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Abstract

We construct uniformly high order accurate schemes satisfying a strict maximum prin-

ciple for scalar conservation laws. A general framework (for arbitrary order of accuracy) is

established to construct a limiter for finite volume schemes (e.g. essentially non-oscillatory

(ENO) or weighted ENO (WENO) schemes) or discontinuous Galerkin (DG) method with

first order Euler forward time discretization solving one dimensional scalar conservation

laws. Strong stability preserving (SSP) high order time discretizations will keep the maxi-

mum principle. It is straightforward to extend the method to two and higher dimensions on

rectangular meshes. We also show that the same limiter can preserve the maximum principle

for DG or finite volume schemes solving two-dimensional incompressible Euler equations in

the vorticity stream-function formulation, or any passive convection equation with an in-

compressible velocity field. Numerical tests for both the WENO finite volume scheme and

the DG method are reported.
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1 Introduction

We consider numerical solutions of the scalar conservation law

ut + O · F(u) = 0, u(x, 0) = u0(x), (1.1)

where u0(x) is assumed to be a bounded variation function. The one-dimensional version

ut + f(u)x = 0, u(x, 0) = u0(x), (1.2)

is used often in this paper to illustrate the main ideas. The main difficulty in solving (1.1)

is that the solution may contain discontinuities even if the initial condition is smooth, hence

we must consider the physically relevant unique weak solution which is called the entropy

solution. An important property of the entropy solution is that it satisfies a strict maximum

principle (e.g. [5]), i.e., if

M = max
x

u0(x), m = min
x

u0(x), (1.3)

then u(x, t) ∈ [m,M ] for any x and t.

Successful high order numerical schemes for solving (1.1) includes, among others, the

Runge-Kutta discontinuous Galerkin (RKDG) method with a total variation bounded (TVB)

limiter [3], the essentially non-oscillatory (ENO) finite volume and finite difference schemes

[9, 25], and the weighted ENO (WENO) finite volume and finite difference schemes [17, 12].

Although these schemes are nonlinearly stable in numerical experiments and some of them

can be proved to be total variation stable, they do not in general satisfy a strict maximum

principle. It is very difficult to obtain a uniformly high order accurate scheme satisfying a

strict maximum principle in the sense that the numerical solution never goes out of the range

[m,M ], which is a desired property in some applications, for example, when u is a volume

ratio which should not go outside the range of [0, 1].

The total variation diminishing (TVD) schemes [8] satisfy the strict maximum principle,

but it is well known that finite difference or finite volume TVD schemes solving (1.2), where
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the total variation is measured by that of the grid values, necessarily degenerate to first or-

der accuracy at smooth extrema [19], thus TVD schemes are at most second order accurate

in the L1 norm for general smooth and non-monotone solutions. By measuring the total

variation of the reconstruction polynomials, Sanders introduced a third order TVD scheme

[21] solving (1.2). In [26], we have extended Sanders’s scheme to higher order accuracy

(up to sixth order), obtaining uniformly high order TVD schemes with the total variation

measured by that of the reconstruction polynomials. The schemes in [21] and [26] satisfy

strict maximum principle, however it appears difficult to generalize these schemes to multi-

dimensional problems, because the time evolution is exact and is implemented by using the

characteristic method, which is realistic only in one space dimension. To get a genuine high

order accurate scheme satisfying the maximum principle, we should measure the maximum

of the reconstruction polynomials. In [16], by controlling the number of extrema and the

maximum/minimum of the reconstruction polynomials, Liu and Osher developed a third

order accurate nonoscillatory scheme in one space dimension, for which they proved a strict

local maximum principle and nonoscillatory properties for one-dimensional linear equations.

The time evolution in [16] is equivalent to the exact time evolution only for the linear equa-

tion. That is why maximum principle of the scheme in [16] can be proved only for the linear

equation. In [13], Jiang and Tadmor proved the maximum principle of the second order two

multidimensional central schemes. However, it appears difficult to generalize the provable

maximum principle to uniformly higher order schemes in this class.

In this paper, we develop a genuinely high order accurate maximum-principle-satisfying

scheme for one dimensional and multidimensional scalar conservation laws, in the sense that

the numerical solution never goes out of the range [m,M ] of the initial condition. Our

scheme uses the simple Euler forward and the standard strong stability preserving (SSP)

Runge-Kutta or multistep time discretizations [25, 23, 7], allowing for easy and practical im-

plementation and easy generalization from one to multi-dimensions. The limiter introduced

in [16] is used to control the maximum/minimum of the reconstruction polynomials. Simply
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speaking, this control is achieved by a linear scaling around the cell average. In particular,

we demonstrate this procedure by considering a quadratic polynomial p(x) approximating a

function u(x) with third order accuracy on a small interval I. Let p̄ denote the cell average

of p(x) and M ′ = maxx∈I p(x), m
′ = minx∈I p(x), M0 = maxx∈I u(x), m0 = minx∈I u(x),

define p̃(x) by

p̃(x) = θ(p(x) − p̄) + p̄, θ = min

{∣∣∣∣
M0 − p̄

M ′ − p̄

∣∣∣∣ ,
∣∣∣∣
m0 − p̄

m′ − p̄

∣∣∣∣ , 1
}
. (1.4)

If p̄ ∈ [m,M ], then p̃(x) is still a third order accurate approximation with the same cell

average, and p̃(x) ∈ [m,M ], for all x ∈ I. This fact is proved in [16]. The major difficulty to

use this idea to construct a maximum-principle-satisfying scheme is to maintain the property

ū ∈ [m,M ] during the time evolution, without destroying accuracy. The exact time evolution

procedure is such a method, which is used in [21, 16, 26], however this procedure is very

difficult to implement for multidimensional nonlinear problems. In this paper, we follow

the idea in [20] to show that, under a suitable CFL condition, for a finite volume or a DG

scheme, the simple Euler forward or the strong stability preserving (SSP) time discretization

[25, 23, 7] will keep the property ū ∈ [m,M ] and the validity of the maximum principle if we

use the linear scaling (1.4) or a a simplified version for the reconstruction polynomials or the

DG polynomials, thus maintaining uniform high order accuracy. The simplified limiter is still

a linear scaling (1.4) but it replaces the definition of M ′ and m′ by M ′ = maxx∈S p(x) and

m′ = minx∈S p(x) where S is a finite set containing the Legendre Gauss-Lobatto quadrature

points on I. Since we avoid evaluating the extrema of polynomials in the simplified limiter,

we can easily implement it for polynomials of any degree.

The main conclusion of this paper is as follows: by applying the limiter (1.4) or the

simplified version which avoids the evaluation of extrema of polynomials, to a high order

accurate finite volume scheme or a discontinuous Galerkin scheme solving one or multi-

dimensional scalar conservation laws, with the time evolution by a SSP Runge-Kutta or

multi-step method, we obtain a uniformly high order accurate scheme solving (1.1) with

the strict maximum principle in the sense that the numerical solution never goes out of the
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range [m,M ], where the m and M are defined in (1.3). The algorithm and conclusion are

also valid for two dimensional incompressible Euler equations in the vorticity stream-function

formulation, or for any passive convection equation with an incompressible velocity field.

The paper is organized as follows: we first describe and prove the maximum principle for

an arbitrarily high order scheme in one space dimension in Section 2. In Section 3, we provide

a straightforward extension to two space dimensions on rectangular meshes. Section 4 is the

application of the scheme to two dimensional incompressible Euler equations in the vorticity

stream-function formulation, and to any passive convection equation with an incompressible

velocity field. In Sections 5 and 6, numerical tests for the WENO finite volume schemes

and for the DG method, respectively, will be shown, including examples from traffic flow

problems and two dimensional incompressible Euler equation. Concluding remarks are given

in Section 7.

2 High order schemes satisfying the maximum princi-

ple in one dimension

2.1 First order Euler forward in time

In this section, we consider a finite volume method, for example the WENO finite volume

method in [17], and the DG method in [3] for solving the one dimensional scalar conserva-

tion laws (1.2). We consider only the first order Euler forward time discretization in this

subsection; higher order time discretization will be discussed in the next subsection.

A finite volume scheme or a scheme satisfied by the cell averages of a DG method can be

written as

ūn+1
j = ūnj − λ[h(u−

j+ 1

2

, u+
j+ 1

2

) − h(u−
j− 1

2

, u+
j− 1

2

)], (2.1)

where n refers to the time step and j to the spatial cell (we assume uniform mesh size only

for simplicity), and λ = ∆t
∆x

is the ratio of time and space mesh sizes. ūnj is the approximation

to the cell averages of u(x, t) in the cell Ij = [xj− 1

2

, xj+ 1

2

] at time level n, and u−
j+ 1

2

, u+
j+ 1

2

are the high order approximations of the nodal values u(xj+ 1

2

, tn) within the cells Ij and
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Ij+1 respectively. These values are either reconstructed from the cell averages ūnj in a finite

volume method or read directly from the evolved polynomials in a DG method. We assume

that there is a polynomial pj(x) (either reconstructed in a finite volume method or evolved

in a DG method) with degree k, where k ≥ 2, defined on Ij such that ūnj is the cell average

of pj(x) on Ij, u
+
j− 1

2

= pj(xj− 1

2

) and u−
j+ 1

2

= pj(xj+ 1

2

).

To define the scheme (2.1), we need to specify the numerical flux function h(·, ·), which is

assumed to be an exact or approximate Riemann solver. In particular, h(·, ·) is a Lipschitz

continuous function of both arguments, and is consistent with the physical flux f(u) in (1.2):

h(u, u) = f(u). For stability reasons, we need more restrictions on the flux function. We

will use a Lipschitz continuous monotone flux as defined in [4], i.e., h(·, ·) is nondecreasing

in its first argument and nonincreasing in its second argument. For instance, the global

Lax-Friedrichs flux defined by

h(u, v) =
1

2
[f(u) + f(v) − a(v − u)], a = max |f ′(u)|, (2.2)

where the maximum is taken over the whole region where u and v vary, is a monotone flux.

For a monotone flux h(·, ·), it is well known that a first order monotone scheme satisfies the

strict maximum principle. We recall this result for the Lax-Friedrichs flux here.

Lemma 2.1. Under the CFL condition λa ≤ 1, a = max |f ′(u)|, consider the first order

Lax-Friedrichs scheme

un+1
j = unj − λ[h(unj , u

n
j+1) − h(unj−1, u

n
j )]. (2.3)

If unj ∈ [m,M ], ∀j, then un+1
j ∈ [m,M ].

Proof: The right hand side of the scheme can be written as

H(unj−1, u
n
j , u

n
j+1) = unj − λ[h(unj , u

n
j+1) − h(unj−1, u

n
j )]

= unj − λ

[
1

2
(f(unj ) + f(unj+1) − a(unj+1 − unj ))

−1

2
(f(unj−1) + f(unj ) − a(unj − unj−1))

]

6



= (1 − λa)unj +
λ

2
(aunj+1 − f(unj+1)) +

λ

2
(aunj−1 + f(unj−1)).

We clearly have ∂
∂b
H(b, c, d) = λ

2
(a+f ′(b)) ≥ 0, ∂

∂c
H(b, c, d) = 1−λa ≥ 0, and ∂

∂d
H(b, c, d) =

λ
2
(a− f ′(d)) ≥ 0. We also have H(b, b, b) = b. Therefore,

m = H(m,m,m) ≤ un+1
j ≤ H(M,M,M) = M.

Given a scheme in the form of (2.1), assuming ūnj ∈ [m,M ] for all j, we would like to

modify the nodal values u±
j+ 1

2

in some way so that ūn+1
j ∈ [m,M ]. We will first show a

sufficient condition for (2.1) to satisfy ūn+1
j ∈ [m,M ], in which we need the Legendre Gauss-

Lobatto quadrature points (see Table 2.1 and [11] for more details). Consider the N -point

Legendre Gauss-Lobatto quadrature rule on the interval Ij = [xj− 1

2

, xj+ 1

2

], which is exact for

the integral of polynomials of degree up to 2N − 3. We denote these quadrature points on

Ij as

Sj = {xj− 1

2

= x̂1
j , x̂

2
j , · · · , x̂N−1

j , x̂Nj = xj+ 1

2

}. (2.4)

Define v̂α = pj(x̂
α
j ) for α = 1, · · · , N , and let ŵα be the quadrature weights for the interval

[−1
2
, 1

2
] such that

N∑
α=1

ŵα = 1. Choose N to be the smallest integer satisfying 2N − 3 ≥ k,

then

ūnj =
1

∆x

∫

Ij

pj(x)dx =

N∑

α=1

ŵαv̂α. (2.5)

Motivated by the approach in [20], our result is

Theorem 2.2. Consider a finite volume scheme or the scheme satisfied by the cell averages

of the DG method (2.1) with the Lax-Friedrichs flux (2.2), associated with the approximation

polynomials pj(x) of degree k (either reconstruction or DG polynomials). For convenience, in

the interval Ij, we denote v̂0 = u−
j− 1

2

and v̂N+1 = u+
j+ 1

2

. If all the values v̂α (α = 0, · · · , N+1)

and ūnj are in the range [m,M ], then ūn+1
j ∈ [m,M ] under the CFL condition

λa ≤ min
α
ŵα. (2.6)
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Proof: Notice that we have

h(u−
j+ 1

2

, u+
j+ 1

2

) − h(u−
j− 1

2

, u+
j− 1

2

) = h(v̂N , v̂N+1) − h(v̂0, v̂1) =
N∑

α=1

[h(v̂α, v̂α+1) − h(v̂α−1, v̂α)].

With (2.5), we can rewrite (2.1) as:

ūn+1
j = ūnj − λ[h(u−

j+ 1

2

, u+
j+ 1

2

) − h(u−
j− 1

2

, u+
j− 1

2

)]

=
N∑

α=1

ŵαv̂α − λ[h(u−
j+ 1

2

, u+
j+ 1

2

) − h(u−
j− 1

2

, u+
j− 1

2

)]

=

N∑

α=1

ŵα

[
v̂α −

λ

ŵα
[h(v̂α, v̂α+1) − h(v̂α−1, v̂α)]

]

=
N∑

α=1

ŵαH
α
j .

where

Hα
j = v̂α −

λ

ŵα
[h(v̂α, v̂α+1) − h(v̂α−1, v̂α)], α = 1, · · · , N. (2.7)

Notice that all the (2.7) are of the type (2.3), with λ
ŵα

in the place of λ. Therefore, Hα
j ∈

[m,M ] under the CFL condition (2.6). Hence ūn+1
j ∈ [m,M ] since it is a convex combination

of all the Hα
j .

Remark 2.3. It would look that the required condition in the previous theorem is too

strong, since it involves restrictions on the interior point values v̂α (α = 2, · · · , N − 1)

which do not explicitly appear in the scheme (2.1). It would look natural to require only

v̂0 = u−
j− 1

2

, v̂1 = u+
j− 1

2

, v̂N = u−
j+ 1

2

, v̂N+1 = u+
j+ 1

2

and ūnj are in [m,M ], as these are the

values which explicitly appear in the scheme (2.1). However, it is very easy to show that

these requirements alone will not ensure ūn+1
j ∈ [m,M ]. For example, consider the linear

convection equation ut + ux = 0, for which the Lax-Friedrichs flux becomes h(u, v) = u. Let

[0, 1] be the desired range, and ūnj = u−
j− 1

2

= u+
j− 1

2

= u+
j+ 1

2

= 1 and u−
j+ 1

2

= 0.99, then (2.1)

gives ūn+1
j = 1 + 0.01λ > 1 for any finite CFL number λ > 0. The additional restrictions for

the interior point values v̂α (α = 2, · · · , N − 1) will however ensure ūn+1
j ∈ [m,M ] through

Theorem 2.2.
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This theorem tells us that for the scheme (2.1), we need to modify pj(x) such that

pj(x) ∈ [m,M ] for all x ∈ Sj where Sj is set of the Legendre Gauss-Lobatto quadrature

points for Ij. For all j, assume ūnj ∈ [m,M ], we use the modified polynomial p̃j(x) after the

limiter (1.4) instead of pj(x), i.e.,

p̃j(x) = θ(pj(x) − ūnj ) + ūnj , θ = min

{∣∣∣∣
M − ūnj
Mj − ūnj

∣∣∣∣ ,
∣∣∣∣
m− ūnj
mj − ūnj

∣∣∣∣ , 1
}
, (2.8)

with

Mj = max
x∈Ij

pj(x), mj = min
x∈Ij

pj(x). (2.9)

Let ũ+
j− 1

2

= p̃j(xj− 1

2

) and ũ−
j+ 1

2

= p̃j(xj+ 1

2

). We get the revised scheme of (2.1):

ūn+1
j = ūnj − λ[h(ũ−

j+ 1

2

, ũ+
j+ 1

2

) − h(ũ−
j− 1

2

, ũ+
j− 1

2

)]. (2.10)

We will show in the next Lemma that this limiter does not destroy the uniform high

order of accuracy.

Lemma 2.4. Assume ūnj ∈ [m,M ], then (2.8)-(2.9) gives a (k+1)-th order accurate limiter.

Proof: We need to show p̃j(x) − pj(x) = O(∆xk+1) for any x ∈ Ij. We only prove the case

that pj(x) is not a constant and θ =
∣∣∣ M−ūn

j

Mj−ūn
j

∣∣∣, the other cases being similar. Since ūnj ≤ M

and ūnj ≤Mj, we have θ = (M − ūnj )/(Mj − ūnj ). Therefore,

p̃j(x) − pj(x) = θ(pj(x) − ūnj ) + ūnj − pj(x)

= (θ − 1)(pj(x) − ūnj )

=
M −Mj

Mj − ūnj
(pj(x) − ūnj )

= (M −Mj)
pj(x) − ūnj
Mj − ūnj

.

By the definition of θ in (2.8), θ =
∣∣∣ M−ūn

j

Mj−ūn
j

∣∣∣ implies that θ =
∣∣∣ M−ūn

j

Mj−ūn
j

∣∣∣ > 1, i.e. there is

overshoot Mj > M , and the overshoot Mj−M = O(∆xk+1) since pj(x) is an approximation

with error ∆xk+1. Thus we only need to prove that
∣∣∣pj(x)−ūn

j

Mj−ūn
j

∣∣∣ ≤ Ck, where Ck is a constant

depending only on the polynomial degree k. In [16], C2 = 3 is proved. We now prove
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the existence of Ck for any k. Assume pj(x) = a0 + a1(
x−xj

∆x
) + · · · + ak(

x−xj

∆x
)k and p(x) =

a0+a1x+· · ·+akxk, then the cell average of p(x) on I = [− 1
2
, 1

2
] is p̄ = ūnj and max

x∈I
p(x) = Mj.

So we have

max
x∈Ij

∣∣∣∣
pj(x) − ūnj
Mj − ūnj

∣∣∣∣ = max
x∈I

∣∣∣∣∣∣
p(x) − p̄

max
y∈I

p(y) − p̄

∣∣∣∣∣∣
.

Notice that it suffices to prove the existence of Ck such that
∣∣∣∣∣∣

min
x∈I

p(x) − p̄

max
x∈I

p(x) − p̄

∣∣∣∣∣∣
≤ Ck.

It is easy to check that |min
x∈I

p(x) − p̄| and |max
x∈I

p(x) − p̄| are both norms on the finite

dimensional linear space P k, which is the set of all polynomials of degree k. Any two norms

on this finite dimensional space are equivalent, hence their ratio is bounded by a constant

Ck.

Notice that in (2.9) we need to evaluate the maximum/minimum of a polynomial. We

prefer to avoid evaluating the extrema of a polynomial, especially since we will extend the

method to two dimensions. Since we only need to control the values at quadrature points,

we could replace (2.9) by

Mj = max
x∈Sj

pj(x), mj = min
x∈Sj

pj(x), (2.11)

and the limiter (2.8) and (2.11) is sufficient to enforce

p̃j(x) ∈ [m,M ], ∀x ∈ Sj.

As to the accuracy, (2.11) is a less restrictive limiter than (2.9), so the accuracy will not

be destroyed. Also, it is a conservative limiter because the it does not change the cell average

of the polynomial.

We now have the following theorem.

Theorem 2.5. Assume pj(x) has degree k, m and M are defined in (1.3). If (2.1) is

(k + 1)-th order accurate for smooth solutions and ūnj ∈ [m,M ], then the revised scheme
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(2.8), (2.11) and (2.10) is also (k+1)-th order accurate and satisfies the maximum principle

ūn+1
j ∈ [m,M ], under the CFL condition (2.6). See Table 2.1 for the CFL number for

2 ≤ k ≤ 5.

Table 2.1: The CFL number (2.6) for 2 ≤ k ≤ 5 and the Gauss-Lobatto quadrature points
on [−1

2
, 1

2
].

k CFL quadrature points on [− 1
2
, 1

2
]

2 1
6

{−1
2
, 0, 1

2
}

3 1
6

{−1
2
, 0, 1

2
}

4 1
12

{−1
2
,− 1√

20
, 1√

20
, 1

2
}

5 1
12

{−1
2
,− 1√

20
, 1√

20
, 1

2
}

Proof: Let ṽα = p̃j(x̂
α
j ) for α = 1, · · · , N , ṽ0 = p̃j−1(xj− 1

2

) and ṽN+1 = p̃j+1(xj+ 1

2

). The

limiter (2.8) and (2.11) ensures all the revised values ṽα are in [m,M ]. Theorem 2.2 then

ensures the maximum principle ūn+1
j ∈ [m,M ].

Remark 2.6. We recall that for k = 2 the CFL condition for linear stability for the DG

scheme [3] is λa ≤ 1
5
, which is comparable to our CFL restriction.

Remark 2.7. From the proof of Theorem 2.2, we can see that any type of quadrature rule

will work as long as the quadrature points include the two cell ends. It would appear that

there is a possibility to achieve a larger CFL number if we can find a better quadrature in the

sense that minα ŵα is larger. However, for k = 2, 3, we have checked that the Gauss-Lobatto

quadrature is the best choice.

Remark 2.8. Although we use Lax-Friedrichs flux in the theorem, any other monotone flux

will also work under the corresponding CFL condition.

2.2 Higher order time discretization

We will use strong stability preserving (SSP) high order time discretizations. For more

details, see [25, 23, 7, 6]. For example, the third order SSP Runge-Kutta method [25] (with
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the CFL coefficient c = 1) is

u(1) = un + ∆tF (un)

u(2) =
3

4
un +

1

4
(u(1) + ∆tF (u(1)) (2.12)

un+1 =
1

3
un +

2

3
(u(2) + ∆tF (u(2)))

where F (u) is the spatial operator, and the third order SSP multi-step method [23] (with

the CFL coefficient c = 1
3
) is

un+1 =
16

27
(un + 3∆tF (un)) +

11

27
(un−3 +

12

11
∆tF (un−3)). (2.13)

Here, the CFL coefficient c for a SSP time discretization refers to the fact that, if we assume

the Euler forward time discretization for solving the equation ut = F (u) is stable in a norm

or a semi-norm under a time step restriction ∆t ≤ ∆t0, then the high order SSP time

discretization is also stable in the same norm or semi-norm under the time step restriction

∆t ≤ c∆t0.

Since a SSP high order time discretization is a convex combinations of Euler forward,

the full scheme with a high order SSP time discretization will still satisfy the maximum

principle.

2.3 Implementation for the DG scheme

At time level n, assuming the DG polynomial in cell Ij is pj(x) with degree k , and the cell

average of pj(x) is ūnj ∈ [m,M ], where m and M are defined in (1.3), then the algorithm

flowchart of our algorithm for the Euler forward is

• Evaluate the point values of pj(x) in Sj to get mj and Mj in (2.11).

• Compute p̃j(x) in (2.8).

• Use p̃j(x) instead of pj(x) in the DG scheme with Euler forward in time under the CFL

condition in Theorem 2.5. For the time evolution of the cell average, mathematically it

12



is equivalent to plugging the revised nodal values ũ+
j− 1

2

= p̃j(xj− 1

2

) and ũ−
j+ 1

2

= p̃j(xj+ 1

2

)

in (2.10).

For SSP high order time discretizations, we need to use the limiter in each stage for a

Runge-Kutta method or in each step for a multistep method.

2.4 Implementation for the finite volume WENO scheme

The implementation for a finite volume WENO scheme [17, 2, 24] is slightly different since

there is not a specific reconstruction polynomial in each cell. After the WENO reconstruc-

tion, we have the high order accurate nodal values u+
j− 1

2

and u−
j+ 1

2

on each cell Ij. To have a

high order approximation polynomial in order to apply our limiter, we can use the informa-

tion of the cell averages and the nodal values to construct one.

For example, consider the fifth order accurate finite volume WENO scheme. Assume we

already have the nodal values u+
j− 1

2

and u−
j+ 1

2

from the WENO reconstruction, we will need

a polynomial pj(x) of degree four such that pj(xj− 1

2

) = u+
j− 1

2

, pj(xj+ 1

2

) = u−
j+ 1

2

and the cell

average of pj(x) over Ij is ūnj . Moreover, pj(x) should be a fifth order accurate approximation

to the exact solution on Ij. To this end, we choose to use the Hermite type reconstruction

of degree four; i.e., the polynomial pj(x) should satisfy

1

∆x

∫

Ii

pj(x) dx = ūni , i = j − 1, j, j + 1; and pj(xj− 1

2

) = u+
j− 1

2

, pj(xj+ 1

2

) = u−
j+ 1

2

.

If the reconstruction is written as

pj(x) = a4(x− xj)
4 + a3(x− xj)

3 + a2(x− xj)
2 + a1(x− xj) + a0,

then the coefficients can be given explicitly as

a0 =
ūnj−1 + 298ūnj + ūnj+1 − 54(u+

j− 1

2

+ u−
j+ 1

2

)

192

a1 =
ūnj−1 − ūnj+1 − 10(u+

j− 1

2

− u−
j+ 1

2

)

8∆x

a2 =
−(ūnj−1 + 58ūnj + ūnj+1) + 30(u+

j− 1

2

+ u−
j+ 1

2

)

8∆x2

13



a3 =
ūnj+1 − ūnj−1 + 2(u+

j− 1

2

− u−
j+ 1

2

)

∆x3

a4 =
5ūnj−1 + 50ūnj + 5ūnj+1 − 30(u+

j− 1

2

+ u−
j+ 1

2

)

12∆x4
.

In summary, the algorithm for the limiter on the fifth order finite volume WENO with

the Euler forward time discretization is:

• Construct the Hermite type polynomials pj(x).

• Evaluate point values of pj(x) in Sj to get mj,Mj in (2.11).

• Compute p̃j(x) in (2.8).

• Compute the revised nodal values ũ+
j− 1

2

= p̃j(xj− 1

2

) and ũ−
j+ 1

2

= p̃j(xj+ 1

2

), then plug

them in (2.10) with the CFL condition λa ≤ 1
12

.

For SSP high order time discretizations, we need to use the limiter for each stage for

Runge-Kutta methods or for each step for multi-step methods.

3 High order schemes satisfying the maximum princi-

ple in two dimensions

In this section we extend our limiter to finite volume or DG schemes of (k + 1)-th order

accuracy on rectangular meshes solving two dimensional conservation law

ut + f(u)x + g(u)y = 0, u(x, y, 0) = u0(x, y). (3.1)

In this section, m and M refer to M = max
x,y

u0(x, y), m = min
x,y

u0(x, y). As before, we

would only need to discuss the Euler forward in time. SSP high order time discretizations

will keep the maximum principle.
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Figure 3.1: The traces of pij(x, y).

3.1 Decomposition of the two dimensional scheme into convex

combination of one dimensional schemes

For simplicity we assume we have a uniform rectangular mesh. At time level n, we have an

approximation polynomial pij(x, y) with the cell average ūnij on the (i, j) cell [xi− 1

2
, xi+ 1

2
] ×

[yj− 1

2

, yj+ 1

2

]. Let P k denote the set of two-variable polynomials of degree k and Qk denote the

set of tensor products of single variable polynomials of degree k. We consider pij(x, y) ∈ P k

for the DG method and pij(x, y) ∈ Qk for the finite volume ENO and WENO finite volume

method [2, 24]. Let u+
i− 1

2
,j
(y), u−

i+ 1

2
,j
(y), u+

i,j− 1

2

(x), u−
i,j+ 1

2

(x) denote the traces of pij(x, y) on

the four edges respectively, see Figure 3.1. All of the traces are single variable polynomials

of degree k. A finite volume scheme or the scheme satisfied by the cell averages of a DG

method for (3.1) on a rectangular mesh can be written as

ūn+1
ij = ūnij −

∆t

∆x∆y

∫ y
j+1

2

y
j− 1

2

h1[u
−
i+ 1

2
,j
(y), u+

i+ 1

2
,j
(y)] − h1[u

−
i− 1

2
,j
(y), u+

i− 1

2
,j
(y)]dy

− ∆t

∆x∆y

∫ x
i+1

2

x
i− 1

2

h2[u
−
i,j+ 1

2

(x), u+
i,j+ 1

2

(x)] − h2[u
−
i,j− 1

2

(x), u+
i,j− 1

2

(x)]dx, (3.2)

where h1(·, ·), h2(·, ·) are monotone fluxes. We will use the Lax-Friedrichs flux as an example

throughout the paper:

h1(u, v) =
1

2
[f(u) + f(v) − a1(v − u)], a1 = max |f ′(u)|,

h2(u, v) =
1

2
[g(u) + g(v) − a2(v − u)], a2 = max |g′(u)|.
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The integrals in (3.2) can be approximated by quadratures with sufficient accuracy. Let

us assume that we use a Gauss quadrature with L points, which is exact for single variable

polynomials of degree k. We assume Sxi = {xβi : β = 1, · · · , L} denote the Gauss quadrature

points on [xi− 1

2

, xi+ 1

2

], and Syj = {yβj : β = 1, · · · , L} denote the Gauss quadrature points

on [yj− 1

2

, yj+ 1

2

]. For instance, (xi− 1

2

, yβj ) (β = 1, · · · , L) are the Gauss quadrature points

on the left edge of the (i, j) cell. The subscript β will denote the values at the Gauss

quadrature points, for instance, u+
i− 1

2
,β

= u+
i− 1

2
,j
(yβj ). Also, wβ denotes the corresponding

quadrature weight on interval [− 1
2
, 1

2
], so that

∑L

β=1 wβ = 1. We will still need to use the

Gauss-Lobatto quadrature rule, and we distinguish the two quadrature rules by adding hats

to the Gauss-Lobatto points, i.e., Ŝxi = {x̂αi : α = 1, · · · , N} will denote the Gauss-Lobatto

quadrature points on [xi− 1

2

, xi+ 1

2

], and Ŝyj = {ŷαj : α = 1, · · · , N} will denote the Gauss-

Lobatto quadrature points on [yj− 1

2

, yj+ 1

2

]. Subscripts or superscripts β and γ will be used

only for Gauss quadrature points and α only for Gauss-Lobatto points.

Then the scheme (3.2) becomes

ūn+1
ij = ūnij −

∆t

∆x∆y

L∑

β=1

[h1(u
−
i+ 1

2
,β
, u+

i+ 1

2
,β

) − h1(u
−
i− 1

2
,β
, u+

i− 1

2
,β

)]wβ∆y

− ∆t

∆x∆y

L∑

β=1

[h2(u
−
β,j+ 1

2

, u+
β,j+ 1

2

) − h2(u
−
β,j− 1

2

, u+
β,j− 1

2

)]wβ∆x

= ūnij − λ1

L∑

β=1

wβ[h1(u
−
i+ 1

2
,β
, u+

i+ 1

2
,β

) − h1(u
−
i− 1

2
,β
, u+

i− 1

2
,β

)]

−λ2

L∑

β=1

wβ[h2(u
−
β,j+ 1

2

, u+
β,j+ 1

2

) − h2(u
−
β,j− 1

2

, u+
β,j− 1

2

)], (3.3)

where λ1 = ∆t
∆x

and λ2 = ∆t
∆y

.

Let ūnβ,j denote the average of pij(x
β
i , y) over [yj− 1

2

, yj+ 1

2

] and ūi,β denote the average of

pij(x, y
β
j ) over [xi− 1

2

, xi+ 1

2

], then the cell average ūnij is

ūnij =
1

∆x∆y

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

pij(x, y)dxdy

=
1

∆x∆y

∫ y
j+1

2

y
j− 1

2

(
L∑

β=1

pij(x
β
i , y)wβ∆x

)
dy

16



=
L∑

β=1

wβ


 1

∆y

∫ y
j+1

2

y
j− 1

2

pij(x
β
i , y)dy




=

L∑

β=1

wβū
n
β,j, (3.4)

where we have used the property that the quadrature rules are exact for polynomials of

degree k. Similarly we have

ūnij =
L∑

β=1

wβū
n
i,β. (3.5)

Plugging (3.4) and (3.5) into (3.3), we get

ūn+1
ij = ūnij − λ1

L∑

β=1

wβ[h1(u
−
i+ 1

2
,β
, u+

i+ 1

2
,β

) − h1(u
−
i− 1

2
,β
, u+

i− 1

2
,β

)]

−λ2

L∑

β=1

wβ[h2(u
−
β,j+ 1

2

, u+
β,j+ 1

2

) − h2(u
−
β,j− 1

2

, u+
β,j− 1

2

)]

=
a1λ1

a1λ1 + a2λ2

ūnij − λ1

L∑

β=1

wβ[h1(u
−
i+ 1

2
,β
, u+

i+ 1

2
,β

) − h1(u
−
i− 1

2
,β
, u+

i− 1

2
,β

)]

+
a2λ2

a1λ1 + a2λ2
ūnij − λ2

L∑

β=1

wβ[h2(u
−
β,j+ 1

2

, u+
β,j+ 1

2

) − h2(u
−
β,j− 1

2

, u+
β,j− 1

2

)]

=
a1λ1

a1λ1 + a2λ2

L∑

β=1

wβū
n
i,β − λ1

L∑

β=1

wβ[h1(u
−
i+ 1

2
,β
, u+

i+ 1

2
,β

) − h1(u
−
i− 1

2
,β
, u+

i− 1

2
,β

)]

+
a2λ2

a1λ1 + a2λ2

L∑

β=1

wβū
n
β,j − λ2

L∑

β=1

wβ[h2(u
−
β,j+ 1

2

, u+
β,j+ 1

2

) − h2(u
−
β,j− 1

2

, u+
β,j− 1

2

)]

=
a1λ1

a1λ1 + a2λ2

L∑

β=1

wβ

[
ūni,β −

a1λ1 + a2λ2

a1

(
h1(u

−
i+ 1

2
,β
, u+

i+ 1

2
,β

) − h1(u
−
i− 1

2
,β
, u+

i− 1

2
,β

)
)]

+
a2λ2

a1λ1 + a2λ2

L∑

β=1

wβ

[
ūnβ,j −

a1λ1 + a2λ2

a2

(
h2(u

−
β,j+ 1

2

, u+
β,j+ 1

2

) − h2(u
−
β,j− 1

2

, u+
β,j− 1

2

)
)]

.

Let us introduce the formal one dimensional schemes

H i,β
x = ūni,β −

a1λ1 + a2λ2

a1

[h1(u
−
i+ 1

2
,β
, u+

i+ 1

2
,β

) − h1(u
−
i− 1

2
,β
, u+

i− 1

2
,β

)], (3.6)

Hβ,j
y = ūnβ,j −

a1λ1 + a2λ2

a2
[h2(u

−
β,j+ 1

2

, u+
β,j+ 1

2

) − h2(u
−
β,j− 1

2

, u+
β,j− 1

2

)], (3.7)
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then the scheme (3.3) is equivalent to

ūn+1
ij =

a1λ1

a1λ1 + a2λ2

L∑

β=1

wβH
i,β
x +

a2λ2

a1λ1 + a2λ2

L∑

β=1

wβH
β,j
y ,

which tells us that ūn+1
ij is a convex combinations of H i,β

x and Hβ,j
y (β = 1, · · · , L). Therefore,

to have a maximum principle ūn+1
ij ∈ [m,M ] for (3.3), it suffices to enforce H i,β

x , Hβ,j
y ∈

[m,M ]. We will only show how to deal with H i,β
x . The discussion for Hβ,j

y is similar.

Notice that (3.6) is of the type (2.1), associated with pij(x, y
β
j ), i.e., ūni,β is the cell average

and u−
i+ 1

2
,β
, u+

i− 1

2
,β

are the nodal values of pij(x, y
β
j ) on the interval [xi− 1

2

, xi+ 1

2

]. Therefore,

it is straightforward to use the limiter in Section 2. If we can enforce ūni,β ∈ [m,M ], then

we can just use Theorem 2.5 for the formal one dimensional scheme (3.6). We will show the

details of the enforcement of ūni,β ∈ [m,M ] in the next subsections. The CFL condition of

the method for the two dimensional case is the same as that in one dimensional case

a1λ1 + a2λ2 ≤ min
α=1,··· ,N

ŵα.

3.2 Implementation for the DG method

At time level n, assuming the DG polynomial on the (i, j) cell is pij(x, y) and the cell average

of pij(x, y) is ūnij ∈ [m,M ], we use the following p̃ij(x, y) to replace pij(x, y):

p̃ij(x, y) = θ(pij(x, y) − ūnij) + ūnij, θ = min

{∣∣∣∣
M − ūnij
Mij − ūnij

∣∣∣∣ ,
∣∣∣∣
m− ūnij
mij − ūnij

∣∣∣∣ , 1
}
, (3.8)

Mij = max
(x,y)∈Sij

pij(x, y), mij = min
(x,y)∈Sij

pij(x, y), (3.9)

where Sij is a set of finitely many points inside the (i, j) cell, to be specified later. Then

p̃ij(x, y) ∈ [m,M ] for all (x, y) ∈ Sij. The maintenance of uniform high order accuracy by

this limiter can be proved similarly as that in the one dimensional case. According to the

discussion in the previous subsection, we need p̃ij(x, y) to satisfy the condition that all of

the “one dimensional cell averages” ūni,β, ū
n
β,j and the corresponding point values of the “one

dimensional polynomials” p̃ij(x, y
β), p̃ij(x

β, y) are in the range [m,M ].
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By the properties of the quadrature rule,

ūni,β =
L∑

γ=1

p̃ij(x
γ
i , y

β
j )wγ, ūnβ,j =

L∑

γ=1

p̃ij(x
β
i , y

γ
j )wγ.

Thus, to enforce ūni,β, ū
n
β,j ∈ [m,M ], it suffices to include the tensor product of the Gauss

quadrature points (xβi , y
γ
j ) (β, γ = 1, · · · , L) in Sij.

We use ⊗ to denote the tensor product, for instance, Sxi ⊗Syj = {(x, y) : x ∈ Sxi , y ∈ Syj }.

Now we can define the set Sij as

Sij = (Sxi ⊗ Syj ) ∪ (Sxi ⊗ Ŝyj ) ∪ (Ŝxi ⊗ Syj ). (3.10)

For example, for k = 2, we need to use three-point Gauss quadrature. On a scaled square

[−1
2
, 1

2
]×[−1

2
, 1

2
], Sx = Sy = {−

√
15

10
, 0,

√
15

10
} with weights ( 5

18
, 4

9
, 5

18
) and Ŝx = Ŝy = {−1

2
, 0, 1

2
}

with weights (1
6
, 2

3
, 1

6
). S defined in (3.10) contains twenty-one points.

In summary, the algorithm for our limiter on the DG method solving (3.1) is

• Evaluate the point values of pij(x) in (3.10) to get mij,Mij in (3.9).

• Compute p̃ij(x) in (3.8).

• Use p̃ij(x) instead of pij(x) in the DG scheme with the CFL condition a1λ1 + a2λ2 ≤

min
α=1,··· ,N

ŵα.

3.3 Implementation for the fifth order finite volume WENO scheme

First, Let us recall the dimension by dimension reconstruction procedure of the finite volume

WENO for (3.1) in [22, 24]. At time level n, given the cell average ūij. Let ūi− 1

2
,j, ūi+ 1

2
,j, ūi,j− 1

2

and ūn
i,j+ 1

2

denote the approximation to the averages of the exact solution along the left, right,

bottom and top edges of the (i, j) cell respectively.

Step 1. We perform two one-dimensional WENO reconstructions using the two dimensional

cell averages to get the four edge averages (see [2, 22, 24] for more details):

{ūnij} → {ū−
i+ 1

2
,j
, ū+

i+ 1

2
,j
} for fixed j (3.11)
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and

{ūnij} → {ū−
i,j+ 1

2

, ū+
i,j+ 1

2

} for fixed i. (3.12)

Step 2. We perform one-dimensional WENO reconstructions using the edge averages to get

point values at the Gauss quadrature points (see the appendix for more details):

{ū−
i+ 1

2
,j
} → {u−

i+ 1

2
,β
}, {ū+

i+ 1

2
,j
} → {u+

i+ 1

2
,β
} for fixed i

and

{ū−
i,j+ 1

2

} → {u−
β,j+ 1

2

}, {ū+
i,j+ 1

2

} → {u+
β,j+ 1

2

} for fixed j.

Now, let us consider the implementation of the limiter. The difference from the DG method

is that the nodal values u±
i+ 1

2
,β
, u±

β,j+ 1

2

are not the point values of a specific polynomial in the

WENO reconstruction. We do not have the “one dimensional cell averages” ūni,β and ūnβ,j

either. To this end, we need to construct more polynomials in the (i, j) cell.

Step 3. We construct a single variable Hermite type polynomial p1(x) in the x-direction first,

i.e. the polynomial p1(x) should satisfy

1

∆x

∫ x
l+1

2

x
l− 1

2

p1(x) dx = ūnlj, l = i− 1, i, i+ 1;

and p1(xi− 1

2

) = ū+
i− 1

2
,j
, p1(xi+ 1

2

) = ū−
i+ 1

2
,j
, for fixed j.

Then we construct a single variable Hermite type polynomial p2(x) in the y-direction,

i.e. the polynomial p2(x) should satisfy

1

∆y

∫ y
l+1

2

y
l− 1

2

p2(y) dy = ūnil, l = j − 1, j, j + 1;

and p2(yj− 1

2

) = ū+
i,j− 1

2

, p2(yj+ 1

2

) = ū−
i,j+ 1

2

, for fixed i.

We can get the “one dimensional cell averages” by

ūni,β = p2(y
β
j ), ūnβ,j = p1(x

β
i ). (3.13)

The property of quadrature rules implies that ūni,β and ūnβ,j above satisfy (3.4) and

(3.5).
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Step 4. We construct a single variable Hermite type polynomial pβ1 (x) in the x-direction along

the line y = yβj , i.e. the polynomial pβ1 (x) should satisfy

1

∆x

∫ x
l+1

2

x
l− 1

2

pβ1 (x) dx = ūnl,β, l = i− 1, i, i+ 1;

and pβ1 (xi− 1

2

) = u+
i− 1

2
,β
, pβ1 (xi+ 1

2

) = u−
i+ 1

2
,β
, for fixed β ∈ {1, · · · , L}.

Likewise, we construct a single variable Hermite type polynomial pβ2 (y) in the y-

direction along the line x = xβi , i.e. the polynomial pβ2 (y) should satisfy

1

∆y

∫ y
l+1

2

y
l− 1

2

pβ2 (y) dy = ūnβ,l, l = j − 1, j, j + 1;

and pβ2 (yj− 1

2

) = u+
β,j− 1

2

, pβ2 (yj+ 1

2

) = u−
β,j+ 1

2

, for fixed β ∈ {1, · · · , L}.

Now let us consider (3.6), in which ūni,β is obtained from (3.13) and u−
i+ 1

2
,β
, u+

i− 1

2
,β

are

obtained from Step 2. Notice that u−
i+ 1

2
,β
, u+

i− 1

2
,β

are the nodal values and ūni,β is the average,

respectively, of the single variable polynomial pβ1 (x) on the interval [xi− 1

2

, xi+ 1

2

]. Thus, we

can use the limiter in Section 2 on pβ1 (x) to achieve H i,β
x ∈ [m,M ], i.e., use the following

p̃β1 (x) instead of pβ1 (x):

p̃β1 (x) = θ(pβ1 (x) − ūni,β) + ūni,β, θ = min

{∣∣∣∣∣
M − ūni,β
M ′ − ūni,β

∣∣∣∣∣ ,
∣∣∣∣∣
m− ūni,β
m′ − ūni,β

∣∣∣∣∣ , 1
}
, (3.14)

M ′ = max
x∈Ŝx

i

pβ1 (x), m′ = min
x∈Ŝx

i

pβ1 (x). (3.15)

Similarly, we can define p̃β2 (y) by:

p̃β2 (y) = θ(pβ2 (y) − ūnβ, j) + ūnβ,j, θ = min

{∣∣∣∣∣
M − ūnβ,j
M ′ − ūnβ,j

∣∣∣∣∣ ,
∣∣∣∣∣
m− ūnβ,j
m′ − ūnβ,j

∣∣∣∣∣ , 1
}
. (3.16)

M ′ = max
y∈Ŝy

j

pβ2 (y), m′ = min
y∈Ŝy

j

pβ2 (y). (3.17)

The algorithm for the two dimensional finite volume WENO scheme with our limiter is

summarized as follows

• Perform Step 1 to Step 4.
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• Get p̃β1 (x) from (3.14) and (3.15).

• Get p̃β2 (y) from (3.16) and (3.17).

• Compute the revised nodal values

ũ−
i+ 1

2
,β

= p̃β1 (xi+ 1

2

), ũ+
i− 1

2
,β

= p̃β1 (xi− 1

2

),

ũ−
β,j+ 1

2

= p̃β2 (yj+ 1

2

), ũ+
β,j− 1

2

= p̃β2 (yj− 1

2

).

• Plugging them in (3.3), we get the final scheme

ūn+1
ij = ūnij − λ1

L∑

β=1

wβ[h1(ũ
−
i+ 1

2
,β
, ũ+

i+ 1

2
,β

) − h1(ũ
−
i− 1

2
,β
, ũ+

i− 1

2
,β

)]

−λ2

L∑

β=1

wβ[h2(ũ
−
β,j+ 1

2

, ũ+
β,j+ 1

2

) − h2(ũ
−
β,j− 1

2

, ũ+
β,j− 1

2

)]

with the CFL condition

a1λ1 + a2λ2 ≤ min
α=1,··· ,N

ŵα.

Remark 3.1. For k = 2, 3, the algorithm for the limiter is much simpler and the cost is very

small since the value at the interior point is just a linear combination of the cell average and

two end point values. The cost to implement this limiter for higher order WENO scheme

is significantly larger because no polynomials are obtained after the WENO reconstruction,

only point values. For ENO and DG schemes, the cost of the limiter is very small since a

polynomial is already available in each cell.

4 Application to two dimensional incompressible flows

4.1 Preliminaries

We are interested in solving the two dimensional incompressible Euler equations in the

vorticity stream-function formulation:

ωt + (uω)x + (vω)x = 0, (4.1)
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∆ψ = ω, 〈u, v〉 = 〈−ψy, ψx〉, (4.2)

ω(x, y, 0) = ω0(x, y), 〈u, v〉 · n = given on ∂Ω.

The definition of 〈u, v〉 in (4.2) gives us the divergence-free condition ux + vy = 0, which

implies (4.1) is equivalent to the non-conservative form

ωt + uωx + vωx = 0. (4.3)

The exact solution of (4.3) satisfies the maximum principle ω(x, y, t) ∈ [m,M ], for all (x, y, t),

where m = min
x,y

ω0(x, y) and M = max
x,y

ω0(x, y). For discontinuous solutions or solutions

containing sharp gradient regions, it is preferable to solve the conservative form (4.1) rather

than the nonconservative form (4.3). However, without the incompressibility condition ux +

vy = 0, the conservative form (4.1) itself does not imply the maximum principle ω(x, y, t) ∈

[m,M ] for all (x, y, t). This is the main difficulty to get a maximum-principle-satisfying

scheme solving the conservative form (4.1) directly. In [14], Levy and Tadmor proved the

second order central scheme for (4.1) satisfies a strict local maximum principle. Here, we

will show the (k + 1)-th order accurate (for any k) DG scheme in [15] with the limiter in

Section 3.2 under suitable CFL condition satisfies the global maximum principle.

In [15], Liu and Shu introduced a high order discontinuous Galerkin method solving (4.1).

We will first recall the method in [15] briefly. First, solve (4.2) by a standard Poisson solver

for the stream-function ψ using continuous finite elements, then take u = −ψy, v = ψx. Notice

that on the boundary of each cell, 〈u, v〉 · n = 〈−ψy, ψx〉 · n = ∂ψ

∂τ
, which is the tangential

derivative. Thus 〈u, v〉 · n is continuous across the cell boundary since ψ is continuous.

Therefore, the DG scheme for (4.1) can be defined as follows: start with a triangulation

Th of the domain Ω, consisting of polygons of maximum size h, and the two approximation

spaces

V k
h = {v : v|K ∈ P k(K), ∀K ∈ Th}, W k

0,h = V k
h ∩ C0(Ω),

where P k(k) is the set of all polynomials of degree at most k on the cell K. For given
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ψh ∈ W k
0,h, find the ωh ∈ V k

h such that

∫

K

∂tωhvdxdy −
∫

K

ωhuh · ∇vdxdy +
∑

e∈∂K

∫

e

uh · nω̂hv−ds = 0, ∀v ∈ V k
h , (4.4)

where

uh = 〈uh, vh〉 =

〈
−∂ψh
∂y

,
∂ψh
∂x

〉
.

Since the normal velocity uh · n is continuous across any element boundary e, we can define

the Lax-Friedrichs upwind biased flux:

uh · nω̂h = h(ω−
h , ω

+
h ,uh · n) =

1

2
[uh · n(ω+

h + ω−
h ) − a(ω+

h − ω−
h )], (4.5)

where a is the maximum of |uh · n| either locally or globally.

For convenience, consider the same rectangular mesh as in Section 3. Assume the stream-

function ψ is obtained with Qk elements, where Qk refers to the space of tensor products of

single variable polynomials of degree k, and the DG method uses P k elements. At time level

n, in (i, j) cell, let ω+
i− 1

2
,j
(y), ω−

i+ 1

2
,j
(y), ω+

i,j− 1

2

(x), and ω−
i,j+ 1

2

(x) denote the traces of the DG

polynomial ωij(x, y) on the left, right, bottom and top edges respectively. On the left, right,

bottom and top edges, uh · n is u+
i− 1

2
,j
(y), u−

i+ 1

2
,j
(y), v+

i,j− 1

2

(x), and v−
i,j+ 1

2

(x), respectively.

4.2 The main result

The cell average scheme with Euler forward in time of the DG method in [15] is

ω̄n+1
ij = ω̄nij −

∆t

∆x∆y

∫ y
j+1

2

y
j− 1

2

[h(ω−
i+ 1

2
,j
(y), ω+

i+ 1

2
,j
(y), ui+ 1

2
,j(y))

−h(ω−
i− 1

2
,j
(y), ω+

i− 1

2
,j
(y), ui− 1

2
,j(y))]dy

− ∆t

∆x∆y

∫ x
i+1

2

x
i− 1

2

[h(ω−
i,j+ 1

2

(x), ω+
i,j+ 1

2

(x), vi,j+ 1

2

(x))

−h(ω−
i,j− 1

2

(x), ω+
i,j− 1

2

(x), vi,j− 1

2

(x))]dx. (4.6)

The integrals in (4.6) are assumed to be computed exactly. Since all the integrands are single

variable polynomials of degree at most 2k − 1, the integral is equal to the k-points Gauss
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quadrature. Substituting the integrals by the k-point Gauss quadrature in (4.6), we obtain

the mathematically equivalent expression

ω̄n+1
ij = ω̄ij − λ1

k∑

β=1

wβ[h(ω
−
i+ 1

2
,β
, ω+

i+ 1

2
,β
, ui+ 1

2
,β) − h(ω−

i− 1

2
,β
, ω+

i− 1

2
,β
, ui− 1

2
,β)]

−λ2

k∑

β=1

wβ[h(ω
−
β,j+ 1

2

, ω+
β,j+ 1

2

, vβ,j+ 1

2

) − h(ω−
β,j− 1

2

, ω+
β,j− 1

2

, vβ,j− 1

2

)]. (4.7)

Now let us assume ω̄nij ∈ [m,M ] and the DG polynomial ωij(x, y) is already processed by

the limiter in Section 3.2 with L = k. In particular, ωij(x, y) ∈ [m,M ], ∀(x, y) ∈ Sij with

Sij defined in (3.10). Then we will show the scheme (4.7) satisfies the maximum principle

ω̄n+1
ij ∈ [m,M ].

If we use ω̄β,j to denote the average of ω(xβi , y) over [yj− 1

2

, yj+ 1

2

] and ω̄i,β to denote the

average of ω(x, yβj ) over [xi− 1

2

, xi+ 1

2

], then the cell average ω̄nij is

ω̄nij =
1

∆x∆y

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

ωij(x, y)dxdy

=
1

∆x∆y

∫ y
j+1

2

y
j− 1

2

(
k∑

β=1

ωij(x
β
i , y)wβ∆x

)
dy

=

k∑

β=1

wβ


 1

∆y

∫ y
j+1

2

y
j− 1

2

ωij(x
β
i , y)dy




=
k∑

β=1

wβω̄β,j, (4.8)

and similarly we have

ω̄nij =

k∑

β=1

wβω̄i,β. (4.9)

Plugging (4.8) and (4.9) into (4.7), we get

ω̄n+1
ij = ω̄nij − λ1

k∑

β=1

wβ[h(ω
−
i+ 1

2
,β
, ω+

i+ 1

2
,β
, ui+ 1

2
,β) − h(ω−

i− 1

2
,β
, ω+

i− 1

2
,β
, ui− 1

2
,β)]

−λ2

k∑

β=1

wβ[h(ω
−
β,j+ 1

2

, ω+
β,j+ 1

2

, vβ,j+ 1

2

) − h(ω−
β,j− 1

2

, ω+
β,j− 1

2

, vβ,j− 1

2

)]

=
a1λ1

a1λ1 + a2λ2

k∑

β=1

wβω̄i,β − λ1

k∑

β=1

wβ[h(ω
−
i+ 1

2
,β
, ω+

i+ 1

2
,β
, ui+ 1

2
,β) − h(ω−

i− 1

2
,β
, ω+

i− 1

2
,β
, ui− 1

2
,β)]
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+
a2λ2

a1λ1 + a2λ2

k∑

β=1

wβω̄β,j − λ2

k∑

β=1

wβ[h(ω
−
β,j+ 1

2

, ω+
β,j+ 1

2

, vβ,j+ 1

2

) − h(ω−
β,j− 1

2

, ω+
β,j− 1

2

, vβ,j− 1

2

)]

=
a1λ1

a1λ1 + a2λ2

k∑

β=1

wβ

[
ω̄i,β −

a1λ1 + a2λ2

a1

(
h(ω−

i+ 1

2
,β
, ω+

i+ 1

2
,β
, ui+ 1

2
,β)

−h(ω−
i− 1

2
,β
, ω+

i− 1

2
,β
, ui− 1

2
,β)
)]

+
a2λ2

a1λ1 + a2λ2

k∑

β=1

wβ

[
ω̄β,j −

a1λ1 + a2λ2

a2

(
h(ω−

β,j+ 1

2

, ω+
β,j+ 1

2

, vβ,j+ 1

2

)

−h(ω−
β,j− 1

2

, ω+
β,j− 1

2

, vβ,j− 1

2

)
)]
. (4.10)

For later discussion, we define the following formal one dimensional schemes:

H i,β
x = ω̄i,β −

a1λ1 + a2λ2

a1

[h(ω−
i+ 1

2
,β
, ω+

i+ 1

2
,β
, ui+ 1

2
,β) − h(ω−

i− 1

2
,β
, ω+

i− 1

2
,β
, ui− 1

2
,β)], (4.11)

Hβ,j
y = ω̄β,j −

a1λ1 + a2λ2

a2

[h(ω−
β,j+ 1

2

, ω+
β,j+ 1

2

, vβ,j+ 1

2

) − h(ω−
β,j− 1

2

, ω+
β,j− 1

2

, vβ,j− 1

2

)]. (4.12)

To show our main result, we need two lemmas first.

Lemma 4.1. Consider a “one dimensional first order Lax-Friedrichs” scheme

ωn+1
j = ωj − λ[h(ωj, ωj+1, uj) − h(ωj−1, ωj, uj−1)], (4.13)

where h(·, ·, ·) is defined in (4.5) and uj−1, uj ∈ [−a, a]. Assume ωj−1, ωj, ωj+1 ∈ [m,M ], then

m− λ[h(m,m, uj) − h(m,m, uj−1)] ≤ ωn+1
j ≤M − λ[h(M,M, uj) − h(M,M, uj−1)]

under the CFL condition

aλ ≤ 1

2
.

Proof: We can rewrite (4.13) as

ωn+1
j = ωj − λ

[
1

2
(uj(ωj + ωj+1) − a(ωj+1 − ωj)) −

1

2
(uj−1(ωj−1 + ωj) − a(ωj − ωj−1))

]

=
λ

2
(a+ uj−1)ωj−1 +

[
1 − λ

(
1

2
(uj − uj−1) + a

)]
ωj +

λ

2
(a− uj)ωj+1.

All the three coefficients are nonnegative under the CFL condition. Therefore,

ωn+1
j =

λ

2
(a+ uj−1)ωj−1 +

[
1 − λ

(
1

2
(uj − uj−1) + a

)]
ωj +

λ

2
(a− uj)ωj+1
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≤ λ

2
(a+ uj−1)M +

[
1 − λ

(
1

2
(uj − uj−1) + a

)]
M +

λ

2
(a− uj)M

= M − λ[h(M,M, uj) − h(M,M, uj−1)].

Similarly, we have m− λ[h(m,m, uj) − h(m,m, uj−1)] ≤ ωn+1
j .

Lemma 4.2. Under the CFL condition a1λ1 + a2λ2 ≤ 1
2

min
α=1,··· ,N

ŵα, we have

[
1 − a1λ1 + a2λ2

a1
(ui+ 1

2
,β − ui− 1

2
,β)

]
m ≤ H i,β

x ≤
[
1 − a1λ1 + a2λ2

a1
(ui+ 1

2
,β − ui− 1

2
,β)

]
M,

(4.14)[
1 − a1λ1 + a2λ2

a2

(vβ,j+ 1

2

− vβ,j− 1

2

)

]
m ≤ Hβ,j

y ≤
[
1 − a1λ1 + a2λ2

a2

(vβ,j+ 1

2

− vβ,j− 1

2

)

]
M.

(4.15)

Proof: We only prove (4.14) here. The proof for (4.15) is similar. We follow the main idea

of the proof of Theorem 2.2. Considering the “one dimensional scheme” (4.11), we would

like to rewrite is as a convex combination of several “one dimensional first order schemes”

of the type (4.13). Recall that Ŝxi = {xi− 1

2

= x̂1
i , x̂

2
i , · · · , x̂Ni = xi+ 1

2

} are the Gauss-Lobatto

quadrature points on the interval [xi− 1

2

, xi+ 1

2

]. Also ŵα denotes the weights for the interval

[−1
2
, 1

2
] so that

N∑
α=1

ŵα = 1. Let v̂βα = ωij(x
α
i , y

β
j ) for α = 1, · · · , N , v̂β0 = ωi−1,j(xi− 1

2

, yβj )

and v̂βN+1 = ωi+1,j(xi+ 1

2

, yβj ). Since we assume that all the DG polynomials ωij(x, y) are

pre-processed by the limiter, we have v̂βα ∈ [m,M ] for α = 0, · · · , N + 1 and β = 1, · · · , k.

By the property of the quadrature rule, we get ω̄i,β =
N∑
α=1

ŵαv̂
β
α. We also have

h(v̂βN , v̂
β
N+1, ui+ 1

2
,β) − h(v̂β0 , v̂

β
1 , ui− 1

2
,β)

= h(v̂βN , v̂
β
N+1, ui+ 1

2
,β) − h(v̂βN−1, v̂

β
N , 0)

+

N−1∑

α=2

[h(v̂βα, v̂
β
α+1, 0) − h(v̂βα−1, v̂

β
α, 0)]

+h(v̂β1 , v̂
β
2 , 0) − h(v̂β0 , v̂

β
1 , ui− 1

2
,β).

For convenience, let us use λ to denote a1λ1+a2λ2

a1
here, then (4.11) becomes:

H i,β
x = ω̄i,β −

a1λ1 + a2λ2

a1
[h(ω−

i+ 1

2
,β
, ω+

i+ 1

2
,β
, ui+ 1

2
,β) − h(ω−

i− 1

2
,β
, ω+

i− 1

2
,β
, ui− 1

2
,β)]
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= ω̄i,β − λ[h(v̂βN , v̂
β
N+1, ui+ 1

2
,β) − h(v̂β0 , v̂

β
1 , ui− 1

2
,β)]

=

N∑

α=1

ŵαv̂
β
α − λ

[
h(v̂βN , v̂

β
N+1, ui+ 1

2
,β) − h(v̂βN−1, v̂

β
N , 0)

+

N−1∑

α=2

[h(v̂βα, v̂
β
α+1, 0) − h(v̂βα−1, v̂

β
α, 0)] + h(v̂β1 , v̂

β
2 , 0) − h(v̂β0 , v̂

β
1 , ui− 1

2
,β)
]

= ŵN

[
vβN − λ

ŵN

(
h(v̂βN , v̂

β
N+1, ui+ 1

2
,β) − h(v̂βN−1, v̂

β
N , 0)

)]

+
N−1∑

α=2

ŵα

[
vβα −

λ

ŵα

(
h(v̂βα, v̂

β
α+1, 0) − h(v̂βα−1, v̂

β
α, 0)

)]

+ŵ1

[
vβ1 − λ

ŵ1

(
h(v̂β1 , v̂

β
2 , 0) − h(v̂β0 , v̂

β
1 , ui− 1

2
,β)
)]

.

By Lemma 4.1, we can get the upper bound

H i,β
x ≤ ŵN

[
M − λ

ŵN

(
h(M,M, ui+ 1

2
,β) − h(M,M, 0)

)]

+
N−1∑

α=2

ŵα

[
M − λ

ŵα
(h(M,M, 0) − h(M,M, 0))

]

+ŵ1

[
M − λ

ŵ1

(
h(M,M, 0) − h(M,M, ui− 1

2
,β)
)]

=
N∑

α=1

ŵαM − λ[h(M,M, ui+ 1

2
,β) − h(M,M, 0)

+h(M,M, 0) − h(M,M, ui− 1

2
,β)]

= M − λ[h(M,M, ui+ 1

2
,β) − h(M,M, ui− 1

2
,β)]

= M − λ[Mui+ 1

2
,β −Mui− 1

2
,β]

=

[
1 − a1λ1 + a2λ2

a1
(ui+ 1

2
,β − ui− 1

2
,β)

]
M.

Similarly, we can prove the lower bound.

Theorem 4.3. Suppose ω̄nij ∈ [m,M ] and the DG polynomial ωij(x, y) is already processed

by the limiter in Section 3.2 with L = k. Thus ωij(x, y) ∈ [m,M ] for all (x, y) ∈ Sij with

Sij defined in (3.10). Then the scheme (4.7) satisfies the maximum principle ω̄n+1
ij ∈ [m,M ]

under the CFL condition a1λ1 + a2λ2 ≤ 1
2

min
α=1,··· ,N

ŵα.
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Proof: For convenience, we use λ to denote a1λ1+a2λ2

a1
and µ to denote a1λ1+a2λ2

a2
here. Starting

with (4.10), (4.11) and (4.12), we have

ω̄n+1
ij =

λ1

λ

k∑

β=1

wβH
i,β
x +

λ2

µ

k∑

β=1

wβH
β,j
y

(Lemma 4.2) ≤ λ1

λ

k∑

β=1

wβ[1 − λ(ui+ 1

2
,β − ui− 1

2
,β)]M +

λ2

µ

k∑

β=1

wβ[1 − µ(vβ,j+ 1

2

− vβ,j− 1

2

)]M

(
λ1

λ
+
λ2

µ
= 1

)
= M −M

k∑

β=1

wβλ1(ui+ 1

2
,β − ui− 1

2
,β) −M

k∑

β=1

wβλ2(vβ,j+ 1

2

− vβ,j− 1

2

)

= M

[
1 − ∆t

∆x∆y

(
k∑

β=1

(ui+ 1

2
,β − ui− 1

2
,β)wβ∆y +

k∑

β=1

(vβ,j+ 1

2

− vβ,j− 1

2

)wβ∆x

)]

(quadrature) = M


1 − ∆t

∆x∆y



∫ y

j+1
2

y
j− 1

2

u(xi+ 1

2

, y, t) − u(xi− 1

2

, y, t)dy

+

∫ x
i+1

2

x
i− 1

2

v(x, yj+ 1

2

, t) − v(x, yj− 1

2

, t)dx






= M


1 − ∆t

∆x∆y



∫ y

j+1
2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

uxdxdy +

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

vydydx






= M


1 − ∆t

∆x∆y

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

(ux + vy)dydx




(ux + vy = 0) = M.

Similarly, we can prove m ≤ ω̄n+1
ij .

Remark 4.4. We can prove the same results for the upwind flux defined in [15] following

the same lines.

Remark 4.5. The results of Theorem 4.3 holds also for any passive convection linear

equations with divergence-free velocity coefficients, namely equation (4.1) in which u and

v are given functions satisfying ux + vy = 0, as long as the quadratures are exact for the

integrands in the scheme. This can be easily achieved if we pre-process the divergence-free

velocity field so that it is piecewise polynomial of the right degree for accuracy, continuous
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in the normal component across cell boundaries, and divergence-free.

5 Numerical tests for the fifth order finite volume WENO

scheme

In this section we provide numerical examples for the finite volume WENO scheme. The

scheme for the numerical test is third order SSP Runge-Kutta in time and fifth order spatial

finite volume WENO approximation with the limiter, unless otherwise specified. We use the

global Lax-Friedrichs flux, although the results hold also for any other monotone fluxes. The

time step is taken as that indicated by the proof of maximum principle in the earlier part of

the paper, unless otherwise stated.

5.1 Standard one dimensional test cases

Example 5.1. We solve the model equation

ut + ux = 0,

u(x, 0) = u0(x),

with periodic boundary conditions.

Three smooth initial data u0(x) on [0, 1] are used to show the accuracy. We list the L1

and L∞ errors for the cell averages at time t = 0.1 in Table 5.1. In this example we take

∆t = O(∆x
5

3 ) for the purpose of showing fifth order accuracy.

For Runge-Kutta, the accuracy degenerates slightly. This is due to the lower order ac-

curacy in the intermediate stages of the Runge-Kutta method. In particular, recall that the

limiter (1.4) does not destroy accuracy only if the polynomial p(x) is a (k + 1)-th accurate

approximation to the exact solution. The reconstruction polynomials p(x) in the intermedi-

ate stages of a Runge-Kutta methods are in general not (k + 1)-th order accurate, therefore

the limiter (1.4) may kill the accuracy when it is imposed in the intermediate stages. A

similar phenomenon of the Runge-Kutta method in the context of boundary conditions was
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pointed out in [1]. We emphasize that this accuracy degeneracy usually can only be observed

on a very fine mesh.

To justify that the limiter itself does not kill accuracy, we also perform accuracy tests for

the scheme using the third order SSP multi-step time discretization and the same fifth order

finite volume WENO approximation with the limiter. The full accuracy order is observed

for the multi-step time discretization. Since accuracy degeneracy is usually only observed

on very fine meshes for Runge-Kutta methods, in applications it is often acceptable to use

the Runge-Kutta methods, similar to the conclusions in [1].

Table 5.1: Third order SSP time discretization and fifth order finite volume WENO scheme
with the limiter, for the linear equation with initial data u0(x). ∆x = 1

N
and ∆t = 1

2
∆x

5

3 .

N SSP Runge-Kutta SSP multi-step
L1 error order L∞ error order L1 error order L∞ error order

u0(x) = 0.5 + sin(2πx)
20 1.58E-4 - 3.03E-4 - 1.53E-4 - 2.87E-4 -
40 4.65E-6 5.09 1.00E-5 4.91 4.69E-6 5.02 1.03E-5 4.79
80 1.39E-7 5.05 2.79E-7 5.17 1.43E-7 5.03 3.13E-7 5.04
160 4.36E-9 5.00 8.30E-9 5.07 4.40E-9 5.02 9.28E-9 5.08
320 1.42E-10 4.94 7.81E-10 3.41 1.37E-10 5.00 2.52E-10 5.20
640 5.12E-12 4.78 6.82E-11 3.51 4.40E-12 4.96 7.73E-12 5.03
1280 1.75E-13 4.87 5.95E-12 3.52 1.29E-13 5.09 2.21E-13 5.13

u0(x) = 0.5 + sin4(2πx)
20 1.07E-2 - 2.60E-2 - 1.22E-2 - 2.37E-2 -
40 1.70E-3 2.66 3.46E-3 2.90 1.85E-3 2.73 3.77E-3 2.65
80 1.01E-4 4.06 3.44E-4 3.33 1.24E-4 3.89 4.90E-4 2.94
160 2.87E-6 5.14 1.59E-5 4.42 2.96E-6 5.39 1.58E-5 4.94
320 7.71E-8 5.21 3.60E-7 5.47 7.71E-8 5.26 3.59E-7 5.46
640 1.81E-9 5.40 5.75E-9 5.97 1.81E-9 5.40 5.75E-9 5.97
1280 4.16E-11 5.44 9.36E-11 5.94 4.17E-11 5.45 9.36E-11 5.94

u0(x) = 0.5 + sin8(2πx)
20 3.09E-2 - 9.08E-2 - 2.99E-2 - 8.41E-2 -
40 3.50E-3 3.13 1.26E-2 2.85 3.49E-3 3.10 1.24E-2 2.76
80 2.43E-4 3.84 7.44E-4 4.08 2.46E-4 3.82 7.33E-4 4.07
160 8.52E-6 4.83 3.33E-5 4.48 8.51E-6 4.85 3.34E-5 4.45
320 2.83E-7 4.91 1.12E-6 4.88 2.83E-7 4.90 1.13E-6 4.88
640 8.32E-9 5.09 3.35E-8 5.07 8.32E-9 5.09 3.36E-8 5.07
1280 2.28E-10 5.18 9.41E-10 5.15 2.28E-10 5.18 9.39E-10 5.16
2560 6.45E-12 5.14 3.15E-11 4.89 6.44E-12 5.14 3.09E-11 4.92
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Example 5.2. We solve the Burgers’ equation with periodic boundary conditions

ut +

(
u2

2

)

x

= 0, −1 ≤ x ≤ 1,

u(x, 0) = u0(x).

For the initial data u0(x) = 0.25 + 0.5 sin(πx), the exact solution is smooth up to t = 2
π
,

then it develops a moving shock which interacts with a rarefaction wave. In this example

we take ∆t = O(∆x
5

3 ) for the purpose of showing fifth order accuracy.

At t = 0.15 the solution is still smooth. We list the errors in Table 5.2. We can clearly

see the designed fifth order accuracy is achieved for the multi-step time discretization, while

the accuracy for the Runge-Kutta time discretization is less clean. At t = 2
π

the shock just

begins to form; at t = 2.0 the interaction between the shock and the rarefaction waves is

over, and the solution becomes monotone between the shocks. In Figure 5.1 we can see that

the shock is captured very well.

Table 5.2: Third order SSP time discretization and fifth order finite volume WENO scheme
with the limiter, for the Burgers’ equation. t = 0.15, ∆x = 2

N
and ∆t = 1

2
∆x

5

3 .

N SSP Runge-Kutta SSP multi-step
L1 error order L∞ error order L1 error order L∞ error order

20 1.58E-4 - 3.12E-4 - 1.34E-4 - 2.55E-4 -
40 6.79E-6 4.54 1.27E-5 4.61 6.69E-6 4.32 1.24E-5 4.35
80 2.66E-7 4.67 7.19E-7 4.14 2.62E-7 4.67 7.09E-7 4.13
160 9.45E-9 4.81 5.34E-8 3.75 9.28E-9 4.82 4.95E-8 3.84
320 2.31E-10 5.35 1.24E-9 5.42 2.30E-10 5.32 7.84E-10 5.98
640 5.86E-12 5.30 4.76E-11 4.70 5.56E-12 5.37 1.23E-11 5.99
1280 1.67E-13 5.13 3.75E-12 3.67 1.41E-13 5.29 3.72E-13 5.04

Example 5.3. We use the nonconvex Buckley-Leverett flux

f(u) =
4u2

4u2 + (1 − u)2

to test convergence to the physically correct entropy solutions. The initial condition is taken

as u = 1 in [−1
2
, 0] and u = 0 elsewhere. The “exact” solution is obtained from the first

order Lax-Friedrichs scheme on a very fine mesh. The computational result is displayed in

Figure 5.2, which is quite satisfactory.
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Figure 5.1: Example 5.2. N = 80, ∆t = 1
2
∆x

5

3 . Solid line: exact solution; Symbols:
numerical solution (cell averages). Left: t = 0.6366; Right: t = 2.
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Figure 5.2: Example 5.3. t = 0.4, N = 160, ∆x = 2
N

and ∆t
∆x
a = 1

12
. Solid line: exact

solution; Symbols: numerical solution (cell averages).
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5.2 Standard two dimensional test cases

Example 5.4. We solve the linear equation ut + ux + uy = 0 on [0, 1] × [0, 1] with periodic

boundary condition. The initial condition is u0(x+ y) = sin(2π(x+ y)). In this example we

take ∆t = O(∆x
5

3 ) for the purpose of showing fifth order accuracy. The results are similar

to the one dimensional case, see Table 5.3.

Table 5.3: Third order SSP time discretization and fifth order finite volume WENO scheme
with the limiter, for the two dimensional linear equation with initial data sin(2π(x + y)).

t = 0.1, ∆t = 1
2
∆x

5

3 and ∆x = ∆y = 1
N

.

Mesh SSP Runge-Kutta SSP multi-step
L1 error order L∞ error order L1 error order L∞ error order

10×10 7.68E-3 - 1.13E-2 - 6.32E-3 - 9.80E-3 -
20×20 2.88E-4 4.73 5.92E-4 4.26 2.94E-4 4.42 6.00E-4 4.03
40×40 9.03E-6 4.99 1.69E-5 5.12 9.51E-6 4.95 1.97E-5 4.92
80×80 2.86E-7 4.98 8.91E-7 4.25 2.96E-7 5.00 6.17E-7 5.00

160×160 1.05E-8 4.75 8.59E-8 3.37 9.26E-9 5.00 1.90E-8 5.02
320×320 4.44E-10 4.56 7.67E-9 3.49 2.89E-10 4.99 5.28E-10 5.17

Example 5.5. We solve the Burgers’ equation ut+(u
2

2
)x+(u

2

2
)y = 0 on [−1, 1]× [−1, 1] with

periodic boundary condition. The initial condition is 0.5 + sin(π(x + y)). In this example

we take ∆t = O(∆x
5

3 ) for the purpose of showing fifth order accuracy. The results are again

similar to the one dimensional case, see Table 5.4, Figure 5.3 and Figure 5.4.

Table 5.4: Third order SSP time discretization and fifth order finite volume WENO scheme
with the limiter, for the two dimensional Burgers’ equation with the initial data 0.5 +
sin(π(x+ y)). t = 0.05, ∆t = 1

2
∆x

5

3 and ∆x = ∆y = 2
N

.

Mesh SSP Runge-Kutta SSP multi-step
L1 error order L∞ error order L1 error order L∞ error order

40×40 1.57E-5 - 1.06E-4 - 1.52E-5 - 6.97E-5 -
80×80 7.81E-7 4.33 9.94E-6 3.42 6.15E-7 4.63 4.87E-6 3.84

160×160 3.73E-8 4.38 9.50E-7 3.39 2.52E-8 4.61 3.66E-7 3.74
320×320 1.36E-9 4.77 7.12E-8 3.73 7.59E-10 5.05 1.26E-8 4.89
640×640 5.11E-11 4.73 5.64E-9 3.66 1.90e-11 5.31 1.55E-10 6.34
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Figure 5.4: Example 5.5. Cut along the diagonal. Solid line: the exact solution; Symbols:
numerical solution. Left: t = 0.23, right: t = 0.6.
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5.3 Test cases from traffic flow models

In the subsection, we test our fifth order finite volume WENO scheme with the limiter on two

traffic flow problems. To describe the dynamic characteristics of traffic on a homogeneous

and unidirectional highway, the Lighthill-Whitham-Richards (LWR) model is widely used.

The governing equation for the LWR model is a scalar conservation law

ρt + q(ρ)x = 0

with suitable initial and boundary conditions. Here ρ ∈ (0, ρmax) is the density, ρmax is the

maximum (jam) density, and q(ρ) is the traffic flow on a homogeneous highway, which is

assumed to be a function of the density only in the LWR model. The flow q, the density ρ

and the equilibrium speed u are related by

q(ρ) = u(ρ)ρ.

Example 5.6. The first traffic flow test example is taken from [18]. The flow-density

function is given by a concave function

q(ρ) =





−0.4ρ2 + 100ρ, 0 ≤ ρ ≤ 50
−0.1ρ2 + 15ρ+ 3500, 50 ≤ ρ ≤ 100
−0.024ρ2 − 5.2ρ+ 4760, 100 ≤ ρ ≤ 350

.

Consider a long homogeneous freeway of length 20 km. The entrance density is 50 veh/km.

Due to an incident near the downstream end of the freeway, the piecewise linear traffic density

profile shown in Fig 5.5 (a) is formed. To release the traffic jam condition downstream, the

freeway entrance is blocked for 10 min, after which traffic is released again from the entrance

at the capacity density 75 veh/km. After 20 min, the entrance flow returns back to normal

with a density 50 veh/h. At the exit boundary, a traffic signal is installed, with a repeated

pattern of 2 min green light (zero density) followed by 1 min red light (jam density). The

numerical solutions are shown in Figures 5(b), 5(c) and 5(d), in which the solid lines are

the exact solution and the symbols are the numerical solution obtained by our fifth order

finite volume WENO scheme with the limiter using N = 800 cells. We can observe that our
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WENO scheme with the limiter produces very good approximations to the exact solution

for this test case. Moreover, the numerical solutions are all in the interval (0, ρmax), which

is an important advantage for such applications.

Example 5.7. We consider a similar problem but with a much more complicated flow-

density function in [10]. The flow function q(ρ) = ρVe(ρ) is given by

Ve(ρ) =
Ṽ 2

2V0


−1 +

√
1 +

4V 2
0

Ṽ 2




with

Ṽ (ρ) =
1

Tr

(
1

ρ
− 1

ρmax

)√
α(ρmax)

α(ρ)

and

α(ρ) = α0 + ∆α

(
tanh (

ρ− ρc
∆ρ

) + 1

)
.

Here V0, Tr, ρmax, α0, ∆α, ρc and ∆ρ are all constant parameters to be determined by fitting

them to the empirical data. The physical meaning of these parameters can be found in [10].

We simply choose some typical values mentioned in [10]: V0 = 110 km/h, Tr = 1.8 seconds,

ρmax = 160 vehicles/km, α0 = 0.008, ∆α = 0.02, ρc = 0.27ρmax and ∆ρ = 0.1ρmax. With all

these parameters, the flow-density function q(ρ) is well-defined, the graphs of this function

and its second derivative are plotted in Figure 5.6. It is clearly neither a globally concave

nor a globally convex function.

Consider a long homogeneous freeway of length 20 km. The entrance density is constant

30 veh/km. The initial condition is given as a sine function ρ0(x) = 135
2

sin ( π
10
x) + 145

2
. At

the exit boundary, a traffic signal is installed, with a repeated pattern of 1 min green light

(ρ = 10 veh/km) followed by 2 min red light (ρ = 140 veh/km). The numerical solution is

shown in Figure 5.7, with a magnified graph for the boxed region shown in Figure 5.8, where

the solid line is the reference solution obtained by the first order Lax-Friedrichs scheme on

a very fine grid (N = 4000000) and the circles are the numerical solution with N = 1600

cells at t = 18 min. We again observe very good resolution of our scheme for this nonconvex

traffic flow model.
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Figure 5.5: Example 5.6 (Traffic flow problem). N = 800, ∆x = 20
N

and ∆t
∆x
a = 1

12
where

a = 100. Solid line: exact solution; Circles: numerical solution (cell averages).
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Figure 5.6: Left: the graph of q(ρ); Right: the graph of q ′′(ρ).

6 Numerical tests for the DG scheme

In this section we provide numerical examples for the DG method. We use the global Lax-

Friedrichs flux, although the results hold for any other monotone flux as well. In the first

subsection, we mainly test accuracy and compare Runge-Kutta and multi-step time dis-

cretization for conservation laws. We can observe accuracy degeneracy for the Runge-Kutta

method more clearly than the case of the finite volume scheme in the previous section, while

full designed order of accuracy can still be observed with a multi-step time discretization.

For the nonlinear scalar conservation laws with shocks emerging, the TVB limiter [3] and

the maximum limiter in this paper are used simultaneously. The results are very similar to

those in Sections 5.1 and 5.2, and are hence omitted to save space.

In the second subsection, we test the scheme in [15] with the limiter for the two dimen-

sional incompressible Euler equation. The time discretization is the third order Runge-Kutta

method.

In this section, the time step is taken as that indicated by the proof of maximum principle

in the earlier part of the paper, or that indicated by linear stability [3], whichever is smaller,

unless otherwise stated.
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Figure 5.7: Example 5.7 (Traffic flow problem). t = 18 min, N = 1600, ∆x = 20
N

and
∆t
∆x
a = 1

12
where a ≈ 100. Solid line: exact solution; Circles: numerical solution (cell

averages). The region inside the rectangle on the right is magnified in Figure 5.8.
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6.1 Standard test cases

Example 6.1. We solve the model equation ut+ux = 0, with periodic boundary conditions.

The initial condition is u0(x) = sin(2πx) on [0, 1]. Time steps are suitably adjusted in

order to show a dominant spatial accuracy. See Table 6.1. We clearly observe the designed

order of accuracy with a SSP multi-step time discretization, while the accuracy degeneracy

phenomenon for the SSP Runge-Kutta time discretization is more prominent than the results

in the previous section for the finite volume WENO scheme.

We also test another initial function for the same linear equation

u0(x) =

{
1, −1 ≤ x ≤ 0
−1, 0 ≤ x ≤ 1

.

The results at t = 100 are shown in Figure 6.1. The scheme is the third order SSP Runge-

Kutta method and fifth order DG scheme with the limiter. We can see that numerical

solution maintains a strict maximum principle and has relatively good resolution for the

discontinuity, for a relatively coarse mesh after a very long time simulation (50 time periods).

As a comparison, we also show the result of the same DG scheme without the limiter. The

overshoot near the discontinuity is then apparent.

Example 6.2. We solve the Burgers equation with periodic boundary conditions

ut +

(
u2

2

)

x

= 0, −1 ≤ x ≤ 1,

u(x, 0) = u0(x).

The initial condition is u0(x) = 0.25 + 0.5 sin(πx). Time steps are again suitably adjusted

in order to show a dominant spatial accuracy. See Table 6.2. Again, we can clearly observe

the designed order of accuracy with a SSP multi-step time discretization, while the accuracy

degeneracy phenomenon for the SSP Runge-Kutta time discretization is more prominent

than the results in the previous section for the finite volume WENO scheme.

Example 6.3. We solve the two dimensional linear equation ut + ux + uy = 0 with periodic

boundary conditions. The initial condition is u0(x + y) = sin(π(x + y)) on [−1, 1] × [0, 1].
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Table 6.1: Third order SSP time discretization and the DG scheme with the limiter, for the
linear equation with initial data sin(2πx), ∆x = 1

N
, t=0.1.

N SSP Runge-Kutta SSP multi-step
L1 error order L∞ error order L1 error order L∞ error order

P2 ∆t = 1
24

∆x ∆t = 1
24

∆x
20 4.71E-5 - 7.31E-5 - 4.70E-5 - 7.28E-5 -
40 2.95E-6 3.99 5.77E-6 3.66 2.97E-6 3.98 4.65E-6 3.97
80 1.95E-7 3.92 9.48E-7 2.60 1.87E-7 3.98 2.93E-7 3.98
160 1.86E-8 3.39 2.76E-7 1.78 1.18E-8 3.98 1.85E-8 3.98
320 2.05E-9 3.18 8.97E-8 1.62 7.55E-10 3.97 1.18E-9 3.97
640 2.69E-10 2.93 2.84E-8 1.66 4.92E-11 3.93 7.74E-11 3.94
1280 3.93E-11 2.78 8.59E-9 1.72 3.35E-12 3.87 5.35E-12 3.85
2560 5.65E-12 2.80 2.49E-9 1.78 3.16E-13 3.40 6.73E-13 3.10

P3 ∆t = 1
15

∆x
4

3 ∆t = 1
15

∆x
4

3

20 1.06E-6 - 1.62E-6 - 3.97E-6 - 6.54E-6 -
40 7.14E-8 3.90 1.47E-7 3.46 2.13E-7 4.22 4.61E-7 3.82
80 5.08E-9 3.81 3.45E-8 2.09 7.39E-9 4.85 3.38E-8 3.77
160 4.48E-10 3.50 8.14E-9 2.08 3.46E-10 4.41 2.01E-9 4.07
320 4.51E-11 3.31 1.91E-9 2.09 2.17E-11 3.99 1.43E-10 3.81
640 4.78E-12 3.24 4.15E-10 2.20 1.36E-12 3.99 7.79E-12 4.20

P4 ∆t = 1
5
∆x

5

3 ∆t = 1
7
∆x

5

3

10 1.27E-5 - 3.27E-5 - 5.78E-4 - 1.01E-3 -
20 1.95E-7 6.03 9.45E-7 5.11 3.90E-7 10.5 6.13E-7 10.6
40 1.66E-8 3.55 1.32E-7 2.83 7.38E-9 5.72 1.16E-8 5.72
80 1.29E-9 3.69 1.74E-8 2.95 1.52E-10 5.59 2.39E-10 5.59
160 7.54E-11 4.09 1.88E-9 3.21 3.34E-12 5.51 5.34E-12 5.48
320 4.19E-12 4.16 1.97E-10 3.26 6.95E-14 5.59 1.09E-13 5.61
640 2.37E-13 4.14 2.14E-11 3.20 1.13E-15 5.72 2.07E-15 5.72

P5 ∆t = 1
3
∆x2 ∆t = 1

3
∆x2

10 5.53E-6 - 1.38E-5 - 3.31E-5 - 5.48E-5 -
20 4.94E-8 6.81 2.46E-7 5.81 7.48E-9 12.0 1.16E-8 12.0
40 2.71E-9 4.19 2.11E-8 3.54 1.19E-10 5.97 1.87E-10 5.95
80 1.57E-10 4.10 1.78E-9 3.56 1.88E-12 5.98 3.02E-12 5.95
160 6.87E-12 4.52 1.46E-10 3.60 2.92E-14 6.01 4.66E-14 6.02
320 2.40E-13 4.84 9.92E-12 3.88 4.56E-16 5.99 7.36E-16 5.98
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Table 6.2: Third order SSP time discretization and the DG scheme with the limiter, for the
Burgers’ equation with initial data 0.25 + 0.5 sin(πx), ∆x = 2

N
, t = 0.15.

N SSP Runge-Kutta SSP multi-step
L1 error order L∞ error order L1 error order L∞ error order

P2 ∆t = 1
24

∆x ∆t = 1
24

∆x
20 5.12E-5 - 8.88E-5 - 5.14E-5 - 8.87E-5 -
40 3.16E-6 4.01 6.78E-6 3.71 3.15E-6 4.03 6.23E-6 3.83
80 1.98E-7 3.99 9.52E-7 2.83 1.94E-7 4.02 4.97E-7 3.65
160 1.37E-8 3.85 1.84E-7 2.36 1.19E-8 4.02 3.81E-8 3.70
320 1.23E-9 3.48 6.70E-8 1.46 7.45E-10 4.00 3.03E-9 3.65
640 1.31E-10 3.23 2.30E-8 1.54 4.67E-11 3.99 2.53E-10 3.58
1280 1.79E-11 2.87 7.38E-9 1.64 3.12E-12 3.90 4.14E-11 2.61
2560 2.61E-12 2.77 2.24E-9 1.72 2.59E-13 3.59 9.63E-12 2.10

P3 ∆t = 1
15

∆x
4

3 ∆t = 1
15

∆x
4

3

20 1.45E-5 - 6.62E-5 - 1.04E-5 - 4.05E-5 -
40 6.70E-7 4.44 2.79E-6 4.56 5.31E-7 4.29 1.54E-6 4.71
80 3.54E-8 4.24 3.49E-7 2.99 2.48E-8 4.42 1.11E-7 3.79
160 1.15E-9 4.94 1.14E-8 4.94 9.91E-10 4.64 4.48E-9 4.63
320 6.67E-11 4.11 2.29E-9 2.31 4.96E-11 4.32 2.43E-10 4.20
640 4.39E-12 3.92 5.13E-10 2.16 2.25E-12 4.46 1.62E-11 3.91
1280 3.79E-13 3.53 1.09E-10 2.23 1.04E-13 4.42 9.23E-13 4.13

P4 ∆t = 1
5
∆x

5

3 ∆t = 1
7
∆x

5

3

10 7.54E-5 - 1.87E-4 - 3.08E-4 - 1.10E-3 -
20 2.18E-6 5.11 5.19E-6 5.17 2.00E-6 7.26 5.57E-6 7.63
40 1.00E-7 4.43 1.08E-6 2.26 5.04E-8 5.31 1.92E-7 4.85
80 6.44E-9 3.96 1.94E-7 2.48 1.39E-9 5.18 5.58E-9 5.11
160 1.24E-10 5.69 4.49E-9 5.44 3.81E-11 5.19 1.66E-10 5.07
320 6.09E-12 4.35 4.79E-10 3.23 9.70E-13 5.29 5.11E-12 5.02
640 3.14E-13 4.28 4.97E-11 3.27 2.26E-14 5.42 1.54E-13 5.03

P5 ∆t = 1
3
∆x2 ∆t = 1

3
∆x2

10 7.85E-6 - 3.89E-5 - 8.15E-6 - 2.59E-5 -
20 2.28E-7 5.10 2.26E-6 4.10 5.69E-5 -2.8 2.58E-4 -3.3
40 1.61E-8 3.83 3.12E-7 2.86 2.11E-9 14.7 8.97E-9 14.8
80 1.13E-9 3.82 4.36E-8 2.84 3.40E-11 5.95 1.44E-10 5.95
160 1.10E-11 6.67 4.69E-10 6.54 5.36E-13 5.99 2.26E-12 5.99
320 4.78E-13 4.53 3.72E-11 3.66 8.40E-15 5.99 3.59E-14 5.98
640 1.67E-14 4.83 2.47E-12 3.91 1.31E-16 5.99 5.63E-16 5.99
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Figure 6.1: Example 6.1. N = 160, t = 100, ∆x = 2
N

and ∆t = 1
15

∆x. Solid line: exact
solution; Squares: numerical solution.

Time steps are suitably adjusted in order to show a dominant spatial accuracy. See Table

6.3. Once more, we can clearly observe the designed order of accuracy with a SSP multi-step

time discretization, while the accuracy degeneracy phenomenon for the SSP Runge-Kutta

time discretization is more prominent than the results in the previous section for the finite

volume WENO scheme.

Example 6.4. We solve the two dimensional Burgers’ equation ut + (u
2

2
)x + (u

2

2
)y = 0 with

periodic boundary conditions. The initial condition is sin(π(x+y)) on [−1, 1]× [−1, 1]. Time

steps are suitably adjusted in order to show a dominant spatial accuracy. See Table 6.4. We

can clearly observe the designed order of accuracy with a SSP multi-step time discretization,

while the accuracy degeneracy phenomenon for the SSP Runge-Kutta time discretization is

more prominent than the results in the previous section for the finite volume WENO scheme.
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Table 6.3: Third order SSP time discretization and the DG scheme with the limiter, for the
two dimensional linear equation with initial data sin(π(x+ y)), ∆x = 2

N
, t = 0.1.

N*N SSP Runge-Kutta SSP multi-step
L1 error order L∞ error order L1 error order L∞ error order

P2 ∆t = 1
14

∆x ∆t = 1
42

∆x
10×10 1.69E-2 - 6.38E-2 - 1.79E-2 - 6.72E-2 -
20×20 2.69E-4 5.97 7.89E-4 6.34 3.28E-4 5.77 1.09E-3 5.95
40×40 4.53E-5 2.57 1.99E-4 1.99 2.43E-5 3.75 3.98E-5 4.78
80×80 6.83E-6 2.73 5.33E-5 1.90 2.72E-6 3.16 4.03E-6 3.30

160×160 9.82E-7 2.80 1.40E-5 1.93 3.27E-7 3.06 5.05E-7 2.99

P3 ∆t = 1
14

∆x
4

3 ∆t = 1
42

∆x
4

3

10×10 7.39E-4 - 1.74E-3 - 8.29E-4 - 1.34E-3 -
20×20 3.27E-5 4.49 1.63E-4 3.42 1.76E-5 5.56 5.08E-5 4.72
40×40 3.32E-6 3.30 2.57E-5 2.66 1.31E-6 3.74 3.64E-6 3.80
80×80 3.10E-7 3.42 4.29E-6 2.58 1.16E-7 3.50 2.63E-7 3.79

160×160 2.76E-8 3.49 7.06E-7 2.36 7.78E-9 3.90 1.53E-8 4.10

Table 6.4: Third order SSP time discretization and the DG scheme with the limiter, for the
two dimensional Burgers’ equation with initial data sin(π(x+ y)), ∆x = 2

N
, t = 0.05.

N*N SSP Runge-Kutta SSP multi-step
L1 error order L∞ error order L1 error order L∞ error order

P2 ∆t = 1
14

∆x ∆t = 1
42

∆x
10×10 3.68E-3 - 1.07E-2 - 3.60E-3 - 1.09E-2 -
20×20 3.49E-4 3.40 1.11E-3 3.27 2.89E-4 3.64 7.21E-4 3.92
40×40 5.73E-5 2.61 1.56E-4 2.83 4.57E-5 2.66 1.36E-4 2.41
80×80 8.87E-6 2.69 4.70E-5 1.73 6.48E-6 2.82 2.42E-5 2.49

160×160 1.39E-6 2.67 1.30E-5 1.85 9.37E-7 2.79 4.51E-6 2.43

P3 ∆t = 1
14

∆x
4

3 ∆t = 1
42

∆x
4

3

10×10 7.27E-4 - 2.42E-3 - 5.40E-4 - 2.24E-3 -
20×20 8.76E-5 3.05 2.85E-4 3.08 7.16E-5 2.91 2.51E-4 3.12
40×40 5.29E-6 4.05 2.08E-5 3.78 3.37E-6 4.41 1.69E-5 3.89
80×80 4.07E-7 3.70 4.03E-6 2.37 2.04E-7 4.04 9.27E-7 4.19

160×160 3.11E-8 3.71 6.97E-7 2.53 1.25E-8 4.02 5.93E-8 3.97
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6.2 Two dimensional incompressible flows

In this subsection, we test the DG scheme in [15] with our limiter for the examples in [15].

We take P 2 elements with the third order SSP Runge-Kutta time discretization. We use the

Lax-Friedrichs flux, although the upwind flux can do the job as well.

Example 6.5. The example is used to check the accuracy. For the Euler equation (4.1) and

(4.2), with periodic boundary condition and initial data ω(x, y, 0) = −2 sin (x) sin (y) on the

domain [0, 2π] × [0, 2π]. The exact solution is ω(x, y, t) = −2 sin (x) sin (y). See Table 6.5.

We clearly observe the designed order of accuracy for this special steady state solution.

Table 6.5: Incompressible Euler equation. P 2 for vorticity, t = 0.5.

Mesh L1 error order L∞ error order
16×16 5.12E-4 – 1.40E-3 –
32×32 3.75E-5 3.77 1.99E-4 2.81
64×64 3.16E-6 3.57 2.74E-5 2.86

128×128 2.76E-7 3.51 3.56E-6 2.94

Example 6.6. For this double shear layer problem, we solve the Euler equation (4.1) in the

domain [0, 2π] × [0, 2π] with a periodic boundary condition and an initial condition

ω(x, y, 0) =

{
δ cos (x) − 1

ρ
sech2((y − π/2)/ρ) y ≤ π

δ cos (x) + 1
ρ
sech2((3π/2 − y)/ρ) y > π

,

where we take ρ = π/15 and δ = 0.05.

The solution quickly develops into roll-ups with smaller and smaller scales, so on any fixed

grid the full resolution is lost eventually. We use uniform meshes of 64 × 64 and 128 × 128

rectangles and perform the computation up to t = 8. We plot the contours of the vorticity

ω at t = 6 and t = 8. See Figures 6.2 and 6.3. Although one can barely see any difference

between the results with the limiter and without the limiter from the contour, we point out

that the numerical solutions of the scheme with the limiter are in the range [−δ − 1
ρ
, δ + 1

ρ
].

Example 6.7. The vortex patch problem. We solve the Euler equation (4.1) and (4.2) in
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Figure 6.2: Vorticity at t = 6, P 2, 30 equally spaced contours from −4.9 to 4.9.
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Figure 6.3: Vorticity at t = 8, P 2, 30 equally spaced contours from −4.9 to 4.9.

49



x

y

1 2 3 4 5 6

1

2

3

4

5

6

(a) 1282 mesh, with limiter

x

y
1 2 3 4 5 6

1

2

3

4

5

6

(b) 1282 mesh, without limiter

diagonal

vo
rt

ic
ity

2 4 6 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c) 1282 mesh, with limiter

diagonal

vo
rt

ic
ity

2 4 6 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(d) 1282 mesh, without limiter

Figure 6.4: Vorticity at t = 5, P 2. Top: 30 equally spaced contours from −1.1 to 1.1;
Bottom: cut along the diagonal.
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Figure 6.5: Vorticity at t = 10, P 2. Top: 30 equally spaced contours from −1.1 to 1.1;
Bottom: cut along the diagonal.
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[0, 2π] × [0, 2π] with the initial condition

ω(x, y, 0) =





−1, π
2
≤ x ≤ 3π

2
, π

4
≤ y ≤ 3π

4
;

1, π
2
≤ x ≤ 3π

2
, 5π

4
≤ y ≤ 7π

4
;

0, otherwise

and periodic boundary conditions. The contour plots of the vorticity ω, with 30 equally

spaced contour lines between ω = −1.1 and ω = 1.1, are given for t = 5 and t = 10,

see Figures 6.4 and 6.5. Again, we cannot observe any significant difference between the

two results in the contour plots. The cut along the diagonal gives us a clearer view of the

advantage in using the limiter. Clearly, the result with the limiter is strictly within the range

[−1, 1] while there are apparent overshoots outside [−1, 1] for the result without the limiter.

7 Concluding remarks

In this paper, we have established a general framework to construct arbitrarily high order

accurate maximum-principle-satisfying schemes for scalar conservation laws. This is the first

time that genuine high order schemes are obtained which satisfy strict maximum principle

especially for multidimensional nonlinear problems. The main difficulty is to get the cell

averages in the next time step to be within the range [m,M ] with a limiter which does not

destroy accuracy. The exact time evolution has this property, but it cannot be easily imple-

mented in multidimensions with high order accuracy. We prove that SSP time discretization

can maintain the cell averages in [m,M ] as long as the values of the approximation poly-

nomials at certain quadrature points are in [m,M ], which can be enforced by the simplified

linear scaling limiter. The implementation is quite easy. With the addition of the limiter

in this paper, which involves small additional computational cost, to the DG scheme or the

finite volume scheme (e.g. ENO and WENO), then the numerical solutions will satisfy the

maximum principle under suitable CFL condition.

We also show that the same result holds for the DG or finite volume schemes solving the

two dimensional incompressible Euler equations in the vorticity stream-function formulation

[15]. The result is also valid for any passive convection equation with divergence-free velocity
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coefficients.

We have tested the fifth order finite volume WENO scheme and the DG scheme with

limiter on a variety of examples including those from traffic flow models and two dimensional

incompressible Euler equations. We clearly observe strict maximum principle preserving in

all these tests. The SSP multi-step time discretization gives us genuine high order accuracy.

The accuracy for the SSP Runge-Kutta time discretization may however degenerate on a

fine mesh, similar to the phenomenon discussed in [1] in the context of boundary conditions.

However, this effect is mainly of theoretic interest as it can only be observed for very fine

meshes.

In this paper we have only shown a straightforward extension of the one dimensional

algorithm to two dimensional finite volume or DG schemes on a rectangular mesh. For

triangular meshes, the idea of rewriting the scheme as a convex combination of monotone

schemes is still plausible and will be explored in the future. Generalizations to finite difference

schemes, and to nonlinear systems in the context of positivity preserving of certain physical

quantities such as density and pressure, constitute our ongoing work.
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A Appendix: WENO reconstruction for values at the

quadrature points

In this appendix we document the details of the one-dimensional WENO reconstruction

problem: assuming a uniform grid, given the cell average ūj on each cell Ij = [xj− 1

2

, xj+ 1

2

],

use the WENO reconstruction to obtain the point values at the quadrature points in the

interval Ij. We will consider the fifth order accurate WENO procedure here, for which the

three-point Gauss quadrature is applicable.

For the three-point Gauss quadrature on [− 1
2
, 1

2
], the quadrature points are x1 =

√
15

10
,

x2 = 0, x3 = −
√

15
10

with the weights w1 = 5/18, w2 = 4/9, w3 = 5/18.

For convenience, we will use the rescaled variable x′ =
x−xj

∆x
. Assume the fixed stencil

reconstruction polynomials on the stencil {j + 2, j + 1, j}, {j + 1, j, j − 1}, {j, j − 1, j − 2}

and {j + 2, j + 1, j, j − 1, j − 2} are p1, p2, p3 and p respectively. Then

p1(x
′) =

ūj+2 − 2ūj+1 + ūj
2

(x′)2 +
−ūj+2 + 4ūj+1 − 3ūj

2
(x′) +

−ūj+2 + 2ūj+1 + 23ūj
24

p2(x
′) =

ūj+1 − 2ūj + ūj−1

2
(x′)2 +

ūj+1 − ūj−1

2
(x′) +

−ūj+1 + 26ūj − ūj−1

24

p3(x
′) =

ūj−2 − 2ūj−1 + ūj
2

(x′)2 +
ūj−2 − 4ūj−1 + 3ūj

2
(x′) +

−ūj−2 + 2ūj−1 + 23ūj
24

and

p(x′) = a4(x
′)4 + a3(x

′)3 + a2(x
′)2 + a1(x

′) + a0,

with

a0 =
9ūj+2 − 116ūj+1 + 2134ūj − 116ūj−1 + 9ūj−2

1920

a1 =
−5ūj+2 + 34ūj+1 − 34ūj−1 + 5ūj−2

48

a2 =
−ūj+2 + 12ūj+1 − 22ūj + 12ūj−1 − ūj−2

16
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a3 =
ūj+2 − 2ūj+1 + 2ūj−1 − ūj−2

12

a4 =
ūj+2 − 4ūj+1 + 6ūj − 4ūj−1 + ūj−2

24
.

Define the linear weights rβi by

p(xβ) =

3∑

i=1

rβi pi(xβ), β = 1, 2, 3.

Solving the linear system above gives us the linear weights in Table A.1.

Table A.1: Linear weights.

rβi β = 1 β = 2 β = 3

i=1
1008+71

√
15

5240
403
655

1008−71
√

15
5240

i=2 − 9
80

49
40 − 9

80

i=3
1008−71

√
15

5240
403
655

1008+71
√

15
5240

We can use the same smoothness indicators as in [2]:

b1 =
13

12
(ūj − 2ūj+1 + ūj+2)

2 +
1

4
(3ūj − 4ūj+1 + ūj+2)

2

b2 =
13

12
(ūj−1 − 2ūj + ūj+1)

2 +
1

4
(ūj−1 − ūj+1)

2

b3 =
13

12
(ūj−2 − 2ūj−1 + ūj)

2 +
1

4
(ūj−2 − 4ūj−1 + 3ūj)

2.

Now define the nonlinear weights wβ
i by

wβi =
dβi∑3
i=1 d

β
i

, dβi =
rβi

(ε+ bi)2

where ε = 10−6. The fifth order WENO reconstruction for the values at the three Gauss

quadrature points of the cell Ij are:

uβj =
3∑

i=1

wβi pi(xβ),

where

p1(x1) =
2 + 3

√
15

60
ūj+2 −

3
√

15 + 1

15
ūj+1 +

62 + 9
√

15

60
ūj
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p2(x1) =
2 − 3

√
15

60
ūj+1 +

14

15
ūj +

2 + 3
√

15

60
ūj−1

p3(x1) =
62 − 9

√
15

60
ūj +

3
√

15 − 1

15
ūj−1 +

2 − 3
√

15

60
ūj−2

p1(x2) = − 1

24
ūj+2 +

1

12
ūj+1 +

23

24
ūj

p2(x2) = − 1

24
ūj+1 +

13

12
ūj −

1

24
ūj−1

p3(x2) =
23

24
ūj +

1

12
ūj−1 −

1

24
ūj−2

p1(x3) =
2 − 3

√
15

60
ūj+2 +

3
√

15 − 1

15
ūj+1 +

62 − 9
√

15

60
ūj

p2(x3) =
2 + 3

√
15

60
ūj+1 +

14

15
ūj +

2 − 3
√

15

60
ūj−1

p3(x3) =
62 + 9

√
15

60
ūj −

3
√

15 + 1

15
ūj−1 +

2 + 3
√

15

60
ūj−2.
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