
MA/CS 615 Spring 2024 Homework #4

Due before 11pm April 9. Late homework will not be given any credit. Collab-
oration is OK but not encouraged. Indicate on your report whether you have
collaborated with others and whom you have collaborated with.
1. (15 pts) Consider the 1D variable coefficient problem

−(a(x)u′)′ = f, x ∈ (0, 1), u(0) = u(1) = 0, (0.1)

Let us use trapezoidal quadrature rule for P 1 finite element method on a uniform mesh
0 = x0 < x1 < x2 < · · · < xN < xN+1 = 1. Let Ah(uh, vh) and ⟨f, vh⟩h denote the

quadrature approximation to A(uh, vh) =
∫ 1

0
a(x)u′hv

′
hdx and (f, vh) respectively. We have

the finite element scheme with quadrature given as

seek uh ∈ V h
0 , satisfying Ah(uh, vh) = ⟨f, vh⟩h,∀vh ∈ V h

0 . (0.2)

Show that the matrix vector form for the scheme (0.2) is

1

h

1

2


a0 + 2a1 + a2 −a1 − a2
−a1 − a2 a1 + 2a2 + a3 −a2 − a3

. . . . . . . . .



u1
u2

...

 = h


f1
f2

...

 (0.3)

2. (15 pts) The traditional finite difference scheme in Chapter 2 is given as

1

∆x2

a 1
2
+ a 3

2
−a 3

2

−a 3
2

a 3
2
+ a 5

2
−a 5

2

. . . . . . . . .


u1u2

...

 =

f1f2
...

 . (0.4)

Prove the stability of this scheme in two steps:

1. First converting it to a scheme in the form of (0.3).

2. Apply discussion in Chapter 3 for (0.3) to prove the stability. You can assume suitable
assumptions when needed, e.g., under what assumptions you can derive stability.

Hint: in the first step, we need show that there exist bi such that (0.4) is equivalent to

1

h

1

2

b0 + 2b1 + b2 −b1 − b2
−b1 − b2 b1 + 2b2 + b3 −b2 − b3

. . . . . . . . .


u1u2

...

 = h

f1f2
...

 .
3. (15 pts)

Consider the 1D problem −u′′(x) = f(x) on the interval x ∈ (0, 1) with boundary
condition u(0) = u(1) = 0. Next consider an uniform mesh with grids 0 = x0 < x1 < · · · <
xN < xN+1 = 1 with spacing h = 1

N+1
for the interval [0, 1]. And this time we assume

N = 2n − 1 is odd. Then there are n small intervals Ik = [x2k−2, x2k] (k = 1, · · · , n). Let
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us use Simpson quadrature rule for P 2 finite element method on this uniform mesh. Let
Ah(uh, vh) and ⟨f, vh⟩h denote the quadrature approximation to A(uh, vh) =

∫ 1

0
u′hv

′
hdx and

(f, vh) respectively. We have the finite element scheme with quadrature given as

seek uh ∈ V h
0 , satisfying Ah(uh, vh) = ⟨f, vh⟩h,∀vh ∈ V h

0 . (0.5)

Show that the matrix vector form of the scheme can be written as

−uj−1 + 2uj − uj+1

h2
= fj, if j is odd;

uj−2 − 8uj−1 + 14uj − 8uj+1 + uj+2

4h2
= fj, if j is even.

4. (Bonus 20 pts) For a rectangular domain Ω, consider a 2D variable coefficient problem

−∇ · (a(x)∇u(x)) = f(x), x ∈ Ω

with homogeneous Dirichlet boundary condition, where a(x) > 0 is a scalar coefficient.
Consider a uniform rectangular mesh and using Q1 finite element method with trapezoidal
quadrature for both x and y variables. The finite element method is to seek uh ∈ V h

0

satisfying
Ah(uh, vh) = ⟨f, vh⟩.

Using notation in Chapter 2, the scheme can be written as[
1

∆x2
(DT

x ⊗ Iy)A1(Dx ⊗ Iy) +
1

∆y2
(Ix ⊗DT

y )A2(Ix ⊗Dy)

]
vec(U) = vec(F ),

where A1 and A2 are two diagonal matrices defined as follows.
Let a1 be a 2D array of size Ny × (Nx+ 1) satisfying a1(j, i) =

1
2
a(xi, yj) +

1
2
a(xi−1, yj)

and a2 be a 2D array of size (Ny + 1) × Nx satisfying a2(j, i) = 1
2
a(xi, yj) +

1
2
a(xi, yj−1).

Then A1 and A2 can be easily generated in MATLAB as sparse diagonal matrices:

A1=sparse(diag(a1(:)));
A2=sparse(diag(a2(:)));

Implement this scheme and test the accuracy for the following smooth solution:

% a uniform N+2 by N+2 grid for the domain (0,1)*(0,1)
% xi and yi is the N by N interior grid
dx=1/(N+1); x=[0:dx:1]'; xi=x(2:end−1);

dy=dx; y=x; yi=xi;

% setup the solution to 2D Poisson Equation −(au x) x−(au y) y=f
u=@(x,y)sin(4*pi*y)*sin(2*pi*x');
a=@(x,y) cos(y)*cos(x');
f=@(x,y) 2*pi*cos(y).*sin(4*pi*y)*(sin(x').*cos(2*pi*x')...

+2*pi*cos(x').*sin(2*pi*x'))+...
4*pi*(sin(y).*cos(4*pi*y)...
+4*pi*cos(y).*sin(4*pi*y))*(cos(x').*sin(2*pi*x'));
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After creating the big matrix, you can simply use backslash for solving the linear system:

x= A \ b; % this solves a square linear system Ax=b

Provide the loglog plot of errors in max norm and 2-norm of the scheme with comparison to
the second order slope line on 5 different grids: N = 10, 20, 30, . . . , 50.
5. (60-80 points) The vorticity stream-function formulation of the 2D incompressible Navier-
Stokes is given by:

ωt + uωx + vωy =
1

Re
∆ω, (0.6)

∆ψ = ω, ⟨u, v⟩ = ⟨−ψy, ψx⟩, (0.7)

ω(x, y, 0) = ω0(x, y)(initial condition), ⟨u, v⟩ · n = given on ∂Ω(boundary condition).

Here ψ is the stream function and ω is the vorticity, which is the curl of the velocity field
u = ⟨u, v⟩. Given ω, to find the velocity, first find ψ by solving ∆ψ = ω, then we have the
velocity by computing u = −ψy, v = ψx. For simplicity, we only consider periodic cases to
bypass the boundary condition.

(a) (20 points) 2D Poisson Solver. We need to solve a Poisson equation every time
step/stage. Implement the eigenvector method for solving uxx + uyy = f on [0, 2π] ×
[0, 2π] with periodic assumptions. Test your code with the following solution: f =
2 cos (2x) + 2 cos (2y) and u = sin2 x + sin2 y − 1. Recall that the matrix is singular
thus we usually set the entry correponding to the zero eigenvalue to be zero, then
we can compare it with an exact solution which sums to zero. Use fft2 and ifft2
functions for the eigenvector multiplication. Use uniform N ×N meshes. Show loglog
plot of the errors in max norm and compare it the second order slope line for N =
20, 40, 80, 160, 320. Show your CPU time (use tic, toc functions in MATLAB to track
CPU time) for N = 1280, 2560, 5120.

(b) (20 points) Linear Convection Diffusion. To solve the nonlinear convection diffusion,
test the discretization on the linear one first. Consider the following equation with
periodic b.c. on [0, 2π]× [0, 2π]:

ut + ux + uy = d(uxx + uyy), d > 0.

We can use centered difference for all spatial derivatives to achieve second order accu-
racy in space. Let h = ∆x = ∆y denote mesh size of a uniform mesh and ∆h denote
the discrete Laplacian:

d

dt
ui,j = −ui+1,j − ui−1,j

2h
− ui,j+1 − ui,j−1

2h
+ d∆hui,j. (0.8)

If we use explicit methods, the time step constaint for the Laplacian part will be
∆t ∼ h2

d
which is acceptable if d is very small (for instance d ∼ h). However, using

forward Euler or RK2 for (0.8) with d = 0 is never stable because their stability regions
do not contain any imaginary axis. The stability regions of RK3 and RK4 contain part
of the imaginary axis thus we could have a reasonable stable time step for small d.

Use the following Strong Stability Preserving (SSP) RK3 to solve (0.8) with the time
step ∆t = min{0.3h2

d
, 0.3h} (h = ∆x = ∆y):
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U1=U+dt*RHS(U);
U2=0.75*U+0.25*(U1+dt*RHS(U1));
U=U/3+2/3*(U2+dt*RHS(U2));

Test your code using the exact solution u(x, t) = exp(−2dt) sin (x+ y − 2t) with d =
0.01 on [0, 2π] × [0, 2π]. Run it till T = 0.2 with N = 16, 32, 64, 128, 256, 512. Show
the table of error and order.

(c) (10 points) 2D Incompressible Flow. Plugging the second equation of (0.7) into (0.6),
we get

ωt − ψyωx + ψxωy =
1

Re
∆ω.

Let Dx and Dy denote the central difference for the first order partial derivatives, we
get

ωt = DyψDxω −DxψDyω +
1

Re
∆hω.

Use the RK3 above for the time derivative. At each time step tn, first compute
the maximum of velocity by Un = max{|un|, |vn|}, then time step can be taken as
∆t = min{0.3Reh2, 0.3 1

Unh} (h = ∆x = ∆y). For each time stage, you need to
compute/update the velocity by solving the Poisson equation ψ.

Test the accuracy with the exact solution: ω(x, y, t) = −2 exp (−2t/Re) sinx sin y on
domain [0, 2π] × [0, 2π] with Re = 100. Notice that the 2D Poisson equation needs
to be solved for each time stage in one RK step. Run your code till T = 0.2 with
N = 16, 32, 64, 128, 256. List the error and order as a table.

(d) (Bonus 10 points) Double Shear Layer. Take Re = 1000. The initial condition is

ω(x, y, 0) =

{
δ cos (x)− 1

ρ
sech2((y − π/2)/ρ) y ≤ π

δ cos (x) + 1
ρ
sech2((3π/2− y)/ρ) y > π

on domain [0, 2π]× [0, 2π], where we take ρ = π/15 and δ = 0.05. Show your vorticity
at T = 6 and T = 8 with N = 256 using 30 contour lines. Make sure your x-axis and
y-axis are correctly shown.

For example, the initial value can be visualized using 30 contour lines on a 256× 256
mesh as follows

n=256;
L = 2*pi;
x = linspace(0,L,n+1)'; x = x(2:end);
y=x;
yy=y*ones(1,n);
xx=ones(n,1)*x';
rho=pi/15;
Delta=0.05;
omega1=Delta*cos(xx)−1/rho*sech((yy−pi/2)/rho).ˆ2;
omega2=Delta*cos(xx)+1/rho*sech((3*pi/2−yy)/rho).ˆ2;
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indicator1=[ones(n/2,n); zeros(n/2,n)];
indicator2=[zeros(n/2,n); ones(n/2,n)];
omega=omega1.*indicator1+omega2.*indicator2;

contour(x,y,omega,30);colorbar
set(0,'DefaultTextFontSize',18,'DefaultAxesFontSize', 18)
xlabel('X');ylabel('Y')

(e) Implicit diffusion treatment. For small Re, the time step ∆t = 0.3Reh2 is too small
to use. Instead, we can consider using the IMEX method, i.e., consider the following
scheme (first order accurate in time):

ωn+1
i,j = ωn

i,j −∆tuni,jDxω
n
i,j −∆tvni,jDyω

n
i,j +

∆t

Re
∆hω

n+1
i,j ,

uni,j = −Dyψ
n
i,j, vni,j = Dxψ

n
i,j

∆hψ
n
i,j = ωn

i,j.

(i) (5 points) Replace the velocity field by two constants u0 = max
i,j

|uni,j| and v0 =

max
i,j

|vni,j|, which is the same as considering the scheme for the linearized equation

ωt + u0ωx + v0ωx =
1

Re
∆ω.

By plugging in the ansatz ωn
i,j = ω̂n

k1,k2
ei k1i∆xei k2j∆y, find the amplification factor

g(ξ1, ξ2) (where ξ1 = k1∆x, ξ2 = k2∆y) for the linearized scheme

ωn+1
i,j = ωn

i,j −∆tu0Dxω
n
i,j −∆tv0Dyω

n
i,j +

∆t

Re
∆hω

n+1
i,j .

Let λ1 = u0∆t/∆x, λ2 = v0∆t/∆y, µ1 =
1
Re
∆t/∆x2 and µ2 =

1
Re
∆t/∆y2. Show

that the following time step is sufficient to ensure |g(ξ1, ξ2)| ≤ 1:

λ21 ≤ µ1, λ22 ≤ µ2,

which is

∆t ≤ 1

∥un∥2∞
1

Re
, ∆t ≤ 1

∥vn∥2∞
1

Re
. (0.9)

(ii) (Bonus 10 points) Implement the scheme. Use the eigenvector method to invert
the matrix and use FFT for the eigenvectors. Take Re = 70. The initial condition
is

ω(x, y, 0) =

{
δ cos (x)− 1

ρ
sech2((y − π/2)/ρ) y ≤ π

δ cos (x) + 1
ρ
sech2((3π/2− y)/ρ) y > π

on domain [0, 2π] × [0, 2π], where we take ρ = π/15 and δ = 0.05. Show your
vorticity at T = 6 and T = 8 with N = 512 using 30 contour lines. Set ∆t = ∆x.
You can also try a larger ∆t or larger Re so that (0.9) is violated on a coarse
mesh, and see what happens.
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