1
1 10

 , Dxx =


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

 ,737
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where fx,i and gxx,i denotes the values of f(u)x and g(u)xx at xi respectively. Let738

F =


− fx,0

6 −
f0

2∆x
0
...
0

− fx,N+1

6 + fN+1

2∆x

 , G =


− gxx,0

12 + g0
∆x2

0
...
0

− gxx,N+1

12 + gN+1

∆x2

 .739

Define W := W1W2 = W2W1. Here W2 and W1 commute because they have the same740

eigenvectors, which is due to the fact that 2W2 −W1 is the identity matrix. Let u =741 (
u1 u2 · · · uN

)T
, f =

(
f(u1) f(u2) · · · f(uN )

)T
and g =

(
g(u1) g(u2) · · · g(uN )

)T
.742

Then a fourth order compact finite difference approximation to (5.4) at the interior743

grid points is d
dtu +W−1

1 ( 1
∆xDxf + F ) = W−1

2 ( 1
∆x2Dxxg +G) which is equivalent to744

d

dt
(Wu) +

1

∆x
W2Dxf −

1

∆x2
W1Dxxg = −W2F +W1G.745

If ui(t) = u(xi, t) where u(x, t) is the exact solution to the problem, then it satisfies746

(5.5) ut,i + fx,i = gxx,i,747

where ut,i = d
dtui(t), fx,i = f(ui)x and gxx,i = g(ui)xx. If we use (5.5) to simplify748

−W2F +W1G, then the scheme is still fourth order accurate. In other words, setting749

−fx,i+gxx,i = ut,i does not affect the accuracy. Plugging (5.5) in the original −W2F+750

W1G, we can redefine −W2F +W1G as751

−W2F +W1G :=



− 1
18ut,0 + 1

12fx,0 + 5
12∆xf0 + 2

3∆x2 g0

− 1
72ut,0 + 1

24f0 + 1
6∆x2 g0

0
...
0

− 1
72ut,N+1 − 1

24fN+1 + 1
6∆x2 gN+1

− 1
18ut,N+1 + 1

12fx,N+1 − 5
12∆xfN+1 + 2

3∆x2 gN+1


.752

So we now consider the following fourth order accurate scheme:753

(5.6)

d

dt
(Wu)+

1

∆x
W2Dxf−

1

∆x2
W1Dxxg =



− 1
18ut,0 + 1

12fx,0 + 5
12∆xf0 + 2

3∆x2 g0

− 1
72ut,0 + 1

24f0 + 1
6∆x2 g0

0
...
0

− 1
72ut,N+1 − 1

24fN+1 + 1
6∆x2 gN+1

− 1
18ut,N+1 + 1

12fx,N+1 − 5
12∆xfN+1 + 2

3∆x2 gN+1


.754

The first equation in (5.6) is755

d

dt
(
4u0 + 41u1 + 14u2 + u3

72
) =

1

24∆x
(10f0 + f1 − 10f2 − f3) +

1

6∆x2
(4g0 − 7g1 + 2g2 + g3) +

1

12
fx,0.756

After multiplying 72
60 = 6

5 to both sides, it becomes757

d

dt
(
4u0 + 41u1 + 14u2 + u3

60
) =

1

20∆x
(10f0 + f1 − 10f2 − f3)758

+
1

5∆x2
(4g0 − 7g1 + 2g2 + g3) +

1

10
fx,0.(5.7)759
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In order for the scheme (5.7) to satisfy a weak monotonicity in the sense that760

4un+1
0 +41un+1

1 +14un+1
2 +un+1

3

60 in (5.7) with forward Euler can be written as a monoton-761

ically increasing function of uni under some CFL constraint, we still need to find an762

approximation to f(u)x,0 using only u0, u1, u2, u3, with which we have a straightfor-763

ward third order approximation to f(u)x,0:764

(5.8) fx,0 =
1

∆x
(−11

6
f0 + 3f1 −

3

2
f2 +

1

3
f3) +O(∆x3).765

Then (5.7) becomes766

d

dt
(
4u0 + 41u1 + 14u2 + u3

60
) =

1

60∆x
(19f0 + 21f1 − 39f2 − f3)767

+
1

5∆x2
(4g0 − 7g1 + 2g2 + g3).(5.9)768

The second to second last equations of (5.6) can be written as769

d

dt
(
ui−2 + 14ui−1 + 42ui + 14ui+1 + ui+2

72
) =

1

24∆x
(fi−2 + 10fi−1(5.10)770

−10fi+1 − fi+2) +
1

6∆x2
(gi−2 + 2gi−1 − 6gi + 2gi+1 + gi+2), 2 ≤ i ≤ N − 1,771

which satisfies a straightforward weak monotonicity under some CFL constraint.772

The last equation in (5.6) is773

d

dt
(
4uN+1 + 41uN + 14uN−1 + uN−2

72
) =

1

24∆x
(fN−2 + 10fN−1 − fN774

−10fN+1) +
1

6∆x2
(gN−2 + 2gN−1 − 7gN + 4gN+1) +

1

12
fx,N+1.775

After multiplying 72
60 = 6

5 to both sides, it becomes776

d

dt
(
uN−2 + 14uN−1 + 41uN + 4uN+1

60
) =

1

20∆x
(fN−2 + 10fN−1 − fN777

−10fN+1) +
1

5∆x2
(gN−2 + 2gN−1 − 7gN + 4gN+1) +

1

10
fx,N+1.778

Similar to the boundary scheme at x0, we should use a third-order approximation:779

(5.11) fx,N+1 =
1

∆x
(−1

3
fN−2 +

3

2
fN−1 − 3fN +

11

6
fN+1) +O(∆x3).780

Then the boundary scheme at xN+1 becomes781

d

dt
(
uN−2 + 14uN−1 + 41uN + 4uN+1

60
) =

1

60∆x
(fN−2 + 39fN−1 − 21fN782

−19fN+1) +
1

5∆x2
(gN−2 + 2gN−1 − 7gN + 4gN+1).(5.12)783

784

To summarize the full semi-discrete scheme, we can represent the third order785

scheme (5.9), (5.10) and (5.12), for the Dirichlet boundary conditions as:786

d

dt
W̃ ũ = − 1

∆x
D̃xf(ũ) +

1

∆x2
D̃xxg(ũ),787
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where788

W̃ =
1

72


24
5

246
5

84
5

6
5

1 14 42 14 1
. . .

. . .
. . .

. . .
. . .

1 14 42 14 1
6
5

84
5

246
5

24
5


N×(N+2)

, ũ =


u0

u1

...
uN
uN+1


(N+2)×1

,789

790

D̃x =
1

24


− 38

5 −
42
5

78
5

2
5

−1 −10 0 10 1
. . .

. . .
. . .

. . .
. . .

−1 −10 0 10 1
− 2

5 −
78
5

42
5

38
5


N×(N+2)

, D̃xx =
1

6


24
5 −

42
5

12
5

6
5

1 2 −6 2 1
. . .

. . .
. . .

. . .
. . .

1 2 −6 2 1
6
5

12
5 −

42
5

24
5


N×(N+2)

.791

Let ū = W̃ ũ, λ = ∆t
∆x and µ = ∆t

∆x2 . With forward Euler, it becomes792

ūn+1
i = ūni −

1

2
λD̃xf̃i + µD̃xxg̃i, i = 1, · · · , N.(5.13)793

We state the weak monotonicity without proof.794

Theorem 5.1. Under the CFL constraint ∆t
∆x maxu |f ′(u)| ≤ 4

19 ,
∆t

∆x2 maxu g
′(u) ≤795

695
1596 , if uni ∈ [m,M ], then the scheme (5.13) satisfies ūn+1

i ∈ [m,M ].796

We notice that797

ūn+1
1 =

1

60
(4un+1

0 + 41un+1
1 + 14un+1

2 + un+1
3 ) =

un+1
0 + 4un+1

1 + un+1
2

6
+

1

10

un+1
1 + 4un+1

2 + un+1
3

6
− 1

10
un+1

0 ,798

799

ūn+1
N =

1

60
(un+1
N−2 + 14un+1

N−1 + 41un+1
N + 4un+1

N+1) =
1

10

un+1
N−2 + 4un+1

N−1 + un+1
N

6
+
un+1
N−1 + 4un+1

N + un+1
N+1

6
− 1

10
un+1
N+1.800

Recall that the boundary values are given: un+1
0 = L(tn+1) ∈ [m,M ] and un+1

N+1 =801

R(tn+1) ∈ [m,M ], so we have802

10

11

un+1
0 + 4un+1

1 + un+1
2

6
+

1

11

un+1
1 + 4un+1

2 + un+1
3

6
≤ 10

11
M +

1

11
M = M,803

10

11

un+1
0 + 4un+1

1 + un+1
2

6
+

1

11

un+1
1 + 4un+1

2 + un+1
3

6
≥ 10

11
m+

1

11
m = m,804

1

11

un+1
N−2 + 4un+1

N−1 + un+1
N

6
+

10

11

un+1
N−1 + 4un+1

N + un+1
N+1

6
≤ 10

11
M +

1

11
M = M,805

1

11

un+1
N−2 + 4un+1

N−1 + un+1
N

6
+

10

11

un+1
N−1 + 4un+1

N + un+1
N+1

6
≥ 10

11
m+

1

11
m = m.806

Thus define wn+1 =
(
wn+1

1 , wn+1
2 , wn+1

3 , . . . , wn+1
N−1, w

n+1
N

)T
as follows and we have:807

m ≤ wn+1
i : = ūn+1

i ≤M, i = 2, · · · , N − 1,808

m ≤ wn+1
1 : =

10

11

un+1
0 + 4un+1

1 + un+1
2

6
+

1

11

un+1
1 + 4un+1

2 + un+1
3

6
≤M,809

m ≤ wn+1
N : =

1

11

un+1
N−3 + 4un+1

N−2 + un+1
N−1

6
+

10

11

un+1
N−2 + 4un+1

N−1 + un+1
N

6
≤M.810
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By the notations above, we get811

wn+1 = Kūn+1 + un+1
bc =

˜̃
W ũ,(5.14)812

813

K =


10
11

1
. . .

1
10
11


N×N

,ubc =
1

11


u0

0
...
0

uN+1


N×1

,
˜̃
W =

1

72


120
11

492
11

168
11

12
11

1 14 42 14 1
. . .

. . .
. . .

. . .
. . .

1 14 42 14 1
12
11

168
11

492
11

120
11


N×(N+2)

.814

We notice that
˜̃
W can be factored as a product of two tridiagonal matrices:815

1

72


120
11

492
11

168
11

12
11

1 14 42 14 1
. . .

. . .
. . .

. . .
. . .

1 14 42 14 1
12
11

168
11

492
11

120
11

 =
1

12


120
11

12
11

1 10 1
. . .

. . .
. . .

1 10 1
12
11

120
11


N×N

1

6


1 4 1

1 4 1
. . .

. . .
. . .

1 4 1
1 4 1


N×(N+2)

,816

which can be denoted as
˜̃
W = W̃2W̃1. Fortunately, all the diagonal entries of W̃1 and817

W̃2 are in the form of c
c+2 , c > 2. So given ūi = W̃ui ∈ [m,M ], we construct wn+1

i ∈818

[m,M ]. We can apply the limiter in Algorithm 2.2 twice to enforce ui ∈ [m,M ]:819

1. Given uni for all i, use the scheme (5.13) to obtain ūn+1
i ∈ [m,M ] for i =820

1, · · · , N . Then construct wn+1
i ∈ [m,M ] for i = 1, · · · , N by (5.14).821

2. Notice that W̃2 is a matrix of size N ×N . Compute v = W̃−1
2 wn+1. Apply822

the limiter in Algorithm 2.2 to vi and let v̄i denote the output values. Since823

we have W̃2vi ∈ [m,M ], i.e.,824

m ≤ 10

11
v1 +

1

11
v2 ≤M,825

m ≤ 1

12
v1 +

10

12
v2 +

1

12
v3 ≤M,826

...827

m ≤ 1

12
vN−2 +

10

12
vN−1 +

1

12
vN≤M,828

m ≤ 1

11
vN−1 +

10

11
vN ≤M.829

Following the discussions in Section 2.2, it implies v̄i ∈ [m,M ].830

3. Obtain values of un+1
i , i = 1, · · · , N by solving a N ×N system:831

1

6


4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4




un+1

1

un+1
2
...

un+1
N−1

un+1
N

 =


v̄1

v̄2

...
v̄N−1

v̄N

−
1

6
un+1
bc .832

4. Apply the limiter in Algorithm 2.2 to un+1
i to ensure un+1

i ∈ [m,M ].833
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6. Numerical tests.834

6.1. One-dimensional problems with periodic boundary conditions. In835

this subsection, we test the fourth order and eighth order accurate compact finite836

difference schemes with the bound-preserving limiter. The time step is taken to837

satisfy both the CFL condition required for weak monotonicity in Theorem 2.1 and838

Theorem 2.10 and the SSP coefficient for high order SSP time discretizations.839

Example 1. One-dimensional linear convection equation. Consider ut + ux =840

0 with and initial condition u0(x) and periodic boundary conditions on the interval841

[0, 2π]. The L1 and L∞ errors for the fourth order scheme with a smooth initial842

condition at time T = 10 are listed in Table 1 where ∆x = 2π
N , the time step is taken843

as ∆t = Cms
1
3∆x for the multistep method, and ∆t = 5Cms

1
3∆x for the Runge-Kutta844

method so that the number of spatial discretization operators computed is the same as845

in the one for the multistep method. We can observe the fourth order accuracy for846

the multistep method and obvious order reductions for the Runge-Kutta method.847

The errors for smooth initial conditions at time T = 10 for the eighth order accu-848

rate scheme are listed in Table 2. For the eighth order accurate scheme, the time step849

to achieve the weak monotonicity is ∆t = Cms
6
25∆x for the fourth-order SSP multi-850

step method. On the other hand, we need to set ∆t = ∆x2 in fourth order accurate851

time discretizations to verify the eighth order spatial accuracy. To this end, the time852

step is taken as ∆t = Cms
6
25∆x2 for the multistep method, and ∆t = 5Cms

6
25∆x2 for853

the Runge-Kutta method. We can observe the eighth order accuracy for the multistep854

method and the order reduction for N = 160 is due to the roundoff errors. We can855

also see an obvious order reduction for the Runge-Kutta method.856

Table 1
The fourth order accurate compact finite difference scheme with the bound-preserving limiter

on a uniform N-point grid for the linear convection with initial data u0(x) = 1
2

+ sin4(x).

Fourth order SSP multistep Fourth order SSP Runge-Kutta
N L1 error order L∞ error order L1 error order L∞ error order
20 3.44E-2 - 6.49E-2 - 3.41E-2 - 6.26E-2 -
40 3.12E-3 3.47 6.19E-3 3.39 3.14E-3 3.44 6.62E-3 3.24
80 1.82E-4 4.10 2.95E-4 4.39 1.86E-4 4.08 3.82E-4 4.11
160 1.10E-5 4.05 1.85E-5 4.00 1.29E-5 3.85 4.48E-5 3.09
320 6.81E-7 4.02 1.15E-6 4.01 1.42E-6 3.18 1.03E-5 2.13

Table 2
The eighth order accurate compact finite difference scheme with the bound-preserving limiter

on a uniform N-point grid for the linear convection with initial data u0(x) = 1
2

+ 1
2

sin4(x).

Fourth order SSP multistep Fourth order SSP Runge-Kutta
N L1 error order L∞ error order L1 error order L∞ error order
10 6.31E-2 - 1.01E-1 - 6.44E-2 - 9.58E-2 -
20 3.35E-5 7.55 5.59E-4 7.49 3.39E-4 7.57 5.79E-4 7.37
40 9.58E-7 8.45 1.49E-6 8.55 1.52E-6 7.80 4.32E-6 7.06
80 3.50E-9 8.10 5.51E-9 8.08 5.34E-8 4.83 2.31E-7 4.23
160 6.57E-11 5.74 1.01E-10 5.77 2.40E-9 4.48 1.45E-8 3.99
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Next, we consider the following discontinuous initial data:857

(6.1) u0(x) =

{
1, if 0 < x ≤ π,
0, if π < x ≤ 2π.

858

See Figure 1 for the performance of the bound-preserving limiter and the TVB limiter859

on the fourth order scheme. We observe that the TVB limiter can reduce oscillations860

but cannot remove the overshoot/undershoot. When both limiters are used, we can861

obtain a non-oscillatory bound-preserving numerical solution. See Figure 2 for the862

performance of the bound-preserving limiter on the eighth order scheme.863
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Exact

(d) with both limiters

Fig. 1. Linear convection at T = 10. Fourth order compact finite difference and fourth order
SSP multistep with ∆t = 1

3
Cms∆x and 100 grid points. The TVB parameter in (2.5) is p = 5.

Example 2. One dimensional Burgers’ equation.864

Consider the Burgers’ equation ut+(u
2

2 )x = 0 with a periodic boundary condition865

on [−π, π]. For the initial data u0(x) = sin(x)+0.5, the exact solution is smooth up to866

T = 1, then it develops a moving shock. We list the errors of the fourth order scheme867

at T = 0.5 in Table 3 where the time step is ∆t = 1
3Cms∆x for SSP multistep and868

∆t = 5
3Cms∆x for SSP Runge-Kutta with ∆x = 2π

N . We observe the expected fourth869

order accuracy for the multistep time discretization. At T = 1.2, the exact solution870

contains a shock near x = −2.5. The errors on the smooth region [−2, π] at T = 1.2871

are listed in Table 4 where high order accuracy is lost. Some high order schemes872

can still be high order accurate on a smooth region away from the shock in this test,873

see [22]. We emphasize that in all our numerical tests, Step III in Algorithm 2.2 was874
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(a) Without any limiter.
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(b) With the bound-preserving limiter.

Fig. 2. Linear convection at T = 10. Eighth order compact finite difference and the fourth
order SSP multistep method with ∆t = Cms

6
25

∆x and 100 grid points

never triggered. In other words, set of Class I is rarely encountered in practice. So the875

limiter Algorithm 2.2 is a local three-point stencil limiter for this particular example876

rather than a global one. The loss of accuracy in smooth regions is possibly due to877

the fact that compact finite difference operator is defined globally thus the error near878

discontinuities will pollute the whole domain.879

The solutions of the fourth order compact finite difference and the fourth order880

SSP multistep with the bound-preserving limiter and the TVB limiter at time T = 2881

are shown in Figure 3, for which the exact solution is in the range [−0.5, 1.5]. The882

TVB limiter alone does not eliminate the overshoot or undershoot. When both the883

bound-preserving and the TVB limiters are used, we can obtain a non-oscillatory884

bound-preserving numerical solution.

Table 3
The fourth order scheme with limiter for the Burgers’ equation. Smooth solutions.

Fourth order SSP multistep Fourth SSP Runge-Kutta
N L1 error order L∞ error order L1 error order L∞ error order
20 6.92E-4 - 5.24E-3 - 7.79E-4 - 5.61E-3 -
40 3.28E-5 4.40 3.62E-4 3.85 4.45E-5 4.13 4.77E-4 3.56
80 1.90E-6 4.11 2.00E-5 4.18 3.53E-6 3.66 2.09E-5 4.51
160 1.15E-6 4.04 1.24E-6 4.01 4.93E-7 2.84 5.47E-6 1.93
320 7.18E-9 4.00 7.67E-8 4.01 8.78E-8 2.49 1.73E-6 1.66

885

Table 4
Burgers’ equation. The errors are measured in the smooth region away from the shock.

Fourth order SSP multistep Fourth SSP Runge-Kutta
N L1 error order L∞ error order L1 error order L∞ error order
20 1.59E-2 - 5.26E-2 - 1.62E-2 - 5.39E-2 -
40 2.10E-3 2.92 1.38E-2 1.93 2.11E-3 2.94 1.39E-2 1.95
80 6.35E-4 1.73 6.56E-3 1.07 6.48E-4 1.70 7.01E-3 0.99
160 1.48E-4 2.10 1.65E-3 1.99 1.51E-4 2.10 1.66E-3 2.08
320 3.12E-5 2.25 6.10E-4 1.43 3.14E-5 2.26 6.13E-4 1.44
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Fig. 3. Burgers’ equation at T = 2. Fourth order compact finite difference with ∆t =
1

3maxx |u0(x)|
Cms∆x and 100 grid points. The TVB parameter in (2.5) is set as p = 5.

Example 3. One dimensional convection diffusion equation.886

Consider the linear convection diffusion equation ut + cux = duxx with a periodic887

boundary condition on [0, 2π]. For the initial u0(x) = sin(x), the exact solution is888

u(x, t) = exp(−dt)sin(x − ct) which is in the range [−1, 1]. We set c = 1 and d =889

0.001. The errors of the fourth order scheme at T = 1 are listed in the Table 5 in which890

∆t = Cmsmin{ 1
6

∆x
c ,

5
24

∆x2

d } for SSP multistep and ∆t = 5Cmsmin{ 1
6

∆x
c ,

5
24

∆x2

d } for891

SSP Runge-Kutta with ∆x = 2π
N . We observe the expected fourth order accuracy892

for the SSP multistep method. Even though the bound-preserving limiter is triggered,893

the order reduction for the Runge-Kutta method is not observed for the convection894

diffusion equation. One possible explanation is that the source of such an order reduc-895

tion is due to the lower order accuracy of inner stages in the Runge-Kutta method,896

which is proportional to the time step. Compared to ∆t = O(∆x) for a pure con-897

vection, the time step is ∆t = O(∆x2) in a convection diffusion problem thus the898

order reduction is much less prominent. See the Table 6 for the errors at T = 1 of899

the eighth order scheme with ∆t = Cms min{ 3
25

∆x2

c , 131
530

∆x2

d } for SSP multistep and900

∆t = 5Cms min{ 3
25

∆x2

c , 131
530

∆x2

d } for SSP Runge-Kutta where ∆x = 2π
N .901

Table 5
The fourth order compact finite difference with limiter for linear convection diffusion.

Fourth order SSP multistep Fourth order SSP Runge-Kutta
N L1 error order L∞ error order L1 error order L∞ error order
20 3.30E-5 - 5.19E-5 - 3.60E-5 - 6.09E-5 -
40 2.11E-6 3.97 3.30E-6 3.97 2.44E-6 4.00 3.52E-6 4.12
80 1.33E-7 3.99 2.09E-7 3.98 1.37E-7 4.04 2.15E-7 4.03
160 8.36E-9 3.99 1.31E-8 3.99 8.46E-9 4.02 1.33E-8 4.02
320 5.24E-10 4.00 8.23E-10 4.00 5.29E-10 4.00 8.31E-10 4.00

Example 4. Nonlinear degenerate diffusion equations.902

A representative test for validating the positivity-preserving property of a scheme
solving nonlinear diffusion equations is the porous medium equation, ut = (um)xx,m >
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Table 6
The eighth order compact finite difference with limiter for linear convection diffusion.

SSP multistep SSP Runge-Kutta
N L1 error order L∞ error order L1 error order L∞ error order
10 3.85E-7 - 5.96E-7 - 3.85E-7 - 5.95E-7 -
20 1.40E-9 8.10 2.20E-9 8.08 1.42E-9 8.08 2.23E-9 8.06
40 5.46E-12 8.01 8.60E-12 8.00 5.48E-12 8.02 8.69E-12 8.01
80 3.53E-12 0.63 6.46E-12 0.41 1.06E-12 2.37 3.29E-12 1.40

1. We consider the Barenblatt analytical solution given by

Bm(x, t) = t−k[(1− k(m− 1)

2m

|x|2

t2k
)+]1/(m−1),

where u+ = max{u, 0} and k = (m+ 1)−1. The initial data is the Barenblatt solution903

at T = 1 with periodic boundary conditions on [6, 6]. The solution is computed till904

time T = 2. High order schemes without any particular positivity treatment will905

generate negative solutions [21, 26, 14]. See Figure 4 for solutions of the fourth order906

scheme and the SSP multistep method with ∆t = 1
3mCms∆x and 100 grid points.907

Numerical solutions are strictly nonnegative. Without the bound-preserving limiter,908

negative values emerge near the sharp gradients.909
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Fig. 4. The fourth order compact finite difference with limiter for the porous medium equation.

6.2. One-dimensional problems with non-periodic boundary conditions.910

Example 5. One-dimensional Burgers’ equation with inflow-outflow boundary911

condition. Consider ut + (u
2

2 )x = 0 on interval [0, 2π] with inflow-outflow boundary912

condition and smooth initial condition u(x, 0) = u0(x). Let u0(x) = 1
2 sin(x) + 1

2 ≥ 0,913

we can set the left boundary condition as inflow u(0, t) = L(t) and right boundary as914

outflow, where L(t) is obtained from the exact solution of initial-boundary value prob-915

lem for the same initial data and a periodic boundary condition. We test the fourth916

order compact finite difference and fourth order SSP multistep method with the bound-917

preserving limiter. The errors at T = 0.5 are listed in Table 7 where ∆t = Cms∆x and918

∆x = 2π
N . See Figure 5 for the shock at T = 3 on a 120-point grid with ∆t = Cms∆x.919

Example 6. One-dimensional convection diffusion equation with Dirichlet bound-920

ary conditions. We consider equation ut + cux = duxx on [0, 2π] with boundary con-921
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Table 7
Burgers’ equation. The fourth order scheme. Inflow and outflow boundary conditions.

N L∞ error order L1 error order
20 1.15E-4 - 7.80E-4 -
40 4.10E-6 4.81 2.00E-5 5.29
80 2.17E-7 4.24 9.43E-7 4.40
160 1.22E-8 4.15 4.87E-8 4.28
320 7.41E-10 4.05 2.87E-9 4.09
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Fig. 5. Burgers’ equation. The fourth order scheme. Inflow and outflow boundary conditions.

ditions u(0, t) = cos(−ct)e−dt and u(2π, t) = cos(2π − ct)e−dt. The exact solution922

is u(x, y, t) = cos(x − ct)e−dt. We set c = 1 and d = 0.01. We test the third or-923

der boundary scheme proposed in Section 5.2 and the fourth order interior compact924

finite difference with the fourth order SSP multistep time discretization. The errors925

at T = 1 are listed in Table 8 where ∆t = Cms min{ 4
19

∆x
c ,

695
1596

∆x2

d }, ∆x = 2π
N .926

Table 8
A linear convection diffusion equation with Dirichlet boundary conditions.

N L∞ error order L1 error order
10 1.68E-3 - 8.76E-3 -
20 1.47E-4 3.51 7.12E-4 3.62
40 8.35E-6 4.14 4.27E-5 4.06
80 4.44E-7 4.23 2.28E-6 4.23
160 2.30E-8 4.27 1.10E-7 4.37

6.3. Two-dimensional problems with periodic boundary conditions. In927

this subsection we test the fourth order compact finite difference scheme solving two-928

dimensional problems with periodic boundary conditions.929

Example 7. Two-dimensional linear convection equation. Consider ut + ux +930

uy = 0 on the domain [0, 2π]× [0, 2π] with a periodic boundary condition. The scheme931

is tested with a smooth initial condition u0(x, y) = 1
2 + 1

2 sin4(x + y) to verify the932

accuracy. The errors at time T = 1 are listed in Table 9 where ∆t = Cms
1
6∆x for933

the SSP multistep method and ∆t = 5Cms
1
6∆x for the SSP Runge-Kutta method with934

∆x = ∆y = 2π
N . We can observe the fourth order accuracy for the multistep method935

on resolved meshes and obvious order reductions for the Runge-Kutta method.936
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Table 9
Fourth order accurate compact finite difference with limiter for the 2D linear equation.

Fourth order SSP multistep Fourth order SSP Runge-Kutta
N ×N Mesh L1 error order L∞ error order L1 error order L∞ error order

10× 10 4.70E-2 - 1.17E-1 - 8.45E-2 - 1.07E-1 -
20× 20 5.47E-3 3.10 8.97E-3 3.71 5.56E-3 3.93 9.09E-3 3.56
40× 40 3.04E-4 4.17 5.09E-4 4.13 2.88E-4 4.27 6.13E-4 3.89
80× 80 1.78E-5 4.09 2.99E-5 4.09 1.95E-5 3.89 6.77E-5 3.18

160× 160 1.09E-6 4.03 1.85E-6 4.01 2.65E-6 2.88 1.26E-5 2.43
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(b) With bound-preserving limiter.

Fig. 6. Fourth order compact finite difference for the 2D linear convection.

We also test the following discontinuous initial data:

u0(x, y) =

{
1, if (x, y) ∈ [−0.2, 0.2]× [−0.2, 0.2],
0, otherwise.

The numerical solutions on a 80 × 80 mesh at T = 0.5 are shown in Figure 6 with937

∆t = 1
6Cms∆x and ∆x = ∆y = 2π

N . Fourth order SSP multistep method is used.938

Example 8. Two-dimensional Burgers’ equation. Consider ut+(u
2

2 )x+(u
2

2 )y = 0939

with u0(x, y) = 0.5 + sin(x+y) and periodic boundary conditions on [−π, π]× [−π, π].940

At time T = 0.2, the solution is smooth and the errors at T = 0.2 on a N ×N mesh941

are shown in the Table 10 in which ∆t = Cms
∆x

6 maxx |u0(x)| for multistep and ∆t =942

5Cms
∆x

6 maxx |u0(x)| for Runge-Kutta with ∆x = ∆y = 2π
N . At time T = 1, the exact943

solution contains a shock. The numerical solutions of the fourth order SSP multistep944

method on a 100× 100 mesh are shown in Figure 7 where ∆t = 1
6 maxx |u0(x)|Cms∆x.945

The bound-preserving limiter ensures the solution to be in the range [−0.5, 1.5].946

Example 9. Two-dimensional convection diffusion equation.947

Consider the equation ut + c(ux + uy) = d(uxx + uyy) with u0(x, y) = sin(x+ y)948

and a periodic boundary condition on [0, 2π] × [0, 2π]. The errors at time T = 0.5949

for c = 1 and d = 0.001 are listed in Table 11, in which ∆t = Cms min{∆x
6c ,

5∆x2

48d }950

for the fourth-order SSP multistep method, and ∆t = 5Cms min{∆x
6c ,

5∆x2

48d } for the951

fourth-order SSP Runge-Kutta method, where ∆x = ∆y = 2π
N .952

Example 10. Two-dimensional porous medium equation.953
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Table 10
Fourth order compact finite difference scheme with the bound-preserving limiter for the 2D

Burgers’ equation.

SSP multistep SSP Runge-Kutta
N ×N Mesh L1 error order L∞ error order L1 error order L∞ error order

10× 10 1.08E-2 - 4.48E-3 - 9.16E-3 - 3.73E-2 -
20× 20 4.73E-4 4.52 3.76E-3 3.58 2.90E-4 4.98 2.14E-3 4.12
40× 40 1.90E-5 4.64 1.45E-4 4.69 2.03E-5 3.83 1.12E-4 4.25
80× 80 9.99E-7 4.25 7.43E-6 4.29 2.35E-6 3.12 1.54E-5 2.86

160× 160 5.87E-8 4.09 4.26E-7 4.13 3.62E-7 2.70 5.13E-6 1.59
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Fig. 7. The fourth order scheme. 2D Burgers’ equation.

We consider the equation ut = ∆(um) with the following initial data954

u0(x, y) =

{
1, if (x, y) ∈ [−0.5, 0.5]× [−0.5, 0.5],
0, if (x, y) ∈ [−2, 2]× [−2, 2]/[−1, 1]× [−1, 1],

955

and a periodic boundary condition on domain [−2, 2] × [−2, 2]. See Figure 8 for the956

solutions at time T = 0.01 for SSP multistep method with ∆t = 5
48 maxx |u0(x)|Cms∆x957

and ∆x = ∆y = 1
15 . The numerical solutions are strictly non-negative, which is958

nontrivial for high order accurate schemes. High order schemes without any positivity959

treatment will generate negative solutions in this test, see [21, 26, 14].960
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(c) m = 5.

Fig. 8. The fourth order scheme with limiter for 2D porous medium equations ut = ∆(um).

7. Concluding remarks. In this paper we have demonstrated that fourth or-961

der accurate compact finite difference schemes for convection diffusion problems with962

periodic boundary conditions satisfy a weak monotonicity property, and a simple963
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Table 11
Fourth order compact finite difference with limiter for the 2D convection diffusion equation.

Fourth order SSP multistep Fourth order SSP Runge-Kutta
N L1 error order L∞ error order L1 error order L∞ error order

10× 10 6.26E-4 - 9.67E-4 - 6.68E-4 - 9.59E-4 -
20× 20 3.62E-5 4.11 5.61E-5 4.11 3.60E-5 4.21 6.09E-5 3.98
40× 40 2.20E-6 4.04 3.45E-6 4.02 2.24E-6 4.00 3.52E-6 4.12
80× 80 1.35E-7 4.02 2.13E-7 4.01 1.37E-7 4.04 2.15E-7 4.03

160× 160 8.45E-9 4.01 1.33E-8 4.01 8.46E-9 4.02 1.33E-8 4.02

three-point stencil limiter can enforce bounds without destroying the global conser-964

vation. Since the limiter is designed based on an intrinsic property in the high order965

finite difference schemes, the accuracy of the limiter can be easily justified. This is the966

first time that the weak monotonicity is established for a high order accurate finite dif-967

ference scheme, complementary to results regarding the weak monotonicity property968

of high order finite volume and discontinuous Galerkin schemes in [23, 24, 25].969

We have discussed extensions to two dimensions, higher order accurate schemes970

and general boundary conditions, for which the five-diagonal weighting matrices can971

be factored as a product of tridiagonal matrices so that the same simple three-point972

stencil bound-preserving limiter can still be used. We have also proved that the TVB973

limiter in [3] does not affect the bound-preserving property. Thus with both the TVB974

and the bound-preserving limiters, the numerical solutions of high order compact975

finite difference scheme can be rendered non-oscillatory and strictly bound-preserving976

without losing accuracy and global conservation. Numerical results suggest the good977

performance of the high order bound-preserving compact finite difference schemes.978

For more generalizations and applications, there are certain complications. For979

using compact finite difference schemes on non-uniform meshes, one popular approach980

is to introduce a mapping to a uniform grid but such a mapping results in an extra981

variable coefficient which may affect the weak monotonicity. Thus any extension to982

non-uniform grids is much less straightforward. For applications to systems, e.g.,983

preserving positivity of density and pressure in compressible Euler equations, the984

weak monotonicity can be easily extended to a weak positivity property. However,985

the same three-point stencil limiter cannot enforce the positivity for pressure. One986

has to construct a new limiter for systems.987
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