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1. Introduction: Dependence on E[L? / ui?]

Background

We consider the problem of minimizing a smooth convex function,
z, = arg min F'(x)
Z
where F'(z) is of the form F(z) = E;.p f;(x) for smooth functionals f;, and o represents the
"residual" quantity at the minimum, o* = E||V fi(z,)||3.
We will instate the following assumptions on the function F':

1. Each f; is continuously differentiable and the gradient function V f; has Lipschitz constant L;
: that is,

|IVfi(x) = Vfi(y)|l2 < Li||z — y||2 for all vectors z and y.

2. F has a strong convexity parameter u; that is,

(x —y,VF(z) — VF(y)) > pllz —y|5 for all vectors z and y.



1. Introduction: Dependence on E[L? / ui?]

Background

Stochastic Gradient Descent (SGD) is a widely used algorithm for optimization in machine learning
and convex analysis. The foundational work by Bach and Moulines (2011) provided a non-
asymptotic analysis of SGD, focusing on its convergence behavior in strongly convex settings.

They derived an iteration complexity bound for achieving a specified accuracy ¢, given by:

E[L2 2
kzzlog(eg)( L;l +;;E),

o k is the number of iterations required to achieve the desired accuracy e.

° E[L?] is the average squared Lipschitz constant of the gradients.
e L is the strong convexity parameter of the objective function.
e o2 represents the variance of the gradient noise.

e € is the initial error bound.



Key Observations

1. Dependence on E[L?/u?]:

2
e The first term in the complexity bound, ELL;'], reflects the average squared condition

number of the problem.

e This quadratic dependence on ]E[Lzz] can significantly slow down convergence,

particularly for problems where L; (the Lipschitz constant for individual components)
varies widely.

2. Effect of Gradient Noise:

2
e The second term, ﬁ, dominates when € (the desired accuracy) is very small or when o’

(noise variance) is large.

e This highlights the sensitivity of SGD to noise, making the algorithm less efficient in high-
noise scenarios.



2. Supremum Conditioning: Theorem 2.1 and Corollary 2.2

Theorem 2.1

Let each f; be convex, where V f; has Lipschitz constant L;, with L; < sup L almost surely. Let
F(z) = E[fi(z)] be u-strongly convex. Set o = E[||V f;(z)||?], where z, = arg min, F(z)
. Suppose that the step size v < ﬁ. Then the SGD iterates satisfy:

yo?

(1 —ysup L)’

k
Efllze — 24l3] < [1 = 2yp(1 —ysup L)]" [|zo — 2[5 +

where the expectation is taken over the sampling of {4 }.



2. Supremum Conditioning: Theorem 2.1 and Corollary 2.2

Corollary 2.2

For any desired tolerance ||z — z,||3 < ¢, if the Lipschitz constants and strong convexity

parameters are known, the step size 7y can be optimized as:

_ He
T 2epsup L + 202

With this step size, the number of iterations k required for SGD to reach the tolerance € is given

by:
2 L 2
k = 2log (EO) (SuP +02) ,
€ 7 €

where €9 = ||zo — Z,||3.



3. Motivation: Transition to Importance Sampling

Linear Dependence on sup L / w: Improvements and Limitations

The convergence bound in Theorem 2.1 and Corollary 2.2 replaces the earlier quadratic

dependence on [E[L? / u?] with a linear dependence on the uniform conditioning sup L/ u:

2 L 2
oo (1) (554.2)

This is a quadratic improvement in the number of required iterations when all Lipschitz constants

L; are of similar magnitude. However, when the L;'s have large variability (i.e., when the
components f; scale very differently), the supremum sup L can dominate the average

conditioning IE[L? / u?], making the bound overly conservative.



involves IN + 1 quadratic functions:

1. The first function f(x):

fiz) = 7 (z[1] - b)°, b=l

2. The remaining IV functions f;(z) ¢ = 2,...,N + 1):

N
2

fi(z) = ;az[2]2.

Lipschitz Constants: Conditioning Parameters:
e i =N,andL; =1fori =2,...,N + 1. e Strong convexity parameter p = NLH
« supL = N. e Average Lipschitz constant:
_ 2N
L=—-.
N+1

e Average quadratic Lipschitz constant:

E[L?] = N.



involves IN + 1 quadratic functions:

1. The first function f(x):

N

fi(z) = - (@[1] - b)?, b=+l

2. The remaining IV functions f;(z) ¢ = 2,...,N + 1):
1
file) = a2’
Iteration Complexity:
e Using uniform sampling:
L L2
sup =N +1, ]E[;] ~ N + 1.
M 2

e Linear dependence on L / 1 = 2 would significantly reduce the iteration count. However,

this cannot be achieved with uniform sampling.



Interpretation of the Example

 To achieve meaningful progress in reducing the error, f; (:1:) must be sampled frequently

because it dominates the optimization problem.

e Uniform sampling, however, treats all components equally. As a result, the algorithm wastes

many iterations on less influential components (fa, ..., fn+1), requiring N + 1 iterations in
expectation to adequately sample f(x).

Key Insight

e While sup L/u improves upon E[L? / u?], it remains inefficient in scenarios with high
variability in L;. For such problems, a better strategy is needed to prioritize components like
f1(z) without fully disregarding others.



4. Pure Importance Sampling: Transition to L / U

Weighted SGD Framework
(w)

The paper introduces a re-weighting strategy for SGD, where the Lipschitz constant Lz. of each

component fi(w) is scaled by a weight w(%):

The supremum Lipschitz constant sup L™) is now given by:

L;
sup LW — sup ——.
i w(1)



4. Pure Importance Sampling: Transition to L / U

Optimal Weights
The supremum sup L®) is minimized by choosing the weights:
~ L =
w(i) = 7 where L = E[L,].

Substituting this choice of weights:

= L.

L;
sup L) = sup 77

Thus, by setting w(z) x L;, the re-weighted Lipschitz constant sup Lw) equals the average

Lipschitz constant 1_}, eliminating dependence on sup L.



4. Pure Importance Sampling: Transition to L / U

Iteration Complexity with Importance Sampling

Applying Corollary 2.2 to the re-weighted SGD iterations with weights w(z) = —Iliji, the iteration

complexity becomes:

2 —_— —_—
Sup L('w) a(w) L L o’
k = 2log(2 —— | < 2log(2 — -
8 (2e0/€) ( 7 i ple | o8(2e0/¢) [ T linf L pie

Here:

e The first term % reflects the dependence on the average Lipschitz constant.

* However, the inequality might be tight in the presence of components with very small L; that
contribute towards the residual error. When o2 > 0, we therefore get a dissatisfying scaling of the

second term by a factor of L/ inf L.



5. Partially Biased Sampling: Mixture Importance Sampling to Address
Residual Problems

Motivation

While pure importance sampling achieves a dependence on l_}/u, it amplifies sensitivity to

residual noise, especially in the presence of components with very small L;. This issue becomes

2

evident when the noise variance o“ is non-zero, leading to unsatisfactory scaling of the second

2¢€ L 2
k—2log(e)( —I—G)
B ple

To mitigate this, the paper introduces partially biased sampling, which balances the benefits of

term in the complexity bound:

uniform sampling (stability) and importance sampling (speed).



Mixture Importance Sampling

The partially biased sampling distribution is a mixture of uniform sampling and importance

sampling. The weights are defined as:

, 1 1 L,
v =5ty o
where:
o % represents the uniform sampling component.
o % : Lf represents the importance sampling component.

This weighting ensures that all components are sampled, while giving more emphasis to

components with larger L;.



Key Results with Partially Biased Sampling

1. Supremum Lipschitz Constant: The re-weighted supremum Lipschitz constant is bounded

as:

This shows that the supremum Lipschitz constant is now effectively controlled by 1_3, reducing

worst-case dependence.

2. Noise Variance: The variance term o(®)2 under the partially biased distribution is bounded

as:

oW < 9452

This ensures that the noise amplification seen in pure importance sampling is mitigated.



Key Results with Partially Biased Sampling

3. Iteration Complexity: Substituting these bounds into Corollary 2.2, the iteration complexity

for partially biased sampling becomes:

2 L 2
o) (14 1)

Compared to pure importance sampling, the partially biased approach maintains the

dependence on l_}/y, while controlling the residual noise term.



A Family of Partially Biased Schemes

The choice of weights corresponds to an equal mix of uniform and fully biased sampling. More
generally, we could consider sampling according to any one of a family of weights which

interpolate between uniform and fully biased sampling:

: L;
w(i) = A+ (1 — ,\)f’, A € [0,1].
« When A\ = 0: This corresponds to fully biased sampling, where the weights are proportional

to L;. Larger L; gets higher sampling probability, favoring samples with higher Lipschitz

constants.

« When A\ = 1: This corresponds to uniform sampling, where all samples have equal weights,
regardless of L;.



Algorithm 3.1: Stochastic Gradient Descent with Partially Biased Sampling

Input:

e Initial estimate ¢, € R¢

e Bias parameter \ € [0, 1]

e Step size v > 0

e Tolerance parameter 5.> 0 . w’\(z') S (1 _ )\)ﬁ, = [0, 1]

e Access to the source distribution D

e If A\ < 1: bounds on the Lipschitz constants L;; the weights w* (i) derived from them
(see eq. 3.16); and access to the weighted distribution D).

Output: Estimated solution & to the problem min, F'(x)

k <+ 0
repeat
k<« k+1
Draw an index i ~ D).
L < Tp—1 — ;%sz‘(wk—l)
until VF(x) < 6
T Ly




Advantages of Partially Biased Sampling

1. Balanced Sampling:

e« Combines the stability of uniform sampling with the efficiency of importance sampling.

e Ensures that small L; components are not completely ignored, reducing noise sensitivity.
2. Improved Robustness:

e Unlike pure importance sampling, partially biased sampling avoids the excessive scaling

2, making it more robust in noisy scenarios.

of the noise variance o
3. General Applicability:

e Achieves a practical balance, making it suitable for both smooth and non-smooth

objectives where residual error or noise is significant.



6. Connection to the Kaczmarz Method

Introduction

The Randomized Kaczmarz (RK) method is a classical algorithm for solving linear systems

Az = b, and it has been shown to be an instance of Stochastic Gradient Descent (SGD) when
applied to the least squares formulation. This connection allows RK to leverage the techniques and
insights developed for SGD, such as importance sampling and partially biased sampling, to

improve convergence rates and robustness.



6. Connection to the Kaczmarz Method

1. RK as an Instance of SGD

The least squares problem minimizes the quadratic objective:

F@) =, Az~ b3 = o 3" ((anz) — b,

2n 4
1=1

where a; are rows of A and b is the observation vector. The gradient of F'(x) is:

VF(z) = Zv fi(z), with Vfi(z) = ((as, ) — b;) as.



6. Connection to the Kaczmarz Method

1. RK as an Instance of SGD

The RK update rule:

b’i — (a'i7 xk)

||az'||§

Tp+1 = T T iy

can be rewritten as:

LT+l = Tk — ’vai(wk),

1

where v = el This is equivalent to SGD with row a; sampled based on the probability p; o<

|a;||%, making RK a specific instance of weighted SGD.



6. Connection to the Kaczmarz Method
2. Sampling by Row Norm
The RK method selects rows a; with probabilities proportional to their squared norm:

p; — |3
(2 ?
1 4l1%

where || A||% is the Frobenius norm of A. This importance sampling strategy ensures faster error
reduction for rows with larger norms and aligns with the partially biased and hybrid sampling
strategies seen in SGD.

Theoretical guarantees for RK show exponential convergence:
)\-l—

k
(AT A)
B[]z — 2.2 < (1 ~ Puin |
2 |AJZ

|$0 - x*”g)

where X', (AT A) is the smallest non-zero eigenvalue of AT A. This highlights the role of the

condition number K (A) = || A||% /AL (AT A) in determining the convergence rate.

min



6. Connection to the Kaczmarz Method
3. Introducing Mixture Sampling

Building on the partially biased sampling strategy discussed in SGD, the RK method incorporates
mixture sampling to balance the benefits of uniform sampling (stability) and importance sampling

(efficiency). The modified RK update is:

bz' — (aiawk) a.
IAlI%/n + llaill3 ™

Tpi1 = Tg + 2C-

with the sampling probability:

o1 a1
VI

1
-



6. Connection to the Kaczmarz Method

3. Introducing Mixture Sampling

This mixture distribution ensures:
e Faster convergence by prioritizing rows with larger norms,
e Reduced noise amplification compared to fully biased sampling,

o Stability by ensuring smaller rows are not completely ignored.

The partially biased RK method achieves a convergence bound of:

~ 2¢(1 —2c cK(A)

202

k
Efllz — 2.2 < [1 )] 20 — 242 +

K(A) 1—2c

n|AllE



6. Connection to the Kaczmarz Method

In this section, we present some numerical results for the randomized Kaczmarz algorithm with

partially biased sampling, that is, applying Algorithm to the least squares problem F(a:) =
%||Aa: — b||3 (so fi(z) = 5 ((ai, ) — b;)?) and considering A € [0, 1].

Experimental Setup:

2, where Aisa 1000 x 10

» The least squares problem is given by F'(z) = ;|| Az — b

matriX, « is the variable vector, and b includes noise e.

1. Case 1: Rows of A are standard normal except for the last row with a variance of 102;

noise e has variance 0.12.
2. Case 2: All rows have standard normal entries, and e has variance 0.12.

3. Case 3-5: Rows are altered with increasing variance 7, with cases categorized as "high,"

"medium," and "low" noise regimes.



Error (log)

6. Connection to the Kaczmarz Method
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1. Case 1: Rows of A are standard normal except for the last row with a variance of 102:

noise e has variance 0.12.
2. Case 2: All rows have standard normal entries, and e has variance 0.12.

3. Case 3-5: Rows are altered with increasing variance 7, with cases categorized as "high,"

"medium," and "low" noise regimes.
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6. Connection to the Kaczmarz Method

Case 3:
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Convergence Behavior:

e Figure 1illustrates the log-scale approximation error across iterations for different A
values. Cases with hybrid sampling consistently outperform the extremes (A = 0 or A =

1) in noisy conditions.
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6. Connection to the Kaczmarz Method

o Case 1: Rows of A are standard normal except for the last row with a
variance of 102, e has variance 0.12

Iterations (log)

» Case 3: Rows are altered with increasing variance j, high noise regimes
* Case 5: Rows are altered with increasing variance j, low noise regimes
Case 4: Rows are altered with increasing variance j, medium noise regimes

1 Case 2: All rows have standard normal entries, and e has variance 0.12

0 0.2 0.4 0.6 0.8 1

« Figure 2 shows the iteration count needed to achieve a fixed error ||z, — z.||3 < €. The
trends reaffirm that hybrid sampling optimally balances convergence speed and residual

minimization.



Summary

e The improved dependence on the conditioning for smooth and strongly convex SGD.

e The discussion of importance sampling for SGD.

e The connection between SGD and the randomized Kaczmarz method.



