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Linear CG |I: Motivation

e Solve the linear system Ax = b where A € R"*" is an SPD
matrix. Equivalent to minimizing the quadratic function
¢(x) = xT Ax — bx because V¢(x) = Ax — b.

e Convergence rate: CG converges linearly for x; — x,
quadratically for ¢(x;) — ¢(x.), where rate depends on &

e Termination in [{A1, ..., \p}| < n iterations with exact

arithmetic.

o Notation: let gj = V(x;), and f; = f(x;) for general f
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e gy and x, — x3 are A-conjugate:
goTA(X* —x1) = (8o, b — Ax1) = —go - &1 = 0.



Linear CG Il: Algorithm Sketch

e gy and x, — x3 are A-conjugate:
goTA(X* —x1) = (go,b— Ax1) = —go- g1 = 0.

e Goal: find a vector d; that is A-conjugate to gy, then
Xy — X1 = yd1 where v can be found with line search



Linear CG Ill: Algorithm Pseudocode

Notice that go and g1 span R?, so d; = g1 + Bgo. Linear CG finds
a new conjugate search direction that is conjugate to all previous
directions: ddeJ =0for k>j

Algorithm 1 Linear Conjugate Gradient Method
pick arbitrary xg € R", set dy = Axg — b = go
while g; # 0 do

;
g'g .. . . o
set oy = —4 (minimization along search direction)
J J

el = I G
o _ 18+t
dit1 = —gj+1 + B;d;
end while
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Nonlinear CG I: Motivation

e General differentiable function f, not necessarily quadratic

e Algorithm: xj11 = xj + «jdj where dj11 = —gj+1 + (;d|
where 3; is some scalar

e Two issues: finding the minimizer «; and the correct 3; to

give 'conjugacy’
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e Line Search: Find «; that minimizes f(x; + «;d;): Typically
sufficient to use inexact line search satisfying Wolfe
Conditions:

F(x + ajdy) < i+ dajg]’ dj
g(xj + ojd;)"d; > og/ d



Nonlinear CG Il: Nonlinear Line Search & Conjugacy

e Line Search: Find «; that minimizes f(x; + «;d;): Typically
sufficient to use inexact line search satisfying Wolfe

Conditions:

f(x + ajd)) < f; + Sajg;" d
g(x +a;d;)7 d; > og d
e Conjugacy: weakened to conjugacy for quadratic f, otherwise

that dj1 is a descent direction, dﬁlgjﬂ <0or

dl18+1 < —clgi+l?
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e If f is quadratic, then

-
g — lgiall? _ &(g1—g) _ glalgir—g)
T gl IEAR d7(gj+1 — &)
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e If f is quadratic, then

T T
8 — lgiall® _ &+1(g+1— &) _ g1(g+1 — &)
T gl [EdlR d7(gj+1 — &)

e If not, different choice of 3; gives different algorithm.
Dai-Yuan: )
1 gj+1ll

B = ot —
T dl (g1 - g)



Nonlinear CG Ill: Dai-Yuan Algorithim

e If f is quadratic, then

T T
8 — lgiall® _ &+1(g+1— &) _ g1(g+1 — &)
T gl [EdlR d7(gj+1 — &)

e If not, different choice of 3; gives different algorithm.

Dai-Yuan: )
g+l

d’(gj+1— &)

e Each d is a search direction by induction, since

B =

cle(gj+1 —gj) > (o — 1)djng > 0 by the wolfe condition so

Tog, - lEnlP o lgalt
T dl (g —g) T YT o1



Nonlinear CG IV: Dai-Yuan Convergence Proof

Theorem
Suppose V'f is L-Lipschitz and f bounded below. Let {x;}; be the

sequence generated by Dai-Yuan, then x; = x, for some J < oo or

liminf; o ||lgj|| = 0.



Nonlinear CG IV: Dai-Yuan Convergence Proof

Theorem
Suppose V'f is L-Lipschitz and f bounded below. Let {x;}; be the

sequence generated by Dai-Yuan, then x; = x, for some J < oo or

liminf; o ||lgj|| = 0.

e Proof: Start with dj;1 + gj+1 = B;d;, square both sides and
divide by (g} ;dj+1)? to get

2 2
Idieal® Bl 2 gl
(g7 1di+1)?  (gl1di+1)?  gladin  (g1d41)?
112 1

" (g7 d)? g+l



Nonlinear CG IV: Dai-Yuan Convergence Proof

e Then

HdH2 i Idiall®lldill? Zj:
* llewll®

k=0 gk+1dk+1) (gk dk

10



Nonlinear CG IV: Dai-Yuan Convergence Proof

e Then

[EAlS :i ksl lldll? <Zj: 1
(ngdJ')2 k=0 (glLrldk+1)2 (&¢ di)? Hng2

e Suppose by contradiction, ||gj|| > ¢ > 0 for all ;. Then

J 1 .
Y EE S

< llgil?
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Nonlinear CG IV: Dai-Yuan Convergence Proof

e Then

[EAlS :i ksl lldll? <Zj: 1
(ngdJ')2 k=0 (g[+1dk+1)2 (ngdk)z Hng2

e Suppose by contradiction, llgill > ¢ > 0 for all j. Then

=T =k

Zoutendijk Condition
for any method xj1 = x; + a;d}, djy1 = —gj+1 + B;d; using Wolfe

line search conditions, if Vf is L-Lipschitz and f bounded below,

oo(Td) 00

Z e Zcos 0;llgjll? < oo
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More Examples of Nonlinear CG

Characterizing Nonlinear CG

e reduces to Linear CG for quadratics, first-order method, O(n)
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More Examples of Nonlinear CG

Characterizing Nonlinear CG
e reduces to Linear CG for quadratics, first-order method, O(n)
Extensions of Nonlinear CG

e More formulas for 3;, not always derived from Linear CG

e Ex: Stronger descent condition, guarantees strong
convergence without Lipschitz requirement (preprint)

e Hybrid method: pick different 3; based on some conditions

e Combine with accelerated gradient descent
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