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Linear CG I: Motivation

• Solve the linear system Ax = b where A ∈ Rn×n is an SPD

matrix. Equivalent to minimizing the quadratic function

ϕ(x) = 1
2x

TAx − bx because ∇ϕ(x) = Ax − b.

• Convergence rate: CG converges linearly for xj → x∗,

quadratically for ϕ(xj) → ϕ(x∗), where rate depends on κ

• Termination in |{λ1, ..., λn}| ≤ n iterations with exact

arithmetic.

• Notation: let gj = ∇ϕ(xj), and fj = f (xj) for general f
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Linear CG II: Algorithm Sketch

x0

x∗

• g0 and x∗ − x1 are A-conjugate:

gT
0 A(x∗ − x1) = ⟨g0, b − Ax1⟩ = −g0 · g1 = 0.

• Goal: find a vector d1 that is A-conjugate to g0, then

x∗ − x1 = γd1 where γ can be found with line search
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Linear CG III: Algorithm Pseudocode

Notice that g0 and g1 span R2, so d1 = g1 + βg0. Linear CG finds

a new conjugate search direction that is conjugate to all previous

directions: dT
k dj = 0 for k > j

Algorithm 1 Linear Conjugate Gradient Method

pick arbitrary x0 ∈ Rn, set d0 = Ax0 − b = g0

while gj ̸= 0 do

set αj =
gT
j gj

dT
j Adj

(minimization along search direction)

xj+1 = xj + αjdj

βj =
gT
j+1gj+1

gT
j gj

dj+1 = −gj+1 + βjdj

end while
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Nonlinear CG I: Motivation

• General differentiable function f , not necessarily quadratic

• Algorithm: xj+1 = xj + αjdj where dj+1 = −gj+1 + βjdj

where βj is some scalar

• Two issues: finding the minimizer αj and the correct βj to

give ’conjugacy’
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Nonlinear CG II: Nonlinear Line Search & Conjugacy

• Line Search: Find αj that minimizes f (xj + αjdj): Typically

sufficient to use inexact line search satisfying Wolfe

Conditions:

f (xj + αjdj) ≤ fj + δαjg
T
j dj

g(xj + αjdj)
Tdj > σgT

j dj

• Conjugacy: weakened to conjugacy for quadratic f , otherwise

that dj+1 is a descent direction, dT
j+1gj+1 < 0 or

dT
j+1gj+1 < −c∥gj+1∥2
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Nonlinear CG III: Dai-Yuan Algorithim

• If f is quadratic, then

βj =
∥gj+1∥2

∥gj∥2
=

gT
j+1(gj+1 − gj)

∥gj∥2
=

gT
j+1(gj+1 − gj)

dT
j (gj+1 − gj)

• If not, different choice of βj gives different algorithm.

Dai-Yuan:

βj =
∥gj+1∥2

dT
j (gj+1 − gj)

• Each dj is a search direction by induction, since

dT
j (gj+1 − gj) ≥ (σ − 1)dT

j gj > 0 by the wolfe condition so

gT
j+1dj+1 =

∥gj+1∥2

dT
j (gj+1 − gj)

dT
j gj ≤

∥gj+1∥2

σ − 1
< 0.
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Nonlinear CG IV: Dai-Yuan Convergence Proof

Theorem
Suppose ∇f is L-Lipschitz and f bounded below. Let {xj}j be the

sequence generated by Dai-Yuan, then xJ = x∗ for some J < ∞ or

lim inf j→∞ ∥gj∥ = 0.

• Proof: Start with dj+1 + gj+1 = βjdj , square both sides and

divide by (gT
j+1dj+1)

2 to get

∥dj+1∥2

(gT
j+1dj+1)2

=
β2
j ∥dj∥2

(gT
j+1dj+1)2

− 2

gT
j+1dj+1

−
∥gj+1∥2

(gT
j+1dj+1)2

≤
∥dj∥2

(gT
j dj)2

+
1

∥gj+1∥2
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Nonlinear CG IV: Dai-Yuan Convergence Proof

• Then

∥dj∥2

(gT
j dj)2

=

j∑
k=0

∥dk+1∥2

(gT
k+1dk+1)2

− ∥dk∥2

(gT
k dk)2

≤
j∑

k=1

1

∥gk∥2
.

• Suppose by contradiction, ∥gj∥ ≥ c > 0 for all j . Then

j∑
k=1

1

∥gj∥2
≤ j

c2
,

∞∑
j=1

c2

j
≤

∞∑
j=1

(gT
j dj)

2

∥dj∥2

Zoutendijk Condition
for any method xj+1 = xj + αjdj , dj+1 = −gj+1 + βjdj using Wolfe

line search conditions, if ∇f is L-Lipschitz and f bounded below,

∞∑
j=1

(gT
j dj)

2

∥dj∥2
=

∞∑
j=1

cos2 θj∥gj∥2 < ∞
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More Examples of Nonlinear CG

Characterizing Nonlinear CG

• reduces to Linear CG for quadratics, first-order method, O(n)

• More formulas for βj , not always derived from Linear CG

• Ex: Stronger descent condition, guarantees strong

convergence without Lipschitz requirement (preprint)

• Hybrid method: pick different βj based on some conditions

• Combine with accelerated gradient descent
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