Laplace Transform Table
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Formula sheet

Fourier series: For a 2L-periodic function f(x), the Fourier series for f is
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Heat equation 1: The solution of the heat equation a?u,, = u, 0 < o < L, t > 0
satisfying the (fixed temperature) homogeneous boundary conditions u(0, t) =
for ¢ > 0 with initial temperature u(x,0) = f(z) has the general form
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Heat equation 2: The solution of the heat equation a’uy, = w, 0 < & < L, t > 0,
satisfying the insulated boundary conditions u,(0,t) = wu,(L,t) = 0 for ¢ > 0 with initial
temperature u(x,0) = f(x) has the general form
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Wave equation: The solution of the wave equation oy, = uy, 0 < x < L, t > 0, satisfying
the homogeneous boundary conditions u(0,t) = u(L,t) = 0 for ¢ > 0 and initial conditions
u(z,0) = f(z) and us(x,0) = g(z) for 0 < z < L has the general form

=\ . n7x nmwad . nmat
u(z,t) =) sin 5 (encos—— + k, sin 7

n=1

where .
nwT

2
/f sm—dw and k, = — g(a:)sdex

nra J,

Laplace equation: The solution of the Laplace equation vy, +u,, = 0,0 <2 <a,0 <y <
b, satisfying the boundary conditions u(x,0) = u(z,b) = 0 for 0 < z < a and u(O y) =0
and u(a,y) = f(y) for 0 <y < b has the general form
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