Review Deft: Given an ordered basis $\beta=\left\{\vec{u}_{1}, \cdots, \vec{u}_{n}\right\}$ of V

$$
\forall \vec{v} \in V, \quad \vec{v}=a_{1} \vec{u}_{1}+\cdots+a_{n} \vec{u}_{n}
$$

$[\vec{v}]_{\beta}=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]$ is the coordinate of \vec{v} under basis β.
Ex: $\quad P_{2}(\mathbb{R}), \quad \beta=\left\{1, x, x^{2}\right\}$

$$
\begin{aligned}
& f(x)=4+6 x-7 x^{2} \\
& {[f]_{\beta}=\left[\begin{array}{c}
4 \\
6 \\
-7
\end{array}\right]}
\end{aligned}
$$

Def $T: V \longrightarrow W$
$\beta=\left\{\vec{v}_{1}, \cdots, \vec{V}_{n}\right\}$ is an ordered basis of V

$$
\gamma=\left\{\vec{W}_{1}, \cdots, \stackrel{\rightharpoonup}{w}_{m}\right\} \ldots \ldots W
$$

Then $T\left(\vec{v}_{j}\right)=\sum_{i=1}^{m} a_{i j} \vec{w}_{i}, \forall j=1, \cdots, n$.
$A=\left[a_{i j}\right]_{m \times n}$ is the matrix representation
of T under bases β and γ.
We write $A=[T]_{\beta}^{\gamma}$
$E_{x}: \quad T=P_{3}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R}) \quad \beta=\left\{1, x, x^{3}, x^{3}\right\}$
$f(x) \longmapsto f^{\prime}(x) \quad \gamma=\left\{1, x, x^{2}\right\}$

$$
\begin{aligned}
& T(0)=0=0.1+0 \cdot x+0 \cdot x^{2} \\
& T(x)=1=1 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
& T\left(x^{2}\right)=2 x=0.1+2 \cdot x+0 \cdot x^{2} \\
& T\left(x^{3}\right)=3 x^{2}=0.1+0 \cdot x+3 x^{2} \\
& {[T]_{\beta}^{\gamma}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]_{3 \times 4}}
\end{aligned}
$$

HF \# 9
4. (10 pts) Let $V=P_{2}(\mathbb{R})$ (all quadratic polynomials with real coefficients) and consider a linear transformation $T: V \longrightarrow V$ defined as

$$
T[f(x)]=f(0) x+f^{\prime}(x)-\frac{1}{2} f^{\prime \prime}(x) . \quad f(x)=1 \Rightarrow f(0)=1
$$

For the ordered basis $\beta=\left\{1, x, x^{2}\right\}$, find the matrix representation $[T]_{\beta}^{\beta}$ of T under basis β.

$$
\begin{aligned}
& \begin{array}{l}
r \text { basis } \beta \cdot \\
T: P_{2}(\| R) \rightarrow \beta
\end{array} \quad P_{2}(\| R) \\
& f(x)=a x^{2}+b x+c \mapsto \\
& T[x]=T[f(x)]=0 \cdot x+1-\frac{1}{2} \cdot 0=1 \\
& f(x)=x \Rightarrow\left\{\begin{array}{l}
f(0)=0 \\
f^{\prime}(x)=1 \\
f^{\prime \prime}(x)=0
\end{array}\right.
\end{aligned}
$$

Change of Coordinates
Given $\begin{array}{rl} & \beta\end{array}$ $\left.\begin{array}{rl} & \left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\} \\ \gamma & =\left\{\vec{w}_{1}, \cdots, \vec{w}_{n}\right\}\end{array}\right\}$ bases of V

$Q=$ Given $[\vec{V}]_{\beta}$, what is $[\vec{V}]_{\gamma}$?

$$
\begin{gathered}
I: V \longrightarrow V \\
\vec{v} \longmapsto \vec{V} \\
{[\vec{v}]_{\gamma}=[I(\vec{v})]_{\gamma}=[I]_{\beta}^{\gamma}[\vec{v}]_{\beta}}
\end{gathered}
$$

$[I]_{\beta}^{\gamma}$ is the change of Coordinate matrix

$$
[I]_{\beta}^{\gamma}=(\underbrace{}_{j-t h c o l})_{n \times n}=\left(\begin{array}{lll}
1 & \left.\left(\vec{v}_{j}\right)\right]_{\gamma} \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Ex: $P_{2}(\mathbb{R})$

$$
\begin{aligned}
& \beta=\left\{1, x, x^{2}\right\} \\
& \gamma=\left\{1,(x-1),(x-1)^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& I(1)=1=1 \cdot 1+0 \cdot(x-1)+0 \cdot(x-1)^{2} \\
& I(x)=x=1 \cdot 1+1 \cdot(x-1)+0 \cdot(x-1)^{2} \\
& I\left(x^{2}\right)=x^{2}=a \cdot 1+b(x-1)+c(x-1)^{2}
\end{aligned}
$$

$$
[I]_{\beta}^{\gamma}
$$

$$
\begin{aligned}
& \text { Solve for } a, b, c \Rightarrow\left\{\begin{array}{l}
a=1 \\
b=2 \\
c=1
\end{array}\right. \\
& =1 \cdot 1+2 \cdot(x-1)+1 \cdot(x-1)^{2}
\end{aligned}
$$

Given $f(x)=a x^{2}+b x+c$
want $f(x)=A(x-1)^{2}+B(x-1)+C$

$$
[f]_{\beta}=\left(\begin{array}{l}
c \\
b \\
a
\end{array}\right),[f]_{\gamma}=\left[\begin{array}{l}
C \\
\beta \\
A
\end{array}\right]
$$

$$
\begin{aligned}
& {[f]_{\gamma}=[I]_{\beta}^{\gamma}[f]_{\beta}} \\
& {\left[\begin{array}{l}
c \\
\beta \\
A
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c \\
b \\
a
\end{array}\right]=\left(\begin{array}{c}
a+b+c \\
b+2 a \\
a
\end{array}\right) .}
\end{aligned}
$$

Ho \# 9
5. (10 pts) Let V be the set consisting all continuous real-valued singlevariable functions. Then V is a vector space. Consider a subspace $W=\operatorname{span}\{1, \sin x, \cos x, \sin (2 x), \cos (2 x)\}$ with two ordered bases of W :

$$
\begin{aligned}
\beta & =\left\{1,-\cos x, \sin x, \sin (2 x), \sin ^{2} x\right\} \\
\gamma & =\left\{1, \sin x, \cos x, \sin (2 x), \cos ^{2} x\right\}
\end{aligned}
$$

Find the change of coordinate matrix from β to γ, ie., the matrix Q s.t. $[f]_{\gamma}=Q[f]_{\beta}, \forall f \in W$. Recall that Q is the matrix reprensetation $[I]_{\beta}^{\gamma}$ for the identity map under bases β and γ.

$$
\begin{gathered}
I: W \rightarrow W \\
\text { Find }[I]_{\beta}^{\gamma}=[\square] \|[\|] \\
I(\sin x)=\sin x=0 \cdot 1+1 \cdot \sin x+0 \cdot \cos x+0 \cdot \sin (2 x)+0 \cdot \cos ^{2} x
\end{gathered}
$$

Now just focus on $L_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\vec{v} \longmapsto A \vec{v}
$$

for a square matrix $A \in \mathbb{R}^{n}$
Theorem
Let $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n}\right\}$ be an ordered basis of \mathbb{R}^{n}
Let $V=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n}\end{array}\right] \in \mathbb{R}^{n \times n}$
For $L_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, its matrix
representation under basis β

$$
\text { is }\left[L_{A}\right]_{\beta}^{\beta}=V^{-1} A V
$$

In particular, if \vec{v}_{i} are eigenvectors $(\Leftrightarrow A$ is diagondicall, (\vec{v}_{i} are basis thus independent)
then $A=V\left[\begin{array}{ccc}\lambda_{1} & & 0 \\ 0 & & \lambda_{n} \\ 0 & & \lambda_{n}\end{array}\right] V^{-1}$

$$
\Rightarrow\left[L_{A}\right]_{\beta}^{\beta}=\left[\begin{array}{ccc}
\lambda_{1} & 0 \\
0 & \ddots & \\
0 & \lambda_{n}
\end{array}\right]
$$

So the matrix representation of L_{A} is diagonal under a basis consisting of eigenvectors

Example: If $A \in \mathbb{R}^{3 \times 3}$ is diagonalizuble then we can find independent eigenvectors $\beta \underline{\left.\vec{v}_{1}, \vec{V}_{2}, \vec{v}_{3}\right\}}$ which is a basis of $\mathbb{R}^{\}}$ So any $\vec{V} \in \mathbb{R}^{3}$ can be written as

$$
\begin{aligned}
{[\vec{v}]_{\beta}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \quad \vec{v} } & =a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+a_{3} \vec{v}_{3} \\
\text { and } & A \vec{v}
\end{aligned}=A\left[a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+a_{3} \vec{v}_{3}\right] \quad \begin{aligned}
{[A \vec{v}]_{\beta}=\left[\begin{array}{l}
\lambda_{1} a_{1} \\
\lambda_{2} a_{2} \\
\lambda_{3} a_{3}
\end{array}\right] } & =a_{1} A \vec{v}_{1}+a_{2} A \vec{v}_{2}+a_{3} A \vec{v}_{3} \\
& =a_{1} \lambda_{1} \vec{v}_{1}+a_{2} \lambda_{2} \vec{v}_{2}+a_{3} \lambda_{3} \vec{v}_{3}
\end{aligned}
$$

Generalized Eigenvector

Not all matrices are diagonalizable. For non-diagonalizable matrices,
(1) Not enough inclependent eigenvectors
(2) There is one eigenvalue for which geometrical mul <algebraic mud
(3) Let λ be this eigenvalue sit. geo mul < alg maul
Let \vec{v} be one eigenvector,
Then $(\lambda I-A) \vec{u}=\vec{v}$ has a sol cold this solution \vec{u} is called generalized eigenvector
HW\#9
2. (30 pts) Consider the matrix

$$
A=\left[\begin{array}{ccc}
3 & -1 & 0 \\
0 & 2 & 0 \\
0 & 1 & 2
\end{array}\right]
$$

(a) (10 pts) Find all eigenvalues, their algebraic multiplicity and geometrical multiplicity, and basis vectors for all eigenspaces.
(b) (10 pts) For this particular matrix, there is one eigenvalue λ_{2} for which geometrical multiplicity is less than algebraic multiplicity. This ensures existence of one generalized eigenvector defined as follows: let v be its eigenvector, then find the generalized eigenvector u defined as solution to the nonhomogeneous linear system

$$
\left(A-\lambda_{2} I\right) u=v . \Leftrightarrow A \vec{u}-\lambda_{2} \vec{u}=\vec{v}
$$

(c) (10 pts) For this particular matrix, there are two distinct eigenvalues λ_{1} and λ_{2}. Let v_{1} be eigenvector for λ_{1}. Form a matrix $V=\left[\begin{array}{lll}v_{1} & v u\end{array}\right]$. Then by the definition of eigenvectors and generalized eigenvectors, we have

$$
A V=\left[\begin{array}{lll}
A v_{1} & A v & A u
\end{array}\right]=\left[\begin{array}{lll}
\lambda_{1} v_{1} & \lambda_{2} & \lambda_{2} u+v
\end{array}\right]=\left[\begin{array}{lll}
v_{1} & v & u
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 1 \\
0 & 0 & \lambda_{2}
\end{array}\right] .
$$

Here $J=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 1 \\ 0 & 0 & \lambda_{2}\end{array}\right]$ is called Jordan Form of A. Find the explicit expression of J, V, V^{-1} and verify that $A=V J V^{-1}$ (and this is what eigenvalue decomposition looks like for a nondiagonalizable matrix).

The following are NOT required Jordan Normal Form (FYI, not required)
Def Jordan block for eigenvalue λ

$$
J_{k}(\lambda)=\left(\begin{array}{rrr}
\lambda & 1 & O \\
0 & \ddots & 1 \\
0 & \lambda
\end{array}\right)_{k \times k}
$$

(λ) $\quad\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right) \quad\left(\begin{array}{lll}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right)\left(\begin{array}{llll}\lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda\end{array}\right)$
Theorem For any $A \in \mathbb{R}^{n \times n}$, we can find n linearly indepenclent eigenvectors \& generalized eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ such that

$$
A=V] V^{-1} \text { where } V=\left[\vec{V}_{1} \cdots \vec{V}_{n}\right]
$$

$$
J=\left(\begin{array}{cccc}
J J_{k_{1}}\left(\lambda_{1}\right) & 0 & 0 & 0 \\
0 & \mid J_{k_{2}\left(a_{2}\right)} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \boxed{J_{k_{l}}\left(\lambda_{l}\right)}
\end{array}\right)
$$

Example: If $A=V J V^{-1} \in \mathbb{R}^{6 \times 6}$ and

$$
\operatorname{det}(\lambda I-A)=(\lambda+1)^{3}(\lambda-2)^{3}
$$

$$
J=\left(\begin{array}{cc}
\frac{-1}{-1} & 0 \\
O & O \\
O & \begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array} \\
O & O \\
O & \begin{array}{|ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}
\end{array}\right)
$$

eigen values	$\lambda_{1}=-1$	$\lambda_{2}=2$
aly mul	$1+2=3$	3
geo mul	$\underbrace{1+1}_{n}$	$\overbrace{\text { lons }}^{1}$

$$
I_{k}(\lambda)=\lambda I_{k x_{k}}+I_{k}
$$

$$
\begin{aligned}
& J_{3}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& J_{3}^{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& J_{3}^{3}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)=\lambda I+\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

We can use $A=P \supset p^{-1}$
to compute A^{n} and e^{A}

$$
\begin{aligned}
& p J^{11} \ln ^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t) \\
u_{3}(t)
\end{array}\right]=[A]\left[\begin{array}{l}
u_{1}(t) \\
u_{t}(t) \\
u_{3}(4)
\end{array}\right]
\end{aligned}
$$

First Order Homogeneous Linear ODE Systems: General Case

- In general, the matrix has eigenvalue decomposition as $A=Q J Q^{-1}$ where columns of Q are eigenvectors and generalized eigenvectors, and J is the Jordan Form.
- The solution formula for $\mathbf{u}^{\prime}=A \mathbf{u}$ is still $\mathbf{u}=e^{A t} \mathbf{u}(0)$.
- The matrix exponential is still defined as the Maclaurin Series [plug in $A t=Q(J t) Q^{-1}$]:

$$
e^{A t}=I+A+\frac{1}{2!} A^{2}+\cdots=Q\left(I+J t+\frac{1}{2!}[J t]^{2}+\cdots\right) Q^{-1}
$$

- If there are k distinct eigenvalues, J is block diagonal with k blocks $\Lambda_{1}, \cdots \Lambda_{k}$.
- The matrix exponential e^{J} (or $e^{J t}$) will also be block diagonal with k blocks $e^{\Lambda_{i}}$ (or $e^{\wedge_{i} t}$).
- If Λ_{i} is diagonal (ie., geo multiplicity=algebraic multiplicity for λ_{i}), then e^{J} (or $e^{J t}$) is diagonal.
$\vec{u}(t)=Q e^{J t} Q^{-1} \vec{u}(0)$
- In general, e^{J} (or $e^{J t}$) are upper triangular.
$\left[\begin{array}{ccc}\lambda_{1} & 1 & 0 \\ 0 & \lambda_{1} & 1 \\ 0 & 0 & \lambda_{1}\end{array}\right]\left[\begin{array}{ccc}e^{\lambda_{1} t} & t e^{\lambda_{1} t} & \frac{t^{2}}{2} \\ 0 & e^{\lambda_{1} t} & t e^{\lambda_{1} t} \\ 0 & 0 & e^{\lambda_{1} t}\end{array}\right]=e^{\lambda_{1} t}\left[\begin{array}{ccc}1 & t & \frac{t^{2}}{2} \\ 0 & 1 & t \\ 0 & 0 & 1\end{array}\right]$

A Quick Example

- Consider solving $\mathbf{u}^{\prime}(t)=A \mathbf{u}(t)$ with 3×3 matrix A.
- Assume A has only one distinct eigenvalue λ, and only one linearly independent eigenvector \mathbf{v}.
- And further assume there are two linearly independent generalized eigenvectors \mathbf{u}_{1} and \mathbf{u}_{2}. Namely, \mathbf{u}_{1} and \mathbf{u}_{2} satisfies
- Let $Q=\left[\begin{array}{lll}\mathbf{v} & \mathbf{u}_{1} & \mathbf{u}_{2}\end{array}\right]$, then $A=Q\left(\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right) Q^{-1}$. Do change of variable $\mathbf{w}=Q^{-1} \mathbf{u}$.
- We can verify the unique solution has the form:

$$
\frac{d}{d t}\left(\begin{array}{l}
w_{1}(t) \\
w_{2}(t) \\
w_{3}(t)
\end{array}\right)=\left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)\left(\begin{array}{l}
w_{1}(t) \\
w_{2}(t) \\
w_{3}(t)
\end{array}\right) \Leftrightarrow\left(\begin{array}{l}
w_{1}(t) \\
w_{2}(t) \\
w_{3}(t)
\end{array}\right)=e^{\lambda t}\left(\begin{array}{ccc}
1 & t & t^{2} / 2 \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
w_{1}(0) \\
w_{2}(0) \\
w_{3}(0)
\end{array}\right)
$$

Independert Solutions to $O D E$ are

$$
\left\{\begin{array}{l}
\text { (1) } e^{\lambda t} \vec{v} \\
\text { (2) } e^{\lambda t} \vec{u}_{1}+t e^{\lambda t} \vec{v} \\
\text { (3) } e^{\lambda t} \vec{u}_{2}+t e^{\lambda t} \vec{u}_{1}+\frac{t^{2}}{2} e^{\lambda t} \vec{v}
\end{array}\right.
$$

