3-operator splitting Jiaxing Li

Recall from this class

For the compositie optimization problem

$$\min_{x} f(x) + g(x)$$

 \bullet forward-backward splitting

 \bullet Douglas-Rachford splitting

Extend to 3 functions

$$\min_{x} f(x) + g(x) + h(x)$$

Davis-Yin splitting:
$$\begin{cases} \mathbf{x}_{k+\frac{1}{2}} = \operatorname{Prox}_{g}^{\eta}(\mathbf{z}_{k}) \\ \mathbf{x}_{k+1} = \operatorname{Prox}_{f}^{\eta}(2\mathbf{x}_{k+\frac{1}{2}} - \mathbf{z}_{k} - \eta\nabla h(\mathbf{x}_{k+\frac{1}{2}}) \\ \mathbf{z}_{k+1} = \mathbf{z}_{k} + \mathbf{x}_{k+1} - \mathbf{x}_{k+\frac{1}{2}} \end{cases}$$

f, g, h convex, ∇h Lipschitz continuous with Lipschitz L, and $\eta < \frac{2}{L}$

Definitions

The **resolvent** of an operator T is defined as $J_T = (I+T)^{-1}$.

Recall that the proximal point method is:

$$x_{k+1} = (I + \eta \partial f)^{-1}(x_k) = \operatorname{Prox}_f^{\eta}(x_k).$$

The **reflection** of an operator T is defined as $R_T = 2J_T - I = 2(I + T)^{-1} - I.$

3-operator splitting problem

find $x \in \mathcal{H}$ such that $0 \in Ax + Bx + Cx$

A, B, C maximal monotone operators, C cocoercive with parameter β

An operator C is called β -cocoercive (or β -inverse-strongly monotone), for $\beta > 0$, if $\langle Cx - Cy, x - y \rangle \ge \beta ||Cx - Cy||^2$, $\forall x, y \in \mathcal{H}$. In particular, if h is a convex function and its gradient ∇h is L-Lipschitz, then ∇h is $\frac{1}{L}$ -cocoercive.

The operator

$$T := J_{\gamma A} \circ \left(2J_{\gamma B} - I - \gamma C \circ J_{\gamma B}\right) + I - J_{\gamma B} \text{ solves the}$$

3-operator sum problem.

1.
$$T = T_{\text{DRS}}$$
 when $C = 0$;

2.
$$T = T_{\text{FBS}}$$
 when $B = 0$.

Derivation of the operator

 $0 \in (\mathbb{A} + \mathbb{B} + \mathbb{C}) \iff 0 \in (\mathbb{I} + \alpha \mathbb{A})x - (\mathbb{I} - \alpha \mathbb{B})x + \alpha \mathbb{C}x$ $\iff 0 \in (\mathbb{I} + \alpha \mathbb{A})x - \mathbb{R}_{\alpha \mathbb{B}}(\mathbb{I} + \alpha \mathbb{B})x + \alpha \mathbb{C}x$ $\iff 0 \in (\mathbb{I} + \alpha \mathbb{A})x - \mathbb{R}_{\alpha \mathbb{B}}z + \alpha \mathbb{C}x, z \in (\mathbb{I} + \alpha \mathbb{B})x$ $\iff (\mathbb{R}_{\alpha\mathbb{B}} - \alpha\mathbb{C}\mathbb{J}_{\alpha\mathbb{B}})z \in (\mathbb{I} + \alpha\mathbb{A})\mathbb{J}_{\alpha\mathbb{B}}z, x = \mathbb{J}_{\alpha\mathbb{B}}z$ $\iff \mathbb{J}_{\alpha\mathbb{A}}(\mathbb{R}_{\alpha\mathbb{B}} - \alpha\mathbb{C}\mathbb{J}_{\alpha\mathbb{B}})z = \mathbb{J}_{\alpha\mathbb{B}}z, x = \mathbb{J}_{\alpha\mathbb{B}}z$ $\iff (\mathbb{R}_{\alpha\mathbb{A}}(\mathbb{R}_{\alpha\mathbb{B}} - \alpha\mathbb{C}\mathbb{J}_{\alpha\mathbb{B}}) - \alpha\mathbb{C}\mathbb{J}_{\alpha\mathbb{B}})z = z, x = \mathbb{J}_{\alpha\mathbb{B}}z$ $\iff ((1/2)\mathbb{I} + (1/2)\mathbb{T})z = z, x = \mathbb{J}_{\alpha \mathbb{B}} z,$ $\mathbb{T} = \mathbb{R}_{\alpha \mathbb{A}}(\mathbb{R}_{\alpha \mathbb{B}} - \alpha \mathbb{C} \mathbb{J}_{\alpha \mathbb{B}}) - \alpha \mathbb{C} \mathbb{J}_{\alpha \mathbb{B}}$

The algorithm

Algorithm 1 Set an arbitrary point $z^0 \in \mathcal{H}, \gamma \in (0, 2\beta)$, and sequence $(\lambda_j)_{j\geq 0} \in (0, (4\beta - \gamma)/2\beta)$.

For k = 0, 1, ..., iterate:

1. get
$$x_B^k = J_{\gamma B}(z^k)$$
;
2. get $x_A^k = J_{\gamma A}(2x_B^k - z^k - \gamma C x_B^k)$; //comment: $x_A^k = J_{\gamma A} \circ (2J_{\gamma B} - I - \gamma C \circ J_{\gamma B}) z^k$
3. get $z^{k+1} = z^k + \lambda_k (x_A^k - x_B^k)$; //comment: $z^{k+1} = (1 - \lambda_k) z^k + \lambda_k T z^k$
KM iteration

Averageness property

Proposition 2.1 (Averageness of *T*) Suppose that $T_1, T_2 : \mathcal{H} \to \mathcal{H}$ are firmly nonexpansive and *C* is β -cocoercive, $\beta > 0$. Let $\gamma \in (0, 2\beta)$. Then

$$T := I - T_2 + T_1 \circ (2T_2 - I - \gamma C \circ T_2)$$

is α -averaged with coefficient $\alpha := \frac{2\beta}{4\beta - \gamma} < 1$. In particular, the following inequality holds for all $z, w \in \mathcal{H}$

$$\|Tz - Tw\|^{2} \le \|z - w\|^{2} - \frac{(1-\alpha)}{\alpha}\|(I - T)z - (I - T)w\|^{2}.$$
(2.2)

Convergence of the Algorithm

Theorem 1.1 (Convergence of Algorithm 1) Suppose that Fix $T \neq \emptyset$. Let $\alpha = 2\beta/(4\beta - \gamma)$ and suppose that $(\lambda_j)_{j\geq 0}$ satisfies $\sum_{j=0}^{\infty} (1-\lambda_j/\alpha)\lambda_j/\alpha = \infty$ (which is true if the sequence is strictly bounded away from 0 and $1/\alpha$). Then the sequences $(z^j)_{j\geq 0}$, $(x_B^j)_{j\geq 0}$, and $(x_A^j)_{j\geq 0}$ generated by Algorithm 1 satisfy the following: 1. $(z^j)_{j\geq 0}$ converges weakly to a fixed point of T; and 2. $(x_B^j)_{j\geq 0}$ and $(x_A^j)_{j\geq 0}$ converge weakly to an element of $\operatorname{zer}(A + B + C)$. **Theorem 2.1** (Main convergence theorem) Suppose that Fix $T \neq \emptyset$. Set a stepsize $\gamma \in (0, 2\beta\varepsilon)$, where $\varepsilon \in (0, 1)$. Set $(\lambda_j)_{j\geq 0} \subseteq (0, 1/\alpha)$ as a sequence of relaxation parameters, where $\alpha = 1/(2 - \varepsilon) < 2\beta/(4\beta - \gamma)$, such that for $\tau_k := (1 - \lambda_k/\alpha)\lambda_k/\alpha$ we have $\sum_{i=0}^{\infty} \tau_i = \infty$. Pick any starting point $z^0 \in \mathcal{H}$. Let $(z^j)_{j\geq 0}$ be generated by Algorithm 1. Then the following hold

- 1. Suppose that $\inf_{j\geq 0} \lambda_j > 0$ and let z^* be the weak limit of z^k (which exists by Corollary 2.1). Then the following auxiliary convergence results hold:
 - (a) $(Cx_B^J)_{j\geq 0}$ converges strongly to Cx^* for any $x^* \in \operatorname{zer}(A + B + C)$;
 - (b) the sequence $(J_{\gamma B}(z^{j}))_{j\geq 0}$ weakly converges to $J_{\gamma B}(z^{*}) \in \operatorname{zer}(A + B + C)$;
 - (c) the sequence $(J_{\gamma A} \circ (2J_{\gamma B} I \gamma C \circ J_{\gamma B})(z^j))_{j \ge 0}$ weakly converges to $J_{\gamma B}(z^*) \in$ zer(A + B + C).
- 2. Finally, the sequences $(J_{\gamma B}(z^j))_{j\geq 0}$ and $(J_{\gamma A} \circ (2J_{\gamma B} I \gamma C \circ J_{\gamma B})(z^j))_{j\geq 0}$ converge strongly to a point in $\operatorname{zer}(A + B + C)$ whenever any of the following holds:
 - (a) A is uniformly monotone² on every nonempty bounded subset of dom(A);
 - (b) *B* is uniformly monotone on every nonempty bounded subset of dom(*B*);
 - (c) C is demiregular at every point $x \in \operatorname{zer}(A + B + C)$.³

Convergence rate (general convex case)

 $f, g : \mathcal{H} \to (-\infty, \infty]$ closed, proper, convex functions,

 $h : \mathcal{H} \to (-\infty, \infty)$ convex and differentiable

 ∇h is β^{-1} -Lipschitz continuous.

Davis-Yin splitting:
$$\begin{cases} \mathbf{x}_{k+\frac{1}{2}} = \operatorname{Prox}_{g}^{\eta}(\mathbf{z}_{k}) \\ \mathbf{x}_{k+1} = \operatorname{Prox}_{f}^{\eta}(2\mathbf{x}_{k+\frac{1}{2}} - \mathbf{z}_{k} - \eta \nabla h(\mathbf{x}_{k+\frac{1}{2}}) \\ \mathbf{z}_{k+1} = \mathbf{z}_{k} + \mathbf{x}_{k+1} - \mathbf{x}_{k+\frac{1}{2}} \end{cases}$$

Theorem 3.1 Suppose that f is L-Lipschitz continuous on the closed ball $B\left(0, \left(1+\frac{\gamma}{\beta}\right) ||z_0-z^*||\right)$, then, $(f+g+h)(x_k)-(f+g+h)(x^*)=o\left(\frac{1}{\sqrt{k+1}}\right)$. for an arbitrary point $z_0 \in \mathcal{H}, \ \gamma \in (0, 2\beta)$

Accelerating the general convex case

if we compute the objective error at the *weighted ergodic iterate*:

٠

$$\overline{x}_g^k := \frac{2}{(k+1)(k+2)} \sum_{i=0}^k (i+1) x_g^i.$$

then,
$$(f+g+h)(\overline{x_k}) - (f+g+h)(x^*) = o\left(\frac{1}{k+1}\right)$$

Strongly monotone case

Algorithm 3 Algorithm 1 with acceleration

Choose $z^0 \in \mathcal{H}$ and stepsizes $(\gamma_j)_{j\geq 0} \in (0, \infty)$. Let $x_A^0 \in \mathcal{H}$ and set $x_B^0 = J_{\gamma_0 B}(x_A^0)$, $u_B^0 = (1/\gamma_0)(I - J_{\gamma_0 B})(x_A^0)$. For $k = 1, 2, \ldots$, iterate

1. get
$$x_B^k = J_{\gamma_{k-1}B}(x_A^{k-1} + \gamma_{k-1}u_B^{k-1});$$

2. get $u_B^k = (1/\gamma_{k-1})(x_A^{k-1} + \gamma_{k-1}u_B^{k-1} - x_B^k);$
3. get $x_B^k = J_{abc}(x_A^k - x_B^k - x_B^k);$

3. get $x_A^{\kappa} = J_{\gamma_k A} (x_B^{\kappa} - \gamma_k u_B^{\kappa} - \gamma_k C x_B^{\kappa});$

Accelerated strongly monotone case

Theorem 3.3 (Accelerated variants of Algorithm 1) Let *B* be μ_B -strongly monotone, where we allow the case $\mu_B = 0$.

1. Suppose that C is β -cocoercive and μ_C -strongly monotone. Let $\eta \in (0, 1)$ and choose $\gamma_0 \in (0, 2\beta(1 - \eta))$. In algorithm 3, for all $k \ge 0$, let

$$\gamma_{k+1} := \frac{-2\gamma_k^2 \mu_C \eta + \sqrt{(2\gamma_k^2 \mu_C \eta)^2 + 4(1 + 2\gamma_k \mu_B)\gamma_k^2}}{2(1 + 2\gamma_k \mu_B)}.$$
(3.6)

Then we have $||x_B^k - x^*||^2 = O(1/(k+1)^2).$

2. Suppose that C is L_C -Lipschitz, but not necessarily strongly monotone or cocoercive. Suppose that $\mu_B > 0$. Let $\gamma_0 \in (0, 2\mu_B/L_C^2)$. In Algorithm 3, for all $k \ge 0$, let

$$\gamma_{k+1} := \frac{\gamma_k}{\sqrt{1 + 2\gamma_k(\mu_B - \gamma_k L_C^2/2)}}$$
(3.7)

Then we have $||x_B^k - x^*||^2 = O(1/(k+1)^2).$

Application: 3-block extension of ADMM

Algorithm 6 For problem (4.7)

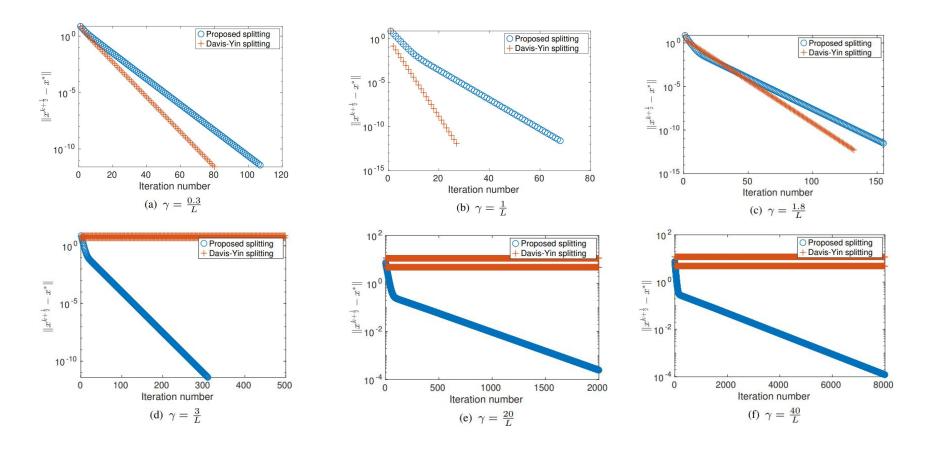
Set an arbitrary z^0 and stepsize $\gamma \in (0, 2\mu/||L_1||^2)$. For k = 0, 1, ..., iterate

1. get
$$w^{k} = \mathbf{prox}_{\gamma d_{3}}(z^{k});$$

2. get $z^{k+\frac{1}{2}} = 2w^{k} - z^{k} - \gamma \nabla d_{1}(w^{k});$
3. get $z^{k+1} = z^{k} + \mathbf{prox}_{\gamma d_{2}}(z^{k+\frac{1}{2}}) - w^{k}.$

To fix the step size problem

$$\begin{split} \min_{x} d_{1}(x) + d_{2}(x) + d_{3}(x) \\ x^{k+\frac{1}{2}} &= \operatorname{prox}_{d_{3}}^{\gamma}(z^{k}) \\ \text{Proposed Splitting}: \quad p^{k+1} &= \operatorname{prox}_{d_{1}}^{\gamma}(2x^{k+\frac{1}{2}} - z^{k} - \gamma \nabla d_{2}(x^{k+\frac{1}{2}})) \\ x^{k+1} &= \operatorname{prox}_{d_{2}}^{\gamma}(p^{k+1} + \gamma \nabla d_{2}(x^{k+\frac{1}{2}})) \\ z^{k+1} &= z^{k} + (x^{k+1} - x^{k+\frac{1}{2}}) \\ T &= J_{\gamma C} \circ (J_{\gamma A} \circ (2J_{\gamma B} - I - \gamma C J_{\gamma B}) + \gamma C J_{\gamma B}) + (I - J_{\gamma B}) \end{split}$$



Thank you