$A \vec{v} \in \mathbb{R}^{2} \quad \vec{v} \in \mathbb{R}^{3} \Longrightarrow A 2 \times 3$
Matix form of linear syscoms

$$
\left\{\begin{array}{ll}
\left\{\begin{array}{l}
x+2 y+3 z=1 \\
3 x+y+z=0 \\
x+y+z=0
\end{array}\right. & A \vec{x}=\vec{b} \\
\left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
A \\
z
\end{array}\right)
\end{array}\right)=\left(\begin{array}{c}
1 \cdot x+2 \cdot y+3 \cdot z \\
3 x+y+z \\
x+y+z
\end{array}\right)=\underbrace{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)}_{\substack{\vec{x} \\
\text { untanown } \\
\text { vector }}}
$$

Ex:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+3 y+z=0 \\
-x-y=1 \\
A \\
2 \times 3
\end{array} \leadsto(-1) x+(-1) y+0 . z=1\right. \\
& A=\left(\begin{array}{ccc}
1 & 3 & 1 \\
-1 & -1 & 0
\end{array}\right) \quad \vec{b}=\binom{0}{1} \\
& A \vec{x}=\vec{b} \quad \vec{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{aligned}
$$

Angmented matrix $(\vec{A} \mid \vec{b}) \stackrel{\text { Ex }}{=}\left(\begin{array}{ccc|c}1 & 3 & 1 & 0 \\ -1 & -1 & 0 & 1\end{array}\right)$

$$
\left\{\begin{array}{lll}
x-y=1 & \text { (1) } & \begin{array}{l}
2 \cdot(1)+(2) \\
2 x-2 y=2 \\
3 x+2 y=2
\end{array}
\end{array}+5 x=4 \Rightarrow x=\frac{4}{5}\right.
$$

Gaussian Elimination for augmented matrix. idea: take linear combinations of equations/rous to simplify the problem

3 row operations (to the augmented matrix)
Type I row op: switch two rows.

- II — : multi, a vow by a nonzero scalar - II - - multiply a row by a scalar then add $1 t \rightarrow$ on other row.

$$
\begin{gathered}
\left(\begin{array}{lll|l}
1 & 2 & 3 & 1 \\
3 & 1 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right) \xrightarrow[\substack{r_{1} \leftrightarrow r_{2}}]{\substack{\text { type } I \\
\text { type } I \\
1}}\left(\begin{array}{lll|l}
3 & 1 & 1 & 0 \\
1 & 2 & 3 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \\
\frac{1}{1} \rightarrow r_{1}
\end{gathered}
$$

$$
\left(\begin{array}{lll|l}
1 & \frac{1}{3} & \frac{1}{3} & 0 \\
1 & 2 & 3 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)^{k} \xrightarrow[\substack{\text { type II } \\
\left(-v r 1+v 3 \rightarrow V 3 \\
3^{\prime \prime}-r 1\right.}]{ }\left(\begin{array}{ccc|c}
1 & \frac{1}{3} & \frac{1}{3} & 0 \\
1 & 2 & 3 \\
0 & \frac{2}{3} & \frac{2}{3} & 0
\end{array}\right)
$$

General process by an example:
goal: awive at $\left(\begin{array}{lll|l}1 & 0 & 0 & * \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & *\end{array}\right) \quad \begin{aligned} & I_{n} \vec{x}=\vec{b} \\ & \vec{x}\end{aligned}$
Subgoal: $\cdots\left(\begin{array}{ccc|c}1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & *\end{array}\right)$

Ex: $\left\{\begin{aligned} x+2 y-z & =0 \\ 2 y-z & =1 \\ x+3 z & =-1\end{aligned}\right.$
Step 0: get the cingmented matrix

$$
\left(\begin{array}{ccc|c}
1 & 2 & -1 & 0 \\
0 & 2 & -1 & 1 \\
1 & 0 & 3 & -1
\end{array}\right)
$$

Step 1: start with the lIst nonzero column

(a) do type I up. So that the lase vow in this column is nonzero
(b) then do type II op. So that this number $=1$.

1 Step 2: Do type II op to eliminate all other nonzero entries in this column

$$
\left(\begin{array}{ccc|c}
1 & 2 & -1 & 0 \\
0 & 2 & -1 & 1 \\
1 & 0 & 3 & -1
\end{array}\right) \xrightarrow{V_{3}-v_{1} \rightarrow v_{3}}\left(\begin{array}{c|cc|c}
1 & 2 & -1 & 0 \\
0 & \begin{array}{cc}
2 & -1 \\
0 & -2
\end{array} & 1 \\
-2 & -1 \\
\hline
\end{array}\right)
$$

$$
r_{1}-r_{3} \rightarrow n
$$

step 3: do similar things to the submatry \uparrow (ignoring the previous column)

$$
\left(\begin{array}{c|cc|c}
1 & 2 & -1 & 0 \\
0 & 1 & -1 / 2 & 1 / 2 \\
0 & 0 & 3 & 0 \\
\hline
\end{array}\right) \xrightarrow{\underset{3}{\frac{1}{3} v_{3} \rightarrow r_{3}}} \underset{\text { our subsoal. }}{+y \operatorname{Ti}}\left(\begin{array}{ccc|c}
1 & 2 & -1 & 0 \\
0 & 1 & -1 / 2 & 1 / 2 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

final step? 2 options
(1) $\operatorname{get}\left(\begin{array}{lll|l}1 & 0 & 0 & x \\ 0 & 1 & 0 & x \\ 0 & 0 & 1 & x\end{array}\right)$ by move types II
(2) Solve by substitution (work from lotion)
$r 3 \Rightarrow z=0 \quad$ fo top.

$$
\begin{aligned}
& r 3 \Rightarrow z=0 \\
& r 2 \Rightarrow y-\frac{1}{2} z=1 / 2 \xrightarrow{z^{2} 0} y=1 / 2 \\
& r \mid \Rightarrow x+2 y-z=0 \xrightarrow{r y=1 / 2} x=-1
\end{aligned}
$$

