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A HIGH ORDER ACCURATE BOUND-PRESERVING COMPACT
FINITE DIFFERENCE SCHEME FOR SCALAR CONVECTION
DIFFUSION EQUATIONS *

HAO LIf, SHUSEN XIE ¥, AND XIANGXIONG ZHANG f

Abstract. We show that the classical fourth order accurate compact finite difference scheme
with high order strong stability preserving time discretizations for convection diffusion problems
satisfies a weak monotonicity property, which implies that a simple limiter can enforce the bound-
preserving property without losing conservation and high order accuracy. Higher order accurate
compact finite difference schemes satisfying the weak monotonicity will also be discussed.

Key words. finite difference method, compact finite difference, high order accuracy, convection
diffusion equations, bound-preserving, maximum principle

AMS subject classifications. 65M06, 656M12

1. Introduction.

1.1. The bound-preserving property. Consider the initial value problem for
a scalar convection diffusion equation u; + f(u), = a(u)zz, u(x,0) = ug(x), where
a’(u) > 0. Assume f(u) and a(u) are well-defined smooth functions for any u € [m, M]
where m = min, up(z) and M = max, ug(z). Its exact solution satisfies:

(1.1) minug(z) =m < u(x,t) < M =maxug(z), Vt>0.

In this paper, we are interested in constructing a high order accurate finite difference
scheme satisfying the bound-preserving property (1.1).

For a scalar problem, it is desired to achieve (1.1) in numerical solutions mainly
for the physical meaning. For instance, if u denotes density and m = 0, then negative
numerical solutions are meaningless. In practice, in addition to enforcing (1.1), it
is also critical to strictly enforce the global conservation of numerical solutions for
a time-dependent convection dominated problem. Moreover, the computational cost
for enforcing (1.1) should not be significant if it is needed for each time step.

1.2. Popular methods for convection problems. For the convection prob-
lems, i.e., a(u) = 0, a straightforward way to achieve the above goals is to require
a scheme to be monotone, total-variational-diminishing (TVD), or satisfying a dis-
crete maximum principle, which all imply the bound-preserving property. But most
schemes satisfying these stronger properties are at most second order accurate. For
instance, a monotone scheme and traditional TVD finite difference and finite volume
schemes are at most first order accurate [7]. Even though it is possible to have high
order TVD finite volume schemes in the sense of measuring the total variation of
reconstruction polynomials [12, 22], such schemes can be constructed only for the
one-dimensional problems. The second order central scheme satisfies a discrete max-
imum principle min; u;? < s < max; u} where v} denotes the numerical solution

] J
at n-th time step and j-th grid point [8]. Any finite difference scheme satisfying
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such a maximum principle can be at most second order accurate, see Harten’s ex-
ample in [24]. By measuring the extrema of reconstruction polynomials, third order
maximum-principle-satisfying schemes can be constructed [9] but extensions to multi-
dimensional nonlinear problems are very difficult.

For constructing high order accurate schemes, one can enforce only the bound-
preserving property for fixed known bounds, e.g., m = 0 and M = 1 if u denotes
the density ratio. Even though high order linear schemes cannot be monotone, high
order finite volume type spatial discretizations including the discontinuous Galerkin
(DG) method satisfy a weak monotonicity property [23, 24, 25]. Namely, in a scheme
consisting of any high order finite volume spatial discretization and forward Euler
time discretization, the cell average is a monotone function of the point values of
the reconstruction or approximation polynomial at Gauss-Lobatto quadrature points.
Thus if these point values are in the desired range [m, M], so are the cell averages
in the next time step. A simple and efficient local bound-preserving limiter can be
designed to control these point values without destroying conservation. Moreover, this
simple limiter is high order accurate, see [23] and the appendix in [20]. With strong
stability preserving (SSP) Runge-Kutta or multistep methods [4], which are convex
combinations of several formal forward Euler steps, a high order accurate finite volume
or DG scheme can be rendered bound-preserving with this limiter. These results can
be easily extended to multiple dimensions on cells of general shapes. However, for a
general finite difference scheme, the weak monotonicity does not hold.

For enforcing only the bound-preserving property in high order schemes, efficient
alternatives include a flux limiter [19, 18] and a sweeping limiter in [10]. These meth-
ods are designed to directly enforce the bounds without destroying conservation thus
can be used on any conservative schemes. Even though they work well in practice, it
is nontrivial to analyze and rigorously justify the accuracy of these methods especially
for multi-dimensional nonlinear problems.

1.3. The weak monotonicity in compact finite difference schemes. Even
though the weak monotonicity does not hold for a general finite difference scheme, in
this paper we will show that some high order compact finite difference schemes satisfy
such a property, which implies a simple limiting procedure can be used to enforce
bounds without destroying accuracy and conservation.

To demonstrate the main idea, we first consider a fourth order accurate compact
finite difference approximation to the first derivative on the interval [0, 1]:

~ firi— fima
x

1 ! ! !
fz+1+ f1+fz—l) 22

=

5 +O(Az?),

where f; and f] are point values of a function f(x) and its derivative f’(x) at uniform
grid points z; (i = 1,---, N) respectively. For periodic boundary conditions, the
following tridiagonal linear system needs to be solved to obtain the implicitly defined
approximation to the first order derivative:

41 N [ f 0 1 “1\ [ f
14 1 / 10 1
(12) 1 : Sl v o f.2
' 6 - C T 2A SR :
14 1| | £y 10 1 || fva
1 14 0 1 ~1 0 fn

We refer to the tridiagonal %(1,4, 1) matrix as a weighting matrix. For the one-
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A BOUND-PRESERVING COMPACT FINITE DIFFERENCE SCHEME 3

dimensional scalar conservation laws with periodic boundary conditions on [0, 1]:
(1.3) u+ f(u)e =0, u(z,0) = uo(z),

the semi-discrete fourth order compact finite difference scheme can be written as

du; 1
(1.4) dtl = —m[f(uiﬂ) — fui-1)],
where @; is defined as u; = %(ui,l + du; + uiyq). Let A = %, then (1.4) with the
forward Euler time discretization becomes
=N =N 1 n n
(1.5) U; = Ui — §>\[f(ui+1) — fluiy)]-

The following weak monotonicity holds under the CFL Amax, | f/(u)| < 3:

1

6

1 1
= E[UFI - 3)\f(u?71)] + é[uzn+1 + 3)\f(u?+1)] + —uy = (UZLDU?,U?H) = H(T7 T T)al

n n n 1 n n
(ui—y + 4w +uilyq) + 5)\[f(“z‘+1) — fluiy)]

where 7 denotes that the partial derivative with respect to the corresponding argu-
ment is non-negative. Therefore m < u? < M implies m = H(m,m,m) < ﬂ?“ <
H(M,M,M)= M, thus
(1.6) m < %(uf_ﬂl + 4u?+1 + u?jll) < M.
If there is any overshoot or undershoot, i.e., u?“ > M or uf“ < m for some i, then
(1.6) implies that a local limiting process can eliminate the overshoot or undershoot.
Here we consider the special case m = 0 to demonstrate the basic idea of this limiter,
and for simplicity we ignore the time step index n 4 1. In Section 2 we will show that
%(uiq + 4u; + u;y1) > 0, Vi implies the following two facts:

1. max{ui_l,ui,ui+1} > 0;

2. If u; <0, then & (ui—1)4+ + 2(uip1)+ > —u; > 0, where (u); = max{u,0}.
By the two facts above, when u; < 0, then the following three-point stencil limiting
process can enforce positivity without changing >, u;:

(ui-1)+ (wit1)+
Uiy Vipl = Uip1 +
(i)t + (ipn)y T T () 1+ (i)
replace  u;_1, u;, uj+1 by wv;—1, 0, v;41 respectively.

Vi—1 = Uj—1 + Uy,

In Section 2.2, we will show that such a simple limiter can enforce the bounds
of u; without destroying accuracy and conservation. Thus with SSP high order time
discretizations, the fourth order compact finite difference scheme solving (1.3) can
be rendered bound-preserving by this limiter. Moreover, in this paper we will show
that such a weak monotonicity and the limiter can be easily extended to more general
and practical cases including two-dimensional problems, convection diffusion prob-
lems, inflow-outflow boundary conditions, higher order accurate compact finite differ-
ence approximations, compact finite difference schemes with a total-variation-bounded
(TVB) limiter [3]. However, the extension to non-uniform grids is highly nontrivial
thus will not be discussed. In this paper, we only focus on uniform grids.
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4 H. LI, S. XIE AND X. ZHANG

1.4. The weak monotonicity for diffusion problems. Although the weak
monotonicity holds for arbitrarily high order finite volume type schemes solving the
convection equation (1.3), it no longer holds for a conventional high order linear
finite volume scheme or DG scheme even for the simplest heat equation, see the
appendix in [20]. Toward satisfying the weak monotonicity for the diffusion operator,
an unconventional high order finite volume scheme was constructed in [21]. Second
order accurate DG schemes usually satisfies the weak monotonicity for the diffusion
operator on general meshes [26]. The only previously known high order linear scheme
in the literature satisfying the weak monotonicity for scalar diffusion problems is
the third order direct DG (DDG) method with special parameters [2], which is a
generalized version of interior penalty DG method. On the other hand, arbitrarily
high order nonlinear positivity-preserving DG schemes for diffusion problems were
constructed in [20, 15, 14].

In this paper we will show that the fourth order accurate compact finite difference
and a few higher order accurate ones are also weakly monotone, which is another class
of linear high order schemes satisfying the weak monotonicity for diffusion problems.

It is straightforward to verify that the backward Euler or Crank-Nicolson method
with the fourth order compact finite difference methods satisfies a maximum principle
for the heat equation but it can be used be as a bound-preserving scheme only for
linear problems. The method is this paper is explicit thus can be easily applied to
nonlinear problems. It is difficult to generalize the maximum principle to an implicit
scheme. Regarding positivity-preserving implicit schemes, see [11] for a study on
weak monotonicity in implicit schemes solving convection equations. See also [5] for a
second order accurate implicit and explicit time discretization for the BGK equation.

1.5. Contributions and organization of the paper. Although high order
compact finite difference methods have been extensively studied in the literature, e.g.,
[6, 1, 3, 16, 13, 17], this is the first time that the weak monotonicity in compact finite
difference approximations is discussed. This is also the first time a weak monotonicity
property is established for a high order accurate finite difference type scheme. The
weak monotonicity property suggests it is possible to locally post process the numerical
solution without losing conservation by a simple limiter to enforce global bounds.
Moreover, this approach allows an easy justification of high order accuracy of the
constructed bound-preserving scheme.

For extensions to two-dimensional problems, convection diffusion problems, and
sixth order and eighth order accurate schemes, the discussion about the weak mono-
tonicity in general becomes more complicated since the weighting matrix may become
a five-diagonal matrix instead of the tridiagonal §(1,4,1) matrix in (1.2). Nonethe-
less, we demonstrate that the same simple three-point stencil limiter can still be used
to enforce bounds because we can factor the more complicated weighting matrix as a
product of a few of tridiagonal ?12(17 ¢, 1) matrices with ¢ > 2.

The paper is organized as follows: in Section 2 we demonstrate the main idea
for the fourth order accurate scheme solving one-dimensional problems with periodic
boundary conditions. Two-dimensional extensions are discussed in in Section 3. Sec-
tion 4 is the extension to higher order accurate schemes. Inflow-outflow boundary
conditions and Dirichlet boundary conditions are considered in Section 5. Numerical
tests are given in Section 6. Section 7 consists of concluding remarks.

2. A fourth order accurate scheme for one-dimensional problems. In
this section we first show the fourth order compact finite difference with forward Euler
time discretization satisfies the weak monotonicity. Then we discuss how to design
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A BOUND-PRESERVING COMPACT FINITE DIFFERENCE SCHEME 5

a simple limiter to enforce the bounds of point values. To eliminate the oscillations,
a total variation bounded (TVB) limiter can be used. We also show that the TVB
limiter does not affect the bound-preserving property of @;, thus it can be combined
with the bound-preserving limiter to ensure the bound-preserving and non-oscillatory
solutions for shocks. High order time discretizations will be discussed in Section 2.5.

2.1. One-dimensional convection problems. Consider a periodic function
f(x) on the interval [0,1]. Let #; = & (i = 1,---, N) be the uniform grid points on
the interval [0,1]. Let f be a column vector with numbers f1, fa, -, fx as entries,
where f; = f(z;). Let Wy, Wy, D, and D,, denote four linear operators as follows:

41 1 fi 0 1 -1 fi
) 14 1 fo L -1 0 1 fo
W+f = = Lot : D, f == Lot . : ,
1 6 . . . : ) 9 . . . .
1 4 1 fol -1 0 1 fol
1 14 fn 1 -10 In
10 1 1 f -2 1 1 f
1 1 10 1 fo 1 -2 1 fo
W2 12 . . : s Max . . . :
1 10 1 fn_1 1 -2 1 fv_1
1 1 10 In 1 1 -2 In

The fourth order compact finite difference approximation to the first order derivative
(1.2) with periodic assumption for f(z) can be denoted as Wif' = -LD,f. The
fourth order compact finite difference approximation to f”(z) is Waf” = ﬁDmf )
The fourth compact finite difference approximations can be explicitly written as

1
Az

1

f Az

WD, f, £ Wy 2D, f,
where W, ' and Wy ! are the inverse operators. For convenience, by abusing notations
we let W~ 1 f; denote the i-th entry of the vector W f.

Then the scheme (1.4) solving the scalar conservation laws (1.3) with periodic

boundary conditions on the interval [0, 1] can be written as W u; = — 52— [f(ui1) —
f(u;—1)], and the scheme (1.5) is equivalent to Wiul"" = Wiul — IA[f(uly,) —

f(u_1)]. As shown in Section 1.3, the scheme (1.5) satisfies the weak monotonicity.

THEOREM 2.1. Under the CFL constraint ﬁ—;maxu I/ (w)] < %,Zf ul € [m, M],
then u™*1 computed by the scheme (1.5) satisfies (1.6).

2.2. A three-point stencil bound-preserving limiter. In this subsection,
we consider a more general constraint than (1.6) and we will design a simple limiter
to enforce bounds of point values based on it. Assume we are given a sequence of
periodic point values u; (i =1,---, N) satisfying

(2.1) m <

_m(ui_1+cui+ui+1)§M, iil,"',N, 622,

where ug := un, un41 := uy and ¢ > 2 is a constant. We have the following results:

LEMMA 2.2. The constraint (2.1) implies the following for stencil {i —1,i,i+1}:

This manuscript is for review purposes only.



218
219
220

6 H. LI, S. XIE AND X. ZHANG

(1) min{u;—1,ui uip1} <M,  max{u;_1,u;, uip1} > m.

. (ui=M) 1

(2) If u; > M, then (M—uizl)++()M+—ui+1)+ <z
m—u4 1

If u; < m, then (ui,l—m)++(u:r+1—m)+ <<

Here the subscript + denotes the positive part, i.e., (a)+ = max{a,0}.

REMARK 2.3. The first statement in Lemma 2.2 states that there do not exist
three consecutive overshoot points or three consecutive undershoot points. But it does
not necessarily imply that at least one of three consecutive point values is in the bounds
[m, M]. For instance, consider the case for ¢ = 4 and N is even, define u; = 1.1 for
all odd 1 and u; = —0.1 for all even i, then H%(ui,l + cu; + uiq1) € [0,1] for all i
but none of the point values wu; is in [0, 1].

REMARK 2.4. Lemma 2.2 implies that if u; is out of the range [m, M], then we
can set u; < m for undershoot (or u; < M for overshoot) without changing the local
sum u;—1 + u; + w1 by decreasing (or increasing) its neighbors w;41.

Proof. We only discuss the upper bound. The inequalities for the lower bound
can be similarly proved. First, if u;_1, u;, u;r1 > M then H_%(ui_l +cu;+uip1) > M
which is a contradiction to (2.1). Second, (2.1) implies u;—1 + cu; + w1 < (c+2)M,
thus C(’U,i — M) § (M — ui,l) + (M — ’U,l'+1) S (M — Ui,1)+ + (M — Ui+1)+. If
u; > M, we get (M —wj—1)4 + (M —uiy1)4 > 0. Moreover, (Mfuii(ﬁ’:ﬁv(jﬂ)jfuiﬂh =

ui—M 1 ]

(M —wi—1)4+(M—uit1) 4+ < e
For simplicity, we first consider a limiter to enforce only the lower bound without
destroying global conservation. For m = 0, this is a positivity-preserving limiter.

Algorithm 2.1 A limiter for periodic data u; to enforce the lower bound.

Require: The input u; satisfies u; = C_%Q(ui,l +cu;+uipr) >myi=1,--- N, with
c > 2. Let ug, uny1 denote upy, u; respectively.
Ensure: The output satisfies v; > m,72=1,--- ,n and Zf\il v = Zi\il ;.
First set v; = u;, ¢ =1,--- | N. Let vg, vy+1 denote vy, v1 respectively.
fori=1,---,N do
if u; < m then
Vi1 ¢ Vi—1 — (uifl,(,il);l;&)fl,mn (m —u;)+

. . _ (wiy1—m)y — U
Vil 7 Vit~ T mm g (wign—m) (m —ui)y

V; <M
end if
end for

REMARK 2.5. Even though a for loop is used, Algorithm 2.1 is a local operation
to an undershoot point since only information of two immediate neighboring points of
the undershoot point are needed. Thus it is not a sweeping limiter.

N N

THEOREM 2.6. The output of Algorithm 2.1 satisfies > v; = > u; and v; > m.

i=1 i=1

Proof. First of all, notice that the algorithm only modifies the undershoot points
and their immediate neighbors.

Next we will show the output satisfies v; > m case by case:

o If u; < m, the i-th step in for loops sets v; = m. After the (i + 1)-th step in
for loops, we still have v; = m because (u; —m)4 = 0.
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A BOUND-PRESERVING COMPACT FINITE DIFFERENCE SCHEME 7

e If u; = m, then v; = m in the final output because (u; —m)L = 0.
o If u; > m, then limiter may decrease it if at least one of its neighbors u;_;
and wu; 41 is below m:

Vi — s — (wi—m)y(m—ui—1)y  (ug—m)p(m —uip1)4
o (i —m) g (wi—m)y (= m)y o+ (Ui — M)+

1
> u; — E(uz —m)y — E(uZ —m); >m,
where the inequalities are implied by Lemma 2.2 and the fact ¢ > 2.

Finally, we need to show the local sum v;_; + v; + v;41 is not changed during
the i-th step if u; < m. If u; < m, then after (i — 1)-th step we still have v; = u;
because (u; — m)y = 0. Thus in the i-th step of for loops, the point value at z; is

increased by the amount m — u;, and the point values at z;_; and z;11 are decreased
(wi—1—m)y o (wiy1—m)4

by (wi—1—m)y+(uip1—m) (m — i)y + (wimi—m)4+(uig1—m)4+

V;—1 4+ v; +v;+1 is not changed during the i-th step. Therefore the limiter ensures the

output v; > m without changing the global sum. ]

(m —wu))y = m —u;. So

The limiter described by Algorithm 2.1 is a local three-point stencil limiter in the
sense that only undershoots and their neighbors will be modified, which means the
limiter has no influence on point values that are neither undershoots nor neighbors
to undershoots. Obviously a similar procedure can be used to enforce only the upper
bound. However, to enforce both the lower bound and the upper bound, the discussion
for this three-point stencil limiter is complicated for a saw-tooth profile in which both
neighbors of an overshoot point are undershoot points. Instead, we will use a different
limiter for the saw-tooth profile. To this end, we need to separate the point values
{u;,i =1,--- , N} into two classes of subsets consisting of consecutive point values.

In the following discussion, a set refers to a set of consecutive point values
ULy U1, Uit2s "y U1, U FOr any set S = {uj, w41, Um—1,Um }, We call the
first point value u; and the last point value w,, as boundary points, and call the other
point values wu;y1, - ,Um—1 as interior points. A set of class I is defined as a set
satisfying the following:

1. It contains at least four point values.

2. Both boundary points are in [m, M| and all interior points are out of range.

3. It contains both undershoot and overshoot points.
Notice that in a set of class I, at least one undershoot point is next to an over-
shoot point. For given point values u;,i = 1,--- , N, suppose all the sets of class I
are S = {umlvumlJrlv"' >un1}’ Sy = {umza"' 7un2}7 e, Sk o= {umK"" 7unK}a
where m1 < mg < -+ < U -

A set of class II consists of point values between S; and S;1+1 and two boundary

points wy,, and t,y,, . Namely they are To = {u1,u2, -+, Um, }, Tt = {tn,, -+ Um, },
To = {Unyy s Umg ty -+ Tt = {Uny, -+ ,un}. For periodic data u;, we can combine
Tk and Tp to define T = {Up e, UN, UL, * 5 Uy |-

In the sets of class I, the undershoot and the overshoot are neighbors. In the sets
of class II, the undershoot and the overshoot are separated, i.e., an overshoot is not
next to any undershoot. We remark that the sets of class I are hardly encountered in
the numerical tests but we include them in the discussion for the sake of completeness.
When there are no sets of class I, all point values form a single set of class II. We
will use the same procedure as in Algorithm 2.1 for T; and a different limiter for S;
to enforce both the lower bound and the upper bound.

This manuscript is for review purposes only.
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Algorithm 2.2 A bound-preserving limiter for periodic data u; satisfying @; € [m, M]

Require: the input u; satisfies @; = H%z(ui_l + cu; + uip1) € [my, M], ¢ > 2. Let uy,

un+1 denote up, up respectively.
Ensure: the output satisfies v; € [m, M],i=1,--- , N and vazl v = vazl Uu;.
1: Step O: First set v; = u;, e =1,--- ,N. Let vy, vy41 denote vy, vy respectively.

2: Step I: Find all the sets of class I Sy, , Sk (all local saw-tooth profiles) and
all the sets of class Il T3, -+ ,Tk.

3: Step II: For each T (j = 1,--- , K), the same limiter as in Algorithm 2.1 (but
for both upper bound and lower bound) is used:

4: for all index ¢ in T; do
5. if u; < m then ( :
. ) L Ui—1—Mm)4 e
6: Vi1 Vel T s mm)s Fue i —m) s (m — i)+
. ) o (wiv1—m)4 .
& Vitl = Vigl (wi—1—m) 4+ (ujp1—m)+ (m ui)"'
8: Vi <M
9: end if
10: if u; > M then
. , , (M—ui_ 1)y |
11: Vi—1 & Vi—1 + (M =i )+ +(M—uiz1)+ (uz _M)+
12: Vi1 € Vi1 (M*u171)++2—1\1/fjui+1)+ (u; — M)+
13: v; +— M
14:  end if
15: end for

16: Step III: for each saw-tooth profile S = {tm,, - ,un;} (j = 1,---, K), let Ny
and N; be the numbers of undershoot and overshoot points in .S; respectively.
17: Set U; = Z:limj Vj.

18: fori=m; +1,--- ,n; —1do
19:  if u; > M then

20: v; +— M.

21:  end if

22:  if u; < m then

23: Vi < M.

24: end if

25: end for

26: Set V; = N1 M + Nom + vy, + V-
27: Set Aj = Um, +'Unj + N\M — (N1 + 2)m, Bj = (NO —|—2)M — Um; — Up
28: if V; —U; > 0 then

- Nom.

J

209: for i =myj,---,n; do

30: vﬂ—vi—%(‘/j—Uj)
31: end for

32: else

33:  for i =mj,---,n; do

34: V; — v + Ml;jv'i(Uj—‘/})
35: end for

36: end if

This manuscript is for review purposes only.
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A BOUND-PRESERVING COMPACT FINITE DIFFERENCE SCHEME 9

THEOREM 2.7. Assume periodic data u;(i = 1,--- | N) satisfies u; = CJ%Q(ui_l +
cu; +uiv1) € Im,M], ¢ > 2 foralli=1,--- N with ug := uny and un41 := us, then
the output of Algorithm 2.2 satisfies Zfil v; = Zfil w; and v; € [m, M], Vi.

Proof. First we show the output v; € [m, M]. Consider Step II, which only
modifies the undershoot and overshoot points and their immediate neighbors. Notice
that the operation described by lines 6-8 will not increase the point value of neigh-
bors to an undershoot point thus it will not create new overshoots. Similarly, the
operation described by lines 11-13 will not create new undershoots. In other words,
no new undershoots (or overshoots) will be created when eliminating overshoots (or
undershoots) in Step II.

Each interior point u; in any T} belongs to one of the following four cases:

1. u; <moru; > M.

2. m<u; <M and u;—1,uiy1 < M.

3. m<u; <M and u;_1,ujy1 > m.

4. m<u; <M and u;—1 > M,u;r1 <m (or ujrq > M,u;—1 <m).
We want to show v; € [m, M] after Step II. For the first three cases, by the same
arguments as in the proof of Theorem 2.6, we can easily show that the output point
values are in the range [m, M]. For case (1), after Step II, if u; < m then v; = m; if
u; > M then v; = M. For case (2), v; # u; only if at least one of w;—; and u;41 is an
undershoot. If so, then

(ui —m)y(m —ui—1)+ (ui —m)q(m — 1)+

(i —m)p 4 (wi—m)y (wi—m)y + (s —m)y

Vi = Uq

1 1
>u;— —(ug —m)y — —(u; —m)y > m.
c c

Similarly, for case (3), v; # wu; only if at least one of u;_1 and w;y; is an overshoot,
and we can show v; < M.

Notice that case (2) and case (3) are not exclusive to each other, which however
does not affect the discussion here. When case (2) and case (3) overlap, we have
Uiy Ui—1, Uitr1 € [Mm, M] thus v; = u; € [m, M] after Step II.

For case (4), without loss of generality, we consider the case when w; 1 > M, u; €
[m, M],u;—1 < m, and we need to show that the output v; € [m, M]. By Lemma
2.2, we know that Algorithm 2.2 will decrease the value at x; by at most %(ul —m)
to eliminate the undershoot at z; 1 then increase the point value at z; by at most
L(M — u;) to eliminate the overshoot at x;1;. So after Step II,

C

1
vigui—kE(M—ui)gM (because ¢ > 2,u; < M);

v; > u; — %(uZ —m)>m (because ¢ >2,u; >m).

Thus we have v; € [m, M] after Step II. By the same arguments as in the proof of
Theorem 2.6, we can also easily show the boundary points are in the range [m, M]
after Step IIL. It is straightforward to verify that Zf\il v; = Zfil u; after Step II
because the operations described by lines 6-8 and lines 11-13 do not change the local
sum v;—1 + V; + Viy1.

Next we discuss Step III in Algorithm 2.2. Let N =2+ No + Ny =n; —m; + 1
be the cardinality of Sj = {wm,, -, un, }.

We need to show that the average value in each saw-tooth profile S; is in the
range [m, M| after Step II before Step III. Otherwise it is impossible to enforce
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10 H. LI, S. XIE AND X. ZHANG

the bounds in S; without changing the sum in S;. In other words, we need to show
Nm <U = ZWE s, Vi < NM. We will prove the claim by conceptually applying the
upper or lower bound limiter Algorithm 2.1 to S;. Consider a boundary point of Sj,
e.g., Um,; € [m, M], then during Step II the point value at x,,, can be unchanged,
moved down at most < (up,, —m) or moved up at most (M — up,,). We first show
the average value in S; after Step II is not below m:

(a) Assume both boundary point values of S; are unchanged during Step II. If
applying Algorithm 2.1 to S; after Step II, by the proof of Theorem 2.6, we
know that the output values would be greater than or equal to m with the
same sum, which implies that Zvi es, Vi > Nm.

(b) If a boundary point value of S; is increased during Step II, the same discus-
sion as in (a) still holds because an increased boundary value does not affect
the discussion for the lower bound.

(c) If a boundary point value v,,, of S; is decreased during Step II, then with
the fact that it is decreased by at most the amount %(umj — m), the same
discussion as in (a) still holds.

Similarly if applying the upper bound limiter similar to Algorithm 2.1 to S; after
Step II, then by the similar arguments as above, the output values would be less
than or equal to M with the same sum, which implies Zuiesj v; < NM.

Now we can show the output v; € [m, M| for each S; after Step III:

1. Assume V; = N1M + Nom + vp; + vn; > U; before the for loops in Step
ITI. Then after Step III: if u; < m we get v; = m; if u; > m we have

szi—vi;m(‘/j - Uj)
j
Vi —m
=v;— Um, + Un, + NyM + Nom — U;
vmj +Unj +N1M_(N1+2)m( 7 7 ! 0 ])
> — Vi m (Vm; + Un, + N1M + Nom — Nm)

Um; + Un; + N1M — (N1 +2)m

=v,—(v; —m) =m.

2. Assume V; = N1 M + Nom + vy, + vn; < Uj before the for loops in Step
III. Then after Step III: if u; > M we get v; = M; if u; > M we have

M—Ui
m <v;+ B. (Uj—‘/])
J

M — v,

:UH_(NO +2)M — vy, — Uy, —Nom(U] Um; — Un; — N1M — Nom)
M*Ui

Ui NM — Ny M — N,

_vﬂr(NO FO)M — vy, — Un, — Nom( Uy — Un, . om)

:’Uri-(M — ’l}i) = M.

Thus we have shown all the final output values are in the range [m, M].
Finally it is straightforward to verify that Zil v; = Zivzl Us. 0

The limiters described in Algorithm 2.1 and Algorithm 2.2 are high order accurate
limiters in the following sense. Assume u;(i = 1,---,N) are high order accurate
approximations to point values of a very smooth function u(z) € [m, M|, i.e., u; —
u(x;) = O(Ax¥). For fine enough uniform mesh, the global maximum points are well
separated from the global minimum points in {u;,4 = 1,--- ,N}. In other words,
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A BOUND-PRESERVING COMPACT FINITE DIFFERENCE SCHEME 11

there is no saw-tooth profile in {u;,i = 1,--- ,N}. Thus Algorithm 2.2 reduces to
the three-point stencil limiter for smooth profiles on fine resolved meshes. Under
these assumptions, the amount which limiter increases/decreases each point value is
at most (u; — M)y and (m — u;)4. If (u; — M)4 > 0, which means u; > M > u(x;),
we have (u; — M)y = O(Az¥) because (u; — M)y < u; — u(z;) = O(Az¥). Similarly,
we get (m — ;) = O(Ax¥). Therefore, for point values u; approximating a smooth
function, the limiter changes u; by O(Az*).

2.3. A TVB limiter. The scheme (1.5) can be written into a conservation form:
At 5
_n4+1 _
(2.2) aptt =ay - Ap irs = ficy),

which is suitable for shock calculations and involves a numerical flux

(2.3) frag = 5 () + F(up).

To achieve nonlinear stability and eliminate oscillations for shocks, a TVB (total

variation bounded in the means) limiter was introduced for the scheme (2.2) in [3].

In this subsection we will show that the bound-preserving property of @; (1.6) still

holds for the scheme (2.2) with the TVB limiter in [3]. Thus we can use both the

TVB limiter and the bound-preserving limiter in Algorithm (2.2) at the same time.
The compact finite difference scheme with the limiter in [3] is

1 7

At 4 A
—n+l _ —n (m) (m)
(2.4) aptt = ap - (0 - F),

where the numerical flux fz(rl) is the modified flux approximating (2.3).
2

. . o _ . . aft(u)
First we write f(u) = f*(u) + f~(u) with the requirement that = > 0

and W < 0. The simplest such splitting is the Lax-Friedrichs splitting f*(u) =

1 _ / - ; Pt F—
5(f(u)xau), o —uerﬂsicwﬂf (u)]. Then we write the flux f; 1 as fi 1 = fi+§+f¢+%’

where fil are obtained by adding superscripts &+ in (2.3). Next we define

2

d;j_% = A;_% - f+(ai)7 df;_% = f_(ﬂHl) - f;_%

Here d fi , are the differences between the numerical fluxes fi , and the first-order,
2 2

upwind fluxes f*(u;) and f~(t;+1). The limiting is defined by

df:r(g) = m(de:%,AJrer(ﬁi)v A (15-1)), df;r(g) = m(df;r%aAJ’f_(ﬂi)v A+f_('ai+1))al

where ATv; = v; 11 — v; is the usual forward difference operator, and the modified
minmod function m is defined by

~ o ay, lf \a1| S pA.Z‘Q,
(2:5) mlay,...,ax) = { m(ai,...,ax), otherwise,

where p is a positive constant independent of Az and m is the minmod function

sminy<;<g |a;|, if sign(a1) = -+ = sign(ag) = s,
0, otherwise.

mareeeva) = {
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The limited numerical flux is then defined by f+(m) fH(u) + df+(m), fH(In)
(1) — df +1 and f +1 = f;rr(’;) + fi+% . The following result was proved in [3]:

LEMMA 2.8. For any n and At such that 0 < nAt < T, scheme (2.4) is TVBM
(total variation bounded in the means): TV (u") = >, |uj,, — ui| < C, where C is
independent of At, under the CFL condition maxu(a%er(u) — % *(u))% < %

Next we show that the TVB scheme still satisfies (1.6).

THEOREM 2.9. If ul» € [m, M], then under a suitable CFL condition, the TVB
scheme (2.4) satisfies m < :(ul + 4ul !+l < M.

Proof. Let A\ = %, then we have
an+l 7n _ (m)

ul — ”r(m) Lion =y Lo prm)y Loy, —(m)
7 @i 4)\fi+% )+ (@ = AN + (@) + ANTYY) + (A,

+1

We will show 4}~ € [m, M] by proving that the four terms satisfy

— MY € fm = ANFT(m), M — AAST(M)],
— 4N “"’ € [m —4\f™(m), M — 4\ f~ (M),
ar + 4>\f;:(;”) € [m + 4NfT(m), M + A\fH (M),
Ui + 4Af;<g> € [m + 4Nf~(m), M + 4Xf~ (M),
under the CFL condition

(2.6) Amax | f&) (u)] < 113

We only discuss the first term since the proof for the rest is similar. We notice that
u—4XfT(u) and u — 12\ f*(u) are monotonically increasing functions of u under the
CFL constraint (2.6), thus u € [m, M| implies u — 4\f T (u) € [m — 4\f*(m), M —
ANFT(M)] and uw — 12X (u) € [m — 12X (m), M — 12X\f*T(M)]. For convenience,
we drop the time step n, then we have

a; AN = AT )+ af ),

where the value of d fii(;n) has four possibilities:
2

1. 1t df 5" =0, then
— 4\ f+<’”> —ANf (@) € [m— ANFT(m), M — ANfT(M)].
+m) _ ot
2. If dfi+% = dfi+%, then we get
S (ui) + [T (wig1)
2
1
u; — 3N (wi)) + 6<ui+1 — 12X " (uit1)).

1

= E(Uifl +4ui+ui+1)—4)\
_1 . + (
T T3

T — A\ f;(g)
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By the monotonicity of the function v — 12\ f*(u) and v — 3Af T (u), we have

up — 3N (i) € [m = 3AfT(m), M — 3\f*(M)],
Uir1 — 122 f T (uiq1) € [m — 120 fT(m), M — 12X f T (M),

which imply @; — 4 fj(m) € [m— ANfT(m), M — A\f(M)].

3. If df+(m) AT F (), u; — 4Af+(m> = @ — AN (Uisn). IF AT fH (@) >
0, @; — 4>\f+(ai+1) < U — 4)\f+(uz) < M — 4AXft(M), which implies the
upper bound holds. Due to the definition of the minmod function, we can
get 0 < A*fH@) < dff,. Thus, ff, = Lt/ = () +

2
df+1 > fH(w) + At fH(a ) = fT(@iy1). Then, @; — ANfT(iy1) > U —
4)\M > m — 4\f*(m), which gives the lower bound. For the
case A*f*( ;) < 0, the proof is similar.

4. If df;(ln) = AT f*(@;_1), the proof is the same as the previous case. ]

2

2.4. One-dimensional convection diffusion problems. We consider the one-Jj
dimensional convection diffusion problems with periodic boundary conditions: u; +
fw)z = a(t)zs, u(z,0)=up(x), where a’(u) > 0. Let £ denote the column vector

with entries f(ul),---, f(u}). By notations introduced in Section 2.1, the fourth-
order compact finite difference with forward Euler can be denoted as:

At At
(2.7) u't =u" - EWl 'D,f" + TWQ 'D,.a".

Recall that we have abused the notation by using W f* to denote the ¢-th entry of
the vector W1f™ and we have defined u; = Wiu;. We now define

u; = Wau,.
Notice that W) and W5 are both circulant thus they both can be diagonalized by the
discrete Fourier matrix, so W7 and W5 commute. Thus we have
t; = (WoWiu); = (Wi Wau); = 4;.
Let fI* = f(ul) and a} = a(u}), then the scheme (2.7) can be written as

At

~n ~n At n
u"‘l‘l:u, _7W2D:cf7, Ar?

i i A{E W1 ma

THEOREM 2.10. Under the CFL constraint 3 At - max, | f'(u )
if ul € [m, M|, then the scheme (2.7) satzsﬁes that m < @;

Proof. Let A = A—; and p = At . We can rewrite the scheme (2.7) as

si_

5
24>

1 1
u'tt = §(u" —2AW D) + i(u" + 2uWy ' D, a"),
1 1
W2W1u”+1 = §W2(W1un — 2/\D3;fn) + §W1(W2u” + Zqua"),

i, 1 1
aptt = SWa(@ = 22D, f') + SWh(@] + 2pDyray).
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14 H. LI, S. XIE AND X. ZHANG
By Theorem 2.1, we have @ — 2AD, fI" € [m, M]. We also have

1 n n n n n n
= E(U_l + 10w +ugyq) + 2u(aiy — 2a;" +aj’q)

5 1 1
= <6u? — 4,ua?) + (12“?1 + 2ua?1> + <12u?+1 + 2,ua?+1> .

Due to monotonicity under the CFL constraint and the assumption a'(u) > 0, we get
U} +2uDypal € [m, M]. Thus we get @t € [m, M| since it is a convex combination
of @) — 2AD, f' and 4} + 2uDy.al. 0

Given point values u; satisfying @; € [m, M| for any i, Lemma 2.2 no longer
holds since %; has a five-point stencil. However, the same three-point stencil limiter
in Algorithm 2.2 can still be used to enforce the lower and upper bounds. Given
U; = WoWhu; i = 1,--- , N, conceptually we can obtain the point values u; by first
computing @; = WQ_lﬁi then computing u; = Wy 1%;. Thus we can apply the limiter
in Algorithm 2.2 twice to enforce u; € [m, M]:

1. Given @; € [m, M], compute @; = W, '4; which are not necessarily in the
range [m, M]. Then apply the limiter in Algorithm 2.2 to @;,i = 1,--- , N.
Let v; denote the output of the limiter. Since we have
1

i = m(ﬂi—l + ¢ty + Uir), c¢=10,

! + 2puDyzay

gzl
20

7

all discussions in Section 2.2 are still valid, thus we have @; € [m, M].
2. Compute u; = Wl_lz’)i. Apply the limiter in Algorithm 2.2 to u;,i = 1,--- , N.
Let v; denote the output of the limiter. Then we have v; € [m, M].

2.5. High order time discretizations. For high order time discretizations, we
can use strong stability preserving (SSP) Runge-Kutta and multistep methods, which
are convex combinations of formal forward Euler steps. Thus if using the limiter in
Algorithm 2.2 for fourth order compact finite difference schemes considered in this
section on each stage in a SSP Runge-Kutta method or each time step in a SSP
multistep method, the bound-preserving property still holds.

In the numerical tests, we will use a fourth order SSP multistep method and a
fourth order SSP Runge-Kutta method [4]. Now consider solving u; = F(u). The SSP
coefficient C' for a SSP time discretization is a constant so that the high order SSP
time discretization is stable in a norm or a semi-norm under the time step restriction
At < CAty, if under the time step restriction At < Aty the forward Euler is stable
in the same norm or semi-norm. The fourth order SSP Multistep method (with SSP
coefficient Cy,,s = 0.1648) and the fourth order SSP Runge-Kutta method (with SSP
coefficient Cy;, = 1.508) will be used in the numerical tests. See [4] for their definitions.

In Section 2.2 we have shown that the limiters in Algorithm 2.1 and Algorithm
2.2 are high order accurate provided u; are high order accurate approximations to a
smooth function u(x) € [m, M]. This assumption holds for the numerical solution in
a multistep method in each time step, but it is no longer true for inner stages in the
Runge-Kutta method. So only SSP multistep methods with the limiter Algorithm
2.2 are genuinely high order accurate schemes. For SSP Runge-Kutta methods, using
the bound-preserving limiter for compact finite difference schemes might result in an
order reduction. The order reduction for bound-preserving limiters for finite volume
and DG schemes with Runge-Kutta methods was pointed out in [23] due to the same
reason. However, such an order reduction in compact finite difference schemes is more
prominent, as we will see in the numerical tests.
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3. Extensions to two-dimensional problems. In this section we consider

initial value problems on a square [0, 1] x [0,1] with periodic boundary conditions.
Let (z4,y;) = (37»7=) (¢ = 1,--- ,Ng,j = 1,--- ,N,) be the uniform grid points

on the domain [0,1] x [0,1]. For a periodic function f(z,y) on [0,1] x [0,1], let f be
a matrix of size N, x N, with entries f;; representing point values f(u;;). We first
define two linear operators Wi, and Wy, from RNe*Nu to RNe* Ny,

41 1 fi1 fiz o fin,
L 141 fo1 Joz 0 fan,
1 41 Ing—11 fN,—12 - fN.-1N,
1 La) v o, \ fven Ine2 o e,
fu fiz o fin, 41 1
f21 fz o fan, . 14 1
Wi, f = : : . : = .
INg—11 fN.—12 - fN.-1N, 1 41
Inet fne2 o0 fNuN, 1 1 4 NyxN,

We can define Wy, Way, Dy, Dy, Wo, and Wy, similarly such that the subscript x
denotes the multiplication of the corresponding matrix from the left for the x-index
and the subscript y denotes the multiplication of the corresponding matrix from the
right for the y-index. We abuse the notations by using Wi, fi; to denote the (4, )
entry of Wi,f. We only discuss the forward Euler from now on since the discussion
for high order SSP time discretizations are the same as in Section 2.5.

3.1. Two-dimensional convection equations. Consider solving the two-dimensionalll
convection equation: u; + f(u)z + g(u)y =0, u(z,y,0) = uo(z,y). By the our no-
tations, the fourth order compact scheme with the forward Euler time discretization
can be denoted as:

At At

1 —1 1
(3.1) ui = uly = 1y Wi Defily = 5 Wiy Dyl

We define a™ = Wi, Wi,u”, then by applying Wi, Wi, to both sides, (3.1) becomes

n . At n At n
(3.2) uijﬂ = Uy; — EleDx i Iywlnygij'
THEOREM 3.1. Under the CFL constraint
At At 1
(33) o i)+ - ma g ()| < 3,

if uiy € [m, M|, then the scheme (3.2) satisfies ﬁ?j"'l € [m, M].

Proof. For convenience, we drop the time step n in u;, f;7, and introduce:
Ui—1,5+1 Ui 541 Ui41,5+1 fz‘—l,j+1 fz’,j+1 fz'+1,j+1
U=\wi-1; w,; wiy,y |, F=|fi-i; [fij fis
Uij—1,5—1 Ui j—1 Ui1,5—1 fifl,jfl fi,jfl fi+1,j71
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16 H. LI, S. XIE AND X. ZHANG

Let \; = 2L and \; = L%, then the scheme (3.2) can be written as

x Ay
ﬂ?;rl = lewlxu?j - )\IWIyszZ - )\QWInyg;'njv
141 -101 1 4 1
1 A A
=g 4164 :U—l—; —404 :F—l—; 00 0]:G,
141 ~101 —1 -4 -1

where : denotes the sum of all entrywise products in two matrices of the same size.
Obviously the right hand side above is a monotonically increasing function with re-
spect to uyy, for i —1 <1 <i+1,j—1<m<j+ 1 under the CFL constraint (3.3).

The monotonicity implies the bound-preserving result of a;;“. ]

Given #;j, we can recover point values u;; by obtaining first v;; = ngﬂlﬁij then
Ujj = Wl_ylvij. Thus similar to the discussions in Section 2.4, given point values w;;
satisfying @;; € [m, M] for any ¢ and j, we can use the limiter in Algorithm 2.2 in a
dimension by dimension fashion to enforce u;; € [m, M]:

1. Given @;; € [m, M], compute v;; = Wl;lﬂij which are not necessarily in the
range [m, M]. Then apply the limiter in Algorithm 2.2 to v;; (¢ =1,--- , N;)
for each fixed j. Since we have

Uy = —
)
all discussions in Section 2.2 are still valid. Let 9;; denote the output of the
limiter, thus we have v;; € [m, M].
2. Compute u;j = nylz‘)l-j. Then we have
_ 1
Tis =
Y e+ 2

(Vie1j + cvij +visr;), =4,

(Ui j—1 + cusj +uiji1), c=4.
Apply the limiter in Algorithm 2.2 to u;; (j = 1,---, N,) for each fixed 7.
Then the output values are in the range [m, M].

3.2. Two-dimensional convection diffusion equations. Consider the two-
dimensional convection diffusion problem:

ug + f(u)e + g(“)y = a(u)ze + b(W)zz, w(®,y,0) =uo(z,y),

where a’(u) > 0 and ' (u) > 0. A fourth-order accurate compact finite difference
scheme can be written as

du 1 1 1 1 1 1 1 -1
Let \; = %, Ay = g\‘—;, = % and ps = AAJQ. With the forward Euler time

discretization, the scheme becomes

(3.4) wl™ =l — MW Do fls — MWy, Dygll + paWa,' Dewally + paWa, Dy, bl
We first define u = Wi,Wiyu and u = Wy, Woyu, where Wy = Wy, Wi, and

Wo = WaWay. Due to the fact W1 Wy = WoWy, we have

l:1 = WwaQy(Wquyu) = WleVly(Wnggyu) = 1:1
The scheme (3.4) is equivalent to the following form:

/L:LZ'+1 = ﬁz - )\IWIyWZxW2yDIfi1} - )\2W11:W2:EW2yDnglj
+ H1 WlxwlyWZyD$za?j + ,Uf2W1zW1yW2rDybe'~
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A BOUND-PRESERVING COMPACT FINITE DIFFERENCE SCHEME 17
THEOREM 3.2. Under the CFL constraint

t
max a’(u) + —5 max b’ (u) <

AL AL, 5
5) — = <= = 2
(38:5) g maxl )l + 7y maxle ()l < & Koz ms Ay 21°

if uf; € [m, M|, then the scheme (3.4) satisfies ﬁ?jﬂ € [m, M].

Proof. By using u; = %ﬁij + %ﬁ%, we obtain

- 1
= 5 WaaWay [ = 20 Wiy Dy fi5 = 209 W1, Dy g73]
1 ~ 1 n 7
+§W1$W1y[uij =+ 2,ulW2meaij =+ 2M2W2$Dyybi]’].
Let Uiy = ﬂ;‘].—QAlleszZ;—2)\2W1wDyg%, ﬁlij = ’a;lj‘f'zlllWQyDza:a;Lj'+2M2W2wDyyb%~l

Then by the same discussion as in the proof of Theorem 3.1, we can show v;; € [m, M].
For ;;, it can be written as

1 10 1 1 -2 1 1 10 1
@i = 77 (10 100 10 :U+% 10 —20 10 :A+% 92 20 —2| : B,
1 10 1 1 -2 1 1 10 1
Aj—1,541 Q5 541 Qi41,541 bifl,jJrl bi,j+1 bi+1,j+1
A= a1 Qij Giy1 , B=[bi—1; bij bit1
i—1,5-1 Qij—1 Qit1,5-1 bi—1,j-1 bij—1 bit15-1

Under the CFL constraint (3.5), @;; is a monotonically increasing function of ug
involved thus @;; € [m, M]. Therefore, uf;"" € [m, M]. O

Given 1,7, we can recover point values u;; by obtaining first @;; = Wl_mlWl_ylﬁij
then u;; = W' W2_ylz]ij. Thus similar to the discussions in the previous subsection,
given point values u;; satisfying @;; € [m, M] for any i and j, we can use the limiter
in Algorithm 2.2 dimension by dimension several times to enforce u;; € [m, M]:

1. Given @;; € [m, M], compute i;; = Wi, Wl_ylﬁij and apply the limiting
algorithm in the previous subsection to ensure u;; € [m, M].

2. Compute v;; = Wg_gclﬂij which are not necessarily in the range [m, M]. Then
apply the limiter in Algorithm 2.2 to v;; for each fixed j. Since we have

1
Gij = 5 Wim1j + i+ viv1, ), ¢ = 10,

all discussions in Section 2.2 are still valid. Let 9;; denote the output of the
limiter, thus we have 0;; € [m, M].

3. Compute u;; = W{ylf)ij. Then we have 0;; = ﬁ(ui7j71+cu¢7j+ui’j+1), c=
10. Apply the limiter in Algorithm 2.2 to u,; for each fixed ¢. Then the output
values are in the range [m, M].

4. Higher order extensions. The weak monotonicity may not hold for a
generic compact finite difference operator. See [6] for a general discussion of com-
pact finite difference schemes. In this section we demonstrate how to construct a
higher order accurate compact finite difference scheme satisfying the weak mono-
tonicity. Following Section 2 and Section 3, we can use these compact finite difference
operators to construct higher order accurate bound-preserving schemes.
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18 H. LI, S. XIE AND X. ZHANG

4.1. Higher order compact finite difference operators. Consider a com-
pact finite difference approximation to the first order derivative in the following form:

fi 2_fi72 fz 1_fi71
(A1) Bifiptonfiat fitarfin+Bifl ==t e

where a1, 81, a1,b are constants to be determined. To obtain a sixth order accurate
approximation, there are many choices for a1, 51, a1, b1. To ensure the approximation
in (4.1) satisfies the weak monotonicity for solving scalar conservation laws under
some CFL condition, we need a; > 0, 81 > 0. By requirements above, we obtain

1
—174+5701), a1 > =.

1 2
(42) B = ﬁ(—l +3a1), a1 = §(8 —3a1), b 3

With (4.2), the approximation (4.1) is sixth order accurate and satisfies the weak

monotonicity as discussed in Section 2.1. The truncation error of the approximation
(4.1) and (4.2) is 7 (9 — 4)AxS fD + O(Ax®), so if setting

4 1 40 25
(4-3) oy =—, fi=— a1—2—7, l_ﬁ’

we have an eighth order accurate approximation satisfying the weak monotonicity.
Now consider the fourth order compact finite difference approximations to the
second derivative in the following form:

i+2 — 2fi + fie i+1 — 2fi + fi-
ﬂzf{/_2+042f{/_1+f{+042f{3rl+52f¢/3r2:b2f+2 4Afaj2 fr g g Aig e,

1 1
ay = 5(4 —4agy — 4052), by = g(—l + 10as + 46ﬁ2)

with the truncation error % (-2 + 1lap — 1243,)Az* f(©). The fourth order scheme

discussed in Section 2 is the special case with ag = 1—10, Bo=0, as= g, by =0.If

Bo = 11‘1"224_2, we get a family of sixth-order schemes satisfying the weak monotonicity:
—T8ag + 48 291as — 36

4.4 = b= ——— > 0.

(44) 2 31 2 62 2

The truncation error of the sixth order approximation is ﬁ(ll?Qag — 344)AzS f®),
Thus we obtain an eighth order approximation satisfying the weak monotonicity if

344 23 320 310

4. = — = = hy ==
(4.5) @2 = 177972 = 335392 = 3037 %2 = 303

. . —172 8 £(10
with truncation error gz=ecce Aw Fa0),

4.2. Convection problems. For the rest of this section, we will mostly focus on
the family of sixth order schemes since the eighth order accurate scheme is a special
case of this family. For u; + f(u), = 0 with periodic boundary conditions on the
interval [0, 1], we get the following semi-discrete scheme:

d 1~
L= W'Dt
at A:EWl w
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1 « «
B e 1 1 ﬁ% U1
o 1 g 1
b1 gi /311 o U2
Vsam ! us
Wue— Pt | :
1+2a1+2ﬂ1 . . al. 1. al. . 9
[e5]) aq
1 1 m E @ u{[]j—l
[e5% (058
Al L5 & N
0 201 b b1 —2a; f1
—2a; 0 207 b —by fa
1 —b1 —2&1 0 2&1 b1 f3
-5Zf: ° c. t. t. . . y
A(1 + 201 + 261) SR -
b1 —2a1 0 241 by In—2
b1 b1 —2a1 0 2a4 In—1
20,1 bl _bl —2(11 0 fN

where f; and u; are point values of functions f(u(x)) and u(x) at uniform grid points
x; (1 =1,---, N) respectively. We have a family of sixth-order compact schemes with
forward Euler time discretization:

At

Az

(4.6) u"tl =u" — W{lﬁmf.

Define @t = Wiu and \ = ﬁ—i, then scheme (4.6) can be written as

A
gttt — g — bi ™o 4+ 2a1 ", —2a1 ™, — b f™.).
Uu; U 4(1 20, Qﬁl)( 1fz+2 a1f1+1 a’lflfl 1f7.72)

Following the lines in Section 2.1, we can easily conclude that the scheme (4.6) satisfies
a! ™t € [m, M] if u} € [m, M], under the CFL constraint

At , 9 6(3a1—1)
— <
Al (W] < min{e— 30, BTay — 17

1.

Given @; € [m, M], we also need a limiter to enforce u; € [m, M]. Notice that @;
has a five-point stencil instead of a three-point stencil in Section 2.2. Thus in general
the extensions of Section 2.2 for sixth order schemes are more complicated. However,
we can still use the same limiter as in Section 2.2 because the five-diagonal matrix
W1 can be represented as a product of two tridiagonal matrices.

Plugging in 1 = 75(—1+ 3a1), we have W, = Wf”ﬁfz), where

AV 1 1
1Y

V~V1(1): 1 S ,cgl): 601 _\/5 7—240z1—&-27oz%7
AV +2 L 3a; — 1 1 6a; + 907

1Y
1
1 1Y
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20 H. LI, S. XIE AND X. ZHANG

A1 1

T o [ 6o V2T 240 + 27a1.
(2) + 2 . . (2) y Cp 30(1 — 1 1_ 6041 T 9a1

1 ¢ 1
1 1 2

In other words, u = Wlu = W{”Wf”u. Thus following the limiting procedure

in Section 2.4, we can still use the same limiter in Section 2.2 twice to enforce the

bounds of point values if cgl) (2) > 2, which implies % s<ar < 5 . In this case we have

. 6(3a1—1)\ _ 6(3a1—1)
min{g—2-—, 57a1—17} = Bran—17"

Alf (w)] < %. We summarize the results in the following theorem.

thus the CFL for the weak monotomclty becomes

THEOREM 4.1. Consider a family of sixth order accurate schemes (4.6) with

1 <

1 2 1
b1 = ( 1+3a1) a1 25(8—3041), b, = ( 17+57a1)

12 18

@\U‘

3°
which includes the eighth order scheme (4.3) as a special case. If ul' € [m, M] for all

i, under the CFL constraint 2L max, |f'(u)| < %, we have u”Jr1 € [m, M].

Given point values u; satisfying Wll Wl(Q)ul = Wlui = 1u; € [m, M] for any i, we
can apply the limiter in Algorithm 2.2 twice to enforce u; € [m, M]:

1. Given @; € [m, M], compute v; = [Wl(l)]—lai which are not necessarily in the

range [m, M]. Then apply the limiter in Algorithm 2.2 to v;,¢ = 1,--- , N.

Let v; denote the output of the limiter. Since we have u; = (vi—1 +

cgl)vi + vig1), cgl) > 2, all discussions in Section 2.2 are still valid, thus we
have v; € [m, M].
2. Compute u; = [W(z)] '9;. Apply the limiter in Algorithm 2.2 to wu;,i =

(i1 +c§2)ui +Uit1),C ( ) > 2, all discus-

“)+2

1,---,N. Since we have 7; = %
cy +2
sions in Section 2.2 are still valid, thus the output are in [m, M].

4.3. Diffusion problems. For simplicity we only consider the diffusion prob-
lems and the extension to convection diffusion problems can be easily discussed fol-
lowing Section 2.4. For the one-dimensional scalar diffusion equation u; = g(u).s
with ¢’(u) > 0 and periodic boundary conditions on an interval [0, 1], we get the sixth
order semi-discrete scheme: %u = Amz W2 1Dm;g, where

1 az Qz
B2 B2 1 1 B2 Uy
a 1 az 1 1
B2 gg 512 e U2
V& m e 1 uy
Wou = P2 e :
1+2a2+252 . . . . . . ’
1 & L a 1 UN—-2
B2 gz ﬁ12 o
&2 - &2
oil' 1 B2 52 [312 uri[lv_l
@22 &2
B2 1 1 B2 P2 N
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—8ao — 2bo 4asg 2bo 2by 4ao g1
4a2 —8(12 — 2b2 4a2 2b2 21)2 g2
2bo 4az —8ag — 2b24asg 2bo g3

657 Ezzg = m .. .. " . X
2by  4az—8az —2ba  4das 2b2 gN-2
2bo 2bo 4as —8as — 2bo 4aso IN—1
4aso 2ba 2bo dag —8ag — 2ba an
658  where g; and w; are values of functions g(u(x)) and u(zx) atx; respectively.
659 As in the previous subsection, we prefer to factor W as a product of two tridi-
660 agonal matrices. Plugging in 83 = 11‘1)‘22;2, we have: Wy = Wz(l)W2(2), where
Vo1 1
1 Y1
W 1 oo o 620z V24/128 — 7260 + 204303
)le] = . . . s = -
2 Cél) ) B 2 1log — 2 V4 — 4day + 12103
1 ¢ 1
1 1 Y
2 1
1 421
o T 1 @) 620z V24/128 — 7260 + 204303
562 e t. t. T, s C e .
2 cg2) P Sy 2 1log — 2 V4 — ddas + 12103
1 ¢y 1
(2
1 1 P
663  To have cgl),cgz) > 2, we need 1—21 <oy < %. The forward Euler gives
At —_ |~
664 (4.7) u"tt=u"+ TJUQWQ_leg-
665 Define @i; = Wau; and p = AA—JQ, then the scheme (4.7) can be written as

"

N, ~n—+1 ~n
666 U, =u, +
v 4(1 + 2042 =+ 2B2

) [2b2g]" 5 + dasg] | + (—8az — 2b2)g} + dazgl, + 2bag, o) I
667

THEOREM 4.2. Consider a family of sizth order accurate schemes (4.7) with

1lag — 2
= a
124 °

—T8aqg + 48 291a — 36 2 60
= by = — <

ZvoTe U <
P 31 ’ 62 0 11 %~ 113

2

668 which includes the eighth order scheme (4.5) as a special case. If ul* € [m, M| for all

669 1, under the CFL AA;2 g'(u) < m, the scheme satisfies 4"t € [m, M].

670 As in the previous subsection, given point values u; satisfying WQ(I)WQ(Z)W =
671 Wou; = @y € [m, M] for any i, we can apply the limiter in Algorithm 2.2 twice to
672 enforce u; € [m, M]. The matrices W, and W, commute because they are both circu-
673 lant matrices thus diagonalizable by the discrete Fourier matrix. The discussion for
674 the sixth order scheme solving convection diffusion problems is also straightforward.

675 5. Extensions to general boundary conditions. Since the compact finite
676  difference operator is implicitly defined thus any extension to other type boundary
677 conditions is not straightforward. In order to maintain the weak monotonicity, the
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22 H. LI, S. XIE AND X. ZHANG

boundary conditions must be properly treated. In this section we demonstrate a
high order accurate boundary treatment preserving the weak monotonicity for inflow
and outflow boundary conditions. For convection problems, we can easily construct a
fourth order accurate boundary scheme. For convection diffusion problems, it is much
more complicated to achieve weak monotonicity near the boundary thus a straight-
forward discussion gives us a third order accurate boundary scheme.

5.1. Inflow-outflow boundary conditions for convection problems. For
simplicity, we consider the following initial boundary value problem on the interval
[0,1] as an example: us + f(u), = 0, wu(x,0) = wp(x), u(0,t) = L(t), where we
assume f’(u) > 0 so that the inflow boundary condition at the left cell end is a well-
posed boundary condition. The boundary condition at x = 1 is not specified thus
understood as an outflow boundary condition. We further assume wug(z) € [m, M|
and L(t) € [m, M] so that the exact solution is in [m, M].

Consider a uniform grid with x; = iAx fori =0,1,--- N, N+1 and Az = ﬁ
Then a fourth order semi-discrete compact finite difference scheme is given by

14 1 U, -1 0 1
a0 ‘) . g
dt 6 R ] T 2Ax R :

1 41 UN+1 -1 01 fN+1

With forward Euler time discretization, the scheme is equivalent to

(51) W= N~ S, i= 1 N
Here uyy = L(t") is given as boundary condition for any n. Given u} for i =
0,1,---,N + 1, the scheme (5.1) gives @?H for i = 1,---, N, from which we still
need “X/—:ll to recover interior point values u?“ fori=1,---,N.

Since the boundary condition at zx4; = 1 can be implemented as outflow, we
can use ﬁ?H for ¢ = 1,---,N to obtain a reconstructed u?v':_ll. If there is a cu-

bic polynomial p;(x) so that w;—1,u;,u;4+1 are its point values at x;_1,x;, z;y1, then
ﬁ f;’:l pi(z)dr = %uz;l + %ui + %UiJrl = @;, due to the exactness of the Simpson’s
quadrature rule for cubic polynomials. To this end, we can consider a unique cu-
bic polynomial p(z) satisfying four equations: 51— f;’:l p(z)dz = ﬂ;‘“, j=N—
3,N-2,N-1,N.1If 12}’“ are fourth order accurate approximations to gu(z;_1,t" ™)+
su(zj, t" ) + fu(wjq1, "), then p(x) is a fourth order accurate approximation to

u(z,t"1) on the interval [xx_4,Tn11]. So we get a fourth order accurate u'](,ill by

2 17 14 7
(5.2) p(rnt1) = _gaN—3 + EaN—Q - gﬂN—l + iﬂN-

Since (5.2) is not a convex linear combination, p(xy41) may not lie in the bound

m, M]. Thus to ensure 5% € [m, M] we can define
N+1

(5.3) upt! = max{min{p(zn11), M}, m}.

Obviously Theorem 2.1 still holds for the scheme (5.1). For the forward Euler
time discretization, we can implement the bound-preserving scheme as follows:
1. Given u} for all ¢, compute ﬂ;”'l fori=1,---,N by (5.1).
2. Obtain boundary values uf ™' = L(t"*1) and u"N':_ll by (5.2) and (5.3).
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A BOUND-PRESERVING COMPACT FINITE DIFFERENCE SCHEME 23

3. Given @*! fori = 1,--- , N and two boundary values u

point values u?“ for i = 1,--- , N by solving the tridiagonal linear system

(the superscript n + 1 is omitted):

n+1 n+1
o and uy', recover

4 1 U1 Uy — %UQ
14 1 U2 U2
1 : _ )
6 . . -
1 41 UN_1 UN_1
1 4 UN uyN — %’LLN_;,_l

4. Apply the limiter in Algorithm 2.2 to the point values u?“ fori=1,---,N.

5.2. Dirichlet boundary conditions for one-dimensional convection dif-
fusion equations. Consider the initial boundary value problem for a one-dimensionalll
scalar convection diffusion equation on the interval [0, 1]:

(5.4) ur+ f(w)e = g(U)ga, u(z,t) =wuo(z), u(0,t)=L(t), u(lt)=R(t),

where ¢'(u) > 0. We further assume ug(x) € [m, M] and L(t), R(t) € [m, M] so that
the exact solution is in [m, M].

We demonstrate how to treat the boundary approximations so that the scheme
still satisfies some weak monotonicity such that a certain convex combination of point
values is in the range [m, M| at the next time step. Consider a uniform grid with
x; = iAx for i = 0,1,--- ,N,N + 1 where Az = +~. The fourth order compact

N+1°
finite difference approximations at the interior points can be written as:
fJL‘,l fl 7f:%,0 - Q‘Z)x
fI,Q 1 f2
%% : =—D, : : ,
faN—1 fn-1 0
fx:, 1 f
o R
41 0 1
14 1 -1 0 1
1 1
Wi = - , Dy=5 R )
1 41 -1 01
14 -10
Gzx,1 g1 _993105,0 + Aga?:z
Gax,2 1 g2 0
W. : = 7-Dx:z: : : 5
2 : A2 : + :
9rx,N—1 gN-1 0
9zx, N gn _gzﬂci% + gi\’;;
10 1 -2 1
) 110 1 1 =21
= — . . sz = . . s
W2 12 . . ’ . .
1 10 1 1 -2 1
1 10 1 -2
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24 H. LI, S. XIE AND X. ZHANG

where f,; and g, ; denotes the values of f(u), and g(u)., at z; respectively. Let

_fm,O _ fO _ Yzz.0
6 2Ax
0 0
F= , G= :
0 0
Jo N f _ Gzw,N41 9N+1
- 6+l + 2NA+;1:1 2+

Define W := W1 Wy = WoW;. Here Wy and W7 commute because they have the same
eigenvectors, which is due to the fact that 2W, — W7 is the identity matrix. Let u =
T T T
(w1 ug -+ un) £ = (flw) fluz) -~ flun)) and g = (g(w1) g(ua) --- g(un))
Then a fourth order compact finite difference approximation to (5.4) at the interior
grid points is 2u+ W (& D,f+ F) = T/V2 '(525 D08 + G) which is equivalent to
d 1
W —WsoD,f —
a W+ z;W2Da A 2

If w;(t) = u(z;,t) where u(z,t) is the exact solution to the problem, then it satisfies

(55) Ut g + fwﬂ‘ = Gzx,i>

where u; ; = %ui(t), foi = f(Ui)e and gpzi = g(Ui)ae. If we use (5.5) to simplify
—WoF 4+ W;G, then the scheme is still fourth order accurate. In other words, setting
—fz.i+Gzz,i = ur; does not affect the accuracy. Plugging (5.5) in the original — Wy F'+
W1G, we can redefine —WoF + W1 G as

Wl xx8 = _WQF + WlG

1 1 5 2
—1gUt,0 1" 15 /2.0 1+ 124z f? + 38290
—=5Ut0 + 57.f0 + gazz90
0

—WoF + WG = :
0
72ut N+1 24fN+1+ 6A129N+1
utN+1+ 12fo+1 12Asz+1+3A12gN+1

So we now consider the followmg fourth order accurate scheme:

(5.6)
~15e0 + 13fe0 15z Jo + 3290
—=5Ut0 + 35 0 + gazz 90
0

1
7 (Wu) xWQDmf*TﬂwlDzzg = :
0
712ut AL 24fN+1 + 6Ax29N+12
— 15U N+t 15 faNe1 — 12A£fN+1 + 3AzZIN+1

The first equation in (5.6) is

d (4u0 + 41uq + 14us +u3) 1
dt 72 24 Az
After multiplying % = g to both sides, it becomes

(10fo + f1 —10f2 — f3) + Az 2(

£(4UO+41U1+14UQ+U3)_ 1
60 ~ 20Az

dt
1
(490 — 791 + 292 + g3) + Tofx,o-

(10fo + f1 —10f2 — f3)

1
(5.7) + i
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In order for the scheme (5.7) to satisfy a weak monotonicity in the sense that

Au 4107 L 14 n+l . .
Yo Al 63 b L S Y (5.7) with forward Euler can be written as a monoton-

ically increasing function of u] under some CFL constraint, we still need to find an
approximation to f(u)y o using only ug, u1, ug, us, with which we have a straightfor-
ward third order approximation to f(u)s o:

1 11 3 1
. = —(—— _ _ _ A 3 .
(5.8) fz0 Am( 6f0+3f1 2f2+3f3)+@( )
Then (5.7) becomes
d 4dug + 41uq + 14us + us _ 1
%( 0 )= 60Am(19f0 +21f1 —39f2 — f3)
1
(5.9) +@(4QO — 791 + 292 + g3).

The second to second last equations of (5.6) can be written as

d (Ui_g + 14’[1,1‘_1 + 42’[1,1 —+ 14’&1'_;,_1 + Ui_l,_Q) - 1
dt 72 - 24Ax

1 .
—10fiy1 — fiz2) + m(gi—Q +2gi—1 —69; +2gi41 + giy2), 2<i<N -1,

(5.10)

(fi—o +10fi—1

which satisfies a straightforward weak monotonicity under some CFL constraint.
The last equation in (5.6) is

i duns1 +4luny + Mdun—1 +un—2

1
= — 1 — —_—
dt( 7 ) 24Ax(fN 2 +10fn-1— fN
1 1
-1 ——(gN_2+29Nn_1 — 4 — [ .
Ofny1) + N (gn—2+2g9N-1 — Tgn +4gn41) + 12f N+1
After multiplying % = g to both sides, it becomes
d un_s+ 1dun_q +41uN+4uN+1 1
il - o4+ 10FNv_ 1 —

1 1
-1 ——(gN—2+2gN_1 — 4 — fa .
0fn+1) + N (gN—2 +2g9Nn-1 — TgN + 4gN+1) + Tof= v+
Similar to the boundary scheme at g, we should use a third-order approximation:
1 1 3 11 3
(5.11) Je,Nt1 = Ix(—ngfz + iqu —3fn + EfNJrl) + O(Az?).

Then the boundary scheme at x 1 becomes

d un—_2+ lduny_1 +4luny + dun41 1
— = _ 39fn_1 — 21
1
(5.12) —19fn+1) + s (9n—2 + 2g8—1 = Tgn + 4gn+1)-

To summarize the full semi-discrete scheme, we can represent the third order
scheme (5.9), (5.10) and (5.12), for the Dirichlet boundary conditions as:

d—~ . 1 ~ 1 ~ -
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788  where
24 246 84 6
5 5 5 5 Uo
) 1 14 42 14 1 Uuq
789 W:i ,a = : ,
1 14 42 14 1 uN
6 84 246 24
5 5 5 5 / Nx(N+2) UN+1/ (N+2)x1
o _ 38 _42 78 2 24 42 12 6
5 5 5 5 5 5 5 5
1—1—100101 112—621
791 Dy = — SRRV Dyw = - oo
£ 24 . . . . . Y 6 . . .
—-1-10 0 10 1 1 2 -6 2 1
_2 _ 78 42 38 6 12 42 24
5 5 5 5 Nx(N+2) 5 5 5 5 Nx(N+2)

792 Let u = Wﬁ, A= ﬂ and p = . With forward Euler, it becomes

1 ~ - ~
793 (5.13) att = al — iAszi + uDyp§i, i=1,---,N.

794  We state the weak monotonicity without proof.

795 THEOREM 5.1. Under the CFL constraint 5 At = max, | f'(u)| < 19, AA;L, max,, g'(u) <}
796 28 if ul' € [m, M], then the scheme (5.13) satzsﬁes altt € [m, M.

797 We notice that

n+1+4un+l+u721+1 1 un+1+4un+1+ug+1 1 —

1
708 Ayt = —(dudtt + A1ut 4 1dud T gt =

60 6 10 6 TR
799
1 1 un+1 + 4un+1 4 un-l—l un+1 + 4un+1 + un+1 1
. —n+1 1 1 1 1 N-—1 N+1 n+1
g0yt = 60( upty, + 1ut + 41 + i) = 0 5 + 5 — Euﬁ;l

801 Recall that the boundary values are given: ug™' = L(t"*1) € [m, M] and u?\,fl =
802 R(t"*1) € [m, M], so we have

- 10 u(T)H-l 4 4un+1 + un-i-l N i n+1 + 4un+1 + un-‘rl _ 1OM N iM oy
o 11 6 11 6 ~ 11 1m0
o 10 u6L+1 + 4un+1 + ug+1 N 1 u?—O—l + 4u721+1 + ugL—O—l - 10 N
T —m —m =1m,
11 6 11 6 - 11 11
805 1L oupty +duif +up™ 10wt +dui™ + urzirill EM + M M,
o 11 6 11 6 — 11 11
» Ly 4ug™y F ™ 10uRT T bt 10
5 —m+ —m=m.
11 6 11 6 - 11 11
807 Thus define w1 = (wi™!, witt wit o wit w}i,“) as follows and we have:
808 m<w't =gt <M, i=2-.. N-1,
00 R 10 ug ™ 4+ 4ot 4t L1 1ot dud T ! Py
( <withi= < M,
11 6 11 6
un—i—l 4un+1 un+1 un+1 4un+l un-i—l
10 m < wg[—&-l _ 111 + : +uny n 1(1) + : + <
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By the notations above, we get

We notice that W can be factored as a product of two tridiagonal matrices:

UN+1 Nx1

120 12
11 11
1 10 1
1 .
12 .
1

10 1
12 120
11 11

NXxXN

120 492 168 12
11 11 11 11
1 14 42 14
1 14

12

11

11

27

42 14 1
168 492 120
11 11 / Nx(N+2)
1
1 41
1 41

Nx(N+2)

‘which can be denoted as W = WQWl. Fortunately, all the diagonal entries of Wl and

(5.14)
10
11
1
K= . y Upe
1
10
11/ NxN
120 492 168 12
11 11 11 11
1 14 42 14 1
1
72 . .a .o .0
1 14 42 14 1
12 168 492 120
11 11 11 11
Wy are in the form of -5

c+2?

1

¢ > 2. So given 4; = Wu; € [m, M|, we construct w
[m, M]. We can apply the limiter in Algorithm 2.2 twice to enforce u; € [m, M]:
1. Given ul for all i, use the scheme (5.13) to obtain
,-++,N. Then construct w

n+1

i

Uy

—n+1

[

n+1 c

€ [m,M] for i =
€ [m,M]fori=1,---,N by (5.14).

2. Notice that Wg is a matrix of size N x N. Compute v = W;lw”“. Apply
the limiter in Algorithm 2.2 to v; and let v; denote the output values. Since
we have Wyv; € [m, M], i.e.,

10

1 1
m <—vn_2+ —vn_1+ =unN< M,

12

m <

12

1 10
LN TN

12
< M.

Following the discussions in Section 2.2, it implies o; € [m, M].

3. Obtain values of u

4
1

n+1

1
4 1

1 4
1

n+1
Uy

Ug

n+1
1 uNJ:ll
n
4 Un

UN

,t=1,--- N by solving a N x N system:

4. Apply the limiter in Algorithm 2.2 to u'** to ensure u™' € [m, M].
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6. Numerical tests.

6.1. One-dimensional problems with periodic boundary conditions. In
this subsection, we test the fourth order and eighth order accurate compact finite
difference schemes with the bound-preserving limiter. The time step is taken to
satisfy both the CFL condition required for weak monotonicity in Theorem 2.1 and
Theorem 2.10 and the SSP coefficient for high order SSP time discretizations.

EXAMPLE 1. One-dimensional linear convection equation. Consider u; + u, =
0 with and initial condition ug(x) and periodic boundary conditions on the interval
[0,27]. The L' and L errors for the fourth order scheme with a smooth initial
condition at time T = 10 are listed in Table 1 where Ax = 2T, the time step is taken
as At = CmS%Ax for the multistep method, and At = 5C,,s5Ax for the Runge-Kutta
method so that the number of spatial discretization operators computed is the same as
in the one for the multistep method. We can observe the fourth order accuracy for
the multistep method and obvious order reductions for the Runge-Kutta method.

The errors for smooth initial conditions at time T = 10 for the eighth order accu-
rate scheme are listed in Table 2. For the eighth order accurate scheme, the time step
to achieve the weak monotonicity is At = Cms%Ax for the fourth-order SSP multi-
step method. On the other hand, we need to set At = Ax? in fourth order accurate
time discretizations to verify the eighth order spatial accuracy. To this end, the time
step is taken as At = Cms%AI2 for the multistep method, and At = 5C’ms%Aaj2 for
the Runge-Kutta method. We can observe the eighth order accuracy for the multistep
method and the order reduction for N = 160 is due to the roundoff errors. We can

also see an obvious order reduction for the Runge-Kutta method.

TABLE 1
The fourth order accurate compact finite difference scheme with the bound-preserving limiter
on a uniform N-point grid for the linear convection with initial data uo(x) = % + sin? ().

Fourth order SSP multistep Fourth order SSP Runge-Kutta
N | LY error order | L*® error order | L! error order | L™ error order
20 | 3.44E-2 6.49E-2 3.41E-2 6.26E-2

40 | 3.12E-3 347 6.19E-3 3.39 | 3.14E-3 3.44 6.62E-3 3.24
80 | 1.82E-4 4.10 2.95E-4 4.39 | 1.86E-4 4.08 3.82E-4 4.11
160 | 1.10E-5  4.05 1.85E-5 4.00 | 1.29E-5  3.85 4.48E-5 3.09
320 | 6.81E-7 4.02 1.15E-6 4.01 | 1.42E-6 3.18 1.03E-5 2.13

TABLE 2
The eighth order accurate compact finite difference scheme with the bound-preserving limiter
on a uniform N-point grid for the linear convection with initial data up(z) = % + % sin*(z).

Fourth order SSP multistep Fourth order SSP Runge-Kutta
N LY error  order | L™ error order | LT error order | L™ error order
10 6.31E-2 1.01E-1 6.44E-2 9.58E-2

20 | 3.35E-5  7.55 5.59E-4 749 | 3.39E-4  7.57 5.79E-4 7.37
40 | 9.58E-7  8.45 1.49E-6 8.55 | 1.62E-6  7.80 4.32E-6 7.06
80 | 3.50E-9 8.10 5.51E-9 8.08 | 5.34E-8 4.83 2.31E-7 4.23
160 | 6.57E-11 5.74 | 1.01E-10 5.77 | 2.40E-9  4.48 1.45E-8 3.99
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Next, we consider the following discontinuous initial data:

1, i O<az<m,
(6.1) uo(w) = { 0, if wm<uz<2m.

See Figure 1 for the performance of the bound-preserving limiter and the TVB limiter
on the fourth order scheme. We observe that the TVB limiter can reduce oscillations
but cannot remove the overshoot/undershoot. When both limiters are used, we can
obtain a non-oscillatory bound-preserving numerical solution. See Figure 2 for the
performance of the bound-preserving limiter on the eighth order scheme.

O Numerical | 12 - O Numerical |
Exact Exact

[ ®
]
e
g 20 s o 1 me0s
[elNe} o o
08 | ‘ 08 ‘ P
[¢] Q
06 ‘ P 06 ‘ L
| \ b \
0.4 04 -
b | | |
0.2 R 5 % O‘ 1 0.2 ‘O ‘
ol BMLI | ol
@% oo O %Do
02 O o0 © . : : 02 : : : : : :
0 1 2 3 4 5 6 0 1 2 3 4 5 6
(a) without any limiter (b) with only the bound-preserving limiter

12+ O Numerical | q 12 - O Numerical | q
Exact Exact
o

(c) with only the TVB limiter (d) with both limiters

Fic. 1. Linear convection at T = 10. Fourth order compact finite difference and fourth order
SSP multistep with At = %CmsAz and 100 grid points. The TVB parameter in (2.5) is p = 5.

EXAMPLE 2. One dimensional Burgers’ equation.

Consider the Burgers’ equation us + (“72)1, = 0 with a periodic boundary condition
on [—m,7]. For the initial data ug(x) = sin(x)+0.5, the exact solution is smooth up to
T =1, then it develops a moving shock. We list the errors of the fourth order scheme
at T = 0.5 in Table 3 where the time step is At = %OmSAJC for SSP multistep and
At = gC’mSA:c for SSP Runge-Kutta with Ax = QW” We observe the expected fourth
order accuracy for the multistep time discretization. At'T = 1.2, the exact solution
contains a shock near x = —2.5. The errors on the smooth region [—2,7] at T = 1.2
are listed in Table 4 where high order accuracy is lost. Some high order schemes
can still be high order accurate on a smooth region away from the shock in this test,
see [22]. We emphasize that in all our numerical tests, Step III in Algorithm 2.2 was
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O O Numerical

O Numerical
Exact

<4

1 ‘OQ"‘ 1@
s J @ b
osf ¢ | ° ] ost ¢ |
| i |
06 [ q 06 })
| \ | \
04l ] 04f ©
o | | |
o2 | R , 02|
%0
ol 0L @0 [e) 1 ol
SRR ©®8 0
00 (e}
02 ‘ ‘ ‘ ‘ ‘ ‘ 02 ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 0 1 2 3 4 5 6
(a) Without any limiter. (b) With the bound-preserving limiter.

FiG. 2. Linear convection at T = 10. FEighth order compact finite difference and the fourth

order SSP multistep method with At = Cms%Acc and 100 grid points

never triggered. In other words, set of Class I is rarely encountered in practice. So the
limiter Algorithm 2.2 is a local three-point stencil limiter for this particular example
rather than a global one. The loss of accuracy in smooth regions is possibly due to
the fact that compact finite difference operator is defined globally thus the error near
discontinuities will pollute the whole domain.

The solutions of the fourth order compact finite difference and the fourth order
SSP multistep with the bound-preserving limiter and the TVB limiter at time T = 2
are shown in Figure 3, for which the exact solution is in the range [—0.5,1.5]. The
TVB limiter alone does not eliminate the overshoot or undershoot. When both the
bound-preserving and the TVB limiters are used, we can obtain a non-oscillatory
bound-preserving numerical solution.

TABLE 3
The fourth order scheme with limiter for the Burgers’ equation. Smooth solutions.

Fourth order SSP multistep Fourth SSP Runge-Kutta

N | L' error order | L™ error order | L' error order | L™ error order
20 | 6.92E-4 - 5.24E-3 - 7.79E-4 - 5.61E-3 -
40 | 3.28E-5  4.40 3.62E-4 3.85 | 445E-5 4.13 4.77E-4 3.56
80 | 1.90E-6 4.11 2.00E-5 4.18 | 3.53E-6  3.66 2.09E-5 4.51
160 | 1.15E-6  4.04 1.24E-6 4.01 | 4.93E-7 2.84 5.47E-6 1.93
320 | 7.18E-9  4.00 7.67E-8 4.01 | 8.78E-8  2.49 1.73E-6 1.66

TABLE 4
Burgers’ equation. The errors are measured in the smooth region away from the shock.

Fourth order SSP multistep Fourth SSP Runge-Kutta

N | LY error order | L*® error order | L' error order | L™ error order
20 | 1.59E-2 - 5.26E-2 - 1.62E-2 - 5.39E-2 -
40 | 2.10E-3  2.92 1.38E-2 1.93 | 2.11E-3 2.94 1.39E-2 1.95
80 | 6.35E-4 1.73 6.56E-3 1.07 | 6.48E-4 1.70 7.01E-3 0.99
160 | 1.48E-4 2.10 1.65E-3 1.99 1.51E-4 2.10 1.66E-3 2.08
320 | 3.12E-5 2.25 6.10E-4 1.43 3.14E-5 2.26 6.13E-4 1.44
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O Numerical O Numerical
Exact " Exact
A% 4 L 4
& :
®
Op _
9% 5 2 o
o o] © (o]
o © 9
[e]
o o]
]
]
3 2 -1 0 1 2 3 3 2 -1 0 1 2 3
(a) without any limiter (b) with both limiters

Fic. 3. Burgers’ equation at T = 2. Fourth order compact finite difference with At =
CmsAx and 100 grid points. The TVB parameter in (2.5) is set as p = 5.

1
Tmaxg [40(@)]

EXAMPLE 3. One dimensional convection diffusion equation.

Consider the linear convection diffusion equation us + cu, = dug, with a periodic
boundary condition on [0,2x]. For the initial uo(x) = sin(z), the eract solution is
u(z,t) = exp(—dt)sin(x — ct) which is in the range [—1,1]. We set ¢ = 1 and d =
0.001. The errors of the fourth order scheme at T = 1 are listed in the Table 5 in which
At = C’msmin{%%, 25—4AT””2} for SSP multistep and At = 5C’msmin{é%, 2 Af} for
SSP Runge-Kutta with Ax = 2. We observe the expected fourth order accuracy

for the SSP multistep method. EI\{;en though the bound-preserving limiter is triggered,
the order reduction for the Runge-Kutta method is not observed for the convection
diffusion equation. One possible explanation is that the source of such an order reduc-
tion is due to the lower order accuracy of inner stages in the Runge-Kutta method,
which is proportional to the time step. Compared to At = O(Ax) for a pure con-
vection, the time step is At = O(Axz?) in a convection diffusion problem thus the
order reduction is much less prominent. See the Table 6 for the errors at T =1 of

the eighth order scheme with At = Cp,s min{%Af2, %%"”2} for SSP multistep and

At = 5Cns min{% Af, %AT“Z} for SSP Runge-Kutta where Az = 2F.

TABLE 5
The fourth order compact finite difference with limiter for linear convection diffusion.

Fourth order SSP multistep Fourth order SSP Runge-Kutta
N [ L' error order | L™ error order | L! error order | L™ error order
20 | 3.30E-5 5.19E-5 - 3.60E-5 - 6.09E-5 -

40 | 2.11E-6  3.97 3.30E-6 3.97 | 2.44E-6  4.00 3.52E-6 4.12
80 1.33E-7  3.99 2.09E-7 3.98 1.37E-7  4.04 2.15E-7 4.03
160 | 8.36E-9  3.99 1.31E-8 3.99 | 846E-9  4.02 1.33E-8 4.02
320 | 5.24E-10 4.00 | 8.23E-10 4.00 | 5.29E-10 4.00 | 8.31E-10 4.00

EXAMPLE 4. Nonlinear degenerate diffusion equations.
A representative test for validating the positivity-preserving property of a scheme
solving nonlinear diffusion equations is the porous medium equation, uy = (U™ )gq, m >
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TABLE 6
The eighth order compact finite difference with limiter for linear convection diffusion.

SSP multistep SSP Runge-Kutta
N | L' error order | L™ error order | L' error order | L™ error order
10 | 3.85E-7 5.96E-7 - 3.85E-7 - 5.95E-7

20 | 140E-9 8.10 2.20E-9 8.08 1.42E-9  8.08 2.23E-9 8.06
40 | 5.46E-12 8.01 | 8.60E-12 8.00 | 5.48E-12 8.02 | 8.69E-12 8.01
80 | 3.53E-12 0.63 | 6.46E-12 041 | 1.06E-12 2.37 | 3.29E-12  1.40

1. We consider the Barenblatt analytical solution given by

_ k(m —1) |z|? —
B, t) = 1741~ AL vy,

where uy = max{u,0} and k = (m+1)~'. The initial data is the Barenblatt solution

at T = 1 with periodic boundary conditions on [6,6]. The solution is computed till
time T = 2. High order schemes without any particular positivity treatment will
generate negative solutions [21, 26, 1/]. See Figure 4 for solutions of the fourth order
scheme and the SSP multistep method with At = %CmsAz and 100 grid points.
Numerical solutions are strictly nonnegative. Without the bound-preserving limiter,
negative values emerge near the sharp gradients.

1.2 - O 4th order Compact FD with limiter 4 1.2 + O 4th order Compact FD with limiter
8
)

5 )
— Exact solution of u,=(u ”),, —— Exact solution of u =(u %)

0.8

0.6

04

0.2

6 4 2 o 2 4 s
(b) m = 8.

2 o
(a) m=5.

Fic. 4. The fourth order compact finite difference with limiter for the porous medium equation.

6.2. One-dimensional problems with non-periodic boundary conditions.li

EXAMPLE 5. One-dimensional Burgers’ equation with inflow-outflow boundary
condition. Consider u; + (“72)93 = 0 on interval [0,27] with inflow-outflow boundary
condition and smooth initial condition u(z,0) = ug(z). Let up(z) = & sin(z) + 1 >0,
we can set the left boundary condition as inflow w(0,t) = L(t) and right boundary as
outflow, where L(t) is obtained from the exact solution of initial-boundary value prob-
lem for the same initial data and a periodic boundary condition. We test the fourth
order compact finite difference and fourth order SSP multistep method with the bound-
preserving limiter. The errors at T = 0.5 are listed in Table 7 where At = Cp,sAx and

Ax = %’r See Figure 5 for the shock at T = 3 on a 120-point grid with At = CpsAx.

EXAMPLE 6. One-dimensional convection diffusion equation with Dirichlet bound-i
ary conditions. We consider equation uy + cuy = dug, on [0,2x] with boundary con-
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TABLE 7
Burgers’ equation. The fourth order scheme. Inflow and outflow boundary conditions.

N | L* error order | L error order
20 1.15E-4 - 7.80E-4 -
40 4.10E-6 4.81 2.00E-5 5.29
80 2.17E-7 4.24 | 943E-7  4.40
160 | 1.22E-8 4.15 | 4.87TE-8  4.28
320 | 7.41E-10 4.05 | 2.87E-9  4.09

0 1 2 3 4 5 6

(a) Without any limiter. (b) With the bound-preserving limiter.

Fic. 5. Burgers’ equation. The fourth order scheme. Inflow and outflow boundary conditions.

ditions u(0,t) = cos(—ct)e~ % and u(2m,t) = cos(2m — ct)e~ . The evact solution
is u(x,y,t) = cos(z — ct)e™ . We set ¢ = 1 and d = 0.01. We test the third or-
der boundary scheme proposed in Section 5.2 and the fourth order interior compact
finite difference with the fourth order SSP multistep time discretization. The errors
at T =1 are listed in Table § where At = Ch,s min{%%, %ATIZ}, Az = 2%,

TABLE 8
A linear convection diffusion equation with Dirichlet boundary conditions.

N | L* error order | L' error order
10 1.68E-3 - 8.76E-3 -

20 1.47E-4 3.51 7.12E-4  3.62
40 8.35E-6 4.14 | 4.27E-5  4.06
80 4.44E-7 4.23 | 2.28E-6 4.23
160 | 2.30E-8 4.27 | 1.10E-7  4.37

6.3. Two-dimensional problems with periodic boundary conditions. In
this subsection we test the fourth order compact finite difference scheme solving two-
dimensional problems with periodic boundary conditions.

EXAMPLE 7. Two-dimensional linear convection equation. Consider u; + g, +
uy = 0 on the domain [0,27] x [0, 27| with a periodic boundary condition. The scheme
is tested with a smooth initial condition uo(z,y) = 3 + %Sin‘l(:c + y) to verify the
accuracy. The errors at time T = 1 are listed in Table 9 where At = CmS%Ax for
the SSP mult;'step method and At = 5C’mséAx for the SSP Runge-Kutta method with

s

Ax = Ay = 57. We can observe the fourth order accuracy for the multistep method

on resolved meshes and obvious order reductions for the Runge-Kutta method.
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TABLE 9
Fourth order accurate compact finite difference with limiter for the 2D linear equation.

Fourth order SSP multistep Fourth order SSP Runge-Kutta
N x N Mesh | LT error order | L™ error order | LT error order | L™ error order
10 x 10 4.70E-2 - 1.17E-1 - 8.45E-2 1.07E-1

20 x 20 547E-3  3.10 8.97E-3 3.71 | 5.56E-3  3.93 9.09E-3 3.56
40 x 40 3.04E-4 417 5.09E-4 413 | 2.88E-4 4.27 | 6.13E-4 3.89
80 x 80 1.78E-5  4.09 2.99E-5 4.09 | 1.95E-5  3.89 6.77E-5 3.18
160 x 160 1.09E-6  4.03 1.85E-6 4.01 | 2.65E-6 2.88 1.26E-5 2.43

14
0.9

2 2 0.8

0.7

0.6

0 0.5

0.4 04
0.2 0.3

0 2 0.2

0.2 0.1
-3 -3
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

(a) Without any limiter. (b) With bound-preserving limiter.

Fic. 6. Fourth order compact finite difference for the 2D linear convection.

We also test the following discontinuous initial data:

[ 1, if (z,y) € [-0.2,0.2] x [-0.2,0.2],
uo(,y) = { 0, otherwise.
The numerical solutions on a 80 x 80 mesh at T = 0.5 are shown in Figure 6 with
At = éCmsAx and Ax = Ay = %’T Fourth order SSP multistep method is used.

ExXAMPLE 8. Two-dimensional Burgers’ equation. Consider ut+(“72)m+(“;)y =0
with uo(x,y) = 0.5+sin(x +y) and periodic boundary conditions on [—m,w| X [—m, 7.
At time T = 0.2, the solution is smooth and the errors at T = 0.2 on a N X N mesh
are shown in the Table 10 in which At = Chyer—2E—— for multistep and At =

™S 6 maxy, |uo(x)|
5C, il for Runge-Kutta with Ax = Ay = 2T, At time T = 1, the ezact
solution contains a shock. The numerical solutions of the fourth order SSP multistep

Ax
8 6 maxy |uo(z N
method on a 100 x 100 mesh are shown in Figure 7 where At = mCmsAx,

The bound-preserving limiter ensures the solution to be in the range [—0.5,1.5].

EXAMPLE 9. Two-dimensional convection diffusion equation.
Consider the equation u; + c(ug + uy) = d(Ugz + Uyy) with ug(x,y) = sin(z + y)
and a periodic boundary condition on [0,2x] x [0,2x]. The errors at time T = 0.5

for ¢ =1 and d = 0.001 are listed in Table 11, in which At = Cys min{%, 5@‘5

for the fourth-order SSP multistep method, and At = 5C),s min{ 22 SA””2} for the

6c’ 48d
fourth-order SSP Runge-Kutta method, where Ax = Ay = QW ‘

ExaMPLE 10. Two-dimensional porous medium equation.
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TABLE 10
Fourth order compact finite difference scheme with the bound-preserving limiter for the 2D
Burgers’ equation.

SSP multistep SSP Runge-Kutta
N x N Mesh | Lt error order | L™ error order | LT error order | L™ error order
10 x 10 1.08E-2 - 4.48E-3 - 9.16E-3 - 3.73E-2 -
20 x 20 4.73E-4  4.52 3.76E-3 3.58 | 2.90E-4  4.98 2.14E-3 4.12
40 x 40 1.90E-5 4.64 1.45E-4 4.69 | 2.03E-5 3.83 1.12E-4 4.25
80 x 80 9.99E-7  4.25 7.43E-6 4.29 | 2.35E-6 3.12 1.54E-5 2.86
160 x 160 5.87E-8  4.09 4.26E-7 4.13 | 3.62E-7  2.70 5.13E-6 1.59

3 15 -3
15 2 2
1 1

1 -1 -1
05 0 0.5 0 0.5

1 1
0 0

2 2 0
-0.5

3 05 3

-2 0 2

-2 0 2
(a) Without the bound- (b) With the bound- (c) The exact solution
preserving limiter preserving limiter

F1a. 7. The fourth order scheme. 2D Burgers’ equation.

954 We consider the equation uy = A(u™) with the following initial data
. [ 1, if (x,y) € [-0.5,0.5] x [-0.5,0.5],
”'” ) = {5 o) & 23 el ot 1,1

956 and a periodic boundary condition on domain [—2,2] x [—2,2]. See Figure 8 for the
957 solutions at time T = 0.01 for SSP multistep method with At = %CWMALL‘

48 maxg |ug(z
958 and Ax = Ay = 1—15 The numerical solutions are strictly non-negative, which is
959 nontrivial for high order accurate schemes. High order schemes without any positivity
960  treatment will generate negative solutions in this test, see [21, 206, 1/].

05 06 05 06 05 06
05

0 05 0 05 0
04 04 04

-0.5 -0.5 -0.5

45 4 05 0 05 1 15 2 45 4 05 0 05 1 15 2 45 4 05 0 05 1 15 2

(a) m = 3. (b) m = 4. (c) m=5.

F1G. 8. The fourth order scheme with limiter for 2D porous medium equations us = A(u™).

961 7. Concluding remarks. In this paper we have demonstrated that fourth or-
962 der accurate compact finite difference schemes for convection diffusion problems with
963 periodic boundary conditions satisfy a weak monotonicity property, and a simple
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TABLE 11
Fourth order compact finite difference with limiter for the 2D convection diffusion equation.

Fourth order SSP multistep Fourth order SSP Runge-Kutta
N LY error  order | L™ error order | LT error order | L™ error order
10 x 10 6.26E-4 - 9.67E-4 - 6.68E-4 - 9.59E-4

20 x 20 3.62E-5 4.11 5.61E-5 411 | 3.60E-5 4.21 6.09E-5 3.98
40 x 40 2.20E-6 4.04 3.45E-6 4.02 | 2.24E-6  4.00 3.52E-6 4.12
80 x 80 1.35E-7  4.02 2.13E-7 4.01 | 1.37E-7  4.04 2.15E-7  4.03
160 x 160 | 8.45E-9  4.01 1.33E-8 4.01 | 8.46E-9 4.02 1.33E-8 4.02

three-point stencil limiter can enforce bounds without destroying the global conser-
vation. Since the limiter is designed based on an intrinsic property in the high order
finite difference schemes, the accuracy of the limiter can be easily justified. This is the
first time that the weak monotonicity is established for a high order accurate finite dif-
ference scheme, complementary to results regarding the weak monotonicity property
of high order finite volume and discontinuous Galerkin schemes in [23, 24, 25].

We have discussed extensions to two dimensions, higher order accurate schemes
and general boundary conditions, for which the five-diagonal weighting matrices can
be factored as a product of tridiagonal matrices so that the same simple three-point
stencil bound-preserving limiter can still be used. We have also proved that the TVB
limiter in [3] does not affect the bound-preserving property. Thus with both the TVB
and the bound-preserving limiters, the numerical solutions of high order compact
finite difference scheme can be rendered non-oscillatory and strictly bound-preserving
without losing accuracy and global conservation. Numerical results suggest the good
performance of the high order bound-preserving compact finite difference schemes.

For more generalizations and applications, there are certain complications. For
using compact finite difference schemes on non-uniform meshes, one popular approach
is to introduce a mapping to a uniform grid but such a mapping results in an extra
variable coefficient which may affect the weak monotonicity. Thus any extension to
non-uniform grids is much less straightforward. For applications to systems, e.g.,
preserving positivity of density and pressure in compressible Euler equations, the
weak monotonicity can be easily extended to a weak positivity property. However,
the same three-point stencil limiter cannot enforce the positivity for pressure. One
has to construct a new limiter for systems.
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