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SUPERCONVERGENCE OF C° — Q¥ FINITE ELEMENT METHOD
FOR ELLIPTIC EQUATIONS WITH APPROXIMATED
COEFFICIENTS

HAO LI* AND XIANGXIONG ZHANG*

Abstract. We prove that the superconvergence of CO-QF finite element method at the Gauss
Lobatto quadrature points still holds if variable coefficients in an elliptic problem are replaced by
their piecewise Q¥ Lagrange interpolants at the Gauss Lobatto points in each rectangular cell. In
particular, a fourth order finite difference type scheme can be constructed using C°-Q? finite element
method with Q2 approximated coefficients.

Key words. Superconvergence, fourth order finite difference, elliptic equations, Gauss Lobatto
points, approximated coefficients
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1. Introduction.

1.1. Motivations. Consider solving a variable coefficient Poisson equation
(1.1) -V (aVu) = f, a(z,y)>0

with homogeneous Dirichlet boundary conditions on a rectangular domain €. As-
sume that the coefficient a(z,y) and the solution u(x,y) are sufficiently smooth. Let
l|lu||x,p.0 be the norm of Sobolev space WP (). For p = 2, let H*(Q) = W*2(Q) and
I lle.o =1l - [|k.2,.2- The subindex © will be omitted when there is no confusion, e.g.,
|lullo denotes the L?(Q)-norm and ||ul; denotes the H'())-norm. The variational
form is to find u € H}(Q) = {v € H(Q) : v|an = 0} satisfying

(1.2) Au,v) = (f,v), Yve Hi(Q),

where A(u,v) = [, aVu-Vodady, (f,v) = [[, fvdedy. Consider a rectangular mesh
with mesh size h. Let VJ' C H}(Q) be the continuous finite element space consisting
of piecewise Q* polynomials (i.e., tensor product of piecewise polynomials of degree
k), then the C°-Q* finite element solution of (1.2) is defined as u;, € VJ* satisfying

(1.3) A(uh,vh) = (f, vp), Yo, € ‘/E)h.

For implementing finite element method (1.3), either some quadrature is used or
the coefficient a(z,y) is approximated by polynomials for computing f fQ aupvy, drdy.
In this paper, we consider the implementation to approximate the smooth coefficient
a(z,y) by its QF Lagrangian interpolation polynomial in each cell. For instance,
consider Q2 element in two dimensions, tensor product of 3-point Lobatto quadrature
form nine uniform points on each cell, see Figure 1. By point values of a(z,y) at
these nine points, we can obtain a Q% Lagrange interpolation polynomial on each cell.
Let ar(x,y) and fr(z,y) denote the piecewise Q* interpolation of a(x,y) and f(z,y)
respectively. For a smooth functions a > C > 0, the interpolation error on each cell e
is maxye, |ar(x) — a(x)| = O(h**1) thus a; > 0 if h is small enough. So if assuming
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2 H. LI AND X. ZHANG

the mesh is fine enough so that a;(x,y) > C > 0, we consider the following scheme
using the approximated coefficients a;(z,y): find @) € V' satisfying

(1.4) Ap(tp,vp) = // arVi - Vodedy = (f,on)n,  Yon €V,
Q

where (f,vp)p denotes using tensor product of (k+1)-point Gauss Lobatto quadrature
for the integral (f,v;). One can also simplify the computation of the right hand side
by using fr(z,y), so we also consider the scheme to find @ satisfying

(1.5) Aq(in,vn) = (frovn), Yon € Vi

(a) A ng X ny finite difference grid (b) The corresponding (ny — 1)/2 x
(ny — 1)/2 mesh Qj, for Q? element

Fic. 1. An illustration of meshes.

The schemes (1.4) and (1.5) correspond to the equation

(16) -V (aI(%y)Vﬂ(x, y)) = f(l',y)

At first glance, one might expect (k + 1)-th order accuracy for a numerical method
applying to (1.6) due to the interpolation error a(z,y) — ar(z,y) = O(h**1). But
as we will show in Section 4.1, the difference between exact solutions u and @ to
the two elliptic equations (1.1) and (1.6) is O(h**2) in L?(Q)-norm under suitable
assumptions. The main focus of this paper is to show (1.4) and (1.5) are (k + 2)-
th order accurate finite difference type schemes via the superconvergence of finite
element method. Such a result is very interesting from the perspective that a fourth
order accurate scheme can be constructed even if the coefficients in the equation are
approximated by quadratic polynomials, which does not seem to be considered before
in the literature.

Since only grid point values of a(x,y) and f(z,y) are needed in scheme (1.4) or
(1.5), they can be regarded as finite difference type schemes. Consider a uniform
ng X ny grid for a rectangle © with grid points (z;,y;) and grid spacing h, where n,
and n, are both odd numbers as shown in Figure 1(a). Then there is a mesh Q;, of
(ny —1)/2 x (ny — 1)/2 Q? elements so that Gauss-Lobatto points for all cells in Q,
are exactly the finite difference grid points. By using the scheme (1.4) or (1.5) on the
finite element mesh €2, shown in Figure 1(b), we obtain a fourth order finite difference
scheme in the sense that @ is fourth order accurate in the discrete 2-norm at all grid
points.

In practice the most convenient implementation is to use tensor product of (k+1)-
point Gauss Lobatto quadrature for integrals in (1.2), since the standard L?(Q) and
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SUPERCONVERGENCE OF APPROXIMATED COEFFICIENTS 3

H(Q) error estimates still hold [10, 8] and the Lagrangian Q" basis are delta functions
at these quadrature points. Such a quadrature scheme can be denoted as finding
up, € V' satisfying

(1.7) Ap(un,vn) = (fion)n, Yun € Voh,

where Ap,(un,vp) and (f,vn)n denote using tensor product of (k + 1)-point Gauss
Lobatto quadrature for integrals A(up,vp) and (f,vy) respectively. Numerical tests
suggest that the approximated coefficient scheme (1.5) is more accurate and robust
than the quadrature scheme (1.7) in some cases.

1.2. Superconvergence of C%-Q" finite element method. Standard error
estimates of (1.3) are ||u —up|1 < Ch¥||ul|pr1 and ||u —upllo < CRF T ullpr1 [8]. At
certain quadrature or symmetry points the finite element solution or its derivatives
have higher order accuracy, which is called superconvergence. Douglas and Dupont
first proved that continuous finite element method using piecewise polynomial of de-
gree k has O(h?*) convergence at the knots in an one dimensional mesh [11, 12]. In
[12], O(h?*) was proven to be the best possible convergence rate. For k > 2, O(h¥+1)
for the derivatives at Gauss quadrature points and O(h¥*2) for functions values at
Gauss-Lobatto quadrature points were proven in [17, 4, 2].

For two dimensional cases, it was first showed in [13] that the (k + 2)-th order
superconvergence for k > 2 at vertices of all rectangular cells in a two dimensional
rectangular mesh. Namely, the convergence rate at the knots is as least one order
higher than the rate globally. Later on, the 2k-th order (for k > 2) convergence rate
at the knots was proven for Q¥ elements solving —Au = f, see [7, 15].

For the multi-dimensional variable coefficient case, when discussing the supercon-
vergence of derivatives, it can be reduced to the Laplacian case. Superconvergence
of tensor product elements for the Laplacian case can be established by extending
one-dimensional results [13, 22]. See also [16] for the superconvergence of the gradi-
ent. The superconvergence of function values in rectangular elements for the variable
coefficient case were studied in [6] by Chen with M-type projection polynomials and in
[19] by Lin and Yan with the point-line-plane interpolation polynomials. In particu-
lar, let Zy denote the set of tensor product of (k+ 1)-point Gauss-Lobatto quadrature
points for all rectangular cells, then the following superconvergence of function values
for Q* elements was shown in [6]:

1/2
18) (p* D fulw,y) —un(z,y) < Ch*|lullhye, k>2,
(z,y)€Z0o
(1.9) max |u(z,y) — up(z,y)| < CH 2 h|ulki2000, k> 2.
(z,9)€Zo

In general superconvergence of (1.3) has been well studied in the literature. Many
superconvergence results are established for interior points away from the boundary
for various domains. Our major motivation to study superconvergence is to use it for
constructing a finite difference scheme, thus we only consider a rectangular domain
for which all Lobatto points can form a finite difference grid.

We are interested in superconvergence of function values for Q* element when the
computation of integrals is simplified. For one-dimensional problems, it was proven
in [12] that O(h?*) at knots still holds if (k + 1)-point Gauss-Lobatto quadrature
is used for P? element. Superconvergence of the gradient for using quadrature was
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4 H. LI AND X. ZHANG

studied in [17]. For multidimensional problems, even though it is possible to show
(1.8) holds for (1.3) with accurate enough quadrature, it is nontrivial to extend the
superconvergence proof to (1.7) with only (k + 1)-point Gauss Lobatto quadrature.
Superconvergence analysis of the scheme (1.7) is much more complicated thus will be
discussed in another paper [18].

1.3. Contributions of the paper. The objective and main motivation of this
paper is to construct a fourth order accurate finite difference type scheme based on the
superconvergence of C%-Q? finite element method using Q2 polynomial coefficients in
elliptic equations and demonstrate the accuracy. The main result can be easily gen-
eralized to higher order cases thus we keep the discussion general to Q¥ (k > 2) and
prove its (k + 2)-th order superconvergence of function values when using PDE coef-
ficients are replaced by their Q¥ interpolants: (1.8) still holds for both schemes (1.4)
and (1.5). Moreover, (1.4) and (1.5) have all finite element method advantages such
as the symmetry of the stiffness matrix, which is desired in applications. The scheme
(1.4) or (1.5) is also an efficient implementation of C%-QF finite element method since
only QF coefficients are needed to retain the (k 4 2)-th order accuracy of function
values at the Lobatto points.

The paper is organized as follows. In Section 2, we introduce the notations and
review standard interpolation and quadrature estimates. In Section 3, we review
the tools to establish superconvergence of function values in C°-QF finite element
method (1.3) with a complete proof. In Section 4, we prove the main result on the
superconvergence of (1.4) and (1.5) in two dimensions with extensions to a general
elliptic equation. All discussion in this paper can be easily extended to the three
dimensional case. Numerical results are given in Section 5. Section 6 consists of
concluding remarks.

2. Notations and preliminaries.

2.1. Notations. In addition to the notations mentioned in the introduction, the
following notations will be used in the rest of the paper:

e 1 denotes the dimension of the problem. Even though we discuss everything
explicitly for n = 2, all key discussions can be easily extended to n = 3. The
main purpose of keeping n is for readers to see independence/cancellation of
the dimension n in the proof of some important estimates.

e We only consider a rectangular domain 2 with its boundary 0f2.

e ; denotes a rectangular mesh with mesh size h. Only for convenience, we
assume 2, is an uniform mesh and e = [z, —h, 2.+ h] X [y — h, ye + 1] denotes
any cell in j, with cell center (z.,y.). The assumption of an uniform
mesh is not essential to the proof.

kE k o
e QF(e) = {p(ymy) = Zo Zopijxly], (z,y) € e} is the set of tensor product of
=0 j=

polynomials of degree k on a cell e.

o Vi = {p(z,y) € C°() : ple € Q*(e), Ve € Qp,} denotes the continuous
piecewise QF finite element space on Q.

e Vi={v, €eVh:iv, =0 on 09}.

e The norm and seminorms for W*P(Q) and 1 < p < +oo, with standard
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SUPERCONVERGENCE OF APPROXIMATED COEFFICIENTS 5

modification for p = +oo:

1/p

lullepo=| D // 0L u(x,y)|Pdady |
i+i<k

1/p

ena={ 2 // 0L0]u(w, y)Pddy |
i+j=k

1/p
ulip = < [ outeppasas+ [ |a;;u<x,y>|pdxdy> .
Q Q

Notice that [u]x11p.0 = 0 if u is a Q¥ polynomial.
e |[ullx.0, [u|rq and [u]go denote norm and seminorms for H*(Q) = W*2(Q).
e When there is no confusion, {2 may be dropped in the norm and seminorms.
e For any v, € V3, 1 <p< +4ooand k > 1,

! !
fop,Q 1= lz [[vnl i,p,e] s |onlkpo = lz |vh|i,p,81 :
e

e
e Let Zj . denote the set of (k+ 1) x (k+ 1) Gauss-Lobatto points on a cell e.
Zo =, Zo,e denotes all Gauss-Lobatto points in the mesh €y,.
o Let ||ull2,z, and ||u||co,z, denote the discrete 2-norm and the maximum norm
over Zj respectively:

[[on]

lulla.zo = [P Y Ju@ )| » lullez, = max |u(z,y)].
(z,y)€Z0 (@.9)€Z0

e For a smooth function a(x,y), let a;(x,y) denote its piecewise Q* Lagrange
interpolant at Zy . on each cell e, i.e., ar € V" satisfies:

a(x7y) = al(xvy)a V(.I,y) € Zo.

e Pk(t) denotes the polynomial of degree k of variable .
e (f,v) denotes the inner product in L?(Q):

(f,v) = /Q Sfvdxdy.

e (f,v);, denotes the approximation to (f,v) by using (k + 1) x (k + 1)-point
Gauss Lobatto quadrature for integration over each cell e.

The following are commonly used tools and facts:
o K =[-1,1] x [-1,1] denotes a reference cell.
e For v(x,y) defined on e, consider 0(s,t) = v(sh + @, th + y.) defined on K.
e For n-dimensional problems, the following scaling argument will be used:

21) B Polkpe = [0l k0 BT PRlepe = Bk 1 <P < 0.

e Sobolev’s embedding in two and three dimensions: H?(K) < C°(K).

This manuscript is for review purposes only.
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6 H. LI AND X. ZHANG

e The embedding implies

1 llo,o0,ic < CNlF 2,0V € HY(K) k> 2,

£l soic < Cllflljsr 0.0 VS € HFFHE), | > 2.

e Cauchy Schwarz inequalities:

1 1
2 2
znuk,envuk,es@unze) <Zvlli,e> Nallose = O3
e e e

e Poincaré inequality: let f be the average of f € H 1(f( ) on K, then

k,2,e-

|f - f|07p7[( < C|vf|o7p7[(a p>1

e For k > 2, the (k + 1) x (k + 1) Gauss-Lobatto quadrature is exact for
integration of polynomials of degree 2k —1 > k+ 1 on K.

e Any polynomial in Qk(f( ) can be uniquely represented by its point values at
(k4 1) x (k + 1) Gauss Lobatto points on K, and it is straightforward to
verify that the discrete 2-norm ||p||2,z, and L?(Q2)-norm ||p||o.q are equivalent
for a piecewise Q* polynomial p € V.

e Define the projection operator II; : @ € L'(K) — II14 € Q' (K) by

(2.2) / /K (I &) wdzdy = / /K twdzdy, Yw € Q(K).

Notice that II; is a continuous linear mapping from L2(K) to HY(K) (or
H?(K)) since all degree of freedoms of II;4 can be represented as a linear
combination of [z @(s,t)p(s,t)dsdt for p(s,t) = 1,s,t,st and by Cauchy

Schwarz inequality | [ [z @(s, t)p(s,t)dsdt| < lallg 2. 7Pl & < Clltllg o -

2.2. The Bramble-Hilbert Lemma. By the abstract Bramble-Hilbert Lemma
in [3], with the result ||v]/mp.0 < C(Jv|op.a + [Vlmpa) for any v € W™P(Q) [21, 1],
the Bramble-Hilbert Lemma for Q* polynomials can be stated as (see Exercise 3.1.1
and Theorem 4.1.3 in [9]):

THEOREM 2.1. If a continuous linear mapping 11 : HMY(K) — HMY(K) satis-
fies v = v for any v € Q¥(K), then

(2.3) =Tl g < Cludyyy g Yu€ HSA(E).

Thus if1(+) is a continuous linear form on the space HMV(K) satisfying l(v) = 0,Yv €
QF(K), then .
(W) < Ol glulysr iy Yu € HYHE),

where ||1| is the norm in the dual space of HF1(K).

I
k+1,K

2.3. Interpolation and quadrature errors. For QF element (k > 2), consider
(k+1) x (k + 1) Gauss-Lobatto quadrature, which is exact for integration of @Q?*~!
polynomials.

It is straightforward to establish the interpolation error:

THEOREM 2.2. For a smooth function a, |a — arlo,co,0 = O(K* ) |alkt1,00,0-

This manuscript is for review purposes only.
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Let s;,t; and w; (j =1,---,k+1) be the Gauss-Lobatto quadrature points and
weight for the interval [—1,1]. Notice f coincides with its Q* interpolant fl at the
quadrature points and the quadrature is exact for integration of f 1, the quadrature
can be expressed on K as

k+1Ek+1

Z Zf(siatj)wiwj = // fr(z, y)dzdy,
i=1 j=1 K
thus the quadrature error is related to interpolation error:
R k+1k41l R X
J[ dedsay =33 fsstywis = [[ iy~ [[ fite.say
K i=1 j=1 K K

We have the following estimates on the quadrature error:

THEOREM 2.3. For n =2 and a sufficiently smooth function a(x,y), if k > 2 and
m 18 an integer satisfying k < m < 2k, we have

//e a(x,y)drdy — //P ar(z,y)dxdy = O(hm+%)[a]m7e — O(hm+n)[a]m,oo,e-

Proof. Let E(a) denote the quadrature error for function a(z,y) on e. Let E(a)
denote the quadrature error for the function a(s,t) = a(sh + xe,th + y.) on the
reference cell K. Then for any f € H™(K) (m > k > 2), since quadrature are
represented by point values, with the Sobolev’s embedding we have

1B < Clflocoic < CUf o i

Thus E(.) is a continuous linear form on H™(K) and E(f) = 0 if f € Q™ (K).
With (2.1), the Bramble-Hilbert lemma implies

E(a)] = h"|E@)| < Ch"(d],, 5 5 = O H)[almze = O™ ) adlnoce: O

THEOREM 2.4. Ifk > 2, (f.v) — (fy vn)n = O )| fllisallonllzs  Von € VP,

Proof. This result is a special case of Theorem 5 in [10]. For completeness, we
include a proof. Let E(-) denote the quadrature error term on the reference cell
K. Consider the projection (2.2). Let II; denote the same projection on e. Since f[l
leaves Q°(K) invariant, by the Bramble-Hilbert lemma on IT;, we get oy, fﬁlfzh}lﬁ <
||7A)h _HlﬁhHLK < C[ﬁhh,f( thus [Hlﬁhh,i( < [@h]l,f{ + [@h _Hlﬁh]Lf( < C[@h]Li{' By
setting w = II, 9, in (2.2), we get |1£[1f)h|0j{ < [0nlg g For k > 2, repeat the proof of
Theorem 2.3, we can get

|E(fTin)| < Clfbnly 0 g < C(f s Mitnlg s i + i g Tonly o 2)s

where the fact [ﬁlﬁh]l,oo, i = 0 for I > 2 is used. The equivalence of norms over
Q'(K) implies
\E(fTon)| < C(fljpo i Mtnlo g + [l Monly z)

< C([fpyoilonlo & + i1 g0l )

This manuscript is for review purposes only.
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8 H. LI AND X. ZHANG

Next consider the linear form f e HYK) = BE(f(on —11103)). Due to the embedding
H*(K) < C°(K), it is continuous with operator norm < C||o;, — II194]|, 5 since

|E(f (0n — Thon))| < CIf(0n = Thon)lg oz < Clflo o ic10n — bl oo &
< C”]EH/CK”ﬁh - ﬂlf)h”o,f('
For any f € Q*1(K), E(fo,) = 0. By the Bramble-Hilbert lemma, we get
|E(f(0n — Thon))| < Cflg g l1on = Tadnlly g < CUf )y i [0n) 4 -
So on a cell e, with (2.1), we get

E(fvn) = h"E(fon) = ChH**2([flrrzelvnloe + [flrrrelvnlie + [flrelvnlz.e)-

Summing over e and use Cauchy Schwarz inequality, we get the desired result. 0
THEOREM 2.5. For k> 2, (f,vn) — (f1,vn) = OB )| fllrazllvnle, Vo, € V.
Proof. Repeat the proof of Theorem 2.4 for the function f — f; on a cell e, with

the fact [frlk+1,p,e = [f1le+2,pe = 0, we get

E[(f — fr)vn] = CR*2([flrs2.elvnloe + [flesrelvnlie + [f = filkelvnlae)-

we get [f — frlk,e < Chf]k+1,e- Notice that (f — fr,vn)n =0, with (2.1), we get

By (2.3) on the Lagrange interpolation operator and the fact [f— fr]k.e < |f—frllk+1.e;

(fyon) = (fryon) = (f = fr.on) = (F = fr,on)n = O] Fllivallonll2, Yo € V.
a

3. The M-type Projection. To establish the superconvergence of C°-Q* finite
element method for multi-dimensional variable coefficient equations, it is necessary to
use a special polynomial projection of the exact solution, which has two equivalent
definitions. One is the M-type projection used in [5, 6]. The other one is the point-
line-plane interpolation used in [20, 19].

For the sake of completeness, we review the relevant results regarding M-type pro-
jection, which is a more convenient tool. Most results in this section were considered
and established for more general rectangular elements in [6]. For simplicity, we use
some simplified proof and arguments for Q* element in this section. We only discuss
the two dimensional case and the extension to three dimensions is straightforward.

3.1. One dimensional case. The L?-orthogonal Legendre polynomials on the
reference interval K = [—1, 1] are given as

1 d*

1
— 2 k . _ _ _ 2
= S (= D o) = LL() = t, () = 5 (3¢ — 1),

Lk(t)
Define their antiderivatives as M-type polynomials:

1 dkfl
= kKl dih—1

1 1

My 41 (2)

which satisfy the following properties:
o My(£1)=0,Vk > 2.

This manuscript is for review purposes only.
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262 o If j —i# 0,42, then M;(t) L M;(t), i.e., [*, M;(t)M;(¢t)dt = 0.

263 e Roots of My (t) are the k-point Gauss-Lobatto quadrature points for [—1,1].
264 Since Legendre polynomials form a complete orthogonal basis for L%([—1,1]), for any
265 f(t) € HY([-1,1]), its derivative f'(t) can be expressed as Fourier-Legendre series

0o - 1 1
266 FO=3binly®, b=+ 3) [ P
Jj=0 N
267 Define the M-type projection
k
268 fi(t) = Z b M;(t),
j=0

269  where by = w is determined by b, = w to make fi(£1) = f(£1).
270  Since the Fourier-Legendre series converges in L2, by Cauchy Schwarz inequality,
t

1l fi) = £(0) = Jim [ () - F@)]de < lim VIS0 - 5Ol =0

k—oo J_

272 We get the M-type expansion of f(t): f(t) = klim fu(t) = > bjM;(t). The remainder

273 Ry(t) of M-type projection is

274 R[fIe(t) = f(t) — fu(t) = D b M;(t).

J=k+1
75 The following properties are straightforward to verify:
6 o fu(1) = f(&1) thus Ry(&1) = 0 for k > 1.
R[f](t) L o(t) for any v(t) € P*=2(t) on [-1,1], i.e., [1| R[f]svdt = 0.
R[f],.(t) L v(t) for any v(t) € P*~1(t) on [-1,1].
For j > 2, b = (j — H[FOL@)]5 ] = 1, FOUG — D) ()t
For j <k, [b;] < Cillfllg o0, -
IR Tk @lo,00, < Crllfllo,00,i-

282 3.2. Two dimensional case. Consider a function f(s,t) € H2(K) on the ref-
283 erence cell K = [—1,1] x [—1,1], it has the expansion

=~
[ ]

oo
[}

DN
%
e o o

284 Fls,t) =D > biy Mi(s)My(1),
i=0 j=0
285 where
~ 1 A o N R
286 b0,0 = Z[f(_lz _1) + f(_lv 1) + f(17 _1) + f(17 1)}7
_ P Y A )
287 bo,j,b1,; = 1 / [fe(1,t) £ fi(=1,0)]l;—1(t)dt, j>1,
-1
A 2i—1 (' . . _
288 bi,Oy bi71 = 1 [fs(s, 1) + fs(s, 71)]11_1(S)d5, (3 Z 1,
-1
A 2t —1)(27 —1 A
289 bij = M // fst(S,t)li_1(5)lj_1(t)d5dt, i,j > 1.
290 ’ 4 K

This manuscript is for review purposes only.



291

307

ot

316
317

10 H. LI AND X. ZHANG

Define the Q* M-type projection of f on K and its remainder as

k

k
fk ks, t = Z Zi) j(t), R[ﬂk,k(s,t) = f(S, t) — fk,k(s,t)-

i=0 j=0

For f(x,y) on e = [xe —h,ze + h] X [ye = h,ye —|—h}7 let f(svt) = f(sh + e, th + y.)
then the Q¥ M-type projection of f on e and its remainder are defined as

fele,y) = Frn 2, 2250, Rlflia(ay) = £(2.9) = fra(a,y).

THEOREM 3.1. The Qk M-type projection is equivalent to the Q* point-line-plane

projection Il defined as follows: R
1. Ia = 4 at four corners of K = [—1,1] x [-1,1]. R
2. IIu — @ s orthogonal to polynomials of degree k — 2 on each edge of K.
3. Ila — @ is orthogonal to any v € Q*~2(K) on K.

Proof. We only need to show that M-type projection fk,k(& t) satisfies the same
three properties. By M;(+1) =0 for j > 2, we can derive that f;, = f at (£1,=£1).
For instance, fk,k(l, 1) = b070 + b170 + b071 + bl,l = f(l, 1)

The second property is implied by M;(+1) = 0 for j > 2 and M, (t) L P*~2(t) for
j > k+1. Forinstance, at s = 1, fr1(1,8)=f(1,8) = > (boj+b1,;)M;(t) L P*2(t)

j=k+1
n [—1,1].
The third property is implied by M;(t) L P*=2(¢) for j > k + 1. 0
LEMMA 3.1. Assume f € HF*Y(K) with k > 2, then
L bijl < Ckll fllg oo,z Visi < k.

2. |l3i7j|§0k|f‘i—|:j,2,l§'7 Vi,j>1,i+75<k+1

3. |bi,k+1| < Ck|f‘k+1,2,f(’ O0<i<k+1

4. If f € H*2(K), then |bigs1| < Cklflyynopy 1<i<k+1

Proof. First of all, similar to the one-dimensional case, through integration by
parts, blj can be represented as integrals of f thus |b;. il < CkaHO o Tor i, j < k.

By the fact that the antiderivatives (and higher order ones) of Legendre polyno-
mials vanish at +1, after integration by parts for both variables, we have

Vi, j>1i+5<k+1.

bl < Ci / [ 10101 flasdt < Ol flpy 0

For the third estimate, by integration by parts only for the variable ¢, we get

Vi > 1, |bigs1] < Ch // 0,07 f|dsdt < Ck|f|k+1,2,f(-
K

For 507k+1, from the first estimate, we have \Bo,k+1| < CkaHO ok S C’k||f|\k+1 0.

thus 307k+1 can be regarded as a continuous linear form on H k“(K’ ) and it vanishes
if f € Q¥(K). So by the Bramble-Hilbert Lemma, |bo k41| < Crlf]y 410 -
Finally, by integration by parts only for the variable ¢, we get

|bi,k+1] < Ch // 0,07 fldsdt < Ck|f|k+22f(, 1<i<k+1.
« 2,
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LEMI\/{AA3.2. Fork > 2, we have L A
|R[ }kk|oooK§Ck[f]k+1K: |R[ ] <Ck[f]k+1 K-
|(9 R[ ]k k|0 00, K < Ck[f]kJrl K> ‘3 R[ ]k k|02 K < Ck[f]kJrl,f('
3. fff( 85R ngdet =0

PT’OOf. Lemma 31 implies kakaO,oo,R' S Ck”fHO,oo,f( and ||3sfk7k||07oo7f( S O’f”fHO,oo,f('I
Thus

V(s,t) € K, [R[flrr(s, O] < [frew(s, )] + 1 (5,0)] < Cull fllg o i < Cill fllgn -

Notice that here Cy, does not depend on (s,t). So R[f].x(s,t) is a continuous linear
form on H¥*1(K) and its operator norm is bounded by a constant independent of
(s,t). Since it vanishes for any f € Q¥(K), by the Bramble-Hilbert Lemma, we get
\R[f]r.r(s,t)] < C’k[f]kﬂ’f{ where C}, does not depend on (s,t). So the L™ estimate
holds and it implies the L? estimate.

The second estimate can be established similarly since we have

105 R[f ke, )] < 10 fie(s, ) + 105 f (5,0)] < Cull flly o i < CulFllpr -

The third equation is implied by the fact that M;(¢) L 1 for j > 3 and M}(¢) L 1
for 7 > 2. Another way to prove the third equation is to use integration by parts

1
/ OuR[flkr1hirdsdt = / (R[ﬂk+1,k+1(lat) - R[f]kﬂ,kﬂ(—lat)) dt,
K

-1
which is zero the second property in Theorem 3.1. O

For the discussion in the next few subsections, it is useful to consider the lower
order part of the remainder of R[f] k

LEMMA 3.3. For f € H*"2(K) with k > 2, define R[f]k+17k+1—f%[f]k,k = Ri+R,
with

sz k1 Mi () M1 (1),

(3'1) k+1 k+1

= b1 Mipa ()M (1) = Mia (8)ba (8),  brga(t) =Y bera i My(t
=0 =

They have the following properties:
1. [[# OsRidsdt = 0.

2. |65R1|0 0, K < Ck‘f|k+2 2,K7 |88R1|0,2,f( = Ck‘|f|k+2,2f<'
3. |be41(t)] < Ck|f|k+1 K ‘bk+1( )| < Ck‘f|k+2,f(; vt € [-1,1].

Proof. The first equation is due to the fact that My (¢) L 1 since k > 2.
Notice that M{(s) = 0, by Lemma 3.1, we have

|85 Ry (s,1)] sz k1 M (8) My (t)] < Ck‘f|k+2,f<'

So we get the L™ estimate for |9 R; (s, t)| thus the L? estimate.
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Similar to the estimates in Lemma 3.1, we can show |bgy1 ;| < C’k|f\k+1 i for

. k41,
J < k+1, thus |bey1 ()] < Crlflyy g Since b, (t) = Z bk+1]M (t), by the last

estimate in Lemma 3.1, we get |bk+1( )| < C’;€|f|kJr2 - |

3.3. The C°-Q* projection. Now consider a function u(x,y) € H**2(Q), let
up(x,y) denote its piecewise Q* M-type projection on each element e in the mesh
Q. The first two properties in Theorem 3.1 imply that w,(z,y) on each edge is
uniquely determined by u(z,y) along that edge. Thus u,(z,y) is continuous on .
The approximation error v — u,, is one order higher at all Gauss-Lobatto points Zy:

THEOREM 3.2.
Ju = upll2,z, = O 2 |Jullpr2,  Vu € H2(Q).

lu = tplloo,zo = O *2)|Jullit2,00, Y € WH22(Q).
Proof. Consider any e with cell center (z,y.), define (s, t) = u(z. + sh, ye +th).
Since the (k + 1) Gauss-Lobatto points are roots of M1 (¢), Rk-+1 k1] — Rk,k[ ]

vanishes at (k + 1) x (k + 1) Gauss-Lobatto points on K. By Lemma 3.2, we have

|Rk+1,k+1[ﬁ](5,t)‘ < C[a]k+2,f('
Mapping back to the cell e, with (2.1), at the (k + 1) x (k + 1) Gauss-Lobatto
points on e, [u — u,| < Ch*+27% [u]; 42 .. Summing over all elements e, we get

2

e = wpllz,zo < C (R Y WAl | = OB [ulisag.

If further assuming u € W*+2:°(Q), then at the (k+ 1) x (k + 1) Gauss-Lobatto
points on e, [u—wu,| < Ch* 2% [u]p 10 < Ch**2[u])12 0.0, which implies the second
estimate. O

3.4. Superconvergence of bilinear forms. For convenience, in this subsec-
tion, we drop the subscript h in a test function v, € V. When there is no confusion,
we may also drop dzdy or dsdt in a double integral.

LEMMA 3.4. Assume a(z,y) € W3>(Q). For k > 2,
// a(u = up)ove drdy = OB 2)[upszlvll2, Vo€ V™.
Q

Proof. For each cell e, we consider [[ a(u — up),v, dzdy. Let Rlulpr = u— u,
denote the M-type projection remainder on e. Then R[u]j , can be splitted into lower
order part R[uly r — R[u]k+1,x+1 and high order part Rlu]p+1 k+1-

// a(u — up) vy dedy = // Ukt1,k41) 2V // Uk ke — R{Ukt1,k41) 202

We first consider the high order part. Mapping everything to the reference cell K and
let v, denote the average of avs on K. By the last property in Lemma 3.2, we get

Uk41,k+1) 2 Vs dxdy’ ‘// O0s (R[0] k11 k+1)avsdsdt‘

- ] / / 3Rl a0.) ] < |0 (Rflisn k)l 130 a6l 5
K
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375 By Poincaré inequality and Cauchy-Schwarz inequality, we have
376 |(A171A)S — CAL'LA)S|O’2,K < O|V((AMA}S)|O,2)K < C|&|17007K|1A)|1727[( + C|d|0,oo,f(|@|2,2,f('

7 Mapping back to the cell e, with (2.1), by Lemma 3.2, the higher order part is bounded
378 by Chk+2[u]k+2,2,e(|a|l,oo,e|U|1,2,e + |a\o,oo,e|’0\2,2,e) thus

379 S [ atBlulira)avs dody = 00 Dalh 3l ol
e € e
389 = O(h**?)lall1 co.0llullr+20/v]20.
382 Now we only need to discuss the lower order part of the remainder. Let Rlu]g r —

383 R[u]k+1,k+1 = R1 + Rz which is defined similarly as in (3.1). For Ry, by the first two
384  results in Lemma 3.3, we have

385 // (0B )by = // (0 B0) (@95 — G83) < 03Bl 5 1385 — a4l 1
K K
386 < Clilyya,9 g 100s — 403l 5 -

388 By similar discussions above, we get

389 Z // a(Rl):rv:r d.’Edy = O(hk+2>||a||1’00’9

390

|ullk+2,0[v]]2,.0-

391 For Ry, let N(s) be the antiderivative of Mj.11(s) then N(£1) = 0. Let @ be the
302 average of a on K then |a—al,  x < Clal; o, g Since My41(s) L Pk=2(s), we have

393 ; Bk 1(6) M1 (8)0ss = 0. After integration by parts, by Lemma 3.3 we have
K Yk+ +

394 / / (0, Ryt = — / / biss () M1 () (s + Gss)

R ¢
205 _ / / Bis s ()N (5) (@ass + Gabas) — / / B () My (5) (@ — 8)ras

¢ ¢
396 <Clifyyy g(laly o0 7101 2 & +18l1 o k10129 7)-
398 Thus we can get
399 Z//(asz)a@xdmdy = O(h"*?)[|a]lz,00 0 llullis1,0(0]l2.0-
100 So we have [ [, a(u — up)pv, dody = O(R*2)||all2,00,0llullkr2[v]l2, Vv e V. 0
401 LEMMA 3.5. Assume c(x,y) € WH>(Q). For k > 2,
402 // c(u — up)vdrdy = OR*2)|ulpsa o)1, Yo € V.

Q

403 Proof. Let é0 be the average of ¢0 on K. Following similar arguments as in the

404  proof Lemma 3.4,

] Riihsc| =| [ Aliluter - )| < [Ridhsly cle0 - oz
K K

408 < C[u]k+1,2,f([éf}]1,2,f( < C[u]k+1,2,f§'(|é‘0,oo,f(|m1,2,l§' + ‘é|1,oo,f(|ﬁ|0,2,f()'

=
ol
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So with (2.1

J[ ertubnodsdy =1 [ | (Rlauacidsde = 00l el o
e K

H. LI AND X. ZHANG

) we have

which implies the estimate. 0
LEMMA 3.6. Assume b(x,y) € W2>(Q). For k > 2,

// b(u — wp),v dady = O 2) [ullusolv]las Vo € V™.
Q

Proof. Let b0 be the average of bo on K. Following similar arguments as in the
proof Lemma 3.4, we have

o

Wkt1,k4+1) )bo

= ‘// 05 (Rl 1,041) (b0 — b0)

< |8S( [ ]k+1 k+1)|0 2, K‘bv - bv‘o 2,K = < C[ ]k+272,f((‘b|17oo,f(|1A)|072,f( + |b|0,oo,f(|©|1,2,[()~l

Let

Jho

Ry)bo = / (05 R1) (b0 — b0) < 05 R1 |y 5 100 — b0y 5 5

i)

< C|“|k+2,2,f((

N(s) be the antiderivative of My1(s). After integration by parts, we have

)

Ro)bo = — // bre 41 (£) My 11(s) (bsd + bis)

_ / /K b1 (YN (5) (basd + bids + bites)

§C|a|k+1,z,k(|b|2,oo,1%|ﬁ|o,2,f< + |b‘1,oo,1%|@‘1,2,1% + ‘b|0,w,R|ﬁ|2,2,K)'

After combining all the estimates, with (2.1), we have

Jfe

v = h" 1// = O(h"+?)]

LEMMA 3.7. Assume a(z,y) € W2>(Q). For k > 2,

(3.2)

(3.3)

Jh
Jh

a:Uy dxdy = O(hk+2 )Hu”k+2”UH2’ Vo € Vh7

p)avy dady = O(W*2)|[ullkszllv]2, Vv € Vi

Proof. Similar to the proof of Lemma 3.4, we have

[

hn2

<C

k:-‘rl kt1)e Uy dfﬂdy’ =h"?

[

// Os (R[] k41 k+1) a0, dsdt

W1, kr1) (@0, — avt)det‘ < W 2|0s(Rllkr 1,541 g 0, 1 180; — a2l o 5

||27€7
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and

// (88 Yavy; = / (0s Ry )(ady — avy) < |0s R1|02 K\avt — adly o k-
K

Following the proof of Lemma 3.4, with (2.1), we get
> // a(Ry)yvy dzdy = O(WF2)lall1 0o 0 llullki2.0]v]2,0-

Let N(s) be the antiderivative of My1(s). After integration by parts, we have
/ / (0 F2)t, = — / Bt (0) Mg (5) (@5 + )
K K

- / Bt (N (5) (fsn + 2a50) + / Bt (N (s)bsur.
K K

After integration by parts on the t-variable,

t=1

- / /K b1 (1) N (8)abssr = / kﬁt[i)k_,_l(t)N(s)d]ﬁss — [ 11 b1 (1) N (8)abssds o

/ Oulbisr ()N (5)a6ss = / / 1 (ON(8)a + bsr ()N ()]s

By Lemma 3.3, we have the estimate for the two double integral terms
' / / bt ()N (8)(AssDp + 26505t )
K

N0 s 0.

<C( ‘“|k+2 2 K|a‘0 00, &l0l5 2k T |“|k+1 2, &laly 100, K‘”‘z 2 K)

< C|ﬁ’|k+1,2,f((‘&|2,oo,f(|1A]|1,2,f( + |d‘1,oo,f(‘,f)|2,2,f()7

which gives the estimate Ch**2||a||2.00 ql|t|lk+2.e|v|lk+2,c after mapping back to e.
So we only need to discuss the line integral term now. After mapping back to e,
we have

1 t=1 Zoth - y=ye+h
/ bi11(t) Myy1(s)adssds =h / b+1(y) M1 ( W Vavgdr
-t t=—1 Ze—h y=ye—h
Notice that we have
R k+1
bet1(Ye + h) = b1 (1 Zbk-H j = bt1.0 + brr1n
1.t we+h T —x
—(k+ ) [ Duils, Dia(s)ds = (k+ ) / Den(a, e+ Wix(“ 7,
—1 zTe—h

and similarly we get by 1 (ye—h) = bp1(—1) = (k+3) [ Ej: Apu(x, ye—h) k(2522 ) d.
Thus the term by 1 (y) Mg1(*

Le)qu,, is continuous across the top/bottom edge of
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16 H. LI AND X. ZHANG

cells. Therefore, if summing over all elements e, the line integral on the inner edges
are cancelled out. Let L; and L3 denote the top and bottom boundary of €. Then
the line integral after summing over e consists of two line integrals along L1 and Lg.
We only need to discuss one of them.

Let I3 and I3 denote the top and bottom edge of e. First, after integration by
parts k times, we get

R 1 1 k+1
brs1(1) = (k+ %) [1 Dstu(s, 1)l (s)ds = (=1)*(k + %)/ ;ikﬂ a(s, 1)2k1k! (5% — 1)%,.

thus by Cauchy Schwarz inequality we get

8k+1 2 k41
b1 (1)] < Cr / pysil (s, 1)] ds < CLh* 2 |u)pi1.0., -

Second, since v2, is a polynomial of degree 2k w.r.t. y variable, by using (k + 2)-point

Gauss Lobatto quadrature for integration w.r.t. y-variable in [ fe v2, dzdy, we get
Teth
/ 0}, (T, ye + h)dx < Ch™! // v (2, y)dzdy.
ze—h e

So by Cauchy Schwarz inequality, we have

Tc+h Te+h
/ [Vew (2, ye + h)|de < V2R / V2, (2, ye + h)dx < Clv|age.
xe—h xe—h

Thus the line integral along L; can be estimated by considering each e adjacent
to L in the reference cell:

/_1 bre1 (1) M1 (s)a(s, 1) s (s, 1)ds

eNLi#0
< Y Claly oo glbesa (1) |/ g5 (s,1)|ds
eNLy#0
5 Te+h
—O() Y fulisran, [l + h)ldo
eNLy#0 Te—h

3
=0 2) > fulkr12m vl
60L1#0

3 3
=0 %) |[uller1,, [vl]l20 = OB =) [ullki2.0lv]20,

where the trace inequality |[ullk+1,00 < C|lullk+e2.0 is used.
Combine all the estimates above, we get (3.2). Since the % order loss is only due
to the line integral along Ly and Ls, on which v,, = 0 if v € V!, we get (3.3). |

4. The main result.

4.1. Superconvergence of bilinear forms with approximated coefficients.ll
Even though standard interpolation error is a — a; = O(h**1), as shown in the fol-
lowing discussion, the error in the bilinear forms is related to [[ (a—as) dxdy on each
cell e, which is the quadrature error thus the order is higher. We have the following
estimate on the bilinear forms with approximated coefficients:

This manuscript is for review purposes only.
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197 LEMMA 4.1. Assume a(x,y) € WFt22°(Q) and u(x,y) € H*(Q), then Vv € V!
198 or Vv € H?(RQ),
499 // v, dedy — // arugvy dedy = O(R*2)||al|kt2.00.0] w2 ]|v]|2,

Q Q
500 // Uy vy drdy — // arugvy dedy = O 2)||al|kt2.00.0llul2][v]|2,

Q Q
Y J[ avsvdady~ [[ arsvdody = 00 allsz o alulalol,

Q Q

502 [ awvdzdy ~ [[ aruo dzdy = 0042 allszeallulilo]
503 Q Q
504 Proof. For every cell e in the mesh Qy, let u;v, be the cell average of u,v,. By
505 Theorem 2.2 and Theorem 2.3 , we have

506 //e(a[ — Q) Uy Uy
507 ://e(al - a)m+//e(a1 — a)(UgVy — UpVy)
iz [[er=a [[ e+ [[ @~ 0w, - )

509 =O(h"*?)|al12,00,0|4l U”Le+@<hk+1)||a||k+1,m,9// v = Totl-
e

1,e|

By Poincaré inequality and Cauchy-Schwarz inequality, we have

|2,ellvll2,e

[ 1wz, ~ vt = 0@ (s o = O

511 thus [ (ar—a)uzve = O(R*F?)[lallkt2,00 02,6
512 we have [[,(ar — a)ugvy = O(h**2)||al|ks2,00,0[ull2[|v]|2. Similarly we can establish
513 the other three estimates. a

514 Lemma 4.1 implies that the difference in the solutions to (1.6) and (1.1) is O(h*F*2)
515 in the L?(Q)-norm:

THEOREM 4.1. Assume a(x,y) € WF22°(Q) and ar(z,y) > C > 0. Let u, i €
H(Q) be the solutions to

|v]|2,e- Summing over all elements e,

A(u,v) := // aVu - Vodzdy = (f,v), Yve Hy(Q)

and

Ar(a,v) = //aIVfL -Vvdzdy = (f,v), Yo € Hy(Q)

516 respectively, where f € L*(). Then ||u — illo = O(K**2)||a||k+2.00.0ll f]lo-
517 Proof. By Lemma 4.1, for any v € H?(Q) we have

518 Ar(u —a,v) = Ar(u,v) — Ar(a,v) = [Ar(u,v) — A(u, v)] + [A(u,v) — Ar(@,v))
348 = Ar(u,v) — A(u,v) = O ) [lallk+2,00 2llull2]|v]2-
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18 H. LI AND X. ZHANG
Let w € H(2) be the solution to the dual problem
Ar(v,w) = (u—@,v) Yo € H} ().
Since a; > C > 0 and |as(z,y)| < Cla(z,y)|, the coercivity and boundedness of the
bilinear form Ay hold [8]. Moreover, ay is Lipschitz continuous because a(z,y) €

Wk+2.2(Q)). Thus the solution w exists and the elliptic regularity ||w||s < C|lu — 1o
holds on a convex domain, e.g., a rectangular domain €2, see [14]. Thus,

lu—all§ = (u—@,u—a) = Ar(u —a,w) = OB *?)||al| k12,000 ull]lw]2-
With elliptic regularity ||w|l2 < C|lu — @0 and |Jull2 < C||f]lo, we get

lu—dllo = O *2)||allk+2.00.21l fllo- 0

REMARK 1. For even number k > 4, (k + 1)-point Newton-Cotes quadrature rule
has the same error order as the (k + 1)-point Gauss-Lobatto quadrature rule. Thus
Theorem 4.1 still holds if we redefine ar(x,y) as the QF interpolant of a(x,y) at the
uniform (k4 1) x (k + 1) Newton-Cotes points in each cell if k > 4 is even.

4.2. The variable coefficient Poisson equation. Let u(z,y) € H}(Q) be the
exact solution to

A(u,v) := // aVu - Vodzdy = (f,v), Yve Hi(Q).
Q
Let iy, € VJ*(Q) be the solution to

Ap(iin, on) = / / ar Vi, - Yoy dedy = (f,on)n, You € V(9.
Q

THEOREM 4.2. For k > 2, let u, be the piecewise QF M-type projection of u(x,y)
on each cell e in the mesh Q. Assume a € WF2°(Q) and u, f € H*2(Q), then

Ar(an = up,vp) = OB 2)([lallks2,00 lullkrz + 1 fllk+2) lonll2,  Von € Vg

Proof. For any v, € V", we have

Ar(an,vn) — Ar(up, vp)
=(f,vn) — Ar(up,vn) + (f,on)n — (f,vn)
=A(u,vn) — Ar(up,vn) + (f,vn)n — (f, vn)
=[A(u, ) = Ar(u,v0)] + [Ar(u — up, vn) — A(u = up, va)] + A(w = up, vn) + (f,0n)n — (f,0n) ]

Lemma 4.1 implies A(u,vp,) — Az(u,vp) = O(hF2)|allk+2.00 | ull2||vn]|2- Theorem
2.4 gives (f,vn)n — (f,vn) = O(R**?)||flli42/lvn]l2. By Lemma 3.4, A(u — up,vh) =
O(h**+2)|allz,00 el o+2]lvnl2-

For the second term Aj(u — up,vp) — A(u — up,vp) = [[o(a—ar)V(u—u,)Vop,
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by Theorem 2.2 and Lemma 3.2, we have

‘// (@ —ar)(u—1up)z0,vn| < |a — arlo,00,0 Z // (v = up) 2Oz vnl
Q c e
<la —arlo,c0.0 Z (u = up)a

€

0,2,e |Uh|1,2,e

= O Y lallkt1,000 D lullkraellon

e

= O(h** ) allk-41.00 2l k41 lon 1 0

|1,e

THEOREM 4.3. Assume a(z,y) € WFt2:2(Q) is positive and u(z,y), f(z,y) €
H*2(Q). Assume the mesh is fine enough so that the piecewise Q interpolant sat-
isfies ar(xz,y) > C > 0. Then y, is a (k+ 2)-th order accurate approzimation to u in
the discrete 2-norm over all the (k+ 1) x (k + 1) Gauss-Lobatto points:

i — ull2,z, = O ) (lallk+2,00 lulli2 + [ Flli+2)-

Proof. Let 0}, = 1, — up. By the definition of u, and Theorem 3.1, it is straight-
forward to show 6, = 0 on 9€2. By the Aubin-Nitsche duality method, let w € Hg ()
be the solution to the dual problem

Ar(v,w) = (0,v) Yo € H(Q).

By the same discussion as in the proof of Theorem 4.1, the solution w exists and the
regularity ||w|2 < C||0r]]o holds.
Let wy, be the finite element projection of w, i.e., wy, € V' satisfies

A[(Uh,wh) = (Gh,vh) Yoy, € Voh.
Since wy, € V&, by Theorem 4.2, we have
(4.1) 11013 = (On,08) = Ar(On,wn) = O(h)([lall ks 2,00 lullisa + | Fllx+2)wnll2.

Let w; = Il;w be the piecewise Q' projection of w on €, as defined in (2.2). By the
Bramble-Hilbert Lemma, we get ||w — wy||2,e < Clw]s,e < C||wll2,e thus

lw — w2 < Cllwll2.

By the inverse estimate on the piecewise polynomial wy — wy, we have
(42)  Jwnlle < llwn — wil + lwr —wlls + |wlz < Chuwn - wi ]l + Clwls.
With coercivity, Galerkin orthogonality and Cauchy Schwarz inequality, we get
Cllwp—wrll} < Ap(wp—wr, wp—wy) = Ap(wp,—wr,w—wy) < Cllw—wrl|1[Jwp,—wy]1,
which implies
(4.3) l[wn —wrlly < Cllw —wrlly < Chljwllz.

With (4.2), (4.3) and the elliptic regularity ||w||2 < C||0r]l0, we get

(4.4) lwnlle < Cllwlla < C[|6n]lo-
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By (4.1) and (4.4) we have

16,113 < O ) (llallk+2,00 llli+2 + 11 Flln+2)116 o,

ie.,

I = upllo = 10nllo = O ) (llallk+2,00 [ullisz + [1fll5+2)-

Finally, by the equivalency between the discrete 2-norm on Zy and the L?(£2) norm
in the space V", with Theorem 3.2, we obtain

1 — ull2,zy = O ) (llallks200lullisz + [1f]1k42)- O

REMARK 2. To extend Theorem 4.3 to homogeneous Neumann boundary condi-
tions or mixzed homogeneous Dirichlet and Neumann boundary conditions, dual prob-
lems with the same homogeneous boundary conditions as in primal problems should be
used. Then all the estimates such as Theorem 4.2 hold not only for v € V{* but also
for any v in V.

REMARK 3. With Theorem 2.5, all the results hold for the scheme (1.5).

REMARK 4. It is straightforward to verify that all results hold in three dimensions.

Notice that the in three dimensions the discrete 2-norm is
1

el z, = [h?’ > |u<x>|2] .

xXEZy

REMARK 5. For discussing superconvergence of the scheme (1.7), we have to con-
sider the dual problem of the bilinear form A instead and the exact Galerkin orthogo-
nality in (1.7) no longer holds. In order for the proof above holds, we need to show the
Galerkin orthogonality in (1.7) holds up to O(h**2)|lvy||2 for a test function vy, € Vi,
which is very difficult to establish. This is the main difficulty to extend the proof of
Theorem 4.3 to the Gauss Lobatto quadrature scheme (1.7), which will be analyzed in
[18] by different techniques.

4.3. General elliptic problems. In this section, we discuss extensions to more
general elliptic problems. Consider an elliptic variational problem of finding u €
H}(Q) to satisfy

Au,v) := Vol aVu 4+ bVuv + cuv) dedy = (f,v),Yv € HL(Q),
0
Q

ai; 612
a1
ficients a, b and ¢ are smooth, and A(u,v) satisfies coercivity A(v,v) > C|v|; and
boundedness |A(u,v)| < C||lul|1||v]|1 for any u,v € H}(Q).

By the estimates in Section 3.4, we first have the following estimate on the Q¥
M-type projection uy:

LEMMA 4.2. Assume a;;j(z,y),bi(z,y) € W2>(Q) and b;(z,y) € W?>°(Q), then

_ [ O ) |lullksallvnlla, Vo € V3,
A(u — up7vh) = { O(hk+1'5)||U||k+2HUh||2; Yoy, € V.

If a10 = as1 =0, then

Al =y, o) = O ) Julssllonllz, Von € V.

where a(z,y) = is positive definite and b = [b; bg]. Assume the coef-
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Let ay, by and ¢; denote the corresponding piecewise Q¥ Lagrange interpolation
at Gauss-Lobatto points. We are interested in the solution ), € V' to

A[(ﬂh,vh) = // (V’U;{a]v&h + brVapv, + C[ﬂh’l)h) dacdy = <f, vh>h,Vvh € Voh.
Q

We need to assume that Ay still satisfies coercivity A;(v,v) > C|v||; and bound-
edness |A7(u,v)| < C|lul|1||lv]]1 for any u,v € H(£2), so that the solution u € HE ()
of the following problem exists and is unique:

A](U,”U):(f,’l}), V'L}EH&(Q)
We also need the elliptic regularity to hold for the dual problem:
Ar(v,w) = (f,v), Yo e Hy(Q).

. . . . . 1
For instance, if b = 0, it suffices to require that eigenvalues of a; + ¢; (O (1)> has
a uniform positive lower bound on (2, which is achievable on fine enough meshes if
a+c 0 (1)> are positive definite. This implies the coercivity of A;. The boundedness

of A follows from the smoothness of coefficients. Since a; and c¢; are Lipschitz
continuous, the elliptic regularity for A; holds on a convex domain [14].

By Lemma 4.1 and Lemma 4.2, it is straightforward to extend Theorem 4.2 to
the general elliptic case:

THEOREM 4.4. For k > 2, assume a;j,b;,c € WF2°(Q) and u, f € H**2(Q),
then

Ay (i — 1y, vp) = { O(W**2)(lullk+2 + 1 fllk+2)lvnll2,  Vor € Vi,
" O ) (lullesz + | fl+2)llvall2,  Yon € VP,

And if a0 = a1 =0, then
Ap (i, — up,vp) = O ) (|ullra + || fllks2) [onlla,  Von € V.

With suitable assumptions, it is straightforward to extend the proof of Theorem
4.3 to the general case:

THEOREM 4.5. For k > 2, assume a;j,b;,c € WF2°(Q) and u, f € H*+2(Q),
Assume the approximated bilinear form Ay satisfies coercivity and boundedness and
the elliptic regularity still holds for the dual problem of Ar. Then ay, is a (k + 2)-th
order accurate approximation to u in the discrete 2-norm over all the (k+1) x (k+1)
Gauss-Lobatto points:

I — ull2,zy = O ) (lullisz + [1fllk42)-

REMARK 6. With Neumann type boundary conditions, due to Lemma 3.7, we can
only prove (k + 1.5)-th order accuracy

i — ull2,z, = OB 9) (Jullerz + [1f e+2),

unless there are no mixed second order derivatives in the elliptic equation, i.e., ajo =
a1 = 0. We emphasize that even for the full finite element scheme (1.3), only (k+1.5)-
th order accuracy at all Lobatto points can be proven for a general elliptic equation
with Neumann type boundary conditions.
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22 H. LI AND X. ZHANG

5. Numerical results. In this section we show some numerical tests of C9-Q?
finite element method on an uniform rectangular mesh and verify the order of accuracy
at Zp, i.e., all Gauss-Lobatto points. The following four schemes will be considered:

1. Full Q? finite element scheme (1.3) where integrals in the bilinear form are ap-
proximated by 5x 5 Gauss quadrature rule, which is exact for Q° polynomials
thus exact for A(up,v,) if the variable coefficient is a Q5 polynomial.

2. The Gauss Lobatto quadrature scheme (1.7): all integrals are approximated
by 3 x 3 Gauss Lobatto quadrature.

3. The schemes (1.4) and (1.5).

The last three schemes are finite difference type since only grid point values of the co-
efficients are needed. In (1.4) and (1.5), As(up,vp) can be exactly computed by 4 x 4
Gauss quadrature rule since coefficients are Q2 polynomials. An alternative finite dif-
ference type implementation of (1.4) and (1.5) is to precompute integrals of Lagrange
basis functions and their derivatives to form a sparse tensor, then multiply the tensor
to the vector consisting of point values of the coefficient to form the stiffness ma-
trix. With either implementation, computational cost to assemble stiffness matrices
in schemes (1.4) and (1.5) is higher than the stiffness matrix assembling in the sim-
pler scheme (1.7) since the Lagrangian Q" basis are delta functions at Gauss-Lobatto
points.

5.1. Accuracy. We consider the following example with either purely Dirichlet
or purely Neumann boundary conditions:

V- (aVu)=f onl0,1] x[0,2]

where a(z,y) = 1+0.123y° + cos(z3y? + 1) and u(z,y) = 0.1(sin(7x) + 23)(sin(7ry) +
y3) + cos(z* + »?). The nonhomogeneous boundary condition should be computed in
a way consistent with the computation of integrals in the bilinear form. The errors
at Zy are shown in Table 1 and Table 2. We can see that the four schemes are all
fourth order in the discrete 2-norm on Zy. Even though we did not discuss the max
norm error on Zg in this paper, we should expect a |Inh| factor in the order of [*°
error over Zy due to (1.9), which was proven upon the discrete Green’s function.

Next we consider an elliptic equation with purely Dirichlet or purely Neumann
boundary conditions:

V- (aVu) +cu=f on|0,1] x [0,2]

where a = ( Zu 212 ), aj1 = 10+30y° + x cosy+y, aia = az; = 2+ 0.5(sin(7z) +
21 Q22

23)(sin(ry) +y%) +cos(zt+y3), age = 10+2°, ¢ = 1+2*y® and u(x,y) = 0.1(sin(rx)+
23)(sin(ry) + y°) + cos(z* + y*). The errors at Z; are listed in Table 3 and Table
4. Recall that only O(h3-5) can be proven due to the mixed second order derivatives
for the Neumann boundary conditions as discussed in Remark 6, we observe around
fourth order accuracy for (1.4) and (1.5) for Neumann boundary conditions in this
particular example.

5.2. Robustness. In Table 1 and Table 2, the errors of approximated coefficient
schemes (1.4), (1.5) and the Gauss Lobatto quadrature scheme (1.7) are close to one
another. We observe that the scheme (1.5) tends to be more accurate than (1.4) and
(1.7) when the coefficient a(x,y) is closer to zero in the Poisson equation. See Table 5
for errors of solving V-(aVu) = f on [0, 1] x[0, 2] with Dirichlet boundary conditions,
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TABLE 1
The errors of CY-Q? for a Poisson equation with Dirichlet boundary conditions at Lobatto points.

FEM with Approximated Coeflicients (1.4)
Mesh | I? error order | [* error order
2x4 | 222E-1 - 3.96E-1 -
4x8 4.83E-2 2.20 1.51E-1 1.39
8x16 | 2.54E-3 4.25 1.16E-2 3.71
16 x 32 | 1.49E-4 4.09 | 7.52E-4 3.95
32 x64 | 9.22E-6 4.01 | 5.14E-5 3.87
FEM using Gauss Lobatto Quadrature (1.7)
Mesh 1? error order | [* error order
2x4 2.24E-1 - 4.30E-1 -
4x8 | 443E-2 234 | 1.37E-1 1.65
8x16 | 2.27TE-3 4.29 | 8.61E-3 4.00
16 x 32 | 1.32E-4 4.11 | 4.87E-4 4.14
32x 64 | 8.13E-6 4.02 | 3.09E-5 3.97
FEM with Approximated Coefficients (1.5)
Mesh 1?2 error  order | [* error order
2x4 | 2.78E-1 - 6.31E-1 -
4x8 2.76E-2  3.33 | 8.69E-2 2.86
8x 16 | 1.28E-3 4.43 | 3.77E-3 4.53
16 x 32 | 8.96E-5 3.83 | 3.36E-4 3.49
32 x 64 | 5. 79E-6 3.95 | 2.41E-5 3.80
Full FEM Scheme
Mesh | I? error order | [* error order
2 x4 1.48E-2 - 3.79E-2 -
4x8 1.05E-2  0.50 3.76E-2 0.01
8x16 | 7.32E-4 3.84 4.04E-3 3.22
16 x 32 | 4.54E-5 4.01 | 2.83E-4 3.83
32 x 64 | 2.85E-6 3.99 | 1.75E-5 4.02

23

a(z,y) = 1+ ex3y® + cos(x3y? + 1) and u(x,y) = 0.1(sin(rz) + ) (sin(ry) + y*) +
cos(z* + y®) where ¢ = 0.001. Here the smallest value of a(z,y) is around ¢ = 0.001.
We remark that the difference among three schemes is much smaller for larger € such

as € = 0.1 as in Table 1.

6. Concluding remarks. We have shown that the classical superconvergence
of functions values at Gauss Lobatto points in C°-QF finite element method for an
elliptic problem still holds if replacing the coefficients by their piecewise Q* Lagrange
interpolants at the Gauss Lobatto points. Such a superconvergence result can be used
for constructing a fourth order accurate finite difference type scheme by using Q2
approximated variable coefficients. Numerical tests suggest that this is an efficient
and robust implementation of C%-Q? finite element method without affecting the
superconvergence of function values.
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TABLE 2
The errors of C0-Q? for a Poisson equation with Neumann boundary conditions at Lobatto points.

FEM with Approximated Coefficients (1.4)
Mesh 1? error order | [ error order
2 x4 3.44E0 - 5.39E0 -
4x8 1.83E-1 4.23 | 3.51E-1 3.93
8x16 | 1.38E-2 3.73 | 3.43E-2 3.36
16 x 32 | 8.37TE-4 4.04 | 2.21E-3 3.96
32x 64 | 5.13E-5 4.03 | 1.41E-4 3.96
FEM using Gauss Lobatto Quadrature (1.7)
Mesh 1?2 error  order | [* error order
2 x4 3.43E0 - 4.95E0 -
4x8 1.81E-1 4.25 | 3.11E-1 3.99
8x16 | 1.37TE-2 3.72 | 2.81E-2 3.47
16 x 32 | 8.33E-4 4.04 1.76E-3 4.00
32x64 | 5.11E-5 4.03 1.12E-4 3.97
FEM with Approximated Coefficients (1.5)
Mesh | I? error order | [* error order
2 x4 3.64E0 - 5.06E0 -
4x8 1.60E-1 4.51 2.54E-1 4.32
8 x 16 1.26E-2  3.67 2.39E-2 3.41
16 x 32 | 7.67TE-4 4.03 | 1.67E-3 3.84
32x 64 | 4.71E-5 4.03 | 1.09E-4 3.94
Full FEM Scheme
Mesh 1? error order | [* error order
2 x4 8.45E-2 - 2.13E-1 -
4x8 1.56E-2 2.43 | 5.66E-2 1.91
8x16 | 9.12E-4 4.10 | 5.14E-3 3.46
16 x 32 | 5.47E-5 4.06 | 3.24E-4 3.99
32x64 | 3.37TE-6  4.02 | 2.22E-5 3.87
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TABLE 3
An elliptic equation with mized second order derivatives and Neumann boundary conditions.

FEM with Approximated Coefficients (1.4)
Mesh 1?2 error  order | [* error order
2 x4 1.92E0 - 3.47E0 -
4x8 | 216E-1 3.15 | 6.05E-1 2.52
8x16 | 1.45E-2 3.90 | 6.12E-2 3.30
16 x 32 | 9.08E-4 4.00 4.05E-3 3.92
32 x 64 | 5.66E-5 4.00 | 2.76E-4 3.88
FEM using Gauss Lobatto Quadrature (1.7)
Mesh | I? error order | [* error order
2 x4 1.38E0 - 2.27E0 -
4x8 1.46E-1 3.24 | 2.52E-1 3.17
8x16 | 7.49E-3 4.28 | 1.64E-2 3.94
16 x 32 | 4.31E-4 4.12 | 1.02E-3 4.01
32x 64 | 2.61E-5 4.04 | 7.47E-5 3.78
FEM with Approximated Coefficients (1.5)
Mesh 1?2 error  order | [* error order
2 x4 1.89E0 - 2.84E0 -
4x8 1.04E-1 4.18 | 1.45E-1 4.30
8x16 | 5.62E-3 4.21 | 1.86E-2 2.96
16 x 32 | 3.24E-4 4.12 1.67E-3 3.48
32x64 | 1.95E-5 4.05 1.32E-4 3.66
Full FEM Scheme
Mesh | I? error order | [* error order
2x4 | 1.46E-1 - 4.31E-1 -
4x8 1.64E-2 3.16 6.55E-2 2.71
8x16 | 7.08E-4 4.53 | 3.42E-3 4.26
16 x 32 | 4.44E-5 4.06 | 4.84E-4 2.82
32 x 64 | 295E-6 3.85 | 7.96E-5 2.60
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TABLE 4

An elliptic equation with mized second order derivatives and Dirichlet boundary conditions.

FEM with Approximated Coefficients (1.4)

Mesh 12 error  order | [ error order
2 x4 2.64E-2 - 7.01E-2 -
4x8 4.68E-3 2.50 | 1.92E-2 1.87
8x16 | 4.78E-4 3.29 | 2.70E-3 2.83
16 x 32 | 3.69E-5 3.69 | 2.43E-4 3.47
32x64 | 2.53E-6 3.87 1.82E-5 3.74
64 x 128 | 1.65E-7 3.94 | 1.25E-6 3.87
FEM using Gauss Lobatto Quadrature (1.7)
Mesh | {? error order | I* error order
2 x4 3.94E-2 - 7.15E-2 -
4x8 1.23E-2 1.67 | 3.28E-2 1.12
8 x 16 1.46E-3 3.08 | 5.42E-3 2.60
16 x 32 | 1.14E-4 3.68 | 3.96E-4 3.78
32x64 | 7.75E-6 3.88 | 2.62E-5 3.92
FEM with Approximated Coefficients (1.5)
Mesh 12 error  order | [ error order
2 x4 4.08E-2 - 7.67E-2 -
4x8 1.01E-2 2.02 | 3.39E-2 1.18
8x 16 | 5.22E-4 4.27 | 1.72E-3 4.30
16 x 32 | 3.14E-5 4.05 9.57E-5 4.17
32x64 | 1.99E-6 3.98 | 5.71E-6 4.07
Full FEM Scheme
Mesh | {? error order | I* error order
2 x4 7.35E-2 - 1.99E-1 -
4x8 5.94E-3 3.63 | 2.43E-2 3.03
8x16 | 4.31E-4 3.79 | 2.01E-3 3.60
16 x 32 | 2.83E-5 3.93 | 1.76E-4 3.93
32x64 | 1.68E-6 4.07 | 8.41E-6 4.07
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TABLE 5
A Poisson equation with coefficient (rmn) a(z,y) =~ 0.001.
zy

FEM with Approximated Coefficients (1.4)
Mesh 1?2 error  order | [ error order
2 x4 2.78E-1 - 4.52E-1 -
4x8 6.22E-2 2.16 | 2.08E-1 1.12
8 x 16 1.09E-2 2.51 8.44E-2 1.30
16 x 32 | 1.31E-3 3.05 1.81E-2 2.22
32x64 | 1.08E-4 3.60 | 1.75E-3 3.38
64 x 128 | 7.24E-6 3.90 | 1.52E-4 3.53
FEM using Gauss Lobatto Quadrature (1.7)
Mesh 1?2 error  order | [ error order
2 x4 2.81E-1 - 4.59E-1 -
4x8 4.69E-2 258 | 1.37E-1 1.74
8 x16 | 5.06E-3 3.21 | 3.75E-2 1.87
16 x 32 | 7.04E-4 2.85 7.86E-3 2.25
32x64 | 6.74E-5 3.39 1.21E-3 2.70
64 x 128 | 4.94E-6 3.77 | 1.17TE-4 3.37
FEM with Approximated Coeflicients (1.5)
Mesh 12 error  order | [ error order
2 x4 2.68E-1 - 5.48E-1 -
4x8 2.91E-1 3.21 | 1.59E-1 1.78
8 x16 | 3.51E-3 3.05 | 4.02E-2 1.98
16 x 32 | 2.86E-4 3.62 | 3.60E-3 3.48
32x64 | 1.86E-5 3.94 2.31E-4 3.96
64 x 128 | 1.17TE-6  4.00 | 1.53E-5 3.91
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