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Abstract

One of the main challenges in computational simulations of gas detonation propagation is

that negative density or negative pressure may emerge during the time evolution, which will

cause blow-ups. Therefore, schemes with provable positivity-preserving of certain quantities

such as density and pressure are desired. First order and second order positivity-preserving

schemes were well studied, e.g., [10]. A simple solution for arbitrarily high order schemes

was proposed recently in [22]. For high order discontinuous Galerkin (DG) method, even

though the characteristicwise TVB limiter in [1, 2] can kill oscillations, it is not sufficient to

maintain the positivity. In this paper, we first show an extension of the [22, 23, 24] to design

positivity-preserving arbitrarily high order DG schemes for reactive Euler equations. Then

we show a new simpler and more robust implementation of the positivity-preserving limiter

than the one in [22]. Numerical tests show that the third order DG scheme with the new

positivity-preserving limiter produces satisfying results even without the TVB limiter.
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1 Introduction

Gas detonation is supersonic flow phenomena that consist of a precursor shock that ignites a

combustible mixture gas and of a thin reaction zone immediately behind the shock. Although

detonation has been studied for many years, it remains an active area of research in both

theoretical studies and in numerical simulations due to practical importance. To study

the gaseous detonation numerically, the governing equations could be chosen as the Euler

equations describing inviscid compressible flow with the chemical reaction added. There

are many difficulties to design stable numerical schemes solving a general hyperbolic system

with source terms accurately. For example, the width of reaction zone attached to the shock

might be very small, see [3], and the source term might induce stiffness, see [9].

In this paper, we focus on how to render numerical schemes stable. In practice, there are

a lot of cases in which the density or pressure of the numerical solutions may become negative

easily. For instance, highly energetic flows often contain regions with the kinetic part dom-

inant, thus the internal energy is relatively very small. Another example is computational

simulation of gas detonation propagation through different geometries. The shock diffraction

may result in very low density and pressure. Under such conditions, it has been observed

that numerical schemes will produce negative density or pressure, even for non-reactive gas

flows, which may lead to blow-ups. This phenomenon tends to be amplified by the chemical

activity. Crude replacement of negative values by positive ones not only destroyed local and

global conservation, but was also found to be unstable. Therefore, it is strongly motivated

to design schemes with a provable positivity-preserving property. Moreover, a conservative

positivity-preserving scheme can be easily prove to have L1 stability.

First order and second order positivity-preserving schemes were well studied in the liter-

ature [10]. So we are mainly interested in high order positivity-preserving schemes. On the

one hand, low order schemes have been used in the simulation of detonation waves [12, 13],

but numerical results have some deviation with the experimental results. On the other hand,

some high order schemes have been developed in recent years [4, 5, 16, 19, 20]. Successful high
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order numerical schemes for hyperbolic conservation laws, for example, the Runge-Kutta dis-

continuous Galerkin (RKDG) method in [1, 2], the essentially non-oscillatory (ENO) finite

volume and finite difference schemes in [7, 18], and the weighted ENO (WENO) finite volume

and finite difference schemes in [11, 8], do not satisfy a strict positivity-preserving property.

In fact, they all fail for certain low density or low pressure test cases. Special treatment

for certain schemes may achieve the positivity and conservation, but it is very difficult to

maintain high order accuracy for smooth solutions. Constructing high order schemes which

automatically preserve the positivity of density and pressure is highly nontrivial. In [22, 23],

two of the authors proposed an arbitrarily high order positivity-preserving Runge-Kutta

discontinuous Galerkin method for compressible Euler equations. The main idea is to find

some straightforward sufficient condition for DG method with first order Euler forward time

discretization to keep positivity. A simple limiter which is easy and cheap to implement

will enforce the sufficient condition without destroying conservation and accuracy. Strong

stability preserving (SSP) high order Runge-Kutta or multi-step method will still keep the

positivity since they are convex combinations of Euler forward. With the limiter, high order

RKDG method will be positivity-preserving of density and pressure in the cell average sense

during the time evolution.

We will show an extension of this method to Euler system with an Arrhenius form

chemical reaction source term and an additional equation for the evolution of reaction rate,

which are typical governing equations for modelling the gaseous detonation. The positivity

of the reaction rate is also crucial to the stability of schemes in this model. We also propose

a more robust new implementation of the positivity-preserving limiter. The DG scheme with

only the new positivity-preserving limiter is stable even for very strong shocks. Numerical

tests of the third order DG method will be reported.
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2 Positivity-preserving high order discontinuous Galerkin

method for two-dimensional reactive Euler equations

2.1 Preliminaries

We consider the dimensionless two-dimensional compressible Euler equations with a source

term representing chemical reactions for the ideal gas,

wt + f(w)x + g(w)y = s(w), t ≥ 0, (x, y) ∈
� 2, (2.1)

w =




ρ

m

n

E

ρY




, f(w) =




m

ρu2 + p

ρuv

(E + p)u
ρuY




, g(w) =




n

ρuv

ρv2 + p

(E + p)v
ρvY




, s(w) =




0
0
0
0
ω




(2.2)

with

m = ρu, n = ρv, E =
1

2
ρu2 +

1

2
ρv2 +

p

γ − 1
+ ρqY,

where q is the heat release of reaction, γ is the specific heat ratio and Y denotes the reactant

mass fraction. The source term is assumed to be in an Arrhenius form

ω = −K̃ρY e−
eT/T ,

where T = p
ρ

is the temperature, T̃ is the activation temperature and K̃ is a constant. The

eigenvalues of the Jacobian f ′(w) are u− c, u, u, u, u+ c and the eigenvalues of the Jacobian

g′(w) are v − c, v, v, v, v + c where c =
√

γ p
ρ
.

Define the set of admissible states by

G =





w =




ρ

m

n

E

ρY




∣∣∣∣∣∣∣∣∣∣

ρ > 0 and p(w) ≥ 0, Y ≥ 0





,

then G is a convex set since p is a concave function of w. We are interested in schemes

for (2.1) producing the numerical solutions in the admissible set G. We start with the
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one-dimensional non-reactive equation wt + f(w)x = 0 and the first order Lax-Friedrichs

scheme

wn+1
j = wn

j − λ[̂f(wn
j ,wn

j+1) − f̂(wn
j−1,w

n
j )], (2.3)

f̂(u,v) =
1

2
[f(u) + f(v) − a(v − u)], a =‖ (|u| + c) ‖∞, (2.4)

where n refers to the time step and j to the spatial cell, and λ = ∆t
∆x

is the ratio of time

and space mesh sizes. Following Remark 2.4 in [22], it is easy to check that, for scheme

(2.3), wn
j ,wn

j±1 ∈ G implies wn+1
j ∈ G under the CFL condition λa ≤ 1. Other examples of

positivity preserving fluxes include the Godunov flux, the Boltzmann type flux [14], and the

HLLE flux.

2.2 Discontinuous Galerkin method

We review the formulation of DG method in [2] briefly. Assume Th is a triangulation of the

spatial domain Ω. For simplicity, we use x to denote (x, y) and dx to denote dxdy in this

subsection. For each t ≥ 0, we seek the approximation wh(x, t) in the piecewise polynomial

space

Vh = {vh ∈ L∞(Ω) : vh|K ∈ P k(K), ∀K ∈ Tk},

where P k denotes all the polynomials of degree k. The weak formulation of DG method

solving (2.1) is, find wh ∈ Vh satisfying ∀vh ∈ Vh,

d

dt

∫

K

whvhdx +
∑

e∈∂K

∫

e

h(wint
h ,wext

h , νe)vhdΓ −

∫

K

F(wh) · 5vhdx =

∫

k

s(wh)vhdx, (2.5)

where F = 〈f , g〉, νe is the outward normal vector of the edge e on the element K. We

consider Lax-Friedrichs flux as an example throughout the rest of this paper,

h(u,v, ν) =
1

2
[F(u) · ν + F(v) · ν − a(v − u)], a =‖ (|〈u, v〉|+ c) ‖∞ .

Except the first one, the integrals in (2.5) can be approximated by proper quadrature rules.

Time discretizations can be solved by the strong stability preserving (also called TVD)

Runge-Kutta or multi-step time discretization. See [2] for more details.
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To construct conservative positivity-preserving schemes, the most important step is to

achieve positivity in the mean. We only need to discuss Euler forward time discretization

because high order SSP time discretizations are convex combinations of Euler forward thus

will keep the positivity due to the convexity of G. Take the test function as vh = 1 in

(2.5), we get the scheme satisfied by the cell average in the DG method. Consider the Euler

forward time discretization,

|K|

∆t
(wn+1

K − wn
K) +

∑

e∈∂K

∫

e

h(wint
h ,wext

h , νe)dΓ =

∫

K

s(wh)dx, (2.6)

where wn
K denotes the cell average wh on K at time level n and |K| is the area of K.

2.3 Rectangular meshes

For simplicity we assume we have a uniform rectangular mesh. At time level n, we have the

DG polynomials of degree k, wij(x, y) = (ρij(x, y), mij(x, y), nij(x, y), Eij(x, y), ρYij(x, y))T

with the cell average wn
ij on the (i, j) cell [xi− 1

2

, xi+ 1

2

]× [yj− 1

2

, yj+ 1

2

]. Let w+
i− 1

2
,j
(y),w−

i+ 1

2
,j
(y),

w+
i,j− 1

2

(x), w−
i,j+ 1

2

(x) denote the traces of wij(x, y) on the four edges respectively.

Assume that we use a L-point Gauss quadrature where L ≥ k + 1 (see [2] for an analysis

of the requirement of the numerical quadrature for the accuracy of the DG solution). Let

Sx
i = {xβ

i : β = 1, · · · , L} denote the Gauss quadrature points on [xi− 1

2

, xi+ 1

2

], and S
y
j =

{yβ
j : β = 1, · · · , L} denote the Gauss quadrature points on [yj− 1

2

, yj+ 1

2

]. For instance,

(xi− 1

2

, y
β
j ) (β = 1, · · · , L) are the Gauss quadrature points on the left edge of the (i, j)

cell. The subscript β will denote the values at the Gauss quadrature points, for instance,

w+
i− 1

2
,β

= w+
i− 1

2
,j
(yβ

j ). Also, wβ denotes the corresponding quadrature weight on interval

[−1
2
, 1

2
], so that

∑L
β=1 wβ = 1. We need to use the N -point Gauss-Lobatto quadrature rule

where N is the smallest integer such that 2N −3 ≥ k, and we distinguish the two quadrature

rules by adding hats to the Gauss-Lobatto points, i.e., Ŝx
i = {x̂α

i : α = 1, · · · , N} will denote

the Gauss-Lobatto quadrature points on [xi− 1

2

, xi+ 1

2

], and Ŝ
y
j = {ŷα

j : α = 1, · · · , N}will

denote the Gauss-Lobatto quadrature points on [yj− 1

2

, yj+ 1

2

].
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Then (2.6) becomes

wn+1
ij = wn

ij − λ1

L∑

β=1

wβ

[
h1

(
w−

i+ 1

2
,β
,w+

i+ 1

2
,β

)
− h1

(
w−

i− 1

2
,β

,w+
i− 1

2
,β

)]

−λ2

L∑

β=1

wβ

[
h2

(
w−

β,j+ 1

2

,w+
β,j+ 1

2

)
− h2

(
w−

β,j− 1

2

,w+
β,j− 1

2

)]

+∆t

L∑

α=1

L∑

β=1

wαwβs(w(xα
i , y

β
j )) (2.7)

where λ1 = ∆t
∆x

, λ2 = ∆t
∆y

and

h1(u,v) =
1

2
[f(u) + f(v) − a(v − u)]

h2(u,v) =
1

2
[g(u) + g(v) − a(v − u)] .

We use ⊗ to denote the tensor product, for instance, Sx
i ⊗ S

y
j = {(x, y) : x ∈ Sx

i , y ∈ S
y
j }.

Define the set Sij as

Sij = (Sx
i ⊗ Ŝ

y
j ) ∪ (Ŝx

i ⊗ S
y
j ) ∪ (Sx

i ⊗ S
y
j ). (2.8)

Theorem 2.1. If the DG polynomial wij(x, y) ∈ G, ∀(x, y) ∈ Sij, then the scheme (2.7) is

positivity-preserving, namely, wn+1
ij ∈ G under the time step restriction

a(λ1 + λ2) ≤
1

2
ŵ1, ∆tK̃ min e−

eT/T ≤
1

2
,

where the minimum is taken over Sx
i ⊗ S

y
j for all the rectangles.

Proof. We can rewrite (2.6) as wn+1
ij = 1

2
C + 1

2
S where

C = wn
ij − 2λ1

L∑

β=1

wβ

[
h1

(
w−

i+ 1

2
,β
,w+

i+ 1

2
,β

)
− h1

(
w−

i− 1

2
,β

,w+
i− 1

2
,β

)]

−2λ2

L∑

β=1

wβ

[
h2

(
w−

β,j+ 1

2

,w+
β,j+ 1

2

)
− h2

(
w−

β,j− 1

2

,w+
β,j− 1

2

)]

and

S = wn
ij + 2∆t

L∑

α=1

L∑

β=1

wαwβs(w(xα
i , y

β
j )).
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By Theorem 3.1 in [22], we have C ∈ G. So it suffices to prove S ∈ G. Gauss quadrature

rule implies

wn
ij =

L∑

α=1

L∑

β=1

wαwβw(xα
i , y

β
j ). (2.9)

Thus,

S =

L∑

α=1

L∑

β=1

wαwβ

[
w(xα

i , y
β
j ) + 2∆ts

(
w(xα

i , y
β
j )

)]

Given w ∈ G, then it is easy to check that w+2∆ts(w) ∈ G if ∆tK̃e−
eT/T ≤ 1

2
. So S ∈ G.

2.4 Triangular meshes

For each triangle K we denote by liK (i = 1, 2, 3) the length of its three edges ei
K (i = 1, 2, 3),

with outward unit normal vector νi (i = 1, 2, 3). Assume the line integrals in (2.6) are solved

by L-point Gauss quadrature where L ≥ k + 1. And the source integral is solved by the

M -point Gauss quadrature on a triangle in which x
γ
K and w̃γ denote the quadrature points

and normalized weights with
∑M

γ=1 w̃γ = 1.

Then (2.6) becomes

wn+1
K = wn

K −
∆t

|K|

3∑

i=1

L∑

β=1

h(w
int(K)
i,β ,w

ext(K)
i,β , νi)wβliK + ∆t

M∑

γ=1

w̃γs(w(xγ
K)), (2.10)

where and w
int(K)
i,β and w

ext(K)
i,β denote the values of u evaluated at the β-th Gauss quadrature

point on the i-th edge from the interior and exterior of the element K respectively.

We need a special quadrature on a triangle introduced in [24]. In the barycentric coor-

dinates, the set Sk
K of quadrature points for polynomials of degree k on a triangle K can be

written as

Sk
K =

{(
1

2
+ vβ, (

1

2
+ ûα)(

1

2
− vβ), (

1

2
− ûα)(

1

2
− vβ)

)
,

(
(
1

2
− ûα)(

1

2
− vβ),

1

2
+ vβ, (

1

2
+ ûα)(

1

2
− vβ)

)
,

(
(
1

2
+ ûα)(

1

2
− vβ), (

1

2
− ûα)(

1

2
− vβ),

1

2
+ vβ

)}
(2.11)
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where uα (α = 1, · · · , N) and vβ (β = 1, · · · , L) are the Gauss-Lobatto and Gauss quadrature

points on the interval [− 1
2
, 1

2
] respectively. Define SK as the union of Sk

K and the M -point

Gauss quadrature on the triangle K. Following Theorem 5.1 in [24] and Theorem 2.1, we

have

Theorem 2.2. If the DG polynomial wK(x, y) ∈ G, ∀(x, y) ∈ SK , then the scheme (2.10)

is positivity-preserving, namely, wn+1
K ∈ G under the time step restriction

a
∆t

|K|

3∑

i=1

liK ≤
1

3
ŵ1, ∆tK̃ min e−

eT/T ≤
1

2
,

where the minimum is taken over x
γ
K, γ = 1, · · · , M for all the triangles.

2.5 L1 stability

The limiter in [22] can be used to enforce the conditions in Theorem 2.1 and Theorem 2.2.

We will describe an improved implementation of this limiter in the next section.

With the limiter added, the full high order DG scheme will keep density, pressure and

reactant mass fraction non-negative in the mean during the time evolution.

Theorem 2.3. Assuming vanishing, reflective or periodic boundary conditions, suppose the

DG polynomial satisfies wK(x) ∈ G, ∀x ∈ SK, then the scheme (2.10) satisfy the following

L1 stability:

∑

K

|ρn+1
K | =

∑

K

|ρn
K |,

∑

K

|E
n+1

K | =
∑

K

|E
n

K|,
∑

K

|ρY
n+1

K | ≤
∑

K

|ρY
n

K|.

Proof. Take the summation of (2.10) for all K, then we have

∑

K

wn+1
K =

∑

K

wn
K + ∆t

∑

K

M∑

γ=1

w̃γs(w(xγ
K)).

The first component reads
∑

K ρn+1
K =

∑
K ρn

K . Theorem (2.2) and (2.9) imply that wn+1
K ,

wn+1
K ∈ G, thus ρn+1

K , ρn
K ≥ 0. Therefore,

∑
K |ρn+1

K | =
∑

K |ρn
K |. Similarly, we get

∑
K |E

n+1

K | =
∑

K |E
n

K|. Notice that the fifth component of s(w(xγ
K)) is non-positive, we get

the last inequality.
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3 An improved implementation of the positivity-preserving

limiter

3.1 Positivity-preserving limiter

At the time level n, given the DG polynomial wK(x) with the cell average wK ∈ G, we

would like to modify it into another polynomial

w̃K(x) = θK(wK(x) − wK) + wK (3.1)

where θK ∈ [0, 1] is to be determined, such that w̃K(x) ∈ G, ∀x ∈ SK . If θK is the largest

such number (the smallest one is θK = 0), then this limiter will not destroy accuracy for

smooth solutions, see [22]. Following [22], it can be implemented as:

1. First, enforce the positivity of density (and reactant mass fraction). For each element

K, compute

ρ̂K(x) = θ1
K [ρK(x) − ρK] + ρK, θ1

K = min
x∈SK

{
1,

ρK

ρK − ρK(x)

}
, (3.2)

ρ̂Y K(x) = θ2
K

[
ρYK(x) − ρY K

]
+ ρY K , θ2

K = min
x∈SK

{
1,

ρY K

ρY K − ρYK(x)

}
. (3.3)

2. Second, enforce the positivity of pressure. Define ŵK = (ρ̂K , mK, nK , EK, ρ̂Y K)T . For

each x ∈ SK , if p(ŵK(x)) > 0 define θ
x

= 1; otherwise, define θ
x

as the solution of

p(θ
x
(ŵK(x) − wK) + wK) = 0. (3.4)

Then get the limited polynomial

w̃K(x) = θK(ŵK(x) − wK) + wK, θK = min
x∈SK

θ
x
. (3.5)

Even though we only need to solve a quadratic equation of θ
x

in (3.4), in practice θK

solved from (3.4) cannot guarantee the strict non-negativity of p(w̃K(x)) numerically due to

the round off errors for some wild data, e.g., blast waves. In [22], it was reported that for

10



problems with very strong shocks, positivity limiter itself implemented as above may not be

stable, thus TVB limiter must be used.

Here we propose a slightly different but very robust implementation of (3.4) so that TVB

limiter will no longer be needed. Notice that p is a concave function of w, thus we have the

Jensen’s inequality

p(θ(w − w) + w) = p(θw + (1 − θ)w) ≥ θp(w) + (1 − θ)p(w). (3.6)

Therefore, if w ∈ G and ρ(w) > 0,

θ =
p(w)

p(w) − p(w)
(3.7)

satisfies that p(θ(w−w)+w) ≥ 0. Although θ defined in (3.7) is smaller than the real solution

of p(θ(w − w) + w) = 0, it is actually the similar type as θ1
K in (3.2). It is straightforward

to prove the accuracy for smooth solutions following the argument in [22].

We can formulate the new robust implementation of the limiter as, for each element K,

1. Compute (3.2) and (3.3).

2. Define ŵK = (ρ̂K, mK , nK, EK, ρ̂Y K)T . For each x ∈ SK, if p(ŵK(x)) ≥ 0 set θ
x

= 1;

otherwise, set

θ
x

=
p(wK)

p(wK) − p(ŵK(x))
.

Then get the limited polynomial (3.5).

3.2 The algorithm for SSP Runge-Kutta time discretizations

Theoretically, there is a complication regarding the time step restriction in Theorem 2.1

and Theorem 2.2 for a Runge-Kutta time discretization. Consider the third order SSP

Runge-Kutta method. To enforce the CFL condition rigorously, we need to get an accurate

estimation of a =‖ (|〈u, v〉| + c) ‖∞ for all the three stages based only on the numerical

solution at time level n, which is highly nontrivial mathematically. An efficient solution is, if

a preliminary calculation to the next time step produces negative density or pressure, then
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recalculate from the time step n with half the previous time step. This complication does

not exist if we use a SSP multi-step time discretization.

The algorithm flow chart for the third order SSP Runge-Kutta method on triangular

meshes is

1. Given the DG polynomials wK(x) at time step n satisfying the cell average wn
K ∈ G

and wK(x) ∈ G, ∀x ∈ SK , calculate a = max ‖ (|〈u, v〉|+ c) ‖, b = max K̃e−
eT/T where

the maximum is taken over SK for all K. Set the time step

∆t = min{
1

3

ŵ1|K|

a
∑3

i=1 liK
,

1

2b
}.

2. Calculate the first stage with wK(x). Let w1
K(x) denote the solution of the first stage.

Modify it by the limiter (3.5) into w̃1
K(x).

3. Calculate the second stage with w̃1
K(x). Let w2

K(x) denote the solution of the second

stage. If its cell average is not in G (by Theorem 2.2, this means that a or b calculated

based on wK(x) is smaller than the ones of w̃1
K(x)), then go back to step two and

restart with half time step; otherwise, modify it by the limiter (3.5) into w̃2
K(x).

4. Calculate the third stage with w̃2
K(x). Let w3

K(x) denote the solution of the third

stage. If its cell average is not in G (by Theorem 2.2, this means that a or b calculated

based on wK(x) is smaller than the ones of w̃2
K(x)), then go back to step two and

restart with half time step; otherwise, modify it by the limiter (3.5) into w̃3
K(x).

4 Numerical Tests

4.1 Euler equations

We test the robustness of the new implementation of the positivity-preserving limiter for

non-reactive Euler equations by using the algorithm in the previous section.

In [1, 2], the TVB limiter was used to kill oscillations for high order DG schemes solving

Euler equations with strong shocks. For smooth solutions, the TVB limiter will not destroy

12



the accuracy. However, TVB limiter is not sufficient for stabilizing high order schemes solving

Euler equations when low density or low pressure emerges. In [22, 24, 23], the third order

DG scheme with TVB limiter and positivity-preserving limiter performed very well for all

test cases for which DG method with only TVB limiter will blow up due to the presence of

negative density or negative pressure.

By the following numerical tests, we will see that the positivity-preserving limiter itself

can stabilize the high order DG schemes without TVB limiter. We test the third order DG

method and the third order SSP Runge-Kutta time discretization with only the positivity-

preserving limiter (3.5) , solving the one-dimensional compressible Euler equations for ideal

gas with γ = 1.4.

Example 4.1. Shock tube problems.

See Figure 4.1 for the results of Sod and Lax problems using 100 cells, which are compa-

rable to the results of RKDG method with characteristicwise TVB limiter in [1].

Example 4.2. Interaction of blast waves.

This example is the same as the one in [1]. See Figure 4.2 for the comparison of results of

two limiters. As we expected, TVB can kill oscillations while the positivity limiter cannot,

however, the positivity limiter alone will smear the discontinuity less.

Example 4.3. Sedov point blast.

The initial and boundary conditions are the same as in [22]. See Figure 4.3 for the result

of DG with only positivity limiter.

4.2 The reactive Euler equations

In this subsection, we show the test results for the third order RKDG method with only

positivity-preserving limiter solving (2.1). The parameters are γ = 1.2, q = 50, T̃ = 50,

K̃ = 2566.4. For all the test cases in this subsection, the RKDG method with only TVB

limiter may blow up at a certain time.

13
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Figure 4.1: Shock Tube Problems. P 2 element DG with only positivity-preserving limiter.
The solid lines are the exact solutions. The symbols are the numerical solutions.14
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Figure 4.2: Interaction of blast waves. P 2 element DG with two different limiters on 400
cells. The solid line is computed by the fifth order WENO on a very fine mesh. The symbols
are the numerical solutions.
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Figure 4.3: 2D Sedov Problem. P 2 element DG with only positivity limiter on a 160 × 160
mesh. The solid line is the exact solution.

Example 4.4. Convergence study.

We test the convergence of our scheme in this example. The domain is [0, 2] × [0, 2].

The initial condition is, if x2 + y2 ≤ 0.36, then (ρ, u, v, p, Y ) = (1, 0, 0, 80, 0); otherwise,

(ρ, u, v, p, Y ) = (1, 0, 0, 10−9, 1). The boundary conditions for the bottom and the left are

reflective. The terminal time is t = 0.2. The mesh is uniformly rectangular. See the

comparison of results of ∆x = ∆y = 1
60

and ∆x = ∆y = 1
120

in Figure 4.4.

Example 4.5. Detonation diffraction problems.

The simulation of gaseous detonation waves through different geometries is numerically

challenging especially for the high order schemes mainly because the pressure or density

may drop very close to zero when the shock wave is diffracted. Here we test the detonation

diffraction at three different angles.

The first one is ninety degrees. The initial conditions are, if x < 0.5, (ρ, u, v, E, Y ) =

(11, 6.18, 0, 970, 1); otherwise, (ρ, u, v, E, Y ) = (1, 0, 0, 55, 1). The boundary conditions are

reflective except that at x = 0, (ρ, u, v, E, Y ) = (11, 6.18, 0, 970, 1). The terminal time is

t = 0.6. The mesh is uniformly rectangular. See Figure 4.6 for the result of ∆x = ∆y = 1
48

.

16



(a) Contour of Density

X

D
E

N
S

IT
Y

0 0.5 1 1.5 2
0

2

4

6

8

10

(b) Cut along y = 0

(c) Contour of Pressure

X

P
R

E
S

S
U

R
E

0 0.5 1 1.5 2

0

5

10

15

20

(d) Cut along y = 0

Figure 4.4: Convergence study. The colored contour and the solid line on the right is the
result of ∆x = ∆y = 1

120
. The symbols on the right denote the result of ∆x = ∆y = 1

60
.
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The second one is sixty degrees. The initial conditions are, if x < 0.6 and y ≥ 2,

(ρ, u, v, E, Y ) = (11, 6.18, 0, 970, 1); otherwise, (ρ, u, v, E, Y ) = (1, 0, 0, 55, 1). The boundary

conditions are reflective except that at x = 0, (ρ, u, v, E, Y ) = (11, 6.18, 0, 970, 1). The

terminal time is t = 0.68. The mesh is nonuniform, mixed with rectangles and triangles. See

Figure 4.5(a) for the illustration of the mesh. See Figure 4.6 for the result where the length

of the smallest edge in the mesh is 1
32

√
3
.

The third one is forty-five degrees. The initial conditions are, if x < 1.5 and y ≥ 2,

(ρ, u, v, E, Y ) = (11, 6.18, 0, 970, 1); otherwise, (ρ, u, v, E, Y ) = (1, 0, 0, 55, 1). The boundary

conditions are reflective except that at y = 0, (ρ, u, v, E, Y ) = (11, 6.18, 0, 970, 1). The

terminal time is t = 0.68. The mesh is uniform, mixed with rectangles and triangles. See

Figure 4.5(b) for the illustration of the mesh. See Figure 4.6 for the result of the mesh size

1
24

.

Example 4.6. Multiple obstacles.

The initial condition is, if x2 + y2 ≤ 0.36, then (ρ, u, v, E, Y ) = (7, 0, 0, 200, 0); otherwise,

(ρ, u, v, E, Y ) = (1, 0, 0, 55, 1). The boundary conditions are reflective everywhere. The

location of the first obstacle is [1.3, 3.3] × [0, 2.6] and the second one is [5.1, 8.3] × [0, 4.3].

The terminal time is t = 1.4. The parameters are set as γ = 1.2, q = 50, T̃ = 20, K̃ = 2410.2.

The mesh is nonuniformly rectangular. See Figure 4.9 for the result where the length of the

smallest edge in the mesh is 0.85
32

.

5 Concluding remarks

We have shown an extension of the positivity-preserving techniques in [22, 24, 23] to con-

struct robust high order RKDG schemes for reactive Euler equations modelling gaseous

detonations. Numerical tests suggest that positivity-preserving is sufficient to stabilize the

high order DG method without the TVB limiter, and robust high order RKDG schemes

can successfully simulate detonation diffraction cases in which the density or pressure of the

numerical solutions may become negative easily. In the future work, we will use the RKDG

18
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Figure 4.5: Illustrations of the meshes.

schemes to carry out numerical simulation on gaseous detonation in complex geometrical

configurations in order to have more comprehensive insight of its propagation mechanism.
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Figure 4.6: Detonation Diffraction at a Ninety-Degree Corner.
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Figure 4.7: Detonation Diffraction at a Sixty-Degree Corner
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Figure 4.8: Detonation Diffraction at a Forty-Five-Degree Corner
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Figure 4.9: Multiple obstacles
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