- Definition (Abstract Vectors)

A Vector Space over real numbers is a set S and
(1) addition is defined for any two elements in the set
(2) Scalar multiplication is defined for a scalar in \mathbb{R} and any element in the set. multiply a real number (3) the set is closed under these two operations,

1) the sum of two element is still in the set S
2) Scalar multiplication is still in the set S (4) elements in this set is called (abstract) vectors.

Example: the following are all (abstract) vector spaces

$$
\begin{aligned}
& \mid \mathbb{R}=\{\text { all read numbers }\} \\
& \text { elementary } \\
& \text { vectors }\left\{\begin{array}{ll}
\mathbb{R}^{3} & =\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right],\right.
\end{array} \begin{array}{ll}
\forall x, y \in \mathbb{R}\} \\
b \\
c
\end{array}\right],\forall a, b, c \in \mathbb{R}\} \\
& \mathbb{R}^{4}=\left\{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right],\right. \\
& \mathbb{R}^{1 \times 3}\left.=\left\{\begin{array}{ll}
{[x} & y \\
l
\end{array}\right]: b, c, d \in \mathbb{R}\right\} \\
& \mathbb{R}^{2 \times 2}=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \forall a, y, z \in \mathbb{R}\right\}
\end{aligned}
$$

$1 R^{m \times n}$

$$
P_{2}(x)=\left\{a x^{2}+b x+c: \quad \forall a, b, c \in \mathbb{R}\right\}
$$

S is a set of vectors, Span (S) denotes the set of all possible linear combination of lectors in S.
Example: (1) $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}=\left\{a\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \forall a \in \mathbb{R}\right\}$ is a line.

(2) $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}=\left\{a\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]+b\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \forall a, b \in \operatorname{R}\right\}$
(3) $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}=1 R^{3}$

$$
\left[\begin{array}{c}
a \\
0 \\
a+b
\end{array}\right]
$$

Ex: $\quad \operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$ is a Vector Spare

- There is always a zero vector $\overrightarrow{0}$ sit. $\vec{v}+\overrightarrow{0}=\vec{v}$

1) For $\mathbb{R}^{n}, \overrightarrow{0}=\left(\begin{array}{l}0 \\ 0 \\ \vdots \\ 0\end{array}\right)$
2) For $\mathbb{R}^{m \times n}$, $\overrightarrow{0}$ is the zero matrix of size $m \times n$.
3) For $P_{2}(\mathbb{R})$, $\overrightarrow{0}$ is the zero polynomial $P(x)=0$.

- Theorem: Let V be an abstract vector space.

1) $0 \cdot \vec{v}=\overrightarrow{0}, \quad \forall \vec{v} \in V$
2) Closeness $\Rightarrow \overrightarrow{0}=0 \cdot \vec{V} \in V$.

- Definition: If V is a vector space, $w \underset{\downarrow}{\subset} V$, is a subset of and W is also a vector space, then W is called a subspace of V.
- Example: (1) $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}=\left\{a\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \forall a \in \mathbb{R}\right\}$ is a surespare of \mathbb{R}^{3}.
(2) $S_{p \operatorname{con}}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ is a subspace of \mathbb{R}^{3}.
- Theorem: $\forall S \subseteq V$, $\operatorname{Span}(S)$ is a subspace of V. $\operatorname{span}(s) \subseteq V$?
- If $\overrightarrow{0} \notin W$, then W is not a subspace.

Example: any plane that does not pass the origin cannot be a subspace of \mathbb{R}^{3}.
Ex: Is any plane passing the origin a subspace?

- Definition. $A \in \mathbb{R}^{m \times n}$
(1) Span $\{$ all cols of $A\}$ is called the column space of A, denoted as $\operatorname{Col}(A) \subseteq \mathbb{R}^{m}$. Column Space of A
(2) Span $\{$ all rows of $A\}$ is called the row space of A, denoted as $\operatorname{Row}(A) \subseteq \mathbb{R}^{1 \times n}$. Row space of A \square

Example: $\begin{aligned}\left(\begin{array}{ccc}2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right) & =\left(\begin{array}{c}2 \\ 8 \\ 10\end{array}\right) \\ A \vec{x} & =\vec{b}\end{aligned}$

$$
\operatorname{Col}(A)=\left\{a\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]+b\left[\begin{array}{c}
4 \\
9 \\
-3
\end{array}\right]+c\left[\begin{array}{c}
-2 \\
-3 \\
7
\end{array}\right], \forall a, b, C \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3}
$$

Row (A) =

$$
\left\{a\left[\begin{array}{lll}
2 & 4 & -2
\end{array}\right]+b\left[\begin{array}{lll}
4 & 9 & -3
\end{array}\right]+c\left[\begin{array}{ll}
-2 & -3
\end{array}\right] \gg \underset{\in}{\forall}, \forall a, b, c \in \mathbb{R}\right\}
$$

- $A \vec{x}=\vec{b}$ has at least one sol if and only if

$$
E \mathbb{R}_{1 \times 3}^{\prime}
$$

$$
\vec{b} \in \operatorname{Col}(A) \subseteq \mathbb{R}^{3}
$$

$$
\left(\begin{array}{ccc}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)=\stackrel{\rightharpoonup}{b} \Leftrightarrow \vec{b}=x_{0}\left(\begin{array}{c}
2 \\
4 \\
z_{0}
\end{array}\right)+y_{0}\left(\begin{array}{c}
4 \\
9 \\
-3
\end{array}\right)+z_{0}\left(\begin{array}{c}
-2 \\
-3 \\
7
\end{array}\right)
$$

Proof: "if" Assume $\vec{b} \in \operatorname{Col}(A)$, then there are

$$
\begin{aligned}
& a_{0}, \text { bo, } c_{0} \in \mathbb{R} \text { s.t. } \\
& \vec{b}=a_{0}\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]+b_{0}\left[\begin{array}{c}
4 \\
9 \\
-3
\end{array}\right]+c_{0}\left[\begin{array}{c}
-2 \\
-3 \\
7
\end{array}\right] \\
\Rightarrow & {\left[\begin{array}{ccc}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
b_{0} \\
c_{0}
\end{array}\right]=\vec{b} }
\end{aligned}
$$

$\Rightarrow\left[\begin{array}{l}a_{0} \\ b_{0} \\ c_{0}\end{array}\right]$ is a sol to $A \vec{x}=\vec{b}$
"only if" Assume $A \vec{x}=\vec{b}$ has one sol $\left[\begin{array}{l}x_{0} \\ y_{0} \\ z_{0}\end{array}\right]$

$$
\begin{aligned}
& \Rightarrow\left(\begin{array}{ccc}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)=\left(\begin{array}{c}
2 \\
8 \\
10
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{l}
2 \\
8 \\
10
\end{array}\right)=x_{0}\left(\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right)+y_{0}\left(\begin{array}{c}
4 \\
9 \\
-3
\end{array}\right)+z_{0}\left(\begin{array}{c}
-2 \\
-3 \\
7
\end{array}\right)
\end{aligned}
$$

$\Rightarrow \vec{b}$ is spanned by cols of \vec{A}.

- For $A \in \mathbb{R}^{3 \times 3}$, if $\operatorname{Col}(A)=\mathbb{R}^{3}, A \vec{x}=\vec{b}$ always has at least one sol for any \vec{b}.

- Definition: all solutions to $A \vec{x}=\overrightarrow{0}$ form a $A \in \mathbb{R}^{m \times n}$ $\vec{x} \in \mathbb{R}^{n}$ subspace in \mathbb{R}^{n}, called null space of A, denoted as $\operatorname{Nall}(A)$.

Check closedness: $\forall \vec{u}, \vec{v} \in \operatorname{Null}(A), a \in \mid R$

$$
\begin{aligned}
&\vec{u} \in \operatorname{Null}(A) \Rightarrow A \vec{u}=\overrightarrow{0}\} \Rightarrow A \vec{u}+A \vec{v}=\overrightarrow{0}+\overrightarrow{0} \\
& \vec{v} \in \operatorname{Null}(A) \Rightarrow A \vec{v}=\overrightarrow{0} \\
& \Rightarrow A(\vec{u}+\vec{v})=\overrightarrow{0} \\
& \Rightarrow \vec{u}+\vec{v} \in \operatorname{Null}(A) \\
& A \vec{u}=0 \Rightarrow a A \vec{u}=a \overrightarrow{0} \Rightarrow A(a \vec{u})=\overrightarrow{0} \\
& \Rightarrow a \vec{u} \in \operatorname{Null}(A) .
\end{aligned}
$$

- Example: Matrix Form

$$
\begin{gathered}
A \vec{x}=\overrightarrow{0} \\
\left(\begin{array}{ccc}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

Augmented Matrix $[A \mid \overrightarrow{0}]$

$$
\left(\begin{array}{ccc|c}
2 & 4 & -2 & 0 \\
4 & 9 & -3 & 0 \\
-2 & -3 & 7 & 0
\end{array}\right)
$$

RREF is

$$
\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$\Rightarrow \overrightarrow{0}$ is the only sol

$$
\Rightarrow \operatorname{Null}(A)=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\}
$$

- Example: if RREF of $[A \mid \stackrel{\rightharpoonup}{\circ}]$ is

$$
\left[\begin{array}{c|c|c|c}
11 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow y=t, \forall t \in \mathbb{R}
$$

Solve it backwards
(1) $z=0$
(2) $x+2 y=0 \Rightarrow x=-2 t$
(3) $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-2 t \\ t \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)+\left(\begin{array}{c}-2 t \\ t \\ 0\end{array}\right)$

$$
\begin{aligned}
& =\left(\begin{array}{c}
0 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)=t\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right), \forall t \in \mathbb{R} \\
\Rightarrow \operatorname{Null}(A) & =\operatorname{Span}\left\{\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]\right\}=\left\{t\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right), \forall t \in \mathbb{R}\right\}
\end{aligned}
$$

- Definition (Linear Independence)

A set of (abstract) vectors $S=\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$ is called linearly dependent if there are scalars a_{1}, \cdots, a_{n} which are not all zeros,
Sit. $\quad a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\ldots+a_{n} \vec{v}_{n}=\overrightarrow{0}$
Otherwise, S is linearly independent.

Remark: As long as one of a_{i} is not zero, it satisfies the definition
Example: (1) $S=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ is (inearly independent

$$
\begin{aligned}
& a\left[\begin{array}{l}
1 \\
0
\end{array}\right]+b\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow & \left\{\begin{array}{l}
a+b=0 \\
0 . a+b=0 \\
\Rightarrow
\end{array}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

If $a \vec{u}+b \vec{v}=\overrightarrow{0}$ at least one of u, b is not 0 , assume $a \neq 0$,
Augmented Matrix is $\left[\begin{array}{ll|l}1 & 1 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}a \vec{u}=-b \vec{v} \\ \vec{u}=-\frac{b}{a} \vec{v}\end{array}\right.$
RREF is $\left[\begin{array}{ll|l}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$

$$
\Rightarrow\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow \text { only zero sol }
$$

\Rightarrow linearly independent.
(2) If two vectors \vec{u}, \vec{v} are parallel in \mathbb{R}^{3}, then $\{\vec{u}, \vec{v}\}$ is dependent
$\vec{u} \| \vec{v} \Rightarrow \vec{u}=a \vec{v}$ for some $a \in \mathbb{R}$

$$
\Rightarrow \vec{u}-a \vec{v}=\overrightarrow{0}
$$

nation of columns of A.
2. (20 pts) For the invertible matrix

$$
A=\left(\begin{array}{ccc}
0 & 1 & 1 \\
-1 & 3 & 1 \\
-1 & 2 & 1
\end{array}\right)
$$

find suitable elementary matrices so that A^{-1} can be written as a product of them.
3. (20 pts) Let $A=\left(\begin{array}{ccc}0 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 4 & 2\end{array}\right)$.

$$
A^{-1}=E_{8} E_{7} \cdot \ldots E_{\gamma}
$$

(a) Determine whether columns of A are linearly independent as follows: assume there are numbers a, b, c s.t.

$$
a\left(\begin{array}{c}
0 \\
-2 \\
-4
\end{array}\right)+b\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)+c\left(\begin{array}{l}
4 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left\{\begin{array}{l}
a \cdot 0+b-2+c \cdot y=0 \\
a \cdot(-2)+b \cdot 3+c \cdot 1=0
\end{array}\right.
$$

which gives three equations about a, b, c. Solve the linear system about a, b, c. If there are nonzero solutions, then the column vectors are linearly dependent. Otherwise, they are linearly independent.
(b) Determine whether rows of A are linearly independent as follows: assume there are numbers a, b, c s.t.

$$
a\left(\begin{array}{lll}
0 & 2 & 4
\end{array}\right)+b\left(\begin{array}{lll}
-2 & 3 & 1
\end{array}\right)+c\left(\begin{array}{lll}
-4 & 4 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)[a \cdot 2+b \cdot 3+c-x=0
$$

which gives three equations about a, b, c. Solve the linear system about a, b, c. If there are nonzero solutions, then the row vectors are linearly dependent. Otherwise, they are linearly independent.
4. (20 pts)

Definition 1 (Transpose matrix). For a matrix A of size $m \times n$, its transpose matrix A^{T} has size $n \times m$, and the j-th column of A^{T} is obtained by converting the j-th row of A to a column. For example,

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right), \quad A^{T}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
$$

For a square matrix A, A^{T} can also be viewed as flipping non-diagonal entries with respect to the diagonal entries. For example:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad A^{T}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) .
$$

