
MA615 Numerical Methods for PDEs
Spring 2024 Lecture Notes

Xiangxiong Zhang
Department of Mathematics, Purdue University

2

Contents

Preface 1

1 Introduction 3
1.1 Partial differential equations 3
1.2 Numerical schemes . 4
1.3 Computational tools . 6

2 Finite difference methods for the Poisson’s equation 7
2.1 Finite difference approximations 8
2.2 Poisson’s equation . 8
2.3 1D BVP: Dirichlet b.c. 9

2.3.1 Consistency, stability and convergence 9
2.3.2 Eigenvalues of K and stability in 2-norm 10
2.3.3 Poisson’s solver by eigenvectors 12
2.3.4 Nonhomegeous Dirichlet b.c. 13

2.4 1D BVP: Dirichlet and Neumann b.c. 13
2.4.1 A symmetric matrix T 13
2.4.2 Nonsymmetric matrix T2 14

2.5 Convergence in maximum norm 15
2.5.1 Dirichlet boundary conditions 16
2.5.2 Dirichlet and Neumann b.c. 17

2.6 1D BVP: Neumann b.c. 17
2.6.1 The matrix B on the one-half grid 17
2.6.2 An alternative point of view for one-half grid 18
2.6.3 The matrix B on the integer grid 18
2.6.4 The matrix B2 on the integer grid 19
2.6.5 Compatibility Condition of Neumann b.c. 19
2.6.6 Inverting B and B2 21

2.7 1D BVP: periodic b.c. 23
2.8 2D BVP: Dirichlet b.c. 24
2.9 2D BVP: Neumann b.c. 26

2.9.1 The one-half grid . 26
2.9.2 The integer grid: matrix B 26

3

4 CONTENTS

2.9.3 The integer grid: matrix B2 27
2.10 The 9-point Laplacian . 27
2.11 Variable coefficient problems 30

2.11.1 1D Dirichlet b.c. 30
2.11.2 2D Dirichlet b.c. 31
2.11.3 1D Neumann b.c. 31

3 A brief introduction of finite element methods 35
3.1 Motivation and plans . 35
3.2 Preliminaries . 37

3.2.1 Weak derivatives and Sobolev spaces 37
3.2.2 Interpolation and quadrature 39

3.3 1D BVP: homogeneous Dirichlet b.c. 41
3.3.1 Variational formulation 41
3.3.2 The abstract finite element method 43
3.3.3 The abstract implementation 44
3.3.4 The simple practical implementation on uniform meshes 44

3.4 Basic properties of the bilinear form 48
3.4.1 Coercivity . 48
3.4.2 Continuity . 49
3.4.3 Coercivity is stability 49

3.5 Error estimates of the abstract finite element method 50
3.5.1 H1-norm estimate: stability and consistency imply

convergence . 50
3.5.2 L2-norm estimate: elliptic regularity and duality ar-

guments . 52
3.5.3 Summarization and comparison 54

3.6 V h-ellipticity: properties of the bilinear form with quadrature 56
3.6.1 Equivalent norms of the piecewise linear polynomial

space . 56
3.6.2 Coercivity . 58
3.6.3 Continuity . 58
3.6.4 Coercivity implies stability of the finite difference scheme 59

3.7 Error estimates of the finite element method with quadrature 60
3.7.1 First Strang Lemma 60
3.7.2 Quadrature estimate: Bramble Hilbert Lemma 61
3.7.3 Error estimates . 63

3.8 Generalization: general domain in two dimensions 63
3.9 Generalization: purely Neumann b.c. 66

3.9.1 Quotient space H1(Ω)/P 0(Ω) 66
3.9.2 Variational formulation and coercivity 67
3.9.3 The finite element method 68
3.9.4 Coercivity implies the stiffness matrix null space . . . 68
3.9.5 The finite difference form 69

CONTENTS 5

3.9.6 How to solve the singular linear system 70
3.10 Generalization: nonhomogeneou Dirichlet b.c. 72

3.10.1 A scheme in theory . 72
3.10.2 A scheme for implementation 73
3.10.3 A scheme in theory for 2D general domain Ω 75
3.10.4 A scheme for implementation for 2D general domain Ω 76
3.10.5 The error in the 2-norm over grid point values 77

3.11 Generalization: a general elliptic operator 78
3.12 Generalization: higher order accuracy via P 2 79

3.12.1 Dirichlet b.c. 79
3.12.2 Neumann b.c. 81
3.12.3 The fourth order accuracy as a finite difference scheme 81

3.13 Superconvergence . 82
3.13.1 The delta function . 84
3.13.2 The one-dimensional Green’s function 84
3.13.3 Superconvergence at knots in one dimension 85

3.14 Comparison with traditional finite difference method 86
3.14.1 Advantages of the finite element method 86
3.14.2 Limitations of the finite element method 87

4 Fourier Analysis 89
4.1 The Fourier transform . 89
4.2 Sampling and restriction . 91
4.3 The DFT and its algorithm, the FFT 94
4.4 Smoothness and truncation 95

5 Well Posedness 99
5.1 Definition and examples . 99
5.2 Lower Order Terms . 111
5.3 General results on constant coefficient problems 116
5.4 Hyperbolic equations . 123

6 Ordinary differential equations 129
6.1 Exact solutions . 129
6.2 Some numerical methods . 130
6.3 Truncation errors . 130
6.4 Convergence of the forward Euler’s method 131

6.4.1 Linear problems . 131
6.4.2 Nonlinear problems . 132

6.5 0-stability . 133
6.6 Absolute stability . 133
6.7 Method of lines . 134
6.8 A-stability in solving linear systems 135
6.9 Stiffness . 136

6 CONTENTS

6.10 Runge-Kutta methods . 137
6.10.1 Order of accuracy . 138
6.10.2 0-stability and convergence 140
6.10.3 Absolute stability of explicit Runge-Kutta methods . . 140

6.11 Linear multistep methods . 143
6.11.1 Adams methods . 143
6.11.2 Backward Differentiation Formulae 144
6.11.3 Order of accuracy . 144
6.11.4 Characteristic polynomials 145
6.11.5 0-stability and convergence 145
6.11.6 Stability region . 147
6.11.7 Strong stability . 149

7 Finite difference schemes for linear time-dependent prob-
lems 151
7.1 Basic concepts, definitions and notation 151
7.2 Properties of Finite Difference Schemes 155
7.3 Basic definitions and notations for stability 164
7.4 von Neumann stability . 169
7.5 The leapfrog scheme . 170

7.5.1 The one way wave equation 170
7.5.2 The two way wave equation 179
7.5.3 Convergence for the two way wave equation 183

7.6 Dissipative schemes . 186
7.6.1 0-stability V.S. absolute stability 191

7.7 Difference schemes for hyperbolic systems in one dimension . 191
7.7.1 First order schemes . 192
7.7.2 Second order schemes 198

8 Iterative methods for solving linear systems 205
8.1 Linear iterative methods . 206

8.1.1 Jacobi and weighted Jacobi iterations 208
8.1.2 Gauss-Seidel iteration 210
8.1.3 SOR . 211

8.2 Steepest descent . 211
8.3 The Conjugate Gradient method 214
8.4 Multigrid methods . 218

8.4.1 Interpolation and restriction 218
8.4.2 A two-grid V-cycle . 220
8.4.3 The errors eh and Eh 221
8.4.4 High and low frequencies in O(n) operations 222

8.5 Preconditioned Conjugate Gradient 224

9 A brief introduction to nonlinear conservation laws 229

CONTENTS 7

10 Boundary conditions for hyperbolic systems 239
10.1 Statement of the problem . 239
10.2 Boundary conditions for 1D hyperbolic systems 243
10.3 Kreiss theory, the multidimensional case 249

11 Selected applications 261
11.1 TV norm minimization and Poisson equation 261

11.1.1 Continuum ROF image denoising model 261
11.1.2 Discrete ROF model 262
11.1.3 Primal, dual and primal-dual forms 263
11.1.4 ADMM and Douglas-Rachford splitting 266
11.1.5 Discrete Laplacian in ADMM on primal 266
11.1.6 Discrete Laplacian in Douglas-Rachford on the dual . 267

Appendices 269

A Linear algebra 271
A.1 Eigenvalues and Courant-Fischer-Weyl min-max principle . . 271
A.2 Singular values . 272
A.3 Singular value decomposition 272
A.4 Vector norms . 274
A.5 Matrix norms . 274
A.6 Normal matrices . 275

B Taylor expansion 277

C Convex functions 279

D Sobolev Spaces 283
D.1 Poincaré inequalities . 283

8 CONTENTS

Preface

These notes have been and will be evolving. A considerable amount of
content consists of original discussions thus it is less likely to be flawless. I
will correct them whenever possible. Even for the typo free part, please use
it with caution.

1

2 CONTENTS

1

Introduction

There are many different types of partial differential equations. A good
choice of numerical schemes is often dependent on the type of equations,
which is the key difficulty of studying numerical methods. For instance,
successful and popular schemes for solving compressible flows are funda-
mentally different from the ones for solving incompressible flows in fluid
dynamics.

1.1 Partial differential equations

Most of classical PDEs originate from modeling physical phenomenon, used
in science and engineering problems. One thing we should always keep in
mind is that these equations are chosen models, which are supposed to be
valid, suitable or acceptable only under certain assumptions or only within
certain context. For instance, compressible Navier-Stokes equations is a
good continuum description of gas dynamics, if gas is not as rarefied as in a
space shuttle entering the outer atmosphere.

In many applications, a PDE is a simplified approximated continuum
modeling, as opposed to alternative particle models, e.g., the Boltzmann
equation describes the statistical behaviour of a thermodynamic system,
which can also be descirbed via molecular dynamics. PDEs have also been
used for an efficient surrogate modeling of pedestrian flows or a flock of birds
for which a particle model might seem more reasonable at least intuitively.

For beginners, equations can be assumed as given and well-posed, which
roughly means that the equation has a unique nice solution. For a better
understanding of the numerical methods, eventually one must understand
the origin of the equation, which often plays a critical role in designing
numerical schemes. Classical equations were mostly derived from physical
principles (e.g., compressible Euler equations were derived from conservation
of mass, momentum and energy) along with some empirical formula (e.g.,
equation of state for descrbing pressure dependence on mass, momentum

3

4 1. INTRODUCTION

and energy). On the other hand, in practical applications, many ad hoc
equations have been proposed and used. For example, if we know ut =
ux represents convection, ut = uxx represents dissipation and ut = uxxx

represents dispersion, then it makes sense, at least seemingly, to use ut =
aux +buxx +cuxxx as a model equation for modeling a system of convection-
dissipation-dispersion. Nonetheless, a common practice does not necessarily
mean that it is the right way.

1.2 Numerical schemes

For PDEs, usually there are no exact solution formulae, and even if there is
one, the formula can be demanding or dfficult to compute. One practial goal
of numerical methods for PDEs is of course to provide a computationally
tractable way for generating some kind of accurate approximations of the
solution. Be aware that not all computational methods are tractable with
given computational resources.

There are many popular numerical methods, which one may not have
used but likely have heard of, such as finite difference, finite element, finite
volume and spectral methods. As shown in Figure 1.1, approximations are
obviously quite different in different numerical methods, which is however
only a superficial way of understanding numerical schemes for PDEs. As a
matter of fact, many of these different numerical methods can sometimes be
regarded equivalent, especially for solving a one-dimensional problem.

The key is not the difference in the choice of approximation methods,
but rather the PDEs that one needs to solve. For certain types of PDEs such
as wave equations utt = ∆u, almost all kinds of numerical methods can be
used to obtain a useful numerical scheme. For many other types of PDEs, it
can be hard to use even a very popular numerical method. Even though the
popular finite element methods are equipped with various software packages
and the most complete and beautiful mathematical theory, there are equa-
tions and problems that they cannot handle. There is no single numerical
method to serve as a silver bullet, unless one is content with solving only
particular kinds of PDEs.

For example, finite volume schemes are successful for solving hyperbolic
conservation laws and they are derived by discretizing the integral form of
the conservation laws, and it is a perfectly natural thing to do because those
PDEs are derived from the integral equations in the first place. On the other
hand, it is very challenging to construct a scheme for hyperbolic conserva-
tion laws using spectral methods and continuous finite element methods.
For conservation laws, there are other popular and useful schemes such fi-
nite difference WENO (weighted essentially non-oscillatory) methods and
discontinuous Galerkin methods, all of which can be interpreted as some
kind of finite volume scheme.

1.2. NUMERICAL SCHEMES 5

xj− 1
2

xj+ 1
2

xj− 1
2

xj+ 3
2

(a) Finite Difference

xj− 1
2

xj+ 1
2

xj− 1
2

xj+ 3
2

Ij Ij+1Ij−1

uj

uj+1
uj−1

(b) Finite Volumne

xj− 1
2

xj+ 1
2

xj− 1
2

xj+ 3
2

(c) Continuous Finite Element

xj− 1
2

xj+ 1
2

xj− 1
2

xj+ 3
2

(d) Discontinuous Galerkin

Figure 1.1: An illustration of a few popular methods.

6 1. INTRODUCTION

1.3 Computational tools
One particular emphasis of this lecture notes is the breadth of the scope.
We will discuss a few different types of equations, thus different chapters
might seem irrelevant to one another. The variety of different equations and
different methods might seem overwhelming thus pose challenges, which
however can become opportunities later because various methods provide
ample inspiring perspectives of computational philosophy.

Many numerical methods go beyond solving PDEs. The simplest cen-
tered difference for Poisson’s equation naturally extends to graph Laplacian
on a graph. Numerical schemes for differential equations and numerical opti-
mization algorithms are closely related. Many classical algorithms find roots
in both territories. To name a few, the proximal point method for solving
convex optimization, is nothing but backward Euler time discretization for
numerical ODE. The most popular splitting method for convex composite
optimization is called Douglas-Rachford and Peaceman-Rachford splitting,
proposed by Lions and Mercier in 970s, which is also called ADI (alternat-
ing direction implicit) method for solving PDEs, originally designed for
efficiently solving two-dimensionally heat equation in 1950s.

Put simply, methods in numerical PDEs are also useful tools for other
modern computational tasks.

2

Finite difference methods for
the Poisson’s equation

We start with the Poisson’s equation, one of the most popular linear PDEs,
to understand basic concepts for numerical methods. The numerical method
introduced in this chaper is the traditional or classical way of construct-
ing a finite difference scheme, which thrived since 1950s (e.g., the book of
Kantorovich and Krylov in Russian [5] and Collatz’s book in German [2],
originally published before 1960), and still a popular method nowadays [7].

The traditional finite difference method is easy to pick up for beginners,
because only simple tools like calculus and linear algebra are needed. How-
ever, substantial difficulty will emerge if one tries to use such a numerical
method for solving the Poisson’s equation in a generic context, even on a
rectangular domain, such as constructing a high order accurate scheme for
solving a variable coefficient problem with Neumann boundary conditions.

Most of the numerical schemes in this chapter can be derived from the
finite element methods on structured meshes with suitable numerical inte-
gration in Chapter 3. It has been well known that a finite element method
can be equivalent to the traditional finite differen scheme since the finite el-
ement theory was born, e.g, , Kang Feng’s first paper in Chinese in 1965 on
finite element method was titled Finite Difference Method Based on Vari-
ation Principles. It has also been an effective approach to derive various
finite difference schemes from different fintie element methods. On the other
hand, such an equivalence is often overlooked in textbooks, resulting in a
superficial impression that finite difference and finite element methods are
completely different. To be precise, the traditional finite difference approach
simply approximates the Poisson’s equation directly, because of which most
of its difficulties persist. Instead of approximating PDEs, the finite element
approach approximates their equivalent variational formulation, which is the
real and key difference here. However, the prerequites for fully understand-
ing the finite element theory include functional analysis, which is probably

7

8 2. FINITE DIFFERENCE METHODS FOR THE POISSON’S EQUATION

the reason why the traditional finite difference approach is still useful and
interesting for rudimentary tasks, e.g., for teaching beginners without func-
tional analysis background, or solving −∆u = f on simple domains with
only Dirichlet boundary conditions.

2.1 Finite difference approximations
For a smooth function u(x), define the following finite difference operators
approximating u′(x) at the point x̄:

• Forward Difference: D+u(x̄) = u(x̄+h)−u(x̄)
h .

• Backward Difference: D−u(x̄) = u(x̄)−u(x̄−h)
h .

• Centered Difference: D0u(x̄) = u(x̄+h)−u(x̄−h)
2h .

By Taylor expansion, the truncation errors of these operators are

D±u(x̄) = u′(x̄) +O(h), D0u(x̄) = u′(x̄) +O(h2).

Define D̂0u(x̄) = u(x̄+h/2)−u(x̄−h/2)
h , then a classial second order finite

difference approximation to u′′(x) at x̄ is given by (denoted by D2):

D2u(x̄) = D+D−u(x̄) = D̂0D̂0u(x̄) = u(x̄+ h)− 2u(x̄) + u(x̄− h)
h2 = u′′(x̄)+O(h2).

2.2 Poisson’s equation
The Poisson’s equations are

• 1D: u′′(x) = f(x)

• 2D: ∆u(x, y) = uxx + uyy = f(x, y).

• 3D: ∆u(x, y, z) = f(x, y, z).

They are used and involved in many different contexts. To name a few,

• It is the steady-state equation of the heat equation ut = uxx − f .

• It is often involved in solving a time-dependent problem with a di-
vergence free constraint. For example, in the incompressible Navier-
Stokes equations

ut + (u · ∇)u +∇p = ν∆u + f , ∇ · u = 0,

take the divergence of the both sides in the momentum conservation
equation, we get ∆p = ∇ · (ν∆u + f − (u · ∇)u). By solving this
equation, we get the pressure p from the velocity u.

2.3. 1D BVP: DIRICHLET B.C. 9

2.3 1D BVP: Dirichlet b.c.

Consider solving the 1D Poisson’s equation with homogeneous Dirichlet
boundary conditions:{

−u′′(x) = f(x), x ∈ (0, 1),
u(0) = 0, u(1) = 0. (2.1)

Discretize the domain [0, 1] by a uniform grid with spacing h = 1
n+1 and

n interior nodes: xj = jh, j = 1, 2, · · · , n. See Figure 2.1. Let u(x) denote
the true solution and fj = f(xj). For convenience, define two ghost points
x0 = 0 and xn+1 = 1. Let uj be the value of the numerical solution at xj .
Since two end values are given as u(0) = 0, u(1) = 0, only the interior point
values uj(j = 1, · · · , n) are unknowns. After approximating d2

dx2 by D2, we
get a finite difference scheme

−D2uj = −uj−1 + 2uj − uj+1
h2 = fj , j = 1, 2, · · · , n (2.2)

0 x1 x2 x3 xj = jh xn−1 xn 1

Figure 2.1: An illustration of the discretized domain.

Define

Uh =


u1
u2
...
un

 , F =


f1
f2
...
fn

 , Û =


u(x1)
u(x2)

...
u(xn)

 , K =



2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2


.

With the boundary values u0 = 0 and un+1 = 0 from the boundary condi-
tion, we can rewrite the finite difference scheme in the matrix vector form:

1
h2KUh = F.

2.3.1 Consistency, stability and convergence

• Local truncation error (LTE): the LTE is defined as the residue af-
ter replacing the numerical solution by the true soluion in the nu-
merical scheme. For instance, the scheme (2.2) can be written as

10 2. FINITE DIFFERENCE METHODS FOR THE POISSON’S EQUATION

−uj−1+2uj−uj+1
h2 − fj = 0. By the Taylor expansion of the exact solu-

tion u(x) a xj , the LTE of this scheme is

τj = −u(xj−1) + 2u(xj)− u(xj+1)
h2 − fj

= −u′′(xj)− 1
12h

2u′′′′(xj) +O(h4)− f(xj)

= − 1
12h

2u′′′′(xj) +O(h4) = O(h2),

where −u′′(xj) = f(xj) is used. Denote τh = [τ1, τ2, · · · , τn]T .

• Consistency: if τh → 0 when h→ 0, we say the scheme is consistent.

• Global error: Eh = Û−Uh is the actual error of the scheme, defined as
the global error. Let Ah = 1

h2K, then τh = AhÛ−F = AhÛ−AhUh =
AhEh thus Eh = A−1

h τh if Ah is invertible.

• Stability: we say the scheme AhUh = F is stable if ∥A−1
h ∥ ≤ C for

small h, where ∥A∥ denotes the spectral norm of the matrix A (i.e.,
the largest singular value of A, or equivalently ∥A∥ = maxx∈Rn

∥Ax∥
∥x∥

with ∥x∥ denoting the norm for vectors). If ∥A−1
h ∥ ≤ C, then ∥Eh∥ =

∥A−1
h τh∥ ≤ ∥A−1

h ∥∥τh∥ ≤ C∥τh∥.

• Convergence: if ∥Eh∥ → 0 when h → 0, we say the scheme is conver-
gent. For this simple linear problem, we have

Consistency + Stability→ Convergence.

Remark 2.1. For a normal matrix (normal means A∗A = AA∗ with A∗

denoting conjugate transpose, e.g., real symmetric matrices, complex Her-
mitian matrices) A, ∥A∥ = maxi |λi| where λi are eigenvalues of A.

2.3.2 Eigenvalues of K and stability in 2-norm

Since the eigenfunctions of −u′′ = λu, u(0) = u(1) = 0 are sin(mπx) for
integers m, we expect that the eigenvectors of K would look like sin(mπx)
for small h. With the following trigonometric formulas,

sin(mπxj+1) = sin(mπ(xj+h)) = sin(mπxj) cos(mπh)+cos(mπxj) sin(mπh),

sin(mπxj−1) = sin(mπ(xj−h)) = sin(mπxj) cos(mπh)−cos(mπxj) sin(mπh),

thus,

− sin(mπxj−1) + 2 sin(mπxj)− sin(mπxj+1) = (2− 2 cos(mπh)) sin(mπxj).

2.3. 1D BVP: DIRICHLET B.C. 11

Notice the facts that sin(mπx0) = 0 and sin(mπxn+1) = 0, we also have

2 sin(mπx1)− sin(mπx2) = (2− 2 cos(mπh)) sin(mπx1),

− sin(mπxn−1) + 2 sin(mπxn) = (2− 2 cos(mπh)) sin(mπxn).

Let x = [x1, x2, · · · , xn]T , then the eigenvectors of K are sin(mπx):

K sin(mπx) = (2− 2 cos(mπh)) sin(mπx), m = 1, 2, · · · , n.

Define the eigenvector matrix as S = [sin(πx) sin(2πx) · · · sin(nπx)]
and consider the diagonal matrix Λ with diagonal entries 2−2 cos(mπh),m =
1, · · · , n. Then K = SΛS−1 and A−1

h = h2SΛ−1S−1. By L’Hospital’s
rule we have h2

2−2 cos(mπh) →
1

m2π2 , h → 0. Notice that h2

2−2 cos(mπh) is a
monotonically increasing function of h. Therefore, we can conclude that
∥A−1

h ∥ ≤ C.

Problem 2.1. Show that ∥A−1
h ∥ ≤ C for any h, where C is a constant

independent of h.

So we obtain the global error Eh in vector 2-norm:

∥Eh∥ ≤ ∥A−1
h ∥∥τh∥ ≤ C∥τh∥.

On the other hand, the standard vector norm ∥Eh∥ is a not a good choice
of measuring errors. For instance, assume Ej = h2 for any h, then

∥Eh∥ =

√√√√ n∑
j=1

E2
j =

√√√√ n∑
j=1

h4 = O(h1.5)

because of h = 1
n+1 . To this end, we define the 2-norm for errors:

∥Eh∥2 =

√√√√h n∑
j=1

E2
j .

Remark 2.2. The new 2-norm is a natural discrete version of the function
L2-norm. For instance, the L2-norm of a single variable function f(x) on
an interval x ∈ [0, 1] is defined as

∥f∥L2 =
√∫ 1

0
f(x)2dx.

If we discretize the inverval x ∈ [0, 1] by grid points as in Figure 2.1,
and use the simple approximation of integral (numerical integration, a.k.a,
quadrature) hfi for each small interval, then for a function f(x) satisfying

f(0) = f(1) = 0, we get
√
h

n∑
j=1

f(xj)2.

12 2. FINITE DIFFERENCE METHODS FOR THE POISSON’S EQUATION

Notice that we do have

∥Eh∥ ≤ ∥A−1
h ∥ · ∥τh∥ ⇒ ∥Eh∥2 ≤ ∥A−1

h ∥ · ∥τh∥2.

Assume that the one-dimensional boundary value problem (2.1) has a
solution u(x) with high order derivatives, e.g., if f(x) = −g′′(x) where g(x) is
a smooth function satisfying g(0) = g(1) = 0. Then we have the truncation
error τj = 1

12u
′′′′(xj)h2 + O(h4) = 1

12f
′′(xj)h2 + O(h4). Assume f ′′(x) is

bounded, then we simply have

∥τh∥2 = O(h2)⇒ ∥Eh∥2 = O(h2).

Problem 2.2. Consider the n× n matrix

T (α) =



α −1
−1 α −1

−1 α −1
.

−1 α −1
−1 α


.

Find its eigenvalues and eigenvectors. For what kind of α, this matrix will
become positive definite?

2.3.3 Poisson’s solver by eigenvectors

The matrix S = [sin(πx) sin(2πx) · · · sin(nπx)] is the Sine Matrix
Sjk = sin(jkπ

n+1) thus mutliplying S to a vector v is equivalent to the discrete
sine transform of v which can be computed with O(n log2 n) complexity.
Mutliplying S−1 would be the inverse DST. For instance, the DST can be
computed by the dst function in MATLAB:

1 % the grid points vector x has length n
2 dx =1/(n+1);
3 x=[0: dx :1];x=x(2:end-1);lambda=2*ones(n,1)-2*cos([1:n]*pi*dx);
4 v=sin(x*pi *[1:n]);
5 % verify the eigenvectors and eigenvalues of K
6 norm(K*v-v*diag(lambda)); % it should be machine zero ,
7 % i.e., around 10^{ -16}
8

9 % verify that multiplying the eigenvector matrix is
10 % equivalent to DST on a random vector b
11 a=randn(n ,1);
12 b=K*a;
13 norm(a-dst(idst(b)./ lambda)) % it should be machine zero ,
14 % i.e., around 10^{ -16}

2.4. 1D BVP: DIRICHLET AND NEUMANN B.C. 13

Since K is a tridiagonal matrix, Gaussian elimination costs only O(n) which
is faster than the DST. But in 2D and 3D, the eigenvector method would
be advantageous.

2.3.4 Nonhomegeous Dirichlet b.c.

Consider solving the 1D Poisson’s equation with nonhomogeneous Dirichlet
boundary conditions:{

−u′′(x) = f(x), x ∈ (0, 1),
u(0) = a, u(1) = b.

Then the scheme (2.2) can be changed as

2u1 − u2
h2 = f1 + a/h2,

−uj−1 + 2uj − uj+1
h2 = fj , j = 2, · · · , n− 1,
−un−1 + 2un

h2 = fn + b/h2.

In other words, we can use the same coefficient matrix in the scheme for
the nonhomogeneous b.c. with modified right hand side data compensating
the nonzero boundary conditions. So from now on we just focus on the
homogeneous case.

2.4 1D BVP: Dirichlet and Neumann b.c.
Consider solving the 1D Poisson’s equation with homogeneous Dirichlet and
Neumann boundary conditions:{

−u′′(x) = f(x), x ∈ (0, 1),
u′(0) = 0, u(1) = 0.

Discretize the domain [0, 1] by a uniform grid with spacing h. For the
interior nodes, we can use the same finite difference scheme (2.2).

2.4.1 A symmetric matrix T

Discretize the domain [0, 1] by a uniform grid with spacing h = 1
n+1 and n

interior nodes: xj = jh, j = 1, 2, · · · , n. See Figure 2.1. Let x0 = 0 and
xn+1 = 1.

For the boundary condition u′(0) = 0, we can first consider a simple first
order approximation by forward difference:

u1 − u0
h

≈ u′(x0)⇒ u1 − u0
h

= 0⇒ u0 = u1,

14 2. FINITE DIFFERENCE METHODS FOR THE POISSON’S EQUATION

thus the scheme (2.2) at x1 becomes:

u1 − u2
h2 = f1.

Then our scheme can be written as 1
h2TUh = F with

T =



1 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2


.

This scheme can be at most first order accurate in the local truncation error
since forward difference is used for the boundary condition u′(0) = 0. Recall
that the local truncation error is not the true error. Even though intuitively
we expect first order accuracy for the convergence as well due to the first
order local truncation error, it is possible to have a higher order convergence
than the order of truncation error in boundary treatment.

−1
2
h 1

2
h 3

2
h 5

2
h 7

2
h 9

2
h 1

0

Figure 2.2: The grid.

By considering a new grid xj = (j− 1
2)h (j = 1, 2, · · · , n) with h = 1

n+ 1
2
,

the 1
h2TUh = F becomes second order accurate. Let x0 = −1

2h then u1−u0
h

is the centered difference approximating u′(0), i.e.,

u1 − u0
h

= u′(0) +O(h2)⇒ u1 − u0
h

= 0⇒ u0 = u1.

Let x = [x1, x2, · · · , xn]T in this new grid, then the eigenvectors of T are
cos[(m− 1

2)πx] with eigenvalues 2− 2 cos[(m− 1
2)πh], m = 1, · · · , n.

2.4.2 Nonsymmetric matrix T2

We can also construct a second order scheme on the integer grid xj = (j−1)h
with h = 1

n . Let x0 = −h then u2−u0
2h is the second order centered difference

2.5. CONVERGENCE IN MAXIMUM NORM 15

approximation to u′(0). We get a scheme 1
h2T2Uh = F with

T2 =



2 −2
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2


.

Problem 2.3. Find the eigenvalues and eigenvectors for T2. Implement
an eigenvector method for the scheme 1

h2T2Uh = F by using dct and idct
functions in MATLAB.

Unfortunately, T2 is no longer symmetric, not even a normal matrix. But
we can convert it to T by deviding the first equation by 2, then the scheme
becomes

1
h2TUh =


f1/2
f2
...
fn

 (2.3)

However, the matrix 1
h2T in the scheme (2.3) is not exactly the approxima-

tion to − d2

dx2 any more.

Problem 2.4. Find the local truncation error of the scheme (2.3) at the left
boundary.

Problem 2.5. Prove the stability and convergence of the scheme 1
h2T2Uh =

F . Notice that T2 is not normal thus eigenvalues of T2 do not give its spectral
norm. Instead, try to eigenvalues of T and the inequality ∥AB∥ ≤ ∥A∥∥B∥
to estimate ∥T−1

2 ∥.

If we perform local truncation error at the first grid point, then we will
find out that it is only first order even though it is obtained by a second
order approximation to the Neumann boundary condition. So only first
order convergence can be proven by estimating ∥T−1

2 ∥. On the other hand,
the scheme is actually second order accurate not only in the discrete 2-norm
but also in the maximum norm. See next subsection for explanation.

2.5 Convergence in maximum norm

For a vector x =
[
x1 · · · xn

]T
, its l1-norm and l∞-norm are defined as

∥x∥1 =
n∑

i=1
|xi|, ∥x∥∞ = max

i
|xi|.

16 2. FINITE DIFFERENCE METHODS FOR THE POISSON’S EQUATION

For a matrix A = [aij], its corresponding induced matrix norms are

∥A∥1 = max
x
∥Ax∥1
∥x∥1

= max
j

n∑
i=1
|aij |,

∥A∥∞ = max
x
∥Ax∥∞
∥x∥∞

= max
i

n∑
j=1
|aij |.

For a numerical scheme in the form of AU = F with local truncation error
τ = AÛ − F , the true error is given as U − Û = A−1τ , thus ∥A−1∥∞ is
needed if one needs the convergence in the maximum norm.

Of course, in general it is even harder to find what ∥A−1∥∞ is than finding
eigenvalues of A. However, the matrices we have seen so far, e.g., K, T and
T2 are very special: they are M-matrices. The sharp characterization of an
M-matrix is complicated and we only need a convenient sufficient condition
here:

Theorem 2.1. For a real square matrix A with positive diagonal entries
and non-positive off-diagonal entries, A is a nonsingular M-matrix if all the
row sums of A are non-negative and at least one row sum is positive.

We need the following well-known but nontrival result to proceed:

Theorem 2.2. Nonsingular M-matrices are monotone. Namely, the inverse
matrix of a nonsingular M-matrix has non-negative entries.

By this theorem, we have K−1 ≥ 0, T−1 ≥ 0, T−1
2 ≥ 0, where the in-

equalities are entry-wise inequalities, i.e., these matrices have non-negative
entries. If a matrix has an inverse with non-negative entries, then we call it
monotone. So K, T and T2 are monotone matrices.

Usually monotonicity of A can help to establish the estimate on∞-norm
of A−1. If we can find a vector v such that Av = 1 where 1 is a vector with
each entry being 1, then ∥A−1∥∞ = ∥A−11∥∞ = ∥v∥∞.

2.5.1 Dirichlet boundary conditions

For the K matrix, in order to find v such that Kv = 1, first think about
the exact solution to the problem −u′′ = 1, u(0) = u(1) = 0, which is
v(x) = 1

2x(1− x).
Let v = v(x) where x is the grid points for the corresponding scheme,

i.e., x =
[
h 2h · · · nh

]T
with h = 1

n+1 . It is straightforward to verify
that 1

h2Kv = 1. On the other hand, since 0 ≤ v(x) ≤ 1
8 for x ∈ (0, 1), we

have ∥v∥∞ ≤ 1
8 , thus ∥(1

h2K)−1∥∞ = ∥v∥∞ ≤ 1
8 , with which we can easily

establish the second order convergence in maximum norm.

2.6. 1D BVP: NEUMANN B.C. 17

2.5.2 Dirichlet and Neumann b.c.

The exact solution to the problem −u′′ = 1, u′(0) = u(1) = 0, which is
v(x) = 1

2 −
1
2x

2. Let v = v(x) where x is the grid points for the corre-
sponding scheme to T2, i.e., x =

[
0 h 2h · · · (n− 1)h

]T
with h = 1

n . It
is straightforward to verify that 1

h2T2v = 1. Thus similarly as in previous
subsection, ∥(1

h2T2)−1∥∞ = ∥v∥∞ ≤ 1
2 .

Let D = diag{1
2 , 1, · · · , 1} be a diagonal matrix.

Recall that the local truncation error is only first order at the left bound-
ary. In order to establish second order convergence, we need the estimate
for the first column of T−1

2 . Let A = 1
h2T2, if we can find a vector w

such that Aw ≥
[
1 0 · · · 0

]T
. Then the first column of A−1 is given by

A−1
[
1 0 · · · 0

]T
≤ w (inequality holds because A−1 has non-negative

entries).
Let w(x) = h(1

2 −
1
2x) and w = w(x), then it is straightforward to verify

1
h2T2w =

[
1 0 · · · 0

]T
. (Obviously w(x) is not the exact solution to

−u′′ = δ(0), u′(0) = u(1) = 0. So how would you find w?)
Let A = [aij] and A−1 = [aij]. Then w = A−1

[
1 0 · · · 0

]T
implies

that maxi |ai1| = maxi |wi| ≤ 1
2h.

So the true error is (U − Û)i = (A−1τ)i = ai1τ1 + ∑n
j=2 aijτj where

τ1 = O(h) and τj = O(h2), j = 2, 3, · · · , n (see previous section for the local
truncation errors).

|(U − Û)i| ≤
1
2hτ1 + max

j≥2
τj

n∑
j=2

aij

≤ 1
2hτ1 + max

j≥2
τj

n∑
j=1

aij ≤
1
2hτ1 + max

j≥2
τj∥A−1∥∞ = O(h2).

2.6 1D BVP: Neumann b.c.

2.6.1 The matrix B on the one-half grid

Consider solving the 1D Poisson’s equation with homogeneous Neumann
boundary conditions:{

−u′′(x) = f(x), x ∈ (0, 1),
u′(0) = 0, u′(1) = 0.

Following Section 2.4.1, we use the grid xj = (j− 1
2)h, j = 1, · · · , n with

18 2. FINITE DIFFERENCE METHODS FOR THE POISSON’S EQUATION

h = 1
n and obtain a second order scheme 1

h2BUh = F with

B =



1 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 1


.

The eigenvectors of B are cos(mπx) with eigenvalues 2− 2 cos(mπh), m =
0, · · · , n− 1.
Problem 2.6. Why do we choose eigenvectors as cos(mπx), m = 0, · · · , n−
1 rather than cos(mπx), m = 1, · · · , n?

2.6.2 An alternative point of view for one-half grid

For the boundary condition u′(0) = 0, instead of considering the ghost point,
we can obtain the scheme in Section 2.6.1 by approximating the second order
derivative u′′(1

2h) by the centered difference of the first order derivative:

u′′(1
2h) ≈ u′(h)− u′(0)

h
= u′(h)

h
≈
u(3

2h)− u(1
2h)

h2 .

1
2
h 3

2
h 5

2
h 7

2
h 9

2
h 11

2
h

0 h 2h 3h 4h 5h 1

Figure 2.3: The integer grid and the one-half grid.

2.6.3 The matrix B on the integer grid

Following Section 2.4.2, on the grid xj = (j−1)h, j = 1, · · · , n with h = 1
n−1 ,

we have a second order scheme 1
h2BUh =


f1/2
f2
...

fn/2

 with

B =



1 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 1


.

2.6. 1D BVP: NEUMANN B.C. 19

The eigenvectors and eigenvalues of B are the same as before. The advantage
of B is its symmetry.

2.6.4 The matrix B2 on the integer grid

On the grid xj = (j−1)h, j = 1, · · · , n with h = 1
n−1 , the scheme in Section

2.6.3 is equivalent to 1
h2B2Uh = F with

B2 =



2 −2
−1 2 −1

−1 2 −1
.

−1 2 −1
−2 2


.

The eigenvectors and eigenvalues of this matrix are: cos(xmπ), 2−2 cos(mπh),m =
0, 1, 2, ..., n − 1. Notice that the eigenvectors are not the same as those for
the B matrix.

2.6.5 Compatibility Condition of Neumann b.c.

Consider a general purely Neumann boundary value problem{
−u′′(x) = f(x), x ∈ (0, 1),
u′(0) = σ0, u

′(1) = σ1.

Integrating the equation, we get∫ 1

0
f(x)dx =

∫ 1

0
−u′′(x)dx = −u′(1) + u′(0) = σ0 − σ1. (2.4)

Thus the Poisson equation with a purely Neumann boundary condition has
no solutions unless the compatbility condition (2.4) is satisfied. When (2.4)
is satisfied, the solution is unique up to any constant.

Next we consider the scheme in Section 2.6.4:

1
h2



2 −2
−1 2 −1

−1 2 −1
.

−1 2 −1
−2 2





U1
U2
U3
...

Un−1
Un


=



f1 − 2σ0/h
f2
f3
...

fn−1
fn + 2σ1/h


,

which can be denoted as
1
h2B2U = F.

20 2. FINITE DIFFERENCE METHODS FOR THE POISSON’S EQUATION

Obviously B2 is not invertible since each row sums to zero. The linear system
1

h2B2U = F has a solution only if F is in the column space of B2, which is
not necessarily true even if (2.4) is satisfied. In other words, we still need a
discrete compatbility condition so that the numerical scheme has a solution.

Notice that F ∈ Col(B2) is equivalent to F ⊥ Null(BT
2), and Null(BT

2)
is spanned by the vector

[
1
2 1 · · · 1 1

2

]T
(namely all columns of B2 are

orthogonal to this vector). So we obtain the following discrete compatbility
condition

h

2 f1 + hf2 + · · ·+ hfn−1 + h

2 fn = σ0 − σ1. (2.5)

Notice that h
2f1 + hf2 + · · · + hfn−1 + h

2fn =
∫ 1

0 f(x)dx + O(h2) by the
trapezoidal quadrature rule.

Thus given a problem satisfying (2.4), we would like to have a second
order scheme 1

h2B2U = F̄ by generating a new right hand side vector F̄
belonging to the column space of B2, which can be obtained by projecting
F to Col(B2). In general, such a projection might be nontrivial to obtain.
However, the rank of B2 is n− 1 and we know the orthogonal complement
of Col(B2) is spanned by

[
1
2 1 · · · 1 1

2

]T
, thus it is straightforward to

obtain this projection. First we have the compatbility error as

c = h

2 f1 + hf2 + · · ·+ hfn−1 + h

2 fn − σ0 + σ1 = O(h2).

Second, the projection F̄ can be written as

F̄ =



f1 − 2a0/h
f2
f3
...

fn−1
fn + 2a1/h


+ a



1
2
1
1
...
1
1
2


,

where a is a parameter determined by requiring F̄ is orthogonal to
[

1
2 1 · · · 1 1

2

]T
.

So we obtain a = −c
h(n− 3

2) , thus

F̄ =



f1 − 2σ0/h− c/h/(n− 3/2)/2
f2 − c/h/(n− 3/2)
f3 − c/h/(n− 3/2)

...
fn−1 − c/h/(n− 3/2)

fn + 2σ1/h− c/h/(n− 3/2)/2


, (2.6)

2.6. 1D BVP: NEUMANN B.C. 21

Finally, if we prefer to solve a symmetric system, we can symmetrize the
system by dividing the first and last row by two:

1
h2



1 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 1





U1
U2
U3
...

Un−1
Un


=



1
2f1 − σ0/h− c/h/(n− 3/2)/4

f2 − c/h/(n− 3/2)
f3 − c/h/(n− 3/2)

...
fn−1 − c/h/(n− 3/2)

1
2fn + σ1/h− c/h/(n− 3/2)/4


.

Problem 2.7. Suppose 1
h2B2U = F does not satisfy the discrete compatbil-

ity condition. Consider the least square solution Û which is the minimizer
for the function ∥ 1

h2B2U − F∥ for the vector 2-norm. Show that Û is a
solution to 1

h2B2U = F̄ .

2.6.6 Inverting B and B2

Notice that B is a singular matrix. In other words, there are infinitely many
numerical solutions. The true solutions to the Neumann b.c. are not unique
(any solution plus a constant is still a solution). To "invert" B, we can do
the following by choosing a particular solution for 1

h2BU = F :

1 % eigenvectors and eigenvalues of B
2 h=1/n;
3 x=[h/2:h:1-h/2];lambda=2*ones(n,1)-2*cos([0:n-1]*pi*h);
4 S=cos(x*pi *[0:n -1]);
5 % Multiply the " inverse " of B/h^2 to a vector f
6 U=(inv(S)*F)./ lambda ;
7 U (1)=0; % special treatment for the zero eigenvalue
8 U=S*U*h*h;

Let λi = 2− 2 cos((i− 1)πh) then λ1 = 0. Define Λ−1 as a diagonal matrix
with diagonal entries 0, 1

λ2
, 1

λ3
, · · · , 1

λn
. Let S denote the eigenvector matrix

then we set U = SΛ−1S−1F. Here we choose to set 1
λ1

= 0, but of course
you can choose it to be any other number. Since B is a positive definite
matrix, thus if each column of S is normalized to be unit vector, its eigen-
decomposition B = SΛS−1 is also its singular value decomposition (SVD).
By setting 1

λ1
= 0, the numerical solution has zero component along the

first eigenvector which is [1 1 · · · 1]T . This means that the numerical
solution U is perpendicular to [1 1 · · · 1]T thus ∑j Uj = 0.

Problem 2.8. Use SVD to show that setting 1
λ1

= 0 gives the least square
solution for 1

h2BU = F .

22 2. FINITE DIFFERENCE METHODS FOR THE POISSON’S EQUATION

Problem 2.9. For the B2 matrix, we can use the same procedure as above by
setting 1

λ1
= 0. However, it no longer gives a solution satisfying

∑
j Uj = 0.

Why is this?

Remark 2.3. Since the exact solution is not unique, we should compare
our numerical solution satisfying

∑
j Uj = 0 with a shifted exact solution:

suppose Û = [u(x1), · · · , u(xn)]T where u(x) is any exact solution, then we
should compute the error as Eh = U− Ũ with Ũ = [u(x1)− 1

n Ū , · · · , u(xn)−
1
n Ū]T and Ū = ∑

j u(xj).

For the B2 matrix, let B2 = SΛS−1 be its eigendecomposition with
λ1 = 0. Recall that the eigenvectors and eigenvalues of B2 are: cos(xmπ),
2− 2 cos(mπ 1

n−1),m = 0, 1, 2, ..., n− 1, where x =
[
0 1

n−1
2

n−1 · · · 1
]
.

Let w =
[

1
2 1 · · · 1 1

2

]T
. Let vi be the eigenvector for λi. Then 0 =

wTB2vi = λiwT vi implies wT vi = 0 if λi ̸= 0. Thus the eigenvectors
associated with nonzero eigenvalues are orthogonal to w, i.e., the orthogonal
complement of the column space of B2.

Problem 2.10. For any vector F̄ satisfying the discrete compatbility condi-
tion (2.5), F̄ is orthogonal to w. Show that U = SΛ−1S−1F̄ (with 1

λ1
being

defined as zero) is a solution to B2U = F̄ . In other words, show that

S



0
1

1
. . .

1
1


S−1F̄ = F̄ .

Hint: show that F̄ lives in the eigenspace for eigenvalues λ2, · · · , λn thus

F̄ = S


0
d2
d3
...
dn

 .

For the B2 matrix, and a vector F which does not satisfy the discrete
compatbility condition (2.5), i.e., F is not in the column space of B2, the
vector U = SΛ−1S−1F (with 1

λ1
being defined as zero) is the least square

solution to B2U = F . In other words, B2U = B2SΛ−1S−1F is the projection
of F onto the column space of B2. To see why it is true, assume F̃ is the
projection of F onto the column space of B2, then we know B2SΛ−1S−1F̃ =

2.7. 1D BVP: PERIODIC B.C. 23

F̃ , therefore we get

B2U = B2SΛ−1S−1(F−F̃)+S



0
1

1
. . .

1
1


S−1F̃ = B2SΛ−1S−1(F−F̃)+F̃ .

So we only need to show B2SΛ−1S−1(F−F̃) = 0. And we know F−F̃ is
orthogonal to the column space of B2. Notice that F − F̃ should be exactly
the shift we added to generate F̄ in (2.6).

Problem 2.11. Show that B2SΛ−1S−1(F − F̃) = 0.

2.7 1D BVP: periodic b.c.

Consider solving the 1D Poisson’s equation with periodic boundary condi-
tions: {

−u′′(x) = f(x), x ∈ (0, 1),
u(0) = u(1).

We use the grid xj = (j− 1)h, j = 1, · · · , n with h = 1
n and obtain a second

order scheme 1
h2CUh = F with

C =



2 −1 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 −1 2


.

The eigenvectors of C are exp(−im2πx) with eigenvalues 2− 2 cos(m2πh),
m = 0, · · · , n− 1. By choosing these eigenvectors, the eigenvector matrix is
precisely the discrete Fourier transform matrix, i.e., dftmtx(n) in MATLAB.
Multiplying the DFT matrix is equivalent to FFT.

Remark 2.4. The matrix C is circulant. The columns of DFT matrix are
eigenvectors to any circulant matrix thus the DFT matrix can diagonalize
any circulant matrix.

The matrix C is singular. To "invert" the matrix C, we can do the same
thing as previously for the matrix B: set the component along the zero
eigenvector to be zero, which gives a numerical solution summing to zero.

24 2. FINITE DIFFERENCE METHODS FOR THE POISSON’S EQUATION

2.8 2D BVP: Dirichlet b.c.
Consider solving the 2D Poisson’s equation with homogeneous Dirichlet
boundary conditions:{

−uxx(x, y)− uyy(x, y) = f(x, y), (x, y) ∈ (0, 1)× (0, 2),
u(x, y)|Γ = 0,

where Γ denotes the boundary of the rectangular domain.
We use the grid xi = i∆x, i = 1, · · · , Nx with ∆x = 1

Nx+1 and yj = j∆y,
j = 1, · · · , Ny with ∆y = 2

Ny+1 . Let Uij be the numerical solution at (xi, yj).
Let U be a Ny ×Nx matrix such that U(j, i) = Uij .

We will use two operators:

• Kronecker product of two matrices: if A is m×n and B is p× q, then
A⊗B is mp× nq give by

A⊗B =

a11B · · · a1nB
...

...
...

am1B · · · amnB

 .
• For a m×n matrix X, vec(X) denotes the vectorization of the matrix
X, i.e., rearranging X into a vector column by column. In MATLAB
the reshape function can act as the inverse of the vec operator: if
v = vec(X), then reshape(v,m, n) recovers X.

The following properties will be used:

1. (A⊗B)(C ⊗D) = AC ⊗BD.

2. (A⊗B)−1 = A−1 ⊗B−1.

3. (BT ⊗A)vec(X) = vec(AXB).

4. (A⊗B)T = AT ⊗BT .

The second order finite difference scheme for the interior nodes is given
by

−Ui−1,j + 2Uij − Ui+1,j

∆x2 + −Ui,j−1 + 2Uij − Ui,j+1
∆y2 = fij . (2.7)

Let F be a Ny×Nx matrix with entries F (j, i) = f(xi, yj). The matrix
vector form of this scheme can be written as(1

∆x2Kx ⊗ Iy + Ix ⊗
1

∆y2Ky

)
vec(U) = vec(F),

where Kx is the K matrix of size Nx×Nx, Ix is the identity matrix of size
Nx×Nx, Ky is the K matrix of size Ny×Ny, and Iy is the identity matrix
of size Ny ×Ny.

2.8. 2D BVP: DIRICHLET B.C. 25

Problem 2.12. Find Sy and Λy.

Let K2D denote the matrix 1
∆x2Kx ⊗ Iy + Ix ⊗ 1

∆y2Ky. Since we know
the eigenvectors of Kx and Ky, we can find the inverse of the matrix K2D
by the following eigenvector method. Suppose the eigendecompositions of
Kx and Ky are Kx = SxΛxS

−1
x and Ky = SyΛyS

−1
y , then

1
∆x2Kx ⊗ Iy = Sx

1
∆x2 ΛxS

−1
x ⊗ Iy = Sx

1
∆x2 ΛxS

−1
x ⊗ SyIyS

−1
y

= (Sx ⊗ Sy)(1
∆x2 ΛxS

−1
x ⊗ IyS

−1
y) = (Sx ⊗ Sy)(1

∆x2 Λx ⊗ Iy)(S−1
x ⊗ S−1

y),

where the first property of the kronecker product is used twice. Similarly
we get

Ix ⊗
1

∆y2Ky = (Sx ⊗ Sy)(Ix ⊗
1

∆y2 Λy)(S−1
x ⊗ S−1

y).

Thus we get the eigenvectors and eigenvalues of K2D:

K2D = (Sx ⊗ Sy)(1
∆x2 Λx ⊗ Iy + Ix ⊗

1
∆y2 Λy)(S−1

x ⊗ S−1
y).

Implementation:

1. (Sx⊗Sy)−1vec(F) = (S−1
x ⊗S−1

y)vec(F) = vec(S−1
y FS−1

x) where ST
x =

Sx is used.

2. Let Λ = reshape(diag(1
∆x2 Λx ⊗ Iy + Ix ⊗ 1

∆y2 Λy), Ny,Nx). Then
Λ(j, i) = 2−2 cos(j π

2 ∆y)
∆y2 + 2−2 cos(iπ∆x)

∆x2 . Because 1
∆x2 Λx⊗Iy +Ix⊗ 1

∆y2 Λy

is a diagonal matrix, we have

(1
∆x2 Λx ⊗ Iy + Ix ⊗

1
∆y2 Λy)−1vec(S−1

y FS−1
x) = vec(S−1

y FS−1
x ./Λ),

where ./ denotes the component-wise division.

3. (S−1
x ⊗S−1

y)−1vec(S−1
y FS−1

x ./Λ) = (Sx⊗Sy)vec(S−1
y FS−1

x ./Λ) = vec(Sy(S−1
y FS−1

x ./Λ)Sx)
where ST

x = Sx is again used.

To summarize, we simply have U = Sy(S−1
y FS−1

x ./Λ)Sx, which has
O(N3) complexity if N = Nx = Ny. If DST is used for multiplying Sx

and S−1
x , it reduces to O(N2 log2N). The Gaussian elimination of K2D

costs O(N4) (O(N7) in 3D) because the bandwidth is N (N2 in 3D).

Problem 2.13. Show that K2D is symmetric.

Problem 2.14. Consider a matrix given in the form of A ⊗ B + B ⊗ A
where A and B are matrices of size n × n. Can it be inverted using a
similar procedure as described in this subsection through eigen-decomposition
of small matrices of size n × n? Find reasonable assumptions to make the
answer to be yes.

26 2. FINITE DIFFERENCE METHODS FOR THE POISSON’S EQUATION

2.9 2D BVP: Neumann b.c.

Consider solving the 2D Poisson’s equation with homogeneous Neumann
boundary conditions:{

−uxx(x, y)− uyy(x, y) = f(x, y), (x, y) ∈ (0, 1)× (0, 2),
∂

∂nu(x, y)|Γ = 0,

where Γ denotes the boundary of the rectangular domain and ∂
∂nu(x, y)|Γ

denotes the directional derivative of u along the direction normal to Γ.

2.9.1 The one-half grid

We first use the grid in Section 2.6.1. Let xi = (i − 1
2)∆x, i = 1, · · · , Nx

with ∆x = 1
Nx and yj = (j− 1

2)∆y, j = 1, · · · , Ny with ∆y = 2
Ny . Then we

get the scheme(1
∆x2Bx ⊗ Iy + Ix ⊗

1
∆y2By

)
vec(U) = vec(F),

where the matrix B in Section 2.6.1 is used for Bx and By.
The solution can be found by U = Sy(S−1

y FS−1
x ./Λ)Sx where Sx and Sy

are the eigenvector matrices to Bx and By. Here Λ(1, 1) = 0 so we set the
(1, 1) entry in S−1

y FS−1
x ./Λ to be zero, which returns a soluition with zero

sum.

2.9.2 The integer grid: matrix B

If we choose to use the method in Section 2.6.3 to contruct the scheme in
2D on an integer grid xi = (i − 1)∆x, i = 1, · · · , Nx with ∆x = 1

Nx−1 and
yj = (j − 1)∆y, j = 1, · · · , Ny with ∆y = 2

Ny−1 , then the scheme becomes

(1
∆x2Bx ⊗ Ey + Ex ⊗

1
∆y2By

)
vec(U) = vec(F̂),

where F̂ is the modified right hand side data, and the diagonal matrix E
replaces the identity matrix

E =



1
2

1
1

. . .
1

1
2


.

2.10. THE 9-POINT LAPLACIAN 27

To see why we should have the extra 1
2 factor in the 2D scheme, consider

the scheme at the point (xm, y1) for some 2 < m < Nx on the left boundary
of the domain. Then the second FD approximation at (xm, y1) is

2Um,1 − 2Um,2
∆x2 + −Um−1,1 + 2Um,1 − Um+1,2

∆y2 = fij .

But in order to have the matrix B as in Section 2.6.3, we need to convert it
to

Um,1 − Um,2
∆x2 + 1

2
−Um−1,1 + 2Um,1 − Um+1,2

∆y2 = 1
2fij .

Due to the extra 1
2 in the D matrix, the eigenvectors of 1

∆x2Bx ⊗ Ey +
Ex ⊗ 1

∆y2By is no longer Sx ⊗ Sy.

2.9.3 The integer grid: matrix B2

The scheme in the previous subsection is equivalent to(1
∆x2Bx ⊗ Iy + Ix ⊗

1
∆y2By

)
vec(U) = vec(F),

where the matrix Bx and By are the matrix B2 in Section 2.6.4.
The solution can be found by U = Sy(S−1

y FS−1
x ./Λ)Sx where Sx and Sy

are the eigenvector matrices to Bx and By. Here Λ(1, 1) = 0 so we set the
(1, 1) entry in S−1

y FS−1
x ./Λ to be zero, which returns a soluition with zero

sum.
The normal derivatives at four corner points are not really well defined

though.

2.10 The 9-point Laplacian
The 5-point stencil scheme (2.7) for the solving the 2D Poisson equation is
second order accurate. If we use ∆5 to denote the 5-point discrete Laplacian,
then

−∆5Ui,j = −Ui−1,j + 2Uij − Ui+1,j

∆x2 + −Ui,j−1 + 2Uij − Ui,j+1
∆y2 ,

and the matrix representation of the operator −∆5 for the homogeneous
Dirichlet boundary condition is

K2D = 1
∆x2Kx ⊗ Iy + Ix ⊗

1
∆y2Ky.

Now consider the following 9-point Laplacian for h = ∆x = ∆y:

∆9Ui,j = 1
6h2 (4Ui−1,j + 4Ui+1,j + 4Ui,j−1 + 4Ui,j+1

+ Ui−1,j−1 + Ui+1,j−1 + Ui+1,j+1 + Ui+1,j+1 − 20Ui,j).

28 2. FINITE DIFFERENCE METHODS FOR THE POISSON’S EQUATION

For convenience, let ui,j denote the value of a smooth function u(x, y)
at the point (xi, yj), then we perform the Taylor expansion for the smooth
function around the point (xi, yj),

ui,j±1 = ui,j ±∆y(uy)i,j + 1
2∆y2(uyy)i,j ±

1
6∆y3(uyyy)i,j + 1

24∆y4(uyyyy)i,j

± 1
120∆y5(uyyyyy)i,j + 1

6!∆y
6(∂6

yu)i,j ±
1
7!∆y

7(∂7
yu)i,j +O(∆y8),

thus

ui,j+1+ui,j−1 = 2ui,j+∆y2(uyy)i,j+ 1
12∆y4(uyyyy)i,j+ 2

6!∆y
6(∂6

yu)i,j+O(∆y8).

Similarly,

ui+1,j+ui−1,j = 2ui,j+∆x2(uxx)i,j+ 1
12∆x4(uxxxx)i,j+ 2

6!∆x
6(∂6

xu)i,j+O(∆x8).

Next we first perform the Taylor expansion around the point (xi+1, yj):

ui+1,j+1+ui+1,j−1 = 2ui+1,j+∆y2(uyy)i+1,j+ 1
12∆y4(uyyyy)i+1,j+ 2

6!∆y
6(∂6

yu)i+1,j+O(∆y8),

ui−1,j+1+ui−1,j−1 = 2ui−1,j+∆y2(uyy)i−1,j+ 1
12∆y4(uyyyy)i−1,j+ 2

6!∆y
6(∂6

yu)i−1,j+O(∆y8).

Then we perform the Taylor expansion around the point (xi, yj),

ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1

=2[2ui,j + ∆x2(uxx)i,j + 1
12∆x4(uxxxx)i,j + 2

6!∆x
6(∂6

xu)i,j +O(∆x8)]

+ ∆y2[(uyy)i−1,j + (uyy)i+1,j] + 1
12∆y4[(uyyyy)i−1,j + (uyyyy)i+1,j]

+ 2
6!∆y

6[(∂6
yu)i−1,j + (∂6

yu)i+1,j] +O(∆y8)

=4ui,j + 2∆x2(uxx)i,j + 1
6∆x4(uxxxx)i,j + 4

6!∆x
6(∂6

xu)i,j +O(∆x8)

+ ∆y2[2(uyy)i,j + ∆x2(uyyxx)i,j + 1
12∆x4(uyyxxxx)i,j +O(∆x6)]

+ 1
12∆y4[2(uyyyy)i,j + ∆x2(uyyyyxx)i,j +O(∆x4)] + 2

6!∆y
6[2(∂6

yu)i,j +O(∆x2)] +O(∆y8)

=4ui,j + 2∆x2(uxx)i,j + 2∆y2(uyy)i,j + 1
6∆x4(uxxxx)i,j + 1

6∆x4(uyyyy)i,j + ∆x2∆y2(uyyxx)i,j

+ 4
6!∆x

6(∂6
xu)i,j + 4

6!∆y
6(∂6

yu)i,j + 1
12∆y4∆x2(∂4

y∂
2
xu)i,j + 1

12∆x4(∆y2∂4
x∂

2
yu)i,j

+O(∆x8) +O(∆x6∆y2) +O(∆x2∆y6) +O(∆y8)

Since we have assumed h = ∆x = ∆y, we get

∆9u(xi, yj) = uxx+uyy+ 1
12h

2(uxxxx+2uxxyy+uyyyy)+ 1
360h

4(∂2
x+∂2

y)(uxxxx+4uxxyy+uyyyy)+O(h6),

2.10. THE 9-POINT LAPLACIAN 29

which implies the 9-point discrete Laplacian is only second order accurate.
However the second order error term is precisely ∆2u = ∆(∆u) = uxxxx +
2uxxyyy +uyyyy, where ∆2 is the biharmonic operator. If u is the solution to
−∆u = −uxx−uyy = f , then ∆2u = −∆f . Therefore, the following scheme
is fourth order accurate for solving −uxx − uyy = f :

−∆9Ui,j = Fi,j ,

where
Fi,j = f(xi, yj) + h2

12∆5f(xi, yj).

Let K2D9 be the matrix representing the 9-point Laplacian operator
−∆9 for the homogeneous Dirichlet boundary condition, then it can be
written as

K2D9 = − 1
6h2 [Hx ⊗Hy − 36Ix ⊗ Iy],

where H is a symmetric tridiagonal matrix

H =



4 1
1 4 1

1 4 1
.

1 4 1
1 4


.

Problem 2.15. Explain why the matrix representation of the 9-point Lapla-
cian operator is given as the matrix K2D9.
Problem 2.16. Find the eigenvectors and eigenvalues of K2D9 and use
them to establish the stability thus convergence of the scheme.

For the 9-point Laplacian, the size of the matrices Hx and Hy do not
need to be the same, and we do not need ∆x = ∆y. As a matter of fact the
9-point discrete Laplacian for the Poisson equation can be also written as

1
12

 1
∆x2

 1 −2 1
10 −20 10
1 −2 1

+ 1
∆y2

 1 10 1
−2 −20 −2
1 10 1


◦Ū = 1

12

0 1 0
1 8 1
0 1 0

◦F̄ ,
which reduces to the following under the assumption ∆x = ∆y = h,

1
6h2

1 4 1
4 −20 4
1 4 1

 ◦ Ū = 1
12

0 1 0
1 8 1
0 1 0

 ◦ F̄ .
Here ◦ denotes the Hadamard product of matrices, and Ū and F̄ are matri-
ces:

Ū =

Ui−1,j+1 Ui,j+1 Ui+1,j+1
Ui−1,j Ui,j Ui+1,j

Ui−1,j−1 Ui,j−1 Ui+1,j−1

 , F̄ =

Fi−1,j+1 Fi,j+1 Fi+1,j+1
Fi−1,j Fi,j Fi+1,j

Fi−1,j−1 Fi,j−1 Fi+1,j−1

 .

30 2. FINITE DIFFERENCE METHODS FOR THE POISSON’S EQUATION

Problem 2.17. Verify the fourth order local truncation error in the 9-point
scheme for ∆x ̸= ∆y.

Problem 2.18. Prove that the accuracy of the 9-point scheme becomes sixth
order for solving the Laplace equation ∆u = 0 with Dirichlet boundary con-
ditions.

2.11 Variable coefficient problems

2.11.1 1D Dirichlet b.c.

We first consider a 1D variable coefficient problem:

−(a(x)u′(x))′ = f(x), x ∈ [0, 1],

with homogeneous Dirichlet boundary conditions. A conservative discretiza-
tion should be used:

1
∆x2 [−aj− 1

2
uj−1 + (aj− 1

2
+ aj+ 1

2
)uj − aj+ 1

2
uj+1] = fj ,

where aj− 1
2

= a(xj− 1
2∆x). The matrix vector form of this scheme is Bu = f

where B is a real symmetric tridiagonal matrix:

B = 1
∆x2


a 1

2
+ a 3

2
−a 3

2
−a 3

2
a 3

2
+ a 5

2
−a 5

2
.

 . (2.8)

Notice that xj = j 1
n+1 for j = 1, · · · , n are the n grid points and the

coefficient function a(x) is sampled at n + 1 points xj− 1
2

= (j − 1
2) 1

n+1 for
j = 1, · · · , n+ 1. Let D denote the (n+ 1)× n matrix:

D =


1
−1 1
0

−1 1
−1

 ,

and A be a diagonal matrix with diagonal entries a 1
2
, · · · , an+ 1

2
. Then we

have DTD = K and B = 1
∆x2D

TAD.

Obviously it is impossible to compute eigenvalues of the matrix B any-
more. However, it is still possible to have a useful estimate of the smallest
eigenvalues of the matrix B as will be shown in Chapter 3 (Section 3.6.4),
so that we can establish the stability thus the convergence of the scheme.

2.11. VARIABLE COEFFICIENT PROBLEMS 31

2.11.2 2D Dirichlet b.c.

Now consider the following 2D problem

∇(a(x, y)∇u) = f(x, y),

with homogeneous Dirichlet b.c. on a rectangular domain, where a(x, y) > 0
is some known coefficient function. If we use the same conservative centered
difference discretization as above, then we obtain[1

∆x2 (DT
x ⊗ Iy)A1(Dx ⊗ Iy) + 1

∆y2 (Ix ⊗DT
y)A2(Ix ⊗Dy)

]
vec(U) = vec(F),

where A1 and A2 are two diagonal matrices defined as follows.
Let a1 be a 2D array of size Ny×(Nx+1) satisfying a2(j, i) = a(xi− 1

2
, yj)

and a2 be a 2D array of size (Ny+ 1)×Nx satisfying a1(j, i) = a(xi, yj− 1
2
).

The diagonal entries of A1 are

reshape(a1, (Nx+ 1)Ny, 1),

and the diagonal entries of A2 are

reshape(a2, (Ny + 1)Nx, 1).

Problem 2.19. Show that the matrix 1
∆x2 (DT

x ⊗ Iy)A1(Dx⊗ Iy) + 1
∆y2 (Ix⊗

DT
y)A2(Ix ⊗Dy) is symmetric.

2.11.3 1D Neumann b.c.

Next we consider the Neumann boundary conditions:

−(a(x)u′(x))′ = f(x), x ∈ [0, 1], u′(0) = σ0, u
′(1) = σ1.

The compatbility condition for this problem is∫ 1

0
f(x)dx = −a(1)σ1 + a(0)σ0.

In this section we use the grid points xj = j 1
n+1 for j = 0, · · · , n+1. The

half grid points are xj+ 1
2

= (j + 1
2) 1

n+1 . For approximating the boundary
conditions, we can use a second order one-sided difference:

1
∆x

(
−3

2u(0) + 2u(∆x)− 1
2u(2∆x)

)
= u′(0) +O(∆x2),

1
∆x

(1
2u(1− 2∆x)− 2u(1−∆x) + 3

2u(1)
)

= u′(1) +O(∆x2),

32 2. FINITE DIFFERENCE METHODS FOR THE POISSON’S EQUATION

thus
−3

2U0 + 2U1 −
1
2U2 = hσ0,

1
2Un−1 − 2Un + 3

2Un+1 = hσ1.

Therefore, we get
U0 = 4

3U1 −
1
3U2 −

2
3hσ0,

Un+1 = −1
3Un−1 + 4

3Un + 2
3hσ1.

So we get a second order approximation to the first order derivative:

u′(x 1

2
)

u′(x 3
2
)

...
u′(xn+1

2
)

 ≈
1
h

−1 1
0

−1 1




U0
U1
...

Un−1
Un+1

 = 1
h


−1

3
1
3

−1 1
0

−1 1
−1

3
1
3




U1
U2
...

Un−1
Un

+



2
3σ0
0
...
0

2
3σ1

 .

Thus we get a second order approximation for (a(x)u′)′:

1
h

−1 1
0

−1 1



a 1

2
a 3

2
. . .

an+ 1
2




1
h


−1

3
1
3

−1 1
0

−1 1
−1

3
1
3




U1
U2
...

Un−1
Un

+



2
3σ0
0
...
0

2
3σ1



 .

A second order scheme for −(a(x)u′)′ = f can be written as

1
h2



a 3
2
− 1

3a 1
2
−a 3

2
+ 1

3a 1
2

−a 3
2

a 3
2

+ a 5
2

−a 5
2

.
−an− 3

2
an− 3

2
+ an− 1

2
−an− 1

21
3an+ 1

2
− an− 1

2
an− 1

2
− 1

3an+ 1
2




U1
U2
...

Un−1
Un



=



f1 − 1
ha 1

2

2
3σ0

f2
...

fn−1
fn + 1

han+ 1
2

2
3σ1


,

which can be denoted as
1
h2AU = F.

2.11. VARIABLE COEFFICIENT PROBLEMS 33

The discrete compatbility condition is
a 3

2

a 3
2
− 1

3a 1
2

(hf1−a 1
2

2
3σ0)+hf2+· · ·+hfn−1+

an− 1
2

an− 1
2
− 1

3an+ 1
2

(hfn+an+ 1
2

2
3σ1) = 0.

(2.9)
Problem 2.20. Show that the discrete compatbility condition is indeed (2.9)
and show it is a second order accurate approximation to the compatbility
condition for a(x) being a constant.

To obtain a modified right hand side F̄ so that 1
h2AU = F has a solution

if F does not satisfy (2.9), we can project F to the column space of A.
Similar to the discussions in Section 2.6.5, we have

F̄ =



f1 − 2a0/h
f2
f3
...

fn−1
fn + 2a1/h


+ b



a 3
2
/(a 3

2
− 1

3a 1
2
)

1
1
...
1

an− 1
2
/(an− 1

2
− 1

3an+ 1
2
)


,

where b is obtained by requiring F̄ is orthogonal to the vector



a 3
2
/(a 3

2
− 1

3a 1
2
)

1
1
...
1

an− 1
2
/(an− 1

2
− 1

3an+ 1
2
)


.

Sometimes we may prefer to solve a symmetric system. For this matter,
we can symmetrize the system by dividing proper numbers in the first and
the last row of the system to obtain an equivalent symmetric one:

1
h2



a 3
2

−a 3
2

−a 3
2

a 3
2

+ a 5
2
−a 5

2
.

−an− 3
2

an− 3
2

+ an− 1
2
−an− 1

2
−an− 1

2
an− 1

2




U1
U2
...

Un−1
Un



=



a 3
2

a 3
2

− 1
3 a 1

2

(f1 − 1
ha 1

2

2
3σ0) +

(
a 3

2
a 3

2
− 1

3 a 1
2

)2

b

f2 + b
...

fn−1 + b

a
n− 1

2
a

n− 1
2

− 1
3 a

n+ 1
2

(fn + 1
han+1

2

2
3σ1) +

(
a

n− 1
2

a
n− 1

2
− 1

3 a
n+ 1

2

)2

b


.

34 2. FINITE DIFFERENCE METHODS FOR THE POISSON’S EQUATION

3

A brief introduction of finite
element methods

3.1 Motivation and plans
Finite difference method can only be used on a rectangular domain or a
domain which can be transformed to a rectangle such as a disk via polar
coordinates. For complicated problems in real applications, finite element
method is the most successful approach due to its rich theories and flexibil-
ity with geometries. In this notes, we mainly focus on rectangular domains,
on which finite difference method is the most convenient choice. On the
other hand, the finite element method on a rectangular domain can be im-
plemented as a finite difference method when integrals are replaced with
quadrature. For instance, there is no essential difference between grid point
values and piece-wise linear polynomials represented by its grid point values.
Even on unstructured triangular meshes, a linear polynomial on a triangle
can be represented by its point values on three vertices of the triangle, which
is often called nodal representation.

The conventional approach of constructing a finite difference method
that we have seen in Chapter 2 includes two crucial steps: first, develop a
consistent discretization or approximation to the differential operator and
the boundary conditions then try to establish the stability, i.e., try to show
∥A−1∥ ≤ C if the matrix-vector form of the scheme is Au = f . While the

35

36 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

first step is a relative easy task, the second step seems to be fine with the
second order centered difference because we have eigenvalues and eigenvec-
tors, which is however nearly impossible to find for higher order accurate
schemes and more general problems such as variable coefficient problems. In
general there are quite a few drawbacks and challenges in such a traditional
approach. The key issues include:

• It is not elegant or convenient to design a high order accurate scheme
to use Taylor expansion (for instance, do you actually enjoy solving
Problem 2.17). It also becomes harder to deal with boundary condi-
tions in high order schemes.

• Stability is hard to establish in general: estimating the inverse of a
matrix is always hard. If using only linear algebra, singular values and
eigenvalues are impossible to estimate for more general schemes (think
about a high order accurate scheme for −(a(x)u′)′ = f).

Remark 3.1. 9-point discrete Laplacian is successful, but only for Laplacian
operator on uniform meshes with Dirichlet boundary conditions.

Moreover, there are practical concerns:

• Loss of accuracy on non-uniform meshes: if the local truncation error
is obtained by Taylor expansion on uniform grids, the proof of order of
accuracy breaks down regardless of whether the actual scheme is still
as accurate as on uniform grids or not.

• Loss of symmetry in the matrix A: the matrix in general is not sym-
metric and hard to symmetrize (think about −∇(a(x, y)∇u) = f with
Neumann boundary conditions).

Remark 3.2. One of the main reasons why a symmetric A is much better is
for purely Neumann boundary conditions. The exact solution is not unique
for purely Neumann b.c.. So A in the numerical scheme Au = f is not
invertible thus the linear system Au = f may not have a solution (unless f
happens to lie in the column space of A, which is usually not true). So as
we have seen in Section 2.11.3, one would have to instead consider Au = f̄
where f̄ is the projection of f onto the column space of A. The left null vector
v (i.e.. vTA = 0) is needed for such a projection. If A is symmetric, then the
left null vector is also the right null vector, which is usually

[
1 1 · · · 1

]T
since A approximates a differential operator. If A is not symmetric, then one
would have to solve an eigenvalue problem AT v = 0 ∗ v which is even more
expensive (at least 2-3 times more expensive) than solving Au = f̄ . The
difficulty of using a non-symmetric matrix for purely Neumann boundary
conditions will also be explained in Section 3.9.

3.2. PRELIMINARIES 37

Remark 3.3. For solving Au = f̄ as above, it is mathematically equivalent
to solve the least square solution by solving ATAu = AT f , which is however
a lot harder to solve numerically, because the condition number of ATA will
be nearly the square of the condition number of A.

All these concerns and difficulties can be solved by using finite element
method! What is even better is that finite element method on rectangular
meshes (or regular triangular meshes) looks like exactly a finite difference
method. In this chapter, we will first see how a finite element method is
defined then implement it as a finite difference method.

Caution to readers: this is a very brief introduction to the finite
element method because

• We will give up certain math rigor such as complete definition of dis-
tribution and Sobolev spaces, proof of existence and uniqueness of
variational formulation and important estimates. Instead they will be
given and stated as facts.

• We focus mainly on rectangular domains and rectangular meshes.

Despite of these simplifications in mind, you will still learn and understand
the key ingredients of the finite element method.

3.2 Preliminaries

3.2.1 Weak derivatives and Sobolev spaces

Let C∞
0 (R) be the set of all infinitely differentiable functions which are

nonzero only on a finite interval.
If a function f(x) is differentible, then after integration by parts, for any

smooth function v(x) ∈ C∞
0 (R) , we have∫ +∞

−∞
f(x)v′(x)dx = −

∫ +∞

−∞
f ′(x)v(x)dx. (3.1)

The function f(x) = |x| is not differentiable but we can define its weak

or generalized derivative as the step function g(x) =
{

1 x ≥ 0
−1 x < 0

in the

sense of (3.1):

Definition 3.1. A function g(x) is defined to be the weak or generalized
derivative of f(x) if it satisfies∫ +∞

−∞
f(x)v′(x)dx = −

∫ +∞

−∞
g(x)v(x)dx, ∀v(x) ∈ C∞

0 (R).

Example 3.1. It is straightforward to verify that the step function is the
weak derivative of the absolute value function.

38 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

If a function is differentible, then its weak derivative is simply the deriva-
tive. From now on, in this Chapter, derivatives are understood as
generalized derivatives.

Next we need to define a few spaces:

•
L2([0, 1]) =

{
f(x) :

∫ 1

0
f(x)2dx <∞

}
.

For a general domain Ω, L2(Ω) is similarly defined. Here integral is
the Lebesgue integral if you know what it means. The L2(Ω)-norm
will be denoted as

∥f∥0,Ω = ∥f∥L2(Ω) =
(∫

Ω
f(x)2dx

) 1
2
.

When there is no confusion, we will drop Ω in the subscript, e.g., ∥f∥0
simply denotes the L2-norm.

•

H1([0, 1]) :=
{
f(x), f ′(x) ∈ L2 :

∫ 1

0
[f(x)2 + f ′(x)2]dx <∞

}
.

The H1(Ω)-norm will be denoted as

∥f∥1,Ω = ∥f∥H1(Ω) =
(∫

Ω
[f(x)2 + f ′(x)2]dx

) 1
2
.

We also define a seminorm:

|f |1,Ω = |f |H1(Ω) =
(∫

Ω
f ′(x)2dx

) 1
2
.

When there is no confusion, we will drop Ω in the subscript, e.g., ∥f∥1
simply denotes the H1-norm.
Fact: in one dimension, H1([0, 1]) ⊂ C([0, 1]).

• H1
0 ([0, 1]) is the subset H1([0, 1]) with the property of vanishing at the

boundary.

• H2 space is similarly defined:

H2([0, 1]) =
{
f(x), f ′(x), f ′′(x) ∈ L2 :

∫ 1

0
[f(x)2 + f ′(x)2 + f ′′(x)2]dx <∞

}
.

Norm and semi-norm are

∥f∥2,Ω = ∥f∥H2(Ω) =
(∫

Ω
[f(x)2 + f ′(x)2 + f ′′(x)2]dx

) 1
2
,

|f |2,Ω = |f |H2(Ω) =
(∫

Ω
f ′′(x)2dx

) 1
2
.

3.2. PRELIMINARIES 39

• H3 space and its norm are also similarly defined: just add f ′′′(x).

More about continuity:

• The most general statement is from general Sobolev inequalities [3],
which imply for a bounded open set Ω ⊂ Rn with a C1 boundary:

k >
n

2 , f(x) ∈ Hk(Ω) =⇒ f(x) ∈ C(Ω̄).

• The special case for one dimension: f(x) ∈ H1(−1, 1) =⇒ f(x) ∈
C[−1, 1].

• Two dimensions: f(x, y) ∈ H2(Ω) =⇒ f(x, y) ∈ C(Ω̄).

• Three dimensions: f(x, y, z) ∈ H2(Ω) =⇒ f(x, y, z) ∈ C(Ω̄).

• In two dimensions, H1 is not enough for continuity: consider Ω as
a disk centered at the origin with radius R = 1

2 , then the following
function cannot be made continous or even bounded by changing any
point values:

f(x, y) =
(
− log(x2 + y2)

)α
∈ H1(Ω), f(x, y) /∈ C(Ω),

where α ∈ (0, 1
2) is a constant. Let r =

√
x2 + y2, we first have

∫∫
Ω
|f |2dxdy =

∫ 1
2

r=0

∫ 2π

θ=0
[− log r2]2αrdrdθ ≤ C

because [− log r2]2αr is bounded and continuous on r ∈ [0, 1
2]. Then

|∇f | = α
(
− log r2

)α−1 1
r

= C(− log r)α−1r−1.

∫∫
Ω
|∇f |2dxdy =

∫ 1
2

r=0

∫ 2π

θ=0
C(− log r)2α−2r−2rdrdθ

= C

∫ 1
2

r=0
(− log r)2α−2r−1dr(t = − log r) = −C

∫ +∞

t=− log 1
2

t2α−2dt < +∞.

3.2.2 Interpolation and quadrature

Finite element methods are built upon basic tools including interpolation
and quadrature (numerical integration).

• Lagrange interpolation is a convenient polynomial approximation to a
function through its point values: given k + 1 point values of f(x) at
k + 1 grid points xi (i = 1, 2, · · · , k + 1), there is a unique polynomial
p(x) of degree k to satisfy p(xi) = f(xi) (i = 1, 2, · · · , k + 1).

40 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

The linear Lagrange interpolation at xi, xi+1 for a function f(x) is
given by

x− xi+1
xi − xi+1

fi + x− xi

xi+1 − xi
fi+1.

The quadratic Lagrange interpolation at xi−1, xi, xi+1 for a function
f(x) is given by

(x− xi)(x− xi+1)
(xi−1 − xi)(xi−1 − xi+1)fi−1+ (x− xi−1)(x− xi+1)

(xi − xi−1)(xi − xi+1)fi+
(x− xi)(x− xi−1)

(xi+1 − xi)(xi+1 − xi−1)fi+1.

• Quadrature means numerical integration, which is to approximate in-
tegrals on computer.

Trapezoidal rule :
∫ 1

−1
f(x)dx ≈ f(−1) + f(1)

Simpson’s rule :
∫ 1

−1
f(x)dx ≈ 1

3f(−1) + 4
3f(0) + 1

3f(1)

Trapezoidal rule is exact if f(x) is a linear polynomial. Simpson’s
rule is also 3-point Gauss-Lobatto rule or 3-point Newton-Cotes rule,
which is exact if f(x) is a cubic polynomial.

Consider an uniform mesh with grids 0 = x0 < x1 < · · · < xN < xN+1 =
1 with spacing h = 1

N+1 for the interval [0, 1], which consists of N + 1
intervals Ik = [xk−1, xk] (k = 1, · · · , N + 1). Then for each interval we can
use a linear polynomial to approximate f(x) if given fi = f(xi). Let Π1f(x)
denote such a piecewise linear polynomial function.

Figure 3.1: Four grid points and three intervals. For each interval, a linear
polynomial is interpolated.

Next consider an uniform mesh with grids 0 = x0 < x1 < · · · < xN <
xN+1 = 1 with spacing h = 1

N+1 for the interval [0, 1]. And this time we
assume N = 2n−1 is odd. Then there are n small intervals Ik = [x2k−2, x2k]
(k = 1, · · · , n), on which we can define a piecewise quadratic interpolation
polynomial, denoted by Π2f(x).

Here are the facts that we will use without any proof first: for a smooth
enought function f(x), the interpolation error and quadrature error are given
as

3.3. 1D BVP: HOMOGENEOUS DIRICHLET B.C. 41

Figure 3.2: Seven grid points and three intervals. For each interval, a
quadratic polynomial is interpolated.

• L2 and H1 errors of piecewise linear interpolation:

∥f −Π1f∥0 ≤ Ch2|f |2, ∥f −Π1f∥1 ≤ Ch|f |2. (3.2)

• L2 and H1 errors of piecewise quadratic interpolation:

∥f −Π2f∥0 ≤ Ch3|f |3, ∥f −Π2f∥1 ≤ Ch2|f |3. (3.3)

• Quadrature error of trapezoidal rule for each small interval in Figure
3.1 : ∣∣∣∣∣

∫ 1

0
f(x)dx−

N+1∑
k=1

1
2h[f(xk−1) + f(xk)]

∣∣∣∣∣ ≤ Ch2|f |2.

• Quadrature error of Simpson’s rule for each small interval in Figure
3.2:∣∣∣∣∣
∫ 1

0
f(x)dx−

n∑
k=1

h[13f(x2k−1) + 4
3f(x2k) + 1

3f(x2k+1)]
∣∣∣∣∣ ≤ Ch4|f |4.

Notice that the estimate above only needs the minimal assumption on the
function, e.g., for (3.2) we only need to assume f(x) ∈ H2(Ω) (the second
order derivative exists in the weak sense). The same order can be obtained
by Taylor expansion, but obviously we need the derivatives to exist in the
classical sense. All these estimates above can be easily derived from the
Bramble-Hilbert Lemma in Section 3.7.2. On the other hand, you can simply
assume these estimates are true for now.

3.3 1D BVP: homogeneous Dirichlet b.c.

3.3.1 Variational formulation

Given a function f(x) ∈ L2(0, 1), consider solving

−u′′ = f, x ∈ (0, 1),

with boundary conditions

u(0) = 0, u(1) = 0.

42 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

Multiplying a test function v ∈ H1
0 (0, 1), after integration by parts, we get∫ 1

0
u′(x)v′(x)dx =

∫ 1

0
f(x)v(x)dx

which can be denoted as
(u′, v′) = (f, v),

if we define
(f, g) :=

∫ 1

0
f(x)g(x)dx.

It can be shown that the solution to the PDE is equivalent to the solution
to the following variational formulation

seek u ∈ H1
0 (0, 1), satisfying (u′, v′) = (f, v), ∀v ∈ H1

0 (0, 1). (3.4)

Theorem 3.1. Assume f(x) ∈ C([0, 1]) and u(x) ∈ C2([0, 1]) satisfies (3.4),
then −u′′(x) = f(x).

Proof. After integration by parts in (3.4), we get

0 = (f, v)−(u′, v′) = (f, v)+(u′′, v) = (f+u′′, v) =
∫ 1

0
[u′′(x)+f(x)]v(x)dx.

If u′′(x)+f(x) ̸= 0, then due to continuity, u′′(x)+f(x) is either positive or
negative on an interval [x0, x1] ⊂ [0, 1]. Without loss of generality, assume
u′′(x) + f(x) > 0 on [x0, x1] ⊂ [0, 1]. Consider a test function

v(x) =


0, x < x0

(x− x0)2(x− x1)2, x ∈ [x0, x1]
0, x > x1

,

and we have∫ 1

0
[u′′(x) + f(x)]v(x)dx =

∫ x1

x0
[u′′(x) + f(x)]v(x)dx > 0,

which is a contradiction.

Why the variational formulation implies the PDE is one big step that
we choose to skip. If this is your first time to learn finite element method,
it is the best to accept this fact without spending time pursuing why. But
if this is your fifth or even tenth time to read this chapter, it might be a
good time to start to learn why it should be true, in a different book! Of
course the solution of (3.4) is also the solution to the PDE only when it is
a solution with a second order derivative at least in the weak sense. It can
be shown that the solution of (3.4) has weak second order derivative, which
is called elliptic regularity theorem.

3.3. 1D BVP: HOMOGENEOUS DIRICHLET B.C. 43

Consider the 1D variable coefficient problem

−(a(x)u′)′ = f, x ∈ (0, 1), u(0) = u(1) = 0, (3.5)

where a(x) > 0 is a smooth coefficient, with boundary conditions.
We can introduce a new notation called bilinear form

A(u, v) :=
∫ 1

0
au′v′dx,

then the equivalent variational formulation is

seek u ∈ H1
0 (0, 1), satisfying A(u, v) = (f, v), ∀v ∈ H1

0 (0, 1). (3.6)

3.3.2 The abstract finite element method

Given a mesh with n intervals Ij (j = 1, · · · , n), let V h denote the continuous
piecewise polynomial of degree k approximation to the space H1(0, 1):

V h := {vh(x) ∈ C(0, 1) : vh(x) is polynomial of degree k on each interval Ij}.

We will only consider k = 1 or k = 2, i.e., linear or quadratic polyno-
mial approximation. In general, these small intervals Ij do not have to be
uniform. But for convenience and also for the sake of constructing a finite
difference scheme on a uniform mesh, let us assume they have an uniform
interval size. Then Figure 3.1 and Figure 3.2 are illustrations of elements in
V h.

The space V h
0 is similarly defined as an approximation to H1

0 (0, 1):

V h
0 := {vh(x) ∈ C(0, 1) : vh(0) = vh(1) = 0, vh(x) ∈ P k(Ij),∀j}.

A continous piecewise polynomial can have a weak derivative as defined by
Definition 3.1, which is the piecewise derivative inside each interval, just like
that the weak derivative of f(x) = |x| is the step function. Thus we have
the following fact:

V h ⊂ H1(0, 1), V h
0 ⊂ H1

0 (0, 1).

Given V h
0 , the abstract finite element method for (3.6) is defined as

seek uh ∈ V h
0 , satisfying A(uh, vh) = (f, vh), ∀vh ∈ V h

0 . (3.7)

We call (3.7) the abstract finite element method because it can never be
exactly implemented. For example, the right hand side integral (f, vh) can
never be computed exactly, unless f(x) is a very simple function.

44 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

3.3.3 The abstract implementation

Assume we know how to compute all integrals in (3.7), e.g., if the coef-
ficient a(x) ≡ 1 and f(x) is a polynomial in (3.6), then all integrands are
polynomials. Then let us think about how the scheme (3.7) should be imple-
mented, e.g., in the scheme (3.7) what does arbitrariness of the test function
vh mean?

First of all, once the mesh is fixed and polynomial degree is fixed, the
piecewise polynomial space V h

0 is a finite dimensional vector space. Assume
it is N -dimensional with basis functions {ϕi(x) : i = 1, · · · , N}.

Second, in the scheme (3.7), both the left hand side and the right hand
side are linear operators with respect to the test function vh. Therefore,
A(uh, vh) = (f, vh) for arbitrary test function vh in an N -dimensional vector
space V h

0 is equivalent to A(uh, vh) = (f, vh) for vh being all basis functions
ϕi(x). Namely, (3.7) is equivalent to

A(uh, ϕi) = (f, ϕi), i = 1, · · · , N.

Third, uh ∈ V h
0 implies that uh is a linear combination of the basis

functions:

uh(x) =
N∑

j=1
ujϕj(x).

Next, plugging in uh(x) = ∑N
j=1 ujϕj(x) and using the linearity of the

bilinear form A, we get that
N∑

j=1
ujA(ϕj , ϕi) = (f, ϕi), i = 1, · · · , N,

which is a system of N linear equations.
The last step is to solve a linear system Su = f where the stiffness matrix

S has entries Sij = A(ϕj , ϕi), and

u =


u1
u2
...
uN

 , f =


(f, ϕ1)
(f, ϕ2)

...
(f, ϕN)

 .

3.3.4 The simple practical implementation on uniform meshes

To implement the scheme (3.7), one needs to address the issue of how to
compute integrals. One convenient choice is to use quadrature. Let us
use trapezoidal rule for P 1 method (and Simpson’s rule for P 2 method).
Let Ah(·, ·) and ⟨f, vh⟩h denote the quadrature approximation to A(·, ·) and
(f, vh) respectively. Then we get a new scheme

seek uh ∈ V h
0 , satisfying Ah(uh, vh) = ⟨f, vh⟩h,∀vh ∈ V h

0 . (3.8)

3.3. 1D BVP: HOMOGENEOUS DIRICHLET B.C. 45

Recall that for both P 1 mesh Figure 3.1 and P 2 mesh 3.2, there are N
interior grid points. Let ϕi(x) (i = 1, · · · , N) denote the basis functions in
V h

0 satisfying

ϕi(xj) = δij =
{

1 i = j,

0 i ̸= j,
,∀j = 1, · · · , N.

This kind of basis is often called Lagrangian basis or nodal basis. For
instance, ϕi(x) for P 1 method is given as

ϕi(x) =


1
h(x− xi−1), x ∈ [xi−1, xi],
1
h(xi+1 − x), x ∈ [xi, xi+1],
0, otherwise,

and its weak derivative is

ϕ′
i(x) =


1
h , x ∈ [xi−1, xi],
− 1

h , x ∈ [xi, xi+1],
0, otherwise.

For Lagrangian basis ϕi(x), if we set uj = uh(xj), then

uh(x) =
N∑

i=1
ujϕj(x),

thus the numerical solution uh can also be denoted as a vector of point
values

u =


u1
u2
...
uN

 .

Plugging
N∑

j=1
ujϕj(x, y) into the bilinear form, we get

Ah(uh, vh) =
N∑

j=1
ujAh(ϕi(x), vh).

Since it suffices to ask Ah(uh, vh) to hold for vh = ϕi for all i, the scheme
(3.8) is equivalent to

seek u ∈ RN , satisfying
N∑

j=1
Ah(ϕj(x), ϕi(x))uj = ⟨f, ϕi(x)⟩h, ∀i = 1, · · · , N.

(3.9)

46 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

The right hand side can be explicitly written as

⟨f, ϕi(x)⟩h =
N∑

k=0

1
2h[f(xk)ϕi(xk) + f(xk+1)ϕi(xk+1)] = fih.

So the matrix vector form of (3.9) is Su = hf where the stiffness matrix
S has its (i, j)-th entry as

Sij = Ah(ϕj(x), ϕi(x)).

Consider the simplest Laplacian case a(x) ≡ 1, then

Sij = Ah(ϕj(x), ϕi(x)) = ⟨ϕ′
j(x), ϕ′

i(x)⟩h =


2
h i = j

− 1
h i = j ± 1

0 otherwise.
.

In other words, for solving −u′′ = f, u(0) = u(1) = 0, the matrix vector
form of the P 1 finite element method with trapezoidal quadrature is precisely
the second order centered difference:

1
h



2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2





u1
u2
u3
...

uN−1
uN


= h



f1
f2
f3
...

fN−1
fN


.

For the variable coefficient problem −(au′)′ = f, u(0) = u(1) = 0, simi-
larly we can derive the matrix vector form for the scheme (3.9) with piecewise
linear basis:

1
h

1
2


a0 + 2a1 + a2 −a1 − a2
−a1 − a2 a1 + 2a2 + a3 −a2 − a3

.



u1
u2

...

 = h


f1
f2

...


(3.10)

Recall that the traditional finite difference scheme (2.8) in Chapter 2 is
given as

1
∆x2


a 1

2
+ a 3

2
−a 3

2
−a 3

2
a 3

2
+ a 5

2
−a 5

2
.


u1
u2
...

 =

f1
f2
...

 ,

3.3. 1D BVP: HOMOGENEOUS DIRICHLET B.C. 47

and the matrix can be easily written as B = 1
∆x2D

TAD, where A be a
diagonal matrix with diagonal entries a 1

2
, · · · , an+ 1

2
and

D =


1
−1 1
0

−1 1
−1


(n+1)×n

.

Notice that the two schemes (2.8) and (3.10) would be exactly the same
if we use an approximation aj+ 1

2
≈ aj+aj+1

2 for the mid point values of a(x)
in (2.8). For smooth a(x), the approximation aj+ 1

2
≈ aj+aj+1

2 is second order
accurate by Taylor expansion. Because of this, the stiffness matrix S in the
finite element method (3.10) can be easily written as

S = 1
2

1
h
DTAD

where A is a diagonal matrix with diagonal entries a0+a1, a1+a2, a2+a3, · · · .

Problem 3.1. Are there any alternatives to compute or approximate inte-
grals in (3.7) if we do not use quadrature?

Problem 3.2. For the variable coefficient problem −(au′)′ = f, u(0) =
u(1) = 0, derive the equivalent matrix vector form (3.10) for the scheme
(3.9) with piecewise linear basis.

Problem 3.3. Derive the basis functions ϕi(x) for the P 2 method and find
the explicit matrix vector form of the scheme (3.9) for the −u′′ = f, u(0) =
u(1) = 0.

Problem 3.4. Implement both schemes (2.8) and (3.10), and compare their
errors for a problem with a smooth solution u for a smooth coefficient a(x).

Problem 3.5. For a rectangular domain Ω, consider a 2D variable coeffi-
cient problem

−∇ · (a(x)∇u(x)) = f(x), x ∈ Ω
with homogeneous Dirichlet boundary condition, where a(x) > 0 is a scalar
coefficient. Consider a uniform rectangular mesh and using Q1 finite ele-
ment method with trapezoidal quadrature for both x and y variables. The
finite element method is to seek uh ∈ V h

0 satisfying

Ah(uh, vh) = ⟨f, vh⟩.

Using notation in Chapter 2, the scheme can be written as[1
∆x2 (DT

x ⊗ Iy)A1(Dx ⊗ Iy) + 1
∆y2 (Ix ⊗DT

y)A2(Ix ⊗Dy)
]
vec(U) = vec(F),

48 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

where A1 and A2 are two diagonal matrices defined as follows.
Let a1 be a 2D array of size Ny×(Nx+1) satisfying a1(j, i) = 1

2a(xi, yj)+
1
2a(xi−1, yj) and a2 be a 2D array of size (Ny+1)×Nx satisfying a2(j, i) =
1
2a(xi, yj) + 1

2a(xi, yj−1). Then A1 and A2 can be easily generated in MAT-
LAB as sparse diagonal matrices:

1 A1= sparse (diag(a1 (:)));
2 A2= sparse (diag(a2 (:)));

Implement this scheme and test the accuracy for a smooth solution.

3.4 Basic properties of the bilinear form

3.4.1 Coercivity

We consider the bilinear form A(u, v) =
∫ 1

0 au
′v′dx with the smooth coeffi-

cient a(x) satisfying 0 ≤ min
x∈[0,1]

a(x) ≤ a(x) ≤ max
x∈[0,1]

a(x) < +∞ for any x.
The first useful concept is called coercivity of the bilinear form:

∀v ∈ H1
0 (Ω), A(v, v) =

∫ 1

0
a(x)v′v′dx ≥ min

x
a(x)|v|21 ≥ C∥v∥21,

where C > 0 is a constant.
To establish the coercivity, we have used the fact that the H1-seminorm

| · |1,Ω and the H1-norm ∥ · ∥1,Ω are equivalent in H1
0 (Ω), i.e., there is a

constant C > 0 depending only on Ω s.t. for any

∀v ∈ H1
0 (Ω), C∥v∥21,Ω ≤ |v|21,Ω ≤ ∥v∥21,Ω. (3.11)

The second inequality in (3.11) is trivial. The first inequalilty in (3.11)
simply says that the function value can be controlled by the derivatives,
which is in general not true. For example, if v(x) ≡ 1 on Ω = [0, 1], then
∥v∥0 = 1 and |v|1 = ∥v′(x)∥0 = 0 thus the first inequalilty cannot hold for
v /∈ H1

0 (Ω).
For Ω = (0, 1), here are some quick arguments to see why it is even

possible to control function values by derivatives for v(x) ∈ H1
0 (0, 1). If

v(0) = 0 and v′(x) exists everywhere in the classical sense, then by the
Mean Value Theorem we have v(x)−v(0)

x−0 = v′(y) for some y ∈ (0, x), thus
v(x) = xv′(y) and |v(x)| ≤ |v′(y)| for any x ∈ [0, 1]. You can simply assume
(3.11) is true for now, and read Poincaré inequalilty in the Appendix for a
rigorous statement.

Remark 3.4. The estimates in (3.11) hold even for a function v(x) which
vanishes only along a part or a very small part of the boundary of Ω.

3.4. BASIC PROPERTIES OF THE BILINEAR FORM 49

3.4.2 Continuity

The continuity of the bilinear form is simple implication of Cauchy Schwartz
inequality:

∀u, v ∈ H1(Ω),A(u, v) =
∫ 1

0
au′v′dx ≤ max

x
a(x)

∫ 1

0
u′v′dx

≤ max
x

a(x)
√∫ 1

0
[u′]2dx

√∫ 1

0
[v′]2dx ≤ C∥u∥1∥v∥1.

3.4.3 Coercivity is stability

Recall that the abstract finite element method can be casted as a linear
system:

N∑
j=1

ujA(ϕj , ϕi) = (f, ϕi), i = 1, · · · , N.

Whenever a scheme is given as a linear system for an elliptic equation,
it must be addressed whether the linear system has a solution. In other
words, we need to show the solvability, i.e., the invertability of the stiffness
matrix S with entries Sij = A(ϕj(x), ϕi). In Chapter 2, we computed eigen-
values of K matrix for constant coefficient problems so that we can show
the nonsingularity of the matrix K.

Obviously, for a variable coefficient problem, e.g., the scheme (3.10), the
eigenvalues of the stiffness matrix should be estimated rather than computed
because it is nearly impossible to compute. Such an eigenvalue estimate can
be done by the coercivity. In this section we only focus on the bilinear form
A and we will discuss Ah later. For any vh ∈ V h

0 , we have

A(vh, vh) = A(
n∑

i=1
viϕi,

n∑
j=1

vjϕj) =
n∑

i=1

n∑
j=1
A(ϕj , ϕi)vjvi = vTSv.

The coercivity says that

A(v, v) ≥ C1∥v∥21 ≥ C1∥v∥20, ∀v(x) ∈ H1
0 (Ω),

where the constant C1 only depends on the domain Ω. Thus

vh(x) ∈ V h
0 ⊂ H1

0 (Ω)⇒ A(vh, vh) ≥ C1∥vh∥20.

Notice that ∥vh∥0 and ∥v∥ are both norms of the same finite dimensional
vector space V h

0 , thus they are equivalent:

C2∥v∥2 ≤ ∥vh∥20 ≤ C3∥v∥2,

where the constants C2, C3 depends on the dimension N of the vector space
V h

0 .

50 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

Thus coercivity gives us

vTSv = A(vh, vh) ≥ C1∥vh∥20 ≥ C1C2∥v∥2 ⇒
vTSv
vT v ≥ C1C2.

Recall that A(u, v) =
∫ 1

0 a(x)u′(x)v′(x)dx, thus A(u, v) = A(v, u) im-
plies that S is real symmetric. By the Courant-Fisher-Weyl min-max prin-
ciple (see Appendix A.1), vT Sv

vT v ≥ C1C2 implies that the smallest eigenvalue
of S is greater than or equal to C1C2 > 0. Therefore S is invertible.

In Section 3.6.4, we will further show that we can get a useful estimate
for ∥S−1∥ from the coercivity.

3.5 Error estimates of the abstract finite element
method

We have just seen that the finite element method with linear basis and
quadrature recovers the K matrix for approximating second order deriva-
tive. Even though a finite element method with quadrature becomes a finite
difference scheme, it is much more useful to understand the same scheme
from the finite element perspective. In Chapter 2, we had to find eigenval-
ues of K to discuss the stability thus convergence rate for the FD scheme
1

h2Ku = f . Obviously, eigenvalues of a matrix are difficult to find in general,
e,g., the matrix (3.10).

We first prove the error estimates for (3.7), i.e., the finite element method
without quadrature. We will focus on the analysis for P 1 finite element
method for the one-dimensional problem with homogeneous Dirichlet bound-
ary conditions to understand the key components in the finite element
method anaylysis, but keep in mind that all discussions in this section ap-
ply to much more general cases such as solving variable coefficient elliptic
equations by P k polynomial finite element method with Neumann boundary
conditions on unstructured meshes for a curved domain in multiple dimen-
sions.

3.5.1 H1-norm estimate: stability and consistency imply con-
vergence

The continuous piecewise polynomial has weak derivatives, thus we have
V h

0 ⊂ H1
0 (Ω), and such a finite element method is called conforming. Here

is one simple example of nonconforming finite element space for the Poisson
equation: the discontinuous piecewise polynomial space is not a subspace of
the H1

0 (Ω) function space.
Theorem 3.2 (Galerkin Orthogonality). Let u be the solution to (3.6). The
solution uh to the conforming finite element method (3.7) satisfies:

A(u− uh, wh) = 0, ∀wh ∈ V h
0 .

3.5. ERROR ESTIMATES OF THE ABSTRACT FINITE ELEMENT METHOD51

Proof. The exact solution u satisfies

A(u,w) = (f, w), ∀w ∈ H1
0 (Ω)

thus
A(u,wh) = (f, wh),∀wh ∈ V h

0 ⊂ H1
0 (Ω).

The numerical solution uh satisfies

A(uh, wh) = (f, wh),∀wh ∈ V h
0 .

Subtracting these two equations, we get Galerkin Orthogonality, which is a
straightforward implication from the choice of approximation space V h

0 ⊂
H1

0 (Ω).

Galerkin Orthogonality simply says that the true error u−uh is somehow
“orthogonal” to any test function wh in V h

0 through the bilinear form A.

Remark 3.5. Galerkin Orthogonality is the analog of the consistency or
truncation error in Chapter 2. Since A(uh, wh) = (f, wh),

A(u− uh, wh) = A(u,wh)−A(uh, wh) = A(u,wh)− (f, wh).

So Galerkin Orthogonality is the same as

A(u,wh)− (f, wh) = 0,∀wh ∈ V h
0 ,

which is nothing but replacing uh by u in the numerical scheme. On the other
hand, it seems that the “truncation error” is zero here, which is due to the
direct approximation of the variational form. Notice that the “truncation
error” A(u,wh) − (f, wh) is zero only when the test functions are in the
approximated space V h

0 .

Theorem 3.3 (Céa’s Lemma). Let u be the solution to (3.6). The solution
uh to the conforming finite element method (3.7) satisfies:

∥u− uh∥1 ≤ C inf
wh∈V h

0

∥u− wh∥1.

Proof. First of all, we have uh ∈ V h
0 ⊂ H1

0 (Ω) thus u − uh ∈ H1
0 (Ω). The

coercivity implies

C∥u− uh∥21 ≤ A(u− uh, u− uh).

Next, we have

A(u− uh, u− uh) = A(u− uh, wh − uh) +A(u− uh, u− wh).

52 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

Galerkin orthogonality implies A(u− uh, wh − uh) = 0. So we get

A(u− uh, u− uh) = A(u− uh, u− wh) ≤ C∥u− uh∥1∥u− wh∥1,

where continuity is used.
Finally, we have

C∥u−uh∥21 ≤ A(u−uh, u−uh) = A(u−uh, u−wh) ≤ C∥u−uh∥1∥u−wh∥1,

thus
∥u− uh∥21 ≤ C∥u− uh∥1∥u− wh∥1.

So we have ∥u− uh∥1 ≤ C∥u− wh∥1 for any wh ∈ V h
0 .

Céa’s Lemma says the finite element solution error is controlled by the
best piecewise polynomial approximation error, which we do not know. On
the other hand, we do know polynomial interpolation error estimates (3.2)
and (3.3). Assuming u ∈ H2(Ω) or u ∈ H3(Ω) (i.e., assuming u is smooth
enough), we easily obtain error estimate in H1-norm:

∥u−uh∥1 ≤ C inf
wh∈V h

0

∥u−wh∥1 ≤ C∥u−Πku∥1 =
{
Ch|u|2, k = 1
Ch2|u|3, k = 2

. (3.12)

Céa’s Lemma gives (3.12), which is the convergence of the finite element
method. On the other hand, Céa’s Lemma is implied by both Galerkin
Orthogonality (consistency) and Coercivity (stability). So we get the same
conclusion as in Chapter 2 and Chapter 7 for linear schemes solving linear
PDEs:

consistency + stability −→ convergence.

Recall that uh ∈ V h
0 ⊂ H1

0 (Ω) and u ∈ H1
0 (Ω), thus the error function

u− uh is an element in the H1
0 (Ω) space, in which H1-norm is equivalent to

the H1-seminorm. So the H1-norm estimate above simply implies that P 1

finite element method generates a numerical solution satisfying that√∫ 1

0
|u′(x)− u′

h(x)2|dx = O(h).

For function values, we will get one order higher, explained in the next
subsection.

3.5.2 L2-norm estimate: elliptic regularity and duality argu-
ments

Notice that H1 estimate cannot explain why P 1 method gives a second order
accurate scheme. Recall that H1-norm, i.e., ∥u − uh∥1, measures the error

3.5. ERROR ESTIMATES OF THE ABSTRACT FINITE ELEMENT METHOD53

both in the function value and the first order derivative. The L2-norm, i.e.,
∥u−uh∥0 measures the error in the function value. For example, we already
know that the P 1 finite element method on a uniform mesh gives exactly
the standard centered finite difference, which is second order accurate for
the function value.

The L2 estimate will be one order higher than H1 estimate:

Theorem 3.4 (Aubin-Nitsche Lemma). Let u be the solution to (3.6). The
solution uh to the conforming finite element method (3.7) satisfies:

∥u− uh∥0 ≤ Ch∥u− uh∥1,

where h is the mesh size.

For proving the Aubin-Nitsche Lemma, we need a basic fact about the
Poisson equation, which is called elliptic regularity: the solution to (3.6)
satisfies ∥u∥2 ≤ C∥f∥0, which simply says that the second order derivative
of u and lower order ones are controlled by function value of f(x).

Even though we only seek u(x) ∈ H1
0 (Ω) in (3.6), the elliptic regularity

theorem guarantees that f(x) ∈ L2(Ω) ⇒ u(x) ∈ H2(Ω). In particular, if
f(x) is infinitely differentiable, then so is u(x). The elliptic regularity can
be proven under certain assumptions for the domain Ω.

We also need a dual problem to help us here. A dual problem of (3.6) is
to find w ∈ H1

0 (Ω) satisfying

A(w, v) = (u− uh, v), ∀v ∈ H1
0 (Ω). (3.13)

The equivalent PDE form of the dual problem above is

−w′′(x) = u(x)− uh(x),

if the original PDE we want to solve is −u′′(x) = f(x).
The elliptic regularity theorem on the dual problem gives the following

∥w∥2 ≤ ∥u− uh∥0.

For the dual problem, its finite element solution for finding wh ∈ V h
0

satisfying
A(vh, wh) = (u− uh, vh), ∀vh ∈ V h

0 ,

where we have used the symmetry of the bilinear form A(w, v) = A(v, w).
By Céa’s Lemma and H1-estimate applied to the finite element solution wh,
we have

∥w − wh∥1 ≤ Ch|w|2 ≤ Ch∥w∥2.

where we have used the interpolation error estimate.
So with elliptic regularity for the dual problem ∥w∥2 ≤ C∥u− uh∥0, we

get
∥w − wh∥1 ≤ Ch∥w∥2 ≤ Ch∥u− uh∥0.

54 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

Proof. Let wh be the finite element solution for the dual problem. Then
Galerkin orthogonality implies A(u− uh, wh) = 0, thus

A(u− uh, w) = A(u− uh, w − wh) +A(u− uh, wh) = A(u− uh, w − wh).

Continuity implies

A(u− uh, w − wh) ≤ C∥u− uh∥1∥w − wh∥1.

Recall that w is the solution to the dual problem thus plugging in v =
u− uh ∈ H1

0 (Ω) in (3.13), we get

A(u− uh, w) = A(w, u− uh) = (u− uh, u− uh) = ∥u− uh∥20

Finally, putting everything together

∥u−uh∥20 = A(u−uh, w) ≤ C∥u−uh∥1∥w−wh∥1 ≤ C∥u−uh∥1h∥u−uh∥0,

which gives
∥u− uh∥0 ≤ Ch∥u− uh∥1

With the H1-norm estimate (3.12), the Aubin-Nitsche Lemma gives us
the L2-norm error estimates:

∥u− uh∥0 ≤ Ch∥u− uh∥1 =
{
Ch2|u|2, k = 1
Ch3|u|3, k = 2

. (3.14)

This is consistent with what we already know: P 1 finite element method
gives a second order accurate scheme for function values. The P 2 finite
element method gives a third order accurate scheme for function values,
which is consistent with the interpolation error order (3.3). However, if we
implement P 2 finite element method as a finite difference scheme, we can
actually get a fourth order accurate finite difference scheme, which is called
superconvergence. It will be explained in the rest of the chapter.

Remark 3.6. In estimates like (3.12) and (3.14), it is already assumed that
u should be smooth enough such that either u ∈ H2(Ω) or u ∈ H3(Ω). The
elliptic regularity theorem implies that f(x) ∈ L2(Ω) ⇒ u ∈ H2(Ω) and
f(x) ∈ H1(Ω)⇒ u ∈ H3(Ω).

3.5.3 Summarization and comparison

Now let us just focus on the P 1 finite element method and think about
how the second order accuracy is proven differently from the one we did in
Chapter 2. In Chapter 2, we computed the eigenvalues of the K matrix for
proving stability ∥A−1∥ ≤ C in a matrix-vector form of the scheme Au = f .

3.5. ERROR ESTIMATES OF THE ABSTRACT FINITE ELEMENT METHOD55

On the one hand, it only requires simpler knowledge of linear algebra. On
the other hand, it is highly restrictive because we cannot even compute
eigenvalues for a one-dimensional variable coefficient problem.

The discussion in this section obviously applies to the variable coefficient
problem, but we need so many much more advanced tools such as Solobev
spaces and elliptic regularity. Recall how exactly we can prove the second
order error in P 1 finite element method for function values:

1. The homogeneous Dirichlet boundary condition is built into the func-
tion space H1

0 (Ω), which in return gives the Poincaré inequalilty:∫ 1

0
|v′(x)|2dx ≥ C

[∫ 1

0
|v′(x)|2dx+

∫ 1

0
|v(x)|2dx

]
, ∀v(x) ∈ H1

0 (Ω).

2. The Poincaié inequalilty gives the coercivity

A(vh, vh) ≥ C∥vh∥20,

which is the stability.

3. From the fact that it is conforming V h
0 ⊂ H1

0 (Ω), Galerkin orthogonal-
ity is easily obtained:

A(u− uh, vh) = 0, ∀vh ∈ V h
0 .

Galerkin orthogonality is the consistency.

4. With Galerkin orthogonality and coercivity, we get Céa’s Lemma, which
says the finite element solution error is controlled by the best piecewise
polynomial approximation error:

∥u− uh∥1 ≤ C inf
wh∈V h

0

∥u− wh∥1.

This is step is nothing but saything that consistency and stability
imply convergence.

5. We know the interpolation error using P k polynomials, so the H1-
estimate is simply by Céa’s Lemma:

∥u− uh∥1 ≤ C inf
vh∈V h

0

∥u− vh∥1 ≤ C∥u−Πku∥1 ≤
{
Ch|u|2, k = 1
Ch2|u|3, k = 2

.

6. Finally, with the elliptic regularity on a dual problem and almost ev-
erything above, we get the Aubin-Nitsche Lemma

∥u− uh∥0 ≤ Ch∥u− uh∥1 ≤
{
Ch2|u|2, k = 1
Ch3|u|3, k = 2

.

56 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

3.6 V h-ellipticity: properties of the bilinear form
with quadrature

Since in practice quadrature is used to implement the finite element method,
we also need to know whether coercivity and continuity hold for Ah. Usually
the discrete continuity can be easily derived from Cauchy-Schwartz inequal-
ity. The discrete coercivity is called V h-ellipticity.

We only consider the continuous piecewise linear space V h
0 as an example

in this section. Let xi (i = 0, 1, · · · , N+1) be an uniform mesh for the whole
interval [0, 1], where x0 = 0 and xN+1 = 1 are boundary points. The grid
spacing is h = 1

N+1 .

3.6.1 Equivalent norms of the piecewise linear polynomial
space

Everything in this subsection can be derived by abstract arguments. But
instead we use some explicit elementary tools to derive what we need for
coercivity.

For any vh ∈ V h
0 , let vi = vh(xi) and v =

[
v1 · · · vN

]T
. So ∥vh∥0 and

∥v∥ are both norms of the same finite dimensional vector space V h
0 , thus

they are equivalent:

C2∥v∥2 ≤ ∥vh∥20 ≤ C3∥v∥2,

where the constants C2, C3 depends on the dimension N of the vector space
V h

0 .
It is useful to figure out the exact dependence of of these constants on

the dimension N or the mesh size h. For the one-dimensional problem
continuous piecewise linear polynomial space V h

0 on a uniform mesh with
mesh size h, we have

∥vh∥20 =
N∑

j=0

∫ xj+1

xj

|vh(x)|2dx =
N∑

j=0

∫ h

0

[
vj+1 − vj

h
x+ vj

]2
dx

= h
N∑

j=0

(1
3v

2
j+1 + 5

6v
2
j −

1
6vj+1vj

)
.

Recall that vh(x) ∈ V h
0 ⇒ v0 = vN+1 = 0. With two simple inequalilties

−1
2v

2
j+1 −

1
2v

2
j ≤ −vj+1vj ≤

1
2v

2
j+1 + 1

2v
2
j ,

we can derive
h∥v∥2 ≤ ∥vh∥20 ≤

4
3h∥v∥

2. (3.15)

3.6. V h-ELLIPTICITY: PROPERTIES OF THE BILINEAR FORM WITH QUADRATURE57

Let us consider v′
h(x), which is only piecewise constant. Recall that

vh(x) ∈ V h
0 is weakly differentiable thus v′

h(xj) is double valued unless
j = 0, N + 1. Let v′

h(xj)− and v′
h(xj)+ denote two values obtained by

taking derivatives in the intervals [xj−1, xj] and [xj , xj+1] respectively. For
convenience, we will also abuse the notation by denoting

v′
h(xj) := v′

h(xj)− + v′
h(xj)+

2 , [v′
h(xj)]2 := [v′

h(xj)−]2 + [v′
h(xj)+]2

2 .

Recall that v0 = vN+1 = 0. Let v′ denote the following vector

v′ =


v′

h(x0)
v′

h(x1)
v′

h(x2)
...

v′
h(xN+1)

 = 1
h


v1 − v0

v1−v0+v2−v1
2

v2−v1+v3−v2
2...

vN+1 − vN

 = 1
h


v1
v2
2

v3−v1
2...
−vN

 ,

Remark 3.7. Here for j = 1, · · · , N , we have [v′
h(xj)]2 := [v′

h(xj)−]2+[v′
h(xj)+]2

2 =
vj+1−vj−1

2h , which of course can be regarded as the centered finite difference
approximation to the first order derivative at xj.

Remark 3.8. From these happy coincidences with the second order centered
difference, we should see that the piecewise linear space V h

0 is the better way
to understand or derive the centered difference.

Let V̄ h denote the vector space of piecewise constant on the intervals
Ij . Then v′

h(x) corresponds to an element in V̄ h, and obviously ∥v′∥ and
∥v′

h∥0 can be regarded as two norms for measuring this element in the finite
dimensional vector space V̄ h, thus they should be equivalent. However, to
derive the coercivity ofAh(vh, vh), we need to be careful with the dependence
of constants on the dimension N or mesh size h. Similar to (3.15), we can
derive

1
2h∥v

′∥2 ≤ ∥v′
h∥20 ≤ 2h∥v′∥2. (3.16)

Problem 3.6. Derive (3.16), where ∥v′
h∥0 is the L2-norm for the function

v′
h(x). Hint: let


c1
c2
...

cN+1

 denote the constants that v′
h(x) corresponds to.

Notice that the boundary condition v0 = vN+1 = 0 implies that
N+1∑
j=1

cj = 0.

Then ∥v′
h∥20 = h

N+1∑
j=1

c2
j . Derive what ∥v′∥2 should be in terms of cj.

58 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

3.6.2 Coercivity

If using trapezoidal rule for P 1 finite element method in each cell Ij =
[xj , xj+1] in Figure 3.1, then for any vh(x) ∈ V h

0 we have

Ah(vh, vh) =
N∑

j=0

h

2
(
a(xj)[v′

h(xj)+]2 + a(xj+1)[v′
h(xj+1)−]2

)

≥ min
j
a(xj)

N∑
j=0

h

2
(
[v′

h(xj)+]2 + [v′
h(xj+1)−]2

)

= min
j
a(xj)

h
2 [v′

h(x0)]2 + h
N∑

j=1
[v′

h(xj)]2 + h

2 [v′
h(xN+1)]2


≥ min

j
a(xj)h2∥v

′∥2 ≥ min
j
a(xj)1

4∥v
′
h(x)∥20

= min
j
a(xj)1

4 |vh(x)|21 ≥ C min
x
a(x)1

4∥vh(x)∥21,

where we have used (3.16) and (3.11) in the last two lines, and the constant
C is independent of h or N .

3.6.3 Continuity

The continuity for Ah is straightforward: for any wh, vh ∈ V h
0 , we have

Ah(wh, vh) =
N∑

j=0

h

2
(
a(xj)[w′

h(xj)+][v′
h(xj)+] + a(xj+1)[w′

h(xj+1)−][v′
h(xj+1)−]

)

≤max
j
a(xj)h2

N∑
j=0

(∣∣∣[w′
h(xj)+][v′

h(xj)+]
∣∣∣+ ∣∣[w′

h(xj+1)−][v′
h(xj+1)−]

∣∣)

≤max
j
a(xj)h2

√√√√ N∑
j=0

(
[w′

h(xj)+]2 + [w′
h(xj+1)−]2

)√√√√ N∑
j=0

(
[v′

h(xj)+]2 + [v′
h(xj+1)−]2

)
,

where we have used the Cauchy Schwartz inequality for vectors∑
i

aibi ≤
√∑

i

a2
i

√∑
i

b2
i .

Recall that we have defined [v′
h(xj)]2 := [v′

h(xj)−]2+[v′
h(xj)+]2

2 , thus

[v′
h(xj)−]2 + [v′

h(xj)+]2 = 2[v′
h(xj)]2

and √√√√ N∑
j=0

(
[v′

h(xj)+]2 + [v′
h(xj+1)−]2

)
≤

√√√√ N∑
j=0

2[v′
h(xj)]2 =

√
2∥v′∥.

3.6. V h-ELLIPTICITY: PROPERTIES OF THE BILINEAR FORM WITH QUADRATURE59

With (3.16), we get the continuity

Ah(wh, vh) ≤ max
x

a(x)h2
√

2∥w′∥
√

2∥v′∥ ≤ 2 max
x

a(x)||w′
h||0||v′

h||0

≤ 2 max
x

a(x)||wh||1||vh||1.

3.6.4 Coercivity implies stability of the finite difference scheme

Recall that in Section 3.4.3 we have shown the nonsingularity of the stiffness
matrix for the abstract finite element method without any quadrature.

Now we are ready to discuss how the V h-ellipticity or the discrete co-
ercivity can imply nonsingularity of the stiffness matrix S with entries
Sij = Ah(ϕj , ϕi) for the finite element method with quadrature. In partic-
ular, for P 1 finite element method with trapezoidal rule solving a variable
coefficient problem, from (3.10) we know the stiffness matrix can be written
as

S = 1
h

1
2


a0 + 2a1 + a2 −a1 − a2
−a1 − a2 a1 + 2a2 + a3 −a2 − a3

.


Since vh(x) = ∑N

j=1 vjϕj(x), we have

Ah(vh, vh) = Ah(
N∑

j=1
vjϕj(x),

N∑
i=1

viϕi(x)) =
N∑

i=1

N∑
j=1
Ah(ϕj(x), ϕi(x))vivj = vTSv.

With the coercivity in Section 3.6.2 and (3.15), we have

Ah(vh, vh) ≥ C∥vh∥21 ≥ C∥vh∥20 ≥ Ch∥v∥2

So we have vTSv ≥ Ch∥v∥2 for any v ∈ RN , which implies S is positive
definite. The symmetry of S is implied by Ah(wh, vh) = Ah(vh, wh). So S
is invertible. By the Courant-Fisher-Weyl min-max principle (see Appendix
A.1), vT Sv

vT v ≥ Ch implies that the smallest eigenvalue of S is greater than
or equal to Ch > 0. Therefore S is invertible.

The matrix-vector form of (3.10) is Su = hf , thus u = hS−1f . Since we
have shown S is real symmetric positive definite, thus singular values are
also eigenvalues for both S and S−1. So ∥S−1∥ is the simply the reciprocal
of the smallest eigenvalue of S. Therefore we get ∥hS−1∥ = h∥S−1∥ ≤ C,
which is precisely the stability in the sense of traditional finite difference
method in Chapter 2.

60 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

Problem 3.7. Recall that the traditional finite difference scheme (2.8) in
Chapter 2 is given as

1
∆x2


a 1

2
+ a 3

2
−a 3

2
−a 3

2
a 3

2
+ a 5

2
−a 5

2
.


u1
u2
...

 =

f1
f2
...

 .
Apply the discussion in this section to prove the stability of this scheme. The
consistency or the truncation error of the scheme (2.8) is straightforward
to derive. Once we have the stability, we have its convergence following
Chapter 2. Hint: it becomes trivial if we can have an equivalent scheme in
the following form

1
h

1
2

b0 + 2b1 + b2 −b1 − b2
−b1 − b2 b1 + 2b2 + b3 −b2 − b3

.


u1
u2
...

 = h

f1
f2
...

 .
So how do we define bi so that they are equivalent?

3.7 Error estimates of the finite element method
with quadrature

In order to derive the error estimates of the finite element method with
quadrature (3.8), we need to show all the lemmas and theorems in Section
3.5 also hold when A(·, ·) is replaced by Ah(·, ·). If this is your first time to
read this chapter, you can assume that this is true and skip this section.

3.7.1 First Strang Lemma

The First Strang Lemma is the Céa’s Lemma for the scheme (3.8).

Theorem 3.5. [First Strang Lemma]

∥u− uh∥1 ≤ C inf
vh∈V h

0

∥u− vh∥1 + sup
wh∈V h

0

|A(vh, wh)−Ah(vh, wh)|
∥wh∥1


+C sup

wh∈V h
0

|⟨f, wh⟩h − (f, wh)|
∥wh∥1

.

Remark 3.9. Compared to Céa’s Lemma, the extra terms in the First
Strang Lemma is nothing but quadrature error terms.

Proof. First, we can rewrite the bilinear form

Ah(uh−vh, uh−vh) = Ah(uh, uh−vh)−Ah(vh, uh−vh)+A(u−vh, uh−vh)−A(u−vh, uh−vh)

3.7. ERROR ESTIMATES OF THE FINITE ELEMENT METHOD WITH QUADRATURE61

= Ah(uh, uh−vh)−Ah(vh, uh−vh)+A(u−vh, uh−vh)+A(vh, uh−vh)+A(u, uh−vh).
By coercivity of Ah, and the facts Ah(uh, uh − vh) = ⟨f, uh − vh⟩h and
A(u, uh − vh) = (f, uh − vh), we get

C∥uh−vh∥21 ≤ Ah(uh−vh, uh−vh) = A(u−vh, uh−vh)+A(vh, uh−vh)−Ah(vh, uh−vh)

+⟨f, uh − vh⟩h − (f, uh − vh), ∀vh ∈ V h
0 .

With A(u− vh, uh − vh) ≤ C2∥u− vh∥1∥uh − vh∥1, we have

C∥uh−vh∥1 ≤ C2∥u−vh∥1+A(vh, uh − vh)−Ah(vh, uh − vh)
∥uh − vh∥1

+⟨f, uh − vh⟩h − (f, uh − vh)
∥uh − vh∥1

thus

∥uh−vh∥1 ≤ C∥u−vh∥1+C sup
wh∈V h

0

|A(vh, wh)−Ah(vh, wh)|
∥wh∥1

+C sup
wh∈V h

0

|⟨f, wh⟩h − (f, wh)|
∥wh∥1

.

The proof is done after using the triangle inequality:

∥u− uh∥1 ≤ ∥u− vh∥1 + ∥uh − vh∥1

3.7.2 Quadrature estimate: Bramble Hilbert Lemma

The first Strang Lemma means that the Céa’s Lemma holds up to the
quadrature error, which can be estimated by the Bramble Hilbert Lemma:
Theorem 3.6 (Bramble Hilbert Lemma). For some integer k ≥ 0, let L
be a continuous linear form on the space Hk+1(0, 1) with the property that
∀p(x) ∈ P k(Ω) (all polynomials of degree k), L[p(x)] = 0. Then

|L(f)| ≤ C∥L∥∗k+1|f |k+1,

where ∥ · ∥∗k+1 is the operator norm and |f |k+1 =
√∫

Ω |f (k+1)(x)|2dx is the
Hk+1-seminorm.

Remark 3.10. The notation in the Bramble Hilbert Lemma are abstract
but one typical example of such a linear operator is the interpolation error
operator. For instance, given point values fi of some function f(x) on a
uniform mesh, we can do a piecewise linear polynomial interpolation as in
Section 3.2.2. The interpolation error is a linear operator w.r.t. f(x), and
the interpolation error is always zero if f(x) is a linear polynomial. Then
the Bramble Hilbert Lemma implies that this piecewise linear interpolation
error is controlled by |f |2, which contains the second order derivative (in
the weak sense). On the other hand, we can also get similar conclusion that
the piecewise linear interpolation error is dominated by or related to f ′′(x)
through Taylor expansion. So if you prefer, you can think of the Bramble
Hilbert Lemma as the better alternative as opposed to performing Taylor
expansion.

62 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

Remark 3.11. The power of the abstraction in the Bramble Hilbert Lemma
lies in the fact that we easily extend the interpolation and quadrature error
estimates in Section 3.2.2 to unstructured meshes on any shape of domain.
Recall that the H1-norm error estimate is built upon the the interpolation
error estimate. This is why the arguments for deriving error estimates in
this chapter also apply to any general setup such as problems in multiple
dimensions.

Consider the quadrature error operator, which is linear and also zero for
polynomials of certain degree. For instance, if considering the trapezoidal
rule for each interval in Figure 3.1, then

∫ 1

0
f(x)dx−

N∑
i=0

1
2h[f(xi)+f(xi+1)] =

N∑
i=0

(∫ xi+1

xi

f(x)dx− 1
2h[f(xi) + f(xi+1)]

)
.

Consider a mapping from the small cell [xi, xi+1] to the reference cell [0, 1]
by

x = hx̂+ xi, f̂(x̂) = f(hx̂+ xi).

Let
Ei(f) =

∫ xi+1

xi

f(x)dx− 1
2h[f(xi) + f(xi+1)]

be the quadrature error on a small inverval, and

Ê(f̂) =
∫ 1

0
f̂(x̂)dx̂− 1

2[f̂(0) + f̂(1)]

be the quadrature error on a reference interval [0, 1]. Then Ê is the linear
operator L in the Bramble Hilbert Lemma on Ω = [0, 1] and we have

|Ei(f)| = h|Ê(f̂)| ≤ hC|f̂ |2 = hC

√∫ 1

0
[̂f ′′(x̂)]2dx̂ = h2.5C

√∫ xi+1

xi

[f ′′(x)]2dx.

With Cauchy Schwartz inequality for vectors ∑i aibi ≤
√∑

i a
2
i

√∑
i b

2
i , we

get the total quadrature error as

N∑
i=0
|Ei(f)| ≤ Ch2

N∑
i=0

√
h

√∫ xi+1

xi

[f ′′(x)]2dx ≤ Ch2

√√√√ N∑
i=0

h

√√√√ N∑
i=0

∫ xi+1

xi

[f ′′(x)]2dx

= Ch2|f |2.

So we have just proven that∣∣∣∣∣
∫ 1

0
f(x)dx−

N∑
i=0

1
2h[f(xi) + f(xi+1)]

∣∣∣∣∣ ≤ Ch2|f |2. (3.17)

3.8. GENERALIZATION: GENERAL DOMAIN IN TWO DIMENSIONS63

3.7.3 Error estimates

We only demonstrate the main idea why the error estimates for the abstract
finite element method can still hold after quadrature error is involved. We
focus on the simplest example. Consider the scheme (3.8) for a(x) ≡ 1, i.e.,
the scheme 1

h2Ku = f . The integrand in the bilinear A(uh, vh) is simply
piecewise constant because uh and vh are piecewise linear. Thus we have
A(uh, vh) = Ah(uh, vh) and the first Strang Lemma reduces to

∥u− uh∥1 ≤ C inf
vh∈V h

0

∥u− vh∥1 + C sup
wh∈V h

0

|⟨f, wh⟩h − (f, wh)|
∥wh∥1

.

For a piecewise polynomial wh, its second order derivative only exists on
each interval, thus we abuse the notation by letting |wh|2 denote (this is
usually called Broken Sobolev space, i.e., the Sobolev space on each small
interval)

|wh|22 =
∑

i

∫ xi+1

xi

[w′′
h(x)]2dx.

With this modification of seminorm (you can verify that (3.17) still holds if
replacing f by wh), by (3.17), we have

|⟨f, wh⟩h − (f, wh)| ≤ Ch2|fwh|2.

Notice that in each interval (fwh)′′ = (f ′wh+fw′
h)′ = f ′′wh+2f ′w′

h because
w′′(x) ≡ 0 within each interval. Thus with Cauchy Schwartz inequality, we
have

|⟨f, wh⟩h − (f, wh)| ≤ Ch2|fwh|2 = Ch2|f ′′wh + 2f ′w′
h|0

≤ Ch2(|f ′′|0|wh|0 + 2|f ′||w′
h|) ≤ Ch2∥f∥2∥w∥1.

Therefore we obtain the H1 estimate as

∥u− uh∥1 ≤ Ch|u|2 + Ch2∥f∥2.

Similarly, the Aubin-Nitsche Lemma also holds up to quadrature error.
The conclusion is very simple: the orders in the estimates in (3.12) and

(3.14) still hold in the estimates for the scheme with quadrature (3.8).

3.8 Generalization: general domain in two dimen-
sions

We will have a quick glance at how everything can be easily extended to a
general setup. Consider solving a two-dimensional Poisson equation:

−∇ · (A(x, y)∇u(x, y)) = f(x, y), (x, y) ∈ Ω

64 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

Figure 3.3: Left: the domain Ω. Right: the approximated domain Ωh via a
triangular mesh.

with homogeneous Dirichlet boundary conditions u(x, y) = 0 along the do-
main boundary Ω for a bounded region Ω, where A(x, y) is a 2 × 2 matrix
coefficient.

We just mention some key ingredients in the generalization to see how
an easy extension is possible in the first place:

1. Multiplying the test function and integration by parts, we get the
equivalent variational formulation for the PDE:

seek u ∈ H1
0 (Ω),

∫∫
Ω
∇vTA∇udxdy =

∫∫
Ω
fvdxdy, ∀v ∈ H1

0 (Ω),

which can be denoted as A(u, v) = (f, v).

2. Construct an unstructured triangular mesh, which gives an approxi-
mated domain Ωh as shown in Figure 3.3. Notice that the approx-
imated boundary ∂Ωh is a piecewise segment approximation to the
curved boundary ∂Ω, which induces a second order geometric error
thus any finite element method defined on this Ωh can be at most
second order accurate even if using very high order polynomial basis.
On the other hand, we can easily fix this issue by using curved trian-
gle along the boundary, but quadrature on curved triangles are more
expensive. For simplicity, we just consider the mesh shown in Figure
3.3.

3. We define V h
0 as the continuous piecewise linear polynomial space on

the mesh shown in Figure 3.3, with the property of vanishing on ∂Ωh.
An abstract finite element method is natually given as

seek uh ∈ V h
0 ,

∫∫
Ω
∇vT

hA∇uhdxdy =
∫∫

Ω
fvhdxdy, ∀vh ∈ V h

0 ,

which can be denoted as A(uh, vh) = (f, vh).

3.8. GENERALIZATION: GENERAL DOMAIN IN TWO DIMENSIONS65

4. Now let us consider what kind of coefficient A(x, y) can ensure coerciv-
ity. For instance, if we assume that A is real symmetric and its smallest
eigenvalue has a uniform positive lower bound, i.e., λ(A) ≥ C > 0 for
any (x, y), then by the Courant-Fisher-Weyl Min-Max principle,

∇vTA∇v
∇vT∇v

≥ C ⇒ A(v, v) ≥ C|v|21 ≥ C∥v∥21, ∀v ∈ H1
0 (Ω).

where we have used the fact that H1-seminorm and H1-norm are
equivalent in H1

0 (Ω).

5. Assume V h
0 is N -dimensional. We can define Lagrangian basis (also

called nodal basis) functions ϕi(x, y) on Ωh just like the one-dimensional
case. For instance, a linear polynomial is completely determined by
its point values at three vertices on the triangle, and a quadratic poly-
nomial is completely determined by its point values at three vertices
and three edge centers on the triangle.

6. Plugging in uh(x, y) = ∑N
j=1 ujϕj(x) we get a linear system

N∑
j=1

ujA(ϕj , ϕi) = (f, ϕi), i = 1, · · · , N,

and the stiffness matrix S has entries Sij = A(ϕj , ϕi).

7. It can be shown that weak partial derivatives of any vh ∈ V h
0 exist thus

it is conforming: V h
0 ⊂ H1

0 (Ω). So the proof of Galerkin Orthogonality
holds. Coercivity and Galerkin Orthogonality imply Céa’s Lemma.
Once we have Céa’s Lemma, the H1-norm error is controlled by the
interpolation error, which can be given via Bramble-Hilbert Lemma.
Similary, the Aubin-Nitsche Lemma also holds.

8. The quadrature using only three vertices is exact for linear polyno-
mials on a triangle. The quadrature using three vertices and three
edge centers is exact for quadratic polynomials on a triangle. With a
suitable quadrature, the finite element method can be represented as

seek uh ∈ V h
0 , Ah(uh, vh) = ⟨f, vh⟩h, ∀vh ∈ V h

0 .

9. Finally, if you are curious whether this is still a finite difference scheme
if using a structured triangular mesh, e.g., one rectangle is splitted into

66 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

two triangles in a rectangular mesh, then the answer is yes! With no
surprises, the P 1 finite element method will give the same 5-point dis-
crete Laplacian scheme as in Chapter 2. The P 2 polynomial finite
element method for −∆u = f gives a fourth order accurate (supercon-
vergence) finite difference scheme with the following stencil:

edge center
−1

−1 4 −1
−1

vertex

1
−4

1 −4 12 −4 1
−4
1

.

3.9 Generalization: purely Neumann b.c.
Consider a one-dimensional problem

−(a(x)u′(x))′ = f(x), x ∈ (0, 1)

u′(0) = σ0, u
′(1) = σ1.

Recall that f(x) must be compatible with the boundary conditions:∫ 1

0
f(x)dx = −a1σ1 + a0σ0, (3.18)

which is obtained by integrating the PDE.

3.9.1 Quotient space H1(Ω)/P 0(Ω)
Recall that this boundary value problem does not have a unique solution:
if u(x) is a solution, then so is u(x) + c for any constant c. This non-
uniqueness issue must be addressed properly. To this end, it is natural to
consider a quotient space in which two functions differing by only a constant
are regarded as the same function.

Let P 0(Ω) be the linear space of all polynomials of degree zero, i.e., all
constants. We first introduce an equivalent class by

v̇(x) := {w(x) = v(x) + c, c ∈ P 0(Ω)}.

In other words, if two functions v(x) and w(x) are different only by a con-
stant c, then we regard them to be in the same equivalent class, which is
a set. Any element w(x) in an equivalent class v̇(x) is called a representa-
tion of the equivalent class v̇(x). For instance, in this section, v(x) means a
representation of the equivalent class v̇(x) which v(x) belongs to.

The quotient space H1(Ω)/P 0(Ω) is defined as

H1(Ω)/P 0(Ω) = {v̇(x) : v(x) ∈ H1(Ω)}.

3.9. GENERALIZATION: PURELY NEUMANN B.C. 67

The norm the quotient space H1(Ω)/P 0(Ω) is defined as

∥v̇∥1 := inf
w∈v̇
∥w∥1,

where ∥w∥1 is the H1-norm of the representation w(x). This definition can
be explicitly written as

∥v̇∥1 := inf
c∈P 0(Ω)

∥v(x)+c∥1 = min
c∈R

√∫
Ω
|v(x) + c|2dx+

∫
Ω

∣∣∣∣ ddx(v(x) + c)
∣∣∣∣2 dx.

So we get
∥v̇∥21 := min

c∈R

∫
Ω
|v(x) + c|2dx+

∫
Ω
|v′(x)|2dx,

which is nothing but a minimization with respect to c. Also, it is a simple
quadratic function of the number c, so the minimizer is the average of v(x),
c = 1

|Ω|
∫

Ω v(x)dx. For the domain Ω = (0, 1), let v̄ =
∫ 1

0 v(x)dx be the
average of the function v(x) over Ω. Then the quotient space H1(Ω)/P 0(Ω)
can be equivalently written as

∥v̇∥21 =
∫

Ω
|v(x)− v̄|2dx+

∫
Ω
|v′(x)|2dx.

This quotient space norm is also equivalent to the seminorm |v|1:

C∥v̇∥1 ≤ |v|1 ≤ ∥v̇∥1, C > 0.

The first inequalilty is true because of the following Poincaré inequalilty (see
Appendix for a generic statement):∫

Ω
|v(x)− v̄|2dx ≤ C

∫
Ω
|v′(x)|2dx.

3.9.2 Variational formulation and coercivity

Multiplying a test function and intergration by parts, we can get a varia-
tional form:∫ 1

0
a(x)u′(x)v′(x)dx =

∫ 1

0
f(x)v(x)dx+ a1σ1v(1)− a0σ0v(0).

Obviously, both side stay the same if we replace u(x) by u(x) + c for any
constant c. Now if we replace v(x) by v(x) + c, the left hand side stays the
same, and the right hand side also stays the same because of the compati-
bility condition (3.18).

So the equivalent variational formulation is to seek u̇ ∈ H1(Ω)/P 0(Ω)
such that∫

Ω
a(x)u′(x)v′(x)dx =

∫
Ω
f(x)v(x)dx+a1σ1v(1)−a0σ0v(0), ∀v̇ ∈ H1(Ω)/P 0(Ω).

68 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

It can be denoted by the same short hand notation as:

A(u, v) = (f, v) + a1σ1v(1)− a0σ0v(0), ∀v̇ ∈ H1(Ω)/P 0(Ω).

The Cauchy-Schwartz inequalilty implies the continuity of the bilinear
form. Since quotient space norm is also equivalent to the H1 seminorm, we
also have the coercivity:

A(v, v) ≥ C∥v̇∥1, ∀v ∈ H1(Ω)/P 0(Ω).

3.9.3 The finite element method

On a mesh with intervals Ij , we define the space V h as an approximation to
H1(0, 1):

V h = {vh(x) ∈ C(0, 1) : vh(x) ∈ P k(Ij),∀j}.

We can also define a quotient space V h/P 0 similarly:

V h/P 0 = {v̇h(x) : vh(x) ∈ V h}.

The finite element method is to seek u̇h(x) ∈ V h/P 0 such that

A(uh, vh) = (f, vh) + a1σ1vh(1)− a0σ0vh(0), ∀v̇h ∈ V h/P 0.

Notice that we use representations uh and vh in the bilinear formA(uh, vh),
instead of their equivalent classes u̇h and v̇h. All the previous arguments
for error estimates can be established similarly, and the only difference is
that the underlying function space is the quotient space H1(Ω)/P 0(Ω), even
though we just plug in functions into the variational form as before.

3.9.4 Coercivity implies the stiffness matrix null space

For simplicity, we assume homogeneous Neumann boundary condition σ0 =
σ1 = 0, and constant coefficient a(x) = 1. Then for the P 1 basis finite
element method, the bilinear form with trapezoidal quadrature Ah(uh, vh)
is the same as A(uh, vh).

Recall our uniform grid points are

0 = x0 < x1 < · · · < xN < xN+1 = 1.

Let ϕi(x), i = 0, 1, · · · , N + 1 be the Lagrangian basis or nodal basis of V h.
Then the stiffness matrix S ∈ R(N+2)×(N+2) has entries Sij = Ah(ϕj , ϕi) =
A(ϕj , ϕi). Here we have abused notation by allowing indices i, j to take
value 0.

With similar notation as before, e.g., v ∈ RN+2 denoting a vector of
point values vh(xj), we have

vTSv = A(vh, vh) ≥ C∥v̇h∥1 ≥ 0,

3.9. GENERALIZATION: PURELY NEUMANN B.C. 69

thus S is still real symmetric and positive semi-definite.
Since the boundary value problem does not have a unique solution, the

stiffness matrix S must have a nontrival null space. As a matter of fact, the
constant one vector 1 is in its null space. We first have

∀v, vTS1 = A(1, vh) = 0⇒ v ⊥ S1, ∀v⇒ S1 = 0.

Next, we want to show that the coercivity implies that the null space of
S is one-dimensional:

Sv = 0⇔ vTSv = 0⇔ A(vh, vh) = 0⇒ ∥v̇h∥1 = 0,

where the last step is due to the coercivity. Thus

Sv = 0⇒ ∥v̇h∥1 = 0⇔ v̇h(x) = 0̇⇔ vh(x) ≡ c⇔ v = c1,

because a function in the quotient space has zero norm if and only if it is 0̇,
which is the property of a norm.

3.9.5 The finite difference form

For simplicity, just consider the constant coefficient case a(x) = 1, for piece-
wise linear basis with trapezoidal quadrature on the uniform grid, the finite
element method can be equivalently written as

1
h

(u1 − u0) = h

2 f0 + a0σ0

1
h

(−uj−1 + 2uj − uj+1) = hfj , j = 1, · · · , N
1
h

(uN+1 − uN) = h

2 fN+1 + a1σ1

which is exactly the same as the traditional finite difference scheme in Sec-
tion 2.6.3.

Now the finite element theory can give error estimates like (3.12) and
(3.14). On the other hand, it is straightforward to check the truncation
error at x0 or xN+1 is only first order, even though the Neumann boundary
condition was approximated by a second order centered difference in Section
2.6.3. It is quite difficult to show that this scheme is second order accurate
following arguments in Chapter 2, epsecially for a variable coefficient prob-
lem in multiple dimensions. But we know this scheme is indeed second order
accurate in the sense of (3.14), which demonstrates the superiority of the
finite element method compared to traditional finite difference method.

70 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

For a(x) = 1, the stiffness matrix S with entriesAh(ϕj , ϕi) can be written
out as

S = 1
h



1 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 1


(N+2)×(N+2)

.

In general, we have

S = 1
h

1
2


a0 + a1 −a0 − a1
−a0 − a1 a0 + 2a1 + a2 −a1 − a2

−a1 − a2 a1 + 2a2 + a3 −a2 − a3

.


(N+2)×(N+2)

.

3.9.6 How to solve the singular linear system

Now consider the finite element method with quadrature for a variable co-
efficient problem:

Ah(uh, vh) = ⟨f, vh⟩h + a1σ1vh(1)− a0σ0vh(0), ∀v̇h ∈ V h/P 0.

For piecewise linear finite element method, if using a Lagrangian basis or
nodal basis ϕj(x), by plugging in vh = ϕi(x), we get a singular linear system

S


u0
u1
...
uN

uN+1

 = h



1
2f0
f1
...
fN

1
2fN+1

+


a0σ0

0
...
0

a1σ1

 .

Since the null space of S is Span{1}, the least square solution of this sin-
gular linear system corresponds to the facts that the finite element method
is defined on a quotient space V h/P 0, and we look for a solution in a quo-
tient space H(Ω)/P 0(Ω) in the original variational formulation. We do not
elaborate more about it here, but at least all discussions about quotient
spaces and the null spaces are consistent.

Let Su = f̃ denote this singular linear system. The first question we
should ask is whether it has a solution since S is not invertible. A linear
system Su = f̃ if and only if f̃ is in the column space of S, denoted by
Col(S). To this end, we need the orthogonal complement of Col(S), denoted
by Col(S)⊥:

Col(S)⊥ = {y ∈ RN+2 : yTS = 0.}

3.9. GENERALIZATION: PURELY NEUMANN B.C. 71

Since S is symmetric, yTS = 0 ⇔ Sy = 0, thus Col(S)⊥ is the null
space of S. In particular, we know that 1 is the basis of Col(S)⊥. We have

f̃ ∈ Col(S)⇔ f̃ ⊥ Col(S)⊥ ⇔ f̃ ⊥ 1

⇔ 1
2hf0 + h

N∑
j=1

fj + 1
2hfN+1 + a0σ0 + a1σ1 = 0

which is nothing but a discrete compatibility condition.
For a function f(x) satisfying the compatibility condition, its point val-

ues may not necessarily satisfy the discrete compatibility condition. We can
simply project f̃ to the column space of S. Let f̄ be the projection vector,
then Su = f̄ is ensured to have a solution, and we can use iterative solvers in
Chapter 8 such as conjugate gradient method or its preconditioned version
directly on Su = f̄ to find the least square solution to Su = f̃ . Since we
know what Col(S)⊥ is, the projection f̄ is quite easy to find. We summerize
it as follows:

1. The projection f̄ is computed as

f̄ = f̃ − ⟨1, f̃⟩
∥1∥2 1.

It is easy to verify ⟨1, f̄⟩ = 0.

2. Solve Su = f̄ by direct or iterative solvers. See Chapter 8.

Remark 3.12. Iterative solvers like conjugate gradient may not work well
directly on Su = f̃ epsecially if the discrete compatibility error is large.

Remark 3.13. To find the least square solution to Su = f̃ , it is mathemat-
ically equivalent to solve the normal equation STSu = ST f̃ which is ensured
to have a solution for any f̃ . However, STSu = ST f̃ is much harder to
solve. For example, if S is invertible, then the condition number of STS is
about the square of the condition number of S.

Remark 3.14. If S is not symmetric, in order to find the projection f̄ , we
need to compute the left null vector y first: solving ST y = 0 = 0 ∗ y is
an eigenvector problem, which is much more expensive than solving a linear
system of the same size. For instance, for a nonsingular system Ax = b,
iterative solvers are based on minimizing a function f(x) = 1

2xTAx − bT x.
For Ax = 0, if minimizing f(x) = 1

2xTAx, we simply get x = 0, which is
a solution that we do not want at all. For getting the nonzero solution to
Ax = 0, roughtly speaking, we would have to minimize f(x) = 1

2xTAx over
the sphere {x : ∥x∥ = 1}.

72 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

Remark 3.15. For all remarks above, it is highly desired to have a sym-
metric S. The symmetry of the matrix S with entries Sij = Ah(ϕj , ϕi) =
Ah(ϕi, ϕj) holds trivially even for a two-dimensional or three-dimensional
problem −∇ · (A∇u) = f with a real symmetric matrix coefficient A. This
is one of the key advantages of using finite element method for purely Neu-
mann boundary conditions. It is in general quite difficult to construct a real
symmetrix matrix for variable coefficient problems with Neumann boundary
in multiple dimensions by traditional finite difference method.

3.10 Generalization: nonhomogeneou Dirichlet b.c.
Consider solving

−u′′(x) = f(x), x ∈ (0, 1),
u(0) = σ0, u(1) = σ1.

The standard approach is to assume that there exists a smooth enough
function g(x) satisfying the same boundary condition. Then the function
ũ = u− g satisfies

−ũ′′(x) = f(x) + g′′(x), x ∈ (0, 1),

ũ(0) = ũ(1) = 0.
Obviously everything in Section 3.3 can be easily applied to construct

and anaylze a finite element method for ũ ∈ H1
0 (Ω), provided that we know

what g(x) is, which is easy to construct in one-dimension but not necessarily
in multiple dimensions.

However, we only need to know existence of the smooth function g(x)
and an actual implementation can be made irrevelant to what exactly g(x)
should be. The same order from the L2-norm error estimate (3.14) can still
hold.

By multiplying a test function v ∈ H1
0 (Ω) and intergration by parts, we

get the equivalent variational form for seeking ũ ∈ H1
0 (Ω) satisfying∫ 1

0
ũ′(x)v′(x)dx =

∫ 1

0
f(x)v(x)dx−

∫ 1

0
g′(x)v′(x)dx, ∀v ∈ H1

0 (Ω),

which can be denoted as

A(ũ, v) = (f, v)−A(g, v), ∀v ∈ H1
0 (Ω).

3.10.1 A scheme in theory

An abstract finite element method that we should never implement is to find
ũh ∈ V h

0 satisfying

A(ũh, vh) = (f, vh)−A(g, vh), ∀vh ∈ V h
0 .

3.10. GENERALIZATION: NONHOMOGENEOU DIRICHLET B.C. 73

Assume g(x) is a nice function so that we can still derive the error estimates
(3.12) and (3.14). For example, if g′′(x) exists, then after integration by
parts for test function vh(x) ∈ V h

0 , the abstract finite element is equivalent
to seeking ũh ∈ V h

0 satisfying

A(ũh, vh) = (f + g′′, vh), ∀vh ∈ V h
0 .

If we treat f − g′′ as the right hand side function, then the error estimates
(3.12) and (3.14) can still hold for ũh − ũ.

The numerical solution that we want is

uh := ũh + g(x).

Be careful that we no longer have uh ∈ V h. By moving A(g, vh) to the left
hand side, we get

A(uh, vh) = (f, vh), ∀vh ∈ V h
0 .

Also uh − u satisfies the error estimates (3.12) and (3.14).
Next, assume we use quadrature, so we have

Ah(ũh, vh) = ⟨f, vh⟩h −Ah(g, vh), ∀vh ∈ V h
0 , (3.19)

or equivalently
Ah(uh, vh) = ⟨f, vh⟩h, ∀vh ∈ V h

0 . (3.20)
Assume the estimates (3.12) and (3.14) still hold after using quadrature for
the scheme (3.19).

3.10.2 A scheme for implementation

We consider the piecewise linear Lagrangian interpolation polynomial for
g(x) at grid points xi, denoted by gh(x) = Π1g(x) ∈ V h. For nodal basis
{ϕj(x)}N+1

j=0 of V h, we simply have

gh(x) =
N+1∑
j=0

gjϕj(x) ∈ V h,

where g0 = σ0, gN+1 = σ1, x0 = 0, xN+1 = 1. Then we consider a new
scheme seeking ũh ∈ V h

0 satisfying

Ah(ũh, vh) = ⟨f, vh⟩h −Ah(gh, vh), ∀vh ∈ V h
0 . (3.21)

The difference between the scheme (3.21) and the scheme (3.19) is where
using g(x) or its polynomial interpolation gh(x).

Let uh(x) = ũh(x) + gh(x) ∈ V h, then we can rewrite (3.21) equivalently
as

Ah(uh, vh) = ⟨f, vh⟩h, ∀vh ∈ V h
0 . (3.22)

74 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

This time, since uh(x) = ũh(x) + gh(x) ∈ V h, we have

uh(x) =
N+1∑
j=0

ujϕj(x),

where ui = uh(xi).
Here I need to emphasize that V h is (N + 2)-dimensional with basis

{ϕj(x)}N+1
j=0 , whereras the test function space V h

0 is only N -dimensional
with basis {ϕj(x)}Nj=1.

Obviously, plugging this representation into (3.22) and test function
space basis ϕi(x) for i = 1, · · · , N , we get a linear system

N+1∑
j=0
Ah(ϕj , ϕi)uj = hfj , ∀i = 1, · · · , N.

Of course the linear system should have only N unknowns because of
Dirichlet boundary u0 = σ0 and uN+1 = σ1. The scheme is precisely

1
h

(−uj−1 + 2uj − uj+1) = hfj , j = 1, · · · , N, (3.23)

where u0 = σ0, uN+1 = σ1.
Remark 3.16. Notice that the scheme (3.22) is equivalent to the following
scheme seeking uh(x) ∈ V h

0 satisfying

Ah(uh, vh) = ⟨f, vh⟩h −Ah(σh, vh), ∀vh ∈ V h
0 , (3.24)

where σh ∈ V h is the Lagrangian interpolation of the trivial nonsmooth
extension function:

σh(x0) = σ0, σh(xN+1) = σ1, σh(xi) = 0, i = 1, · · · , N.

Remark 3.17. The scheme (3.22) or (3.24) has nothing to do with what
g(x) is. On the other hand, with the existence of smooth g(x), the error
estimates can be easily established via the analysis of the scheme (3.19). To
establish error estimates for (3.22) or (3.24), notice that their only difference
from (3.19) is the following

Ah(g, vh)−Ah(gh, vh),

which can be analyzed through the interpolation error estimates on ∥g−gh∥1
and ∥g − gh∥0. For instance, for convergence in H1 norm, similar to the
First Strang Lemma Theorem 3.5, we will have to deal with

sup
wh∈V h

0

|Ah(g, wh)−Ah(gh, wh)|
∥wh∥1

,

which can be easily done by discrete continuity of the bilinear form:
|Ah(g, wh)−Ah(gh, wh)|

∥wh∥1
≤ C∥g − gh∥1.

3.10. GENERALIZATION: NONHOMOGENEOU DIRICHLET B.C. 75

The scheme (3.23) is exactly the same as taking the scheme for purely
Neumann boundary at interior grid points j = 1, · · · , N in Section 3.9.
This is not a coincidence at all. This fact remains true even for high order
polynomial basis with variable coefficients, which means that we have a neat
treatment of boundary condition in finite element method. In particular, for
a variable coefficient problem, by taking the scheme at interior grid points
j = 1, · · · , N in Section 3.9, we obtain the P 1 finite element method with
trapezoidal quadrature for the nonhomogeneous Dirichlet boundary as

−(aj−1 + aj)uj−1 + (aj−1 + 2aj + aj+1)uj − (aj + aj+1)uj+1
2h = hfj , j = 1, · · · , N,

where u0 = σ0, uN+1 = σ1.

3.10.3 A scheme in theory for 2D general domain Ω

Consider solving a two-dimensional Poisson equation with nonhomogeneous
Dirichlet boundary condition for a bounded region Ω:

−∇ · (A(x, y)∇u(x, y)) = f(x, y), (x, y) ∈ Ω,

u(x, y) = σ(x, y), (x, y) ∈ ∂Ω.

where A(x, y) is a 2× 2 matrix coefficient.
Assume there exists a smooth extension function g(x, y) satisfying that

g|∂Ω(x, y) = σ(x, y), then ũ = u− g ∈ H1
0 (Ω) satisfying

A(ũ, v) = (f, v)−A(g, v), ∀v ∈ H1
0 (Ω)

where the bilinear form is A(u, v) =
∫∫

Ω∇vTA∇udxdy.
Given a triangulation of the domain Ωh as shown in (3.3), assume either

Ω is polygonal or we use curved triangles, so that ∂Ωh = ∂Ω. Define a
continuous piecewise polynomial space V h

0 ⊂ H1
0 (Ω), then an abstract finite

element method that can be easily analyzed is to find ũh ∈ V h
0 satisfying

A(ũh, vh) = (f, vh)−A(g, vh), ∀vh ∈ V h
0 .

The scheme with quadrature is written as

Ah(ũh, vh) = ⟨f, vh⟩h −Ah(g, vh), ∀vh ∈ V h
0 .

or equivalently

uh = ũh + g, Ah(uh, vh) = ⟨f, vh⟩h, ∀vh ∈ V h
0 . (3.25)

76 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

3.10.4 A scheme for implementation for 2D general domain
Ω

The error estimates of (3.25) can be easily established. For the ease of
implementation, we define gh(x) as the Lagrangian interpolation of g(x)
over nodal points in the mesh, which will be explained below.

Then we implement a different scheme

ũh ∈ V h
0 , Ah(ũh, vh) = ⟨f, vh⟩h −Ah(gh, vh), ∀vh ∈ V h

0 .

or equivalently

uh = ũh + gh ∈ V h, Ah(uh, vh) = ⟨f, vh⟩h, ∀vh ∈ V h
0 . (3.26)

For convenience, let x denote (x, y). Now we need to make some as-
sumptions which are quite practical at least for P 1 and P 2:

I. V h
0 is N -dimensional and V h is (N + n)-dimensional.

II. V h has a Lagrangian basis (nodal basis) {ϕj(x)}N+n
j=1 satisfying

ϕj(xi) = δij =
{

1, i = j

0, i ̸= j
,

for the points xi : i = 1, · · · , N + n.

III. V h
0 has a Lagrangian basis {ϕj(x)}Nj=1 satisfying

ϕj(xi) = δij =
{

1, i = j

0, i ̸= j
,

for the points xi, i = 1, · · · , N . For example, xi are three vertices of all
triangles for a continuous piecewise linear polynomial on a triangular
mesh. For a continuous piecewise quadratic polynomial on a triangular
mesh, xi are three vertices and three edge centers of all triangles.

IV. The quadrature points used in Ah(·, ·) is a subset of {xi, i = 1, · · · , N}.
For instance, the quadrature using three vertices with equal weight is
exact for integrating a linear polynomial on a triangle thus second
order accurate by Bramble-Hilbert Lemma, and the quadrature us-
ing only three edge centers with equal weight is exact for integrating
a quadratic polynomial on a triangle thus third order accurate by
Bramble-Hilbert Lemma.

So the points {xi}Ni=1 are interior points inside the domain Ω and the
points {xi}N+n

i=N+1 are boundary points, along the boundary ∂Ωh = Ω (not
true in general but we assumed it).

3.10. GENERALIZATION: NONHOMOGENEOU DIRICHLET B.C. 77

Let uj = uh(xj) and σj = σ(xj), then

uh(x) =
N+n∑
j=1

ujϕj(x) =
N∑

j=1
ujϕj(x) +

N+n∑
j=N+1

σjϕj(x).

Under these assumptions, the scheme (3.26) is exactly the same as

Ah(
N+n∑
j=1

ujϕj , vh) = ⟨f, vh⟩h, ∀vh ∈ V h
0 . (3.27)

or equivalently

N∑
j=1

Ah(ϕj , ϕi)uj = ⟨f, ϕi⟩h −
N+n∑

j=N+1
Ah(ϕj , ϕi)σj , i = 1, · · · , N.

If you ever wonder what the simplest boundary treatment for a high
order accurate scheme should be, (3.26) gives a perfect answer.

To establish the convergence in H1-norm and L2-norm for the scheme
(3.26) or (3.27), we first can have the error estimates for (3.25), then analyze
the only difference between (3.26) and (3.25):

Ah(g, vh)−Ah(gh, vh),

which is related to the interpolation error estimates on ∥g − gh∥1 and ∥g −
gh∥0.

3.10.5 The error in the 2-norm over grid point values

Obviously, the implementation in previous subsection has absolutely nothing
to do with what g(x) is. As a matter of fact, the implementation (3.23) is
our classical finite difference scheme. But there is still one catch that I
have not mentioned, for implementing the finite element method as a finite
difference scheme.

To be specific, in (3.23), we can only get point values of uh(x) at xj ,
even though in practice we are quite happy with that already. On the other
hand, if we have g(x) and we solve (3.19), then we get uh(x) = ũh(x) + g(x)
for any x ∈ (0, 1).

In terms of the error estimates, the L2-norm (3.14) measures the error
for all x in the interval (0, 1). In the scheme (3.23), since we only have
uh(xj), the errors can be measured only at these grid points. For P 1 finite
element method, it is straightforward to show that (3.14) for uh(x) implies
the scheme (3.23) is second order accurate in the 2-norm:

∥e∥2 =

√√√√h N∑
j=1

e2
j =

√√√√h N∑
j=1
|uj − u(xj)|2.

78 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

The 2-norm above is an approximation to L2-norm error ∥eh∥0 by the
trapezoidal quadrature for the error eh = uh − u:

∥eh∥0 =
√∫ 1

0
|eh(x)|2dx,

where eh(0) = eh(1) = 0 because uh(x) satisfies the boundary condition.

Remark 3.18. For P k basis finite element with k ≥ 2, the error order
for function values at (k+1)-point Gauss-Lobatto quadrature points are (k+
2)-th order in the 2-norm. This one order higher phenomenon is called
superconvergence of function values. We can use finite element method with
quadratic polynomial to get a fourth order accurate finite difference scheme!
Of course it can no longer be derived from L2-norm estimate (3.14), which
is only third order accurate for P 2.

3.11 Generalization: a general elliptic operator
Next, we consider an elliptic equation in the following form

−(a(x)u′(x))′+b(x)u′(x)+c(x)u(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0,

where a(x) ≥ minx a(x) > 0 and c(x) ≥ 0.
The variational form is still A(u, v) = (f, v) where

A(u, v) =
∫ 1

0
a(x)u′(x)v′(x) + b(x)u′(x)v(x) + c(x)u(x)v(x)dx.

First of all, unless b(x) = 0, we lose the symmetry of the bilinear form,
and A(u, v) = A(v, u) is not true in general. Thus the stiffness matrix will
no longer be symmetric. But other than this, almost everything above can
be extended, under suitable assumptions.

For simplicity, we will just focus on how to establish the coercivity. Since
c(x) ≥ 0, we have

A(v, v) ≥
∫ 1

0
a(x)|v′(x)|2dx+

∫ 1

0
b(x)v′(x)v(x)dx.

For the second order derivative term, recall that by Poincaré inequality we
have∫ 1

0
a(x)|v′(x)|2dx ≥ min

x
a(x)|v|21 ≥ C min

x
a(x)∥v∥21, ∀v ∈ H1

0 (Ω),

where the constant C depends only on Ω.
For the first order derivative, after integration by parts, we get∫ 1

0
b(x)v′(x)v(x)dx =

∫ 1

0
b(x) d

dx

v2(x)
2 dx = −

∫ 1

0
b′(x)v

2(x)
2 dx, ∀v ∈ H1

0 (Ω).
(3.28)

3.12. GENERALIZATION: HIGHER ORDER ACCURACY VIA P 2 79

In two dimensions, for a first order derivative term like b · ∇u, after
integration by parts, we have

∫∫
Ω

(b · ∇v)vdx = −
∫∫

Ω

v2

2 (∇ · b)dx, ∀v ∈ H1
0 (Ω). (3.29)

So we can get the coercivity A(v, v) ≥ C∥v∥21 under the following as-
sumptions:

1. If b′(x) ≡ 0, then the term in (3.28) is gone. In two dimensions, if
∇ · b ≡ 0, i.e., b is incompressible, then the term in (3.29) is gone in
two dimensions.

2. If b′(x) ≤ 0 in one dimension or ∇ · b ≤ 0 in two dimensions, then we
have

A(v, v) ≥
∫ 1

0
a(x)|v′(x)|2dx ≥ C∥v∥21.

3. If b′(x) ≥ 0, then we have to assume maxx b
′(x) < 2C minx a(x) where

C is the constant in the Poincaré inequality, thus

A(v, v) ≥ min
x
a(x)C∥v∥21−max

x
b′(x)1

2∥v∥
2
0 ≥ (C min

x
a(x)−1

2 max
x

b′(x))∥v∥01.

Remark 3.19. For the case b′(x) ≥ 0, obviously we need the diffusion term
−(au′)′ to be strong enough to dominate the convection term bu′. However,
if the diffusion coefficient is very small compared to b′(x), then the coercivity
will be lost, thus all arguments in finite element theory based on coercivity
will also break down. In pratice, this reflects on the difficulties of using finite
element theory to construct a scheme for convection dominated problems,
e.g., maxx b

′(x) >> maxx a(x) or a(x) is nearly zero.

3.12 Generalization: higher order accuracy via P 2

We only discuss the constant coefficient case. If you are interested, you can
find the variable coefficient case in [9].

3.12.1 Dirichlet b.c.

Let V h and V h
0 denote the corresponding spaces of continuous piecewise

quadratic polynomial was shown in Figure 3.2. The difference between V h

and V h
0 is that elements in V h

0 are always zero on the boundary.
The scheme (3.8) with piecewise quadratic basis and Simpson’s quadra-

ture (3-point Gauss-Lobatto quadrature) has a matrix form Su = M f where

80 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

S is stiffness matrix and M is the lumped mass matrix. On a uniform mesh,
it can be written as Hu = f with

H = M−1S = 1
h2



2 −1
−2 7

2 −2 1
4

−1 2 −1
1
4 −2 7

2 −2 1
4

−1 2 −1
.

1
4 −2 7

2 −2
−1 2


For the nonhomogeneou Dirichlet boundary value problem, the scheme

(3.25) can be written as

−ui−1 + 2ui − ui+1
h2 = fi, if xi is a mid point, (3.30a)

ui−2 − 8ui−1 + 14ui − 8ui+1 + ui+2
4h2 = fi, if xi is a cell end, (3.30b)

where u0 = σ0 and uN+1 = σ1

Remark 3.20. The finite difference scheme (3.30) can only be defined on
a grid with odd number of grid points, because it is obtained by taking end
points and midpoints in a finite element mesh as shown in Figure 3.2. This
is the only drawback when using (3.30) as a finite difference scheme.

(a) The quadrature points (b) Finite difference grid

Figure 3.4: An illustration of Q2 element and the 3 × 3 Gauss-Lobatto
quadrature.

Now consider solving −∆u = f on a rectangular domain with homoge-
neous Dirichlet boundary condition. We can use (3.8) with piecewise Q2

(tensor product of quadratic polynomial) basis and Simpon’s rule or 3 × 3
Gauss-Lobatto quadrature rule on an uniform rectangular mesh as shown
in Figure 3.4. With the same array notation in Chapter 2 The equivalent
matrix vector form of the scheme (3.8) is

(H ⊗ I + I ⊗H)vec(U) = vec(F), (3.31)

3.12. GENERALIZATION: HIGHER ORDER ACCURACY VIA P 2 81

or equivalently

(S ⊗M +M ⊗ S)vec(U) = (M ⊗M)vec(F).

Remark 3.21. The linear system in (3.31) can be easily solved by first
computing eigenvalue decomposition of H then the eigenvector method as
in the Chapter 2. The eigenvalue decomposition of H can be computed in
MATLAB, which is affordable since H is a small matrix compared to H ⊗
I + I ⊗H.

Remark 3.22. The stiffness matrix S is always symmetric and the lumped
mass matrix M is diagonal. The matrix H or H⊗I+I⊗H is not symmetric,
but S ⊗ M + M ⊗ S is real symmetric. If a symmetric linear system is
preferred, then the original symmetric form can be used.

3.12.2 Neumann b.c.

For one-dimensional homogeneous Neumann boundary, the scheme can be
written as

7u0 − 8u1 + u2
2h2 = f0,

−ui−1 + 2ui − ui+1
h2 = fi, if xi is a mid point

ui−2 − 8ui−1 + 14ui − 8ui+1 + ui+2
4h2 = fi, if xi is a cell end but not a boundary point,

uN−1 − 8uN + 7uN+1
2h2 = fN+1.

3.12.3 The fourth order accuracy as a finite difference scheme

The fourth order accuracy of (3.31) is proved in [9].
The standard finite element error estimate for schemes in this section is

third order in L2-norm. But it can be proven that (3.30) is actually fourth
order accurate in the 2-norm over grid points.

First of all, we can check that the finite difference approximation to the
second order derivative in (3.30) is only second order accurate, even for the
one in (3.30b). Second, if we use this second order approximation to solve
a second order PDE such as −u′′(x) = f , we get a fourth order accurate
scheme! As a matter of fact, it can be rigorously proven that this scheme
is fourth order accurate for commonly used linear second order PDEs [9, 8]
for

• Elliptic equation −∆u = f .

• Parabolic equation ut = ∆u.

• Wave equation utt = ∆u.

82 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

• Schrödinger equation iut = ∆u.

• Variable coefficient version of the equations above.

All error estimates in this notes are a priori error estimates, which means
that the order holds if the exact solution u(x) is smooth enough. For in-
stance, the fourth order accuracy of (3.31) can be proven only if assuming
u ∈ H4(Ω). In practice, we often use high order accurate schemes for nons-
mooth solutions, for which high order a priori error estimates can no longer
hold. So a natural question is whether it still makes sense to use a high order
accurate scheme like (3.30) on uniform meshes, which is nonethesless often
used in applications. In Figure 3.5, there is a comparison of between the sec-
ond order finite difference (3.23) and the fourth order finite difference(3.30)
for solving the following generalized Allen-Cahn equation

ϕt + uϕx + vϕy = µ∆ϕ− F ′(ϕ)
ε

, (x, y) ∈ Ω, (3.32)

where u, v are given incompressible velocity field, and F ′(·) is some fixed
energy potential term. With the first order accurate implicit explicit (IMEX)
time discretization, it becomes

ϕn+1 − ϕn

∆t + un+1ϕn+1
x + vn+1ϕn+1

y = µ∆ϕn+1 − F ′(ϕn)
ε

. (3.33)

For the differential operators in (3.33), we can used two finite difference
schemes derived from P 1 and P 2 finite element method with quadrature.
For the second order derivative, they are (3.23) and (3.30). In Figure 3.5,
we can see that the solution has a sharp interface, which gives large gradient
thus smoothness or regularity of ϕ(x, y) is lost, yet the fourth order spatial
discretization is still superior because the second order spatial discretization
gives a wrong solution on the same coarse 239×239 grid. Higher order time
accuracy here does not help the second order spatial discretization on the
same coarse 239 × 239 grid. This is somehow intuitive since usually time
evolution is a lot smoother thus spatial error is dominant in these problems.

3.13 Superconvergence
For the scheme (3.30), the error order at quadrature points (two cell ends
and the middle point) is one order higher than L2 error, which is computed
for all x in the domain. Such a phenomenon that error at certain points is
smaller is called superconvergence. On the other hand, it is straightforward
to verify that the local truncation error of (3.30a) and (3.30b) is only second
order. Recall that the local truncation error is not the true error. The
phenomenon that local truncation error at particular locations has lower
order than the true error order is called supraconvergence. The full proof

3.13. SUPERCONVERGENCE 83

0 2 4 6
0

1

2

3

4

5

6

-0.5

0

0.5

(a) Second order scheme with first order
IMEX on a 239 × 239 grid

0 2 4 6
0

1

2

3

4

5

6

-0.5

0

0.5

(b) Fourth order scheme with first order
IMEX on a 239 × 239 grid

0 2 4 6
0

1

2

3

4

5

6

-0.5

0

0.5

(c) Second order scheme with third order
IMEX BDF on a 239 × 239 grid

0 2 4 6
0

1

2

3

4

5

6

-0.5

0

0.5

(d) Reference Solution

Figure 3.5: Allen-Cahn with log energy at T = 1.8.

84 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

of why the scheme (3.30) is fourth order accurate in 2-norm over all grid
points is quite complicated, see [9, 8]. In this section, we will only see some
quick reasons why superconvergence is even possible.

3.13.1 The delta function

Our heuristic understanding of the delta function is δ(x) =
{

+∞, x = 0
0, x ̸= 0

,

which is however not a conventional function at all. One rigorous under-
standing of it is to define it as a functional, mapping any continuous function
with compact support f(x) linearly to a number f(0). It is often denoted
by an integral, i.e., the definition of the symbol δ(x) is defined to satisfy∫ +∞

−∞
f(x)δ(x)dx = f(0), ∀f(x) ∈ C0(R).

Recall that the function f(x) = |x| is not differentiable but we can define

its weak or generalized derivative as the step function g(x) =
{

1 x ≥ 0
−1 x < 0

.

Now let us compute the weak derivative of the step function by integration
by parts:

∀v(x) ∈ C∞
0 (R),

∫ +∞

−∞
g(x)v′(x)dx =

∫ +∞

0
v′(x)dx−

∫ 0

−∞
v′(x)dx = −2v(0).

With the definition of δ(x) above, we have

∀v(x) ∈ C∞
0 (R) ⊂ C0(R),

∫ +∞

−∞
v(x)δ(x)dx = v(0),

thus

∀v(x) ∈ C∞
0 (R),

∫ +∞

−∞
g(x)v′(x)dx = −

∫ +∞

−∞
v(x)1

2δ(x)dx.

Therefore, we have obtained d2

dx2 |x| = 2δ(x), in the weak derivative sense.
The symbol δa(x) := δ(x− a) satisfies∫ +∞

−∞
f(x)δa(x)dx =

∫ +∞

−∞
f(x)δ(x− a)dx = f(a), ∀f(x) ∈ C0(R).

Thus we also have d2

dx2
1
2 |x− a| = δ(x− a).

3.13.2 The one-dimensional Green’s function

For the boundary value problem −u′′(x) = f(x), x ∈ (0, 1), u(0) =
u(1) = 0, its Green’s function Ga(x) is defined to satisfy

− d2

dx2Ga(x) = δa(x), Ga(0) = Ga(1) = 0,

3.13. SUPERCONVERGENCE 85

where a ∈ (0, 1) is a fixed number.
Following the discussion in the previous subsection, it is straightforward

to verify that

Ga(x) =
{1

2(1− a)x, x ≤ a
−1

2ax+ 1
2a, x > a

,

thus
d

dx
Ga(x) =

{1
2(1− a), x ≤ a
−1

2a, x > a
,

d2

dx2Ga(x) = δa(x).

Notice that Ga(x) is a continous piecewise linear function, but this is true
only for one-dimensional problem.

3.13.3 Superconvergence at knots in one dimension

For the one-dimensional problem −u′′(x) = f(x), x ∈ (0, 1), u(0) =
u(1) = 0, assume we have a mesh of intervals Ij , on which we define contin-
uous piecewise polynomial spaces V h and V h

0 .
The abstract finite element method is to seek uh ∈ V h

0 satisfying

(u′
h, v

′
h) = (f, vh), ∀vh ∈ V h

0 . (3.34)

Recall that the solution uh has Galerkin Orthogonality:

(u′ − u′
h, v

′
h) = 0, ∀vh ∈ V h

0 ,

Let e(x) = u(x) − uh(x) ∈ H1
0 ([0, 1]) ⊂ C0([0, 1]), then Galerkin Orthogo-

nality can be written as

(e′, v′
h) = 0, ∀vh ∈ V h

0 .

Let xi be the cell end of some interval Ij and we call xi a knot. Then
we consider the Green’s function at a = xi, e.g, Gxi(x), which is a piecewise
linear polynomial defined on the same mesh, thus Gxi(x) ∈ V h

0 . Now let us
take a special test function vh = Gxi(x) in the Galerkin Orthogonality:

(e′, Gxi(x)′) = 0⇒
∫ 1

0
e′(x)Gxi(x)′dx = 0⇒ −

∫ 1

0
e(x) d

2

dx2Gxi(x)dx = 0

⇒ −
∫ 1

0
e(x)δxi(x)dx = 0⇒ −

∫ +∞

−∞
e(x)δxi(x)dx = 0⇒ e(xi) = 0,

where we have extended e(x) to the whole real line by zero extension.
This means that the error at knots xi are zero! Notice that this is the

property to the abstract scheme (3.34) for any P k basis, which we however

86 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

do not implement. For instance, for P 1 basis on a uniform mesh, the scheme
(3.34) is the same as

1
h



2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2





u1
u2
u3
...

uN−1
uN


=



(f, ϕ1)
(f, ϕ2)
(f, ϕ3)

...
(f, ϕN−1)
(f, ϕN)


. (3.35)

But usually we implement it by approximating the integral (f, ϕi) by the
trapezoidal rule, which is second order accurate. If we do compute the
integrals (f, ϕi) exactly, then the scheme (3.35) has zero error.

For the P 2 basis on uniform mesh, the Simpson’s rule is exact for the
left hand integral (u′

h, v
′
h), thus (3.34) can be written as

2h
3
−ui−1 + 2ui − ui+1

h2 = (f, ϕi), if xi is a mid point, (3.36a)

h

3
ui−2 − 8ui−1 + 14ui − 8ui+1 + ui+2

4h = (f, ϕi), if xi is a cell end.
(3.36b)

The error of the scheme (3.36) is zero at the cell end xi (knots). Of
course, in the scheme (3.30), we use Simpson’s rule for approximating the
integrals (f, ϕi), which is fourth order accurate. So at least now intuitively
it is not a surprise that the scheme (3.30) should be fourth order accurate
at the knots. For the fourth order accurate at the midpoint, we need some
more arguments, which will not be explained in this notes.

Remark 3.23. In general, by the standard superconvergence theory of P k

(k ≥ 2) finite element method (3.34) (even for a variable coefficient problem
in multiple dimensions), function values of uh(x) are (k+ 2)-th order accu-
rate at Gauss-Labotto points for each small interval in 2-norm, as opposed
to (k + 1)-th order in the L2-norm error estimate, and derivatives of uh(x)
are (k + 2)-th order accurate at Gauss points, as opposed to k-th order in
the H1-norm error estimate.

3.14 Comparison with traditional finite difference
method

3.14.1 Advantages of the finite element method

Troughout this chapter, we have seen many things that cannot happen or
cannot be explained in the traditional finite difference method. Even on

3.14. COMPARISON WITH TRADITIONAL FINITE DIFFERENCE METHOD87

uniform meshes for a rectangular domain, the finite element method is still
superior from any perspective, because it gives us a finite difference with all
desired properties. We summerize some comparsions in Table 3.1.

3.14.2 Limitations of the finite element method

In general, the finite element method is quite successful, for solving an
elliptic equation −∆u = f or some other types of equations including
parabolic equations ut = ∆u, wave equations utt = ∆u, Schrödinger equa-
tion iut = ∆u, etc. These equations all contain the Laplacian operator −∆u,
for which a coercive bilinear form A(u, v) = (u′, v′) can be defined. Another
different example is the biharmonic equation u′′′′(x) = f , for which we can
also define a similar variational formulation with coercivity, thus the finite
element method for this kind of fourth order PDE is also quite successful.

The foundation of the success for the finite element method, when miss-
ing, is also source of the limitations of the finite element method in applica-
tions. It could be quite or extremely difficult to use finite element method
for equations lack of coercive operators. One simple example of such equa-
tions is the simple convection ut +ux = 0 which will be discussed in Chapter
7, or its nonlinear version nonlinear conservation laws ut + f(u)x = 0 which
will be discussed in Chapter 9. Another example is the Hamilton-Jacobi
equation ut + f(ux) = 0, e.g., ut + |∇u| = 0, which is also closely related
to nonlinear conservation laws. A formal application of the finite element
method to these equations, with certain modifications to achieve stability or
even convergence, is always possible, but many provable properties in this
chapter will be no longer true.

Table 3.1: Comparison of traditional FD and finite element method for
solving −∇ · (A∇u) = f on Ω.

traditional FD FEM
Equation approximates PDE approximates variational form
Boundary condition direct approximation absorbed in V h

0 and variational form
Curved domain a mapping to rectangular grid Ω is easily approximated by Ωh

Rectangular Ω a rectangular grid becomes finite difference
S matrix nonsymmetric in general always symmetric
Consistency Taylor expansion Galerkin Orthogonality
Stability singular values coercivity
Convergence in 2-norm H1 and L2 estimates
General tools Calculus & Linear Algebra functional analysis, PDE theory, etc
Error order truncation error order interpolation error order
Higher order schemes large stencil, inducing difficulty near boundary no difficulty at the boundary
Variable coefficient difficult to construct higher order schemes easy to to construct higher order schemes
Superconvergence N/A P 2 gives a 4th order FD
General implementation form a matrix directly computing some Sij = A(ϕj , ϕi) to get S
Rectangular Ω just solve a linear system implement it as a FD scheme
Purely Neumann b.c. left null vector is expensive to compute left null vector is always 1

88 3. A BRIEF INTRODUCTION OF FINITE ELEMENT METHODS

4

Fourier Analysis

This chapter will be a very brief introduction to Fourier transform, Semidis-
crete Fourier transform, the discrete Fourier transform, and Fourier series.

4.1 The Fourier transform

We will take the Fourier transform of integrable functions of one variable
x ∈ R.

Definition 4.1. (Integrability) A function f is called integrable, or absolutely
integrable, when ∫ ∞

−∞
|f(x)| dx <∞

in the sense of Lebesgue integration. One also writes f ∈ L1(R) for the
space of integrable functions.

We denote the physical variable as x, but it is sometimes denoted by
x in contexts in which its role is time, and one wants to emphasize that.
The frequency, or wavenumber variable is denoted k. Popular alternatives
choices for the frequency variable are ω (engineers) or ξ (mathematicians),
or p (physicists).

Definition 4.2. The Fourier transform (FT) of an integrable function f(x)
is defined as

f̂(k) =
∫ ∞

−∞
e−ikxf(x) dx. (4.1)

When f̂(k) is also integrable, f(x) can be recovered from f̂(k) by means of
the inverse Fourier transform (IFT)

f(x) = 1
2π

∫ ∞

−∞
eikxf̂(k) dk. (4.2)

89

90 4. FOURIER ANALYSIS

Intuitively, f̂(k) is the amplitude density of f at frequency k. The for-
mula for recovering f is a decomposition of f into constituent waves. The
justification of the inverse FT formula belongs in a real analysis class. We
will justify the form of (4.2) heuristically when we see Fourier series in the
next section. The precaution of assuming integrability is so that the in-
tegrals can be understood in the usual Lebesgue sense. In that context,
taking integrals over infinite intervals is perfectly fine. If (4.1) and (4.2)
are understood as limits of integrals over finite intervals, it does not matter
how the bounds are chosen to tend to ±∞. One may in fact understand
the formulas for the FT and IFT for much larger function classes than the
integrable functions, namely distributions, but this is also beyond the scope
of the class. We will generally not overly worry about these issues. It is good
to know where to draw the line: the basic case is that of integrable func-
tions, and anything beyond that requires care and adequate generalizations.
Do not be surprised to see alternative formulas for the Fourier transform
in other classes or other contexts. Here are some important properties of
Fourier transforms:

• (Differentiation) ̂f ′(x) = ikf̂(k).
Justification: integration by parts in the integral for the FT.

• (Translation) If g(x) = f(x+ a), then

ĝ(k) = eikaf̂(k).

Justification: change of variables in the integral for the FT.

Another basic property of Fourier transforms is the convolution theorem.

Theorem 4.1. Denote the convolution as f ∗ g(x) =
∫∞

∞ f(y)g(x − y) dy.
Then

f̂ ∗ g(k) = f̂(k)ĝ(k).

The Fourier transform is an important tool in the study of linear differen-
tial equations because it turns differential problems into algebraic problems.
For instance, consider a polynomial P(x) = ∑

anx
n and the ODE

P
(
d

dx

)
u(x) = f(x), x ∈ R.

which means ∑ an
dn

dxnu(x) = f(x). Upon Fourier transformation, the equa-
tion becomes

P(ik)û(k) = f̂(k),
which is simply solved as

û(k) = f̂(k)
P(ik) ,

4.2. SAMPLING AND RESTRICTION 91

and then

u(x) = 1
2π

∫ ∞

−∞
eikx f̂(k)
P(ik) dk.

Beware the zeros of P when applying this formula. They always carry
important physical interpretation. For instance, they could be resonances
of a mechanical system. The formula û(k) = f̂(k)

P(ik) also lends itself to an
application of the convolution theorem. Let K(x) be the inverse Fourier
transform of 1/P(ik). Then we have

u(x) = K(x− y)f(y) dy.

The function K is called Green’s function for the original ODE.

4.2 Sampling and restriction

We aim to use Fourier transforms as a concept to help understand the ac-
curacy of representing and manipulating functions on a grid, using a finite
number of degrees of freedom. We also aim at using a properly discretized
Fourier transform as a numerical tool itself. For this purpose, x ∈ R and
k ∈ R must be replaced by x and k on finite grids. Full discretization con-
sists of sampling and restriction. Let us start by sampling x ∈ hZ, i.e.,
considering xj = jh for j ∈ Z. The important consequence of sampling is
that some complex exponential waves eikx for different k will appear to be
the same on the grid xj . We call aliases such functions that identify on the
grid.

Definition 4.3. (Aliases) The functions eik1x and eik2x are aliases on the
grid xj = jh if

eik1xj = eik2xj , ∀j ∈ Z.

Aliases happen if

k1jh = k2jh+ 2πn, n ∈ Z.

Letting j = 1, we have
k1 − k2 = 2π

h
n.

Two wave numbers k1 and k2 are indistinguishable on the grid if they differ
by an integer multiple of 2π/h. For this reason, we restrict without loss of
generality the wavenumber to the interval k ∈ [−π/h, π/h]. We also call this
interval the fundamental cell in frequency. Real-life examples of aliases are
rotating wheels looking like they go backwards in a movie, Moiré patterns
on jackets on TV, and stroboscopy. The proper notion of Fourier transform
on a grid is the following.

92 4. FOURIER ANALYSIS

Definition 4.4. Let xj = hj, fj = f(xj). Semidiscrete Fourier transform
(SFT):

f̂(k) = h
∞∑

j=−∞
e−ikxjfj , k ∈ [−π

h
,
π

h
]. (4.3)

Inverse semidiscrete Fourier transform (ISFT):

fj = 1
2π

∫ π
h

− π
h

eikxj f̂(k)dk. (4.4)

As we saw, sampling in x corresponds to a restriction in k. If one still
wanted to peek outside [−π

h ,
π
h] for the SFT, then the SFT would simply

repeat by periodicity:
f̂(k + 2nπ

h
) = f̂(k),

(why?). That’s why we restrict it to the fundamental cell.

Remark 4.1. Assume f̂(k) = 0 if |k| > π
h . Then (4.4) is the same as

(4.2), which implies that no error is made in sampling and interpolating
f(x) at rate h. This is known as the Shannon sampling theorem: a function
bandlimited in [−π

h ,
π
h] in k space is perfectly interpolated by bandlimited

interpolation, on a grid of spacing h or smaller.

Theorem 4.2 (Nyquist-Shannon Sampling Theorem). Let f̂(k) =
∫∞

−∞ e−ikxf(x) dx.
If f̂(k) = 0 for |k| ≥ π, then

f(x) =
+∞∑

n=−∞
f(n)sin π(x− n)

π(x− n) , ∀x ∈ R.

Proof. Consider the Fourier Series of f̂(k) on the interval [−π, π]:

f̂(k) = 1
2π

+∞∑
n=−∞

cne
ink,

where

cn =
∫ π

−π
e− inkf̂(k)dk

=
∫ +∞

−∞
e− inkf̂(k)dk (f̂ has compact support)

= 2πf(−n) (the inverse Fourier transform).

So

f̂(k) =
+∞∑

n=−∞
f(−n)eink =

+∞∑
n=−∞

f(n)e− ink. (4.5)

4.2. SAMPLING AND RESTRICTION 93

Finally we have

f(x) = 1
2π

∫ +∞

−∞
eixkf̂(k)dk

= 1
2π

∫ π

−π
eixkf̂(k)dk (f̂ has compact support)

= 1
2π

∫ π

−π
eixk

(+∞∑
n=−∞

f(n)e− ink

)
dk

=
+∞∑

n=−∞
f(n)

(1
2π

∫ π

−π
ei(x−n)kdk

)
(if
∫ ∑
|f(n)| < +∞ by Fubini’s Theorem)

Remark 4.2. If f̂(k) = 0 for |k| ≥ π
h , then the sampling points should be

jh, j ∈ Z. In particular, (4.5) implies that SFT (4.3) is equivalent to FT
(4.1) for the bandlimited functions.

We can now define the proper notion of Fourier analysis for functions
that are restricted to x in some interval, namely [−π, π] for convention.
Then the frequency is sampled as a result. The following formulas are dual
to those for the SFT.

Definition 4.5. Fourier series (FS):

f̂k =
∫ π

−π
e− i kxf(x) dx. (4.6)

Inverse Fourier series (IFS)

f(x) = 1
2π

∞∑
k=−∞

ei kxf̂k, x ∈ [−π, π]. (4.7)

If one uses the Fourier series inversion formula for x outside of its in-
tended interval [−π, π], then the function simply repeats by periodicity:
f(x+ 2nπ) = f(x). (again, why?)

The two formulas of (4.6) and (4.7) can be justified quite intuitively.
The expression

∫
f(x)g(x) dx is an inner product on functions. It is easy to

see that the complex exponentials form an orthonormal set of functions on
[−π/h, π/h], for this inner product. Hence, up to normalization constants,
(4.6) is simply calculation of the coefficients in an orthobasis (analysis), and
(4.7) is the synthesis of the function back from those coefficients. We’d have
to understand more about the peculiarities of infinite-dimensional linear
algebra to make this fully rigorous, but this is typically done in a real analysis
class.

Sampling in x corresponds to restriction/periodization in k, and restric-
tion/periodization in k corresponds to sampling in x.

94 4. FOURIER ANALYSIS

4.3 The DFT and its algorithm, the FFT

The discrete Fourier transform is what is left of the Fourier transform when
both space and frequency are sampled and restricted to some interval. Con-
sider xj = jh, j = 1, ..., N. The point j = 0 is identified with j = N by
periodicity, so it is not part of the grid. If the endpoints are x0 = 0 and
xN = 2π, then N and h relate as h = 2π

N ⇒
π
h = N

2 .
For the dual grid in frequency, consider that N points should be equis-

paced between the bounds [−π/h, π/h]. The resulting grid is

k = −N2 + 1, ..., N2 .

We have the following definition.

Definition 4.6. Discrete Fourier transform (DFT):

f̂k = h
N∑

j=1
e− i kjhfj , k = −N2 + 1, ..., N2 . (4.8)

Inverse discrete Fourier transform (IDFT)

fj = 1
2π

N
2∑

k=− N
2 +1

ei kjhf̂k, j = 1, · · · , N. (4.9)

The DFT can be computed as is, by implementing the formula (4.8)
directly on a computer. The complexity of this calculation is a O(N2),
since there are N values of j, and there are N values of k over which the
computation must be repeated. There is, however, a smart algorithm that
allows to group the computation of all the fk in complexity O(N logN). It
is called the fast Fourier transform (FFT). It is traditionally due to Tukey
and Cooley (1965), but the algorithm had been discovered a few times before
that by people who are not usually credited as much: Danielson and Lanczos
in 1942 1, as well as Gauss in 1805.

1Danielson, Gordon C.; Lanczos, Cornelius (1942). "Some improvements in practical
Fourier analysis and their application to X-ray scattering from liquids". Journal of the
Franklin Institute. 233 (4): 365–380. The Danielson-Lanczos lemma is the basis of FFT.
Danielson and Lanczos performed their work in the late 1930’s at Purdue University,
where Cornelius Lanczos (1893-1974) was a professor of mathematical physics from 1931-
1946. Gordon Danielson (1912-83) was a graduate student in physics at Purdue working
on applications of Fourier analysis to X-ray scattering. Danielson became a professor of
physics at Iowa State University in 1948 and a distinguished professor in 1964.

4.4. SMOOTHNESS AND TRUNCATION 95

4.4 Smoothness and truncation
In this section, we study the accuracy of truncation of Fourier transforms to
finite intervals. This is an important question not only because real-life nu-
merical Fourier transforms are restricted in k, but also because, as we know,
restriction in k serves as a proxy for sampling in x. Every claim that we
make concerning truncation of Fourier transforms will have an implication in
terms of accuracy of sampling a function on a grid, i.e., how much informa-
tion is lost in the process of sampling a function f(x) at points xj = jh. We
will manipulate functions in the spaces L1, L2, and L∞. We have already
encountered L1.

Definition 4.7. Let 1 ≤ p ≤ ∞. A function f of x ∈ R is said to belong to
the space Lp(R) when

∫∞
−∞ |f(x)|p dx <∞. Then the norm of f in Lp(R) is(∫∞

−∞ |f(x)|p dx
) 1

p . A function f of x ∈ R is said to belong to L∞(R) when
ess sup|f(x)| <∞. Then the norm of f in L∞(R) is ess sup|f(x)|.

In the definition above, “ess sup” refers to the essential supremum, i.e.,
the infimum over all dense sets X ⊂ R of the supremum of f over X. A set
X is dense when R \ X has measure zero. The notions of supremum and
infimum correspond to maximum and minimum respectively, when they are
not necessarily attained. All these concepts are covered in a real analysis
class. For us, it suffices to heuristically understand the L∞ norm as the
maximum value of the modulus of the function, except possibly for isolated
points of discontinuity which don’t count in calculating the maximum. It is
an interesting exercise to relate the L∞ norm to the sequence of Lp norms
as p → ∞. We will need the very important Parseval and Plancherel iden-
tities. They express “conservation of energy” from the physical domain to
the frequency domain.

Theorem 4.3. (Parseval’s identity). Let f, g ∈ L1(R) ∩ L2(R). Then∫ ∞

−∞
f(x)g(x) dx = 1

2π

∫ ∞

−∞
f̂(k)ĝ(k) dk.

Theorem 4.4. (Plancherel’s identity). Let f ∈ L1(R) ∩ L2(R). Then∫ ∞

−∞
|f(x)|2 dx = 1

2π

∫ ∞

−∞
|f̂(k)|2 dk. (4.10)

(With the help of these formulas, it is in fact possible to extend their
validity and the validity of the FT to f, g ∈ L2(R), and not simply f, g ∈
L1(R) ∩ L2(R). This is a classical density argument covered in many good
analysis texts.) We need one more concept before we get to the study of
truncation of Fourier transforms. It is the notion of total variation. We as-
sume that the reader is familiar with the spaces Ck(R) of bounded functions
which are k times continuously differentiable.

96 4. FOURIER ANALYSIS

Definition 4.8. (Total variation) Let f ∈ C1(R). The total variation of f
is the quantity

∥f∥T V =
∫ ∞

−∞
|f ′(x)| dx. (4.11)

For functions that are not C1, the notion of total variation is given by
either expression

∥f∥T V = lim
h→0

∫ ∞

−∞

|f(x)− f(x− h)|
|h|

dx = sup
{xp} finite subset of R

∑
p

|f(xp+1)−f(xp)|.

These more general expressions reduce to
∫∞

−∞ |f ′(x)| dx when f ∈ C1(R).
When a function has finite total variation, we say it is in the space of func-
tions of bounded variation, or BV (R).

The total variation of a piecewise constant function is simply the sum
of the absolute value of the jumps it undergoes. This property translates to
a useful intuition about the total variation of more general functions if we
view them as limits of piecewise constant functions. The important meta-
property of the Fourier transform is that decay for large |k| corresponds
to smoothness in x. There are various degrees to which a function can be
smooth or rates at which it can decay, so therefore there are several ways
that this assertion can be made precise. Let us go over a few of them. Each
assertion either expresses a decay (in k) to smoothness (in x) implication,
or the converse implication.

• Let f̂ ∈ L1(R) (decay), then f ∈ L∞(R) and f is continuous (smooth-
ness). That’s because |ei kx| = 1, so

|f(x)| ≤ 1
2π

∫ ∞

−∞
|ei kxf̂(k)| dk = 1

2π

∫ ∞

−∞
|f̂(k)| dk,

which proves boundedness. As for continuity, consider a sequence
yn → 0 and the formula f(x − yn) =

∫∞
−∞

1
2πe

i k(x−yn)f̂(k) dk. The
integrand converges modulus by the integrable pointwise function to
ei kxf̂(k), and is uniformly bounded. Hence Lebesgue’s dominated con-
vergence theorem applies and yields f(x− yn)→ f(x), i.e., continuity
in x.

• Let f̂(k)(1 + |k|p) ∈ L1(R) (decay). Then f ∈ Cp (smoothness). We
saw the case p = 0 above; the justification is analogous in the general
case. We write

|f (n)(x)| ≤ 1
2π

∫ ∞

−∞
|ei kx(i k)nf̂(k)| dk = 1

2π

∫ ∞

−∞
|k|n|f̂(k)| dk,

which needs to be bounded for all 0 ≤ n ≤ p. This is obviously the
case if (1 + |k|p)f̂(k) ∈ L1(R). Continuity of f (p) is proved like before.

4.4. SMOOTHNESS AND TRUNCATION 97

• Let f ∈ BV (R) (smoothness). Then f̂(k) ≤ ∥f∥T V |k|−1 (decay). If
f ∈ C1 ∩BV (R), then this is justified very simply from (4.11), and

i kf̂(k) =
∫ ∞

−∞
e− i kxf ′(x) dx

Take a modulus on both sides, and get the desired relation. When
f ∈ BV (R), but f /∈ C1, either of the more general formulas for the
total variation definition must be used instead. It is a great practice
exercise to articulate a modified proof using the limh→0 formula, and
properly pass to the limit.

• Let f satisfy f (n) ∈ L2(R) for 0 ≤ n < p, and assume f (p) ∈ BV (R)
(smoothness). Then there exists C > 0 such that |f̂(k)| ≤ |k|−p−1

(decay). The justification is very simple when f ∈ Cp+1: we then get

(i k)p+1f̂(k) =
∫ ∞

−∞
e− i kxf (p+1)(x) dx,

so

| i k|p+1|f̂(k)| ≤
∫ ∞

−∞
|e− i kx||f (p+1)(x)| dx = ∥f (p)∥T V ≤ ∞.

Again, it is a good exercise to try and extend this result to functions
not in Cp+1.

98 4. FOURIER ANALYSIS

5

Well Posedness

In this chapter we consider initial value, linear partial differential equations,
and address the concept of well posedness of the problem.

5.1 Definition and examples

Before attempting to approximate the solution of a partial differential equa-
tion by numerical methods, one has to analyze some of the basic properties
of the problem itself and its solution. Roughly speaking, the solution of
a given problem has to be a function of its initial values, since the future
states of the system must be completely determined by the dynamics of the
system together with the initial state. For those who prefer a more “math-
ematical" formulation of the above statement, it means that we are looking
for a representation of the solution u(x, t) of a partial differential equation
as a function of the form:

u(x, t) = S(t, t0)u(x, t0); t ≥ t0

here S is an operator, called the solution operator, such that the above
expression satisfies thee partial differential equation. The first step in ana-
lyzing the properties of the system dynamics is to answer the basic questions:

Does there exist the solution at all? That is, if such an operator S exists.
If it does, how does the solution depend on the initial functions? In other
words: what is the domain of S? Is S a bounded operator? Finally, how
smooth is the solution? (the range of S might include even non-differentiable
functions). Well posedness is a property of the partial differential equation,
related to particular answers to these questions. We shall make this concept
clear by examing some examples before stating the formal definitions.

The general problem that we study is concerned with linear, homoge-
neous, partial differential equations with initial values and can be stated as
follows:

99

100 5. WELL POSEDNESS

Find a vector valued function of p components u(x, t) = (u1(x, t), ..., up(x, t)),
where x = (x1, ...xs) and t ≥ 0, that satisfies the equation:

ut(x, t) = P
(
x, t,

∂

∂x

)
u(x, t),

u(x, 0) = f(x), (5.1)

where P is a polynomial in the operator argument ∂
∂x . For example, if x is

a scalar (s = 1), then P has the form:

P
(
x, t,

∂

∂x

)
=

r∑
k=1

ak(x, t) ∂
k

∂xk

and it is a polynomial of degree r if ar(x, t) does not vanish identically.
If x = (x1, ..., xs), let α = (α1, ..., αs) denote a multi-index, i.e., each

component αj is an integer, and use the notation:

∂α

∂xα
= ∂α1+···+αx

∂xα1
1 · · · ∂x

αs
s

It is customary to write |α| for α1 + · · ·+αs, so that in the multidimensional
case the general form of the operator P is:

P
(
x, t,

∂

∂x

)
=

∑
α:|α|≤r

aα(x, t) ∂
α

∂xα

and if for some α with α = r the function aα(x, t) is not zero, then P is a
polynomial of degree r.

Definition 5.1. If P is a polynomial of degree r in ∂
∂x , then we call u(x, t)

a classical solution of the problem (5.1) if u has continuous derivatives up to
order r in space and first continuous derivative in time, provided that u(x, t)
satisfies (5.1).

An important quantity in analyzing whether the solution of (5.1) is well
defined (that is, bounded in some suitable norm) is that of the energy of
the system. The definition of an energy for a particular system depends on
its physical properties. Nonetheless, we shall generally define the energy in
terms of some norm (induced by an inner product) of the solution. Indeed,
for each t ≥ 0, we can regard u(t) as a function on the a Hilbert space where
different definitions of inner products give rise to different norms. We will
often define the energy as the L2-norm of u(t), in which case it takes the
form:

E(t) =
∫
|u(x, t)|2 dx1 · · · dxs,

where x is the vector of size s.

5.1. DEFINITION AND EXAMPLES 101

More generally, if ⟨f, g⟩ denotes the inner product on Rp, we can define:

E(t) =
∫
⟨u(x, t), u(x, t)⟩ dx1 · · · dxs.

We will illustrate the concept of energy and its properties through the
examples that follow, so that the reader might become familiar with it in a
more natural way.

Example 5.1. Consider the one-way wave equation, that is, the differential
operator P is given by:

P(x, t, ∂
∂ x

) = a
∂

∂ x

for x a real variable and a any constant. This yields the problem:

ut = aux, u(x, 0) = f(x).

In order to analyze the behavior of the solution u(x, t) of the problem, we will
use Fourier transforms. Recall that if f̂(ω) denotes the Fourier transform
of the function f(x), then:

f(x) = 1
2π

∫ ∞

−∞
f̂(ω)eiωxdω,

and for the function u(x, t) we have:

u(x, t) = 1
2π

∫ ∞

−∞
û(ω, t)eiωxdω.

As already mentioned in the previous chapter, smoothness of the ini-
tial function f(x) is reflected in the behavior of f̂(ω) for large values of ω.
The extreme case is to consider band limited initial functions f for which
f̂(ω) = 0 for |ω| ≥ ω0, but we shall not investigate this case in the general
formulation because it is too restrictive.

By taking the Fourier transform in x in both the PDE and the initial
condition, we get:

∂ û

∂ t
= i aωû, û(ω, 0) = f̂(ω),

which is an ordinary differential equation. By means of Fourier transforms
we can therefore reduce a partial differential equation in the physical space
x into an ordinary differential equation in the Fourier space ω. Solving this
ODE problem, we get:

û(ω, t) = eiωatf̂(ω),

so that the solution is given by:

u(x, t) = 1
2π

∫ ∞

−∞
û(ω, t)eiωx dω = 1

2π

∫ ∞

−∞
f̂(ω)eiω(at+x) dω = f(x+ at).

102 5. WELL POSEDNESS

This method has other advantages. For instance, by Plancherel’s identity we
know that: ∫ ∞

−∞
|u(x, t)|2 dx = 1

2π

∫ ∞

−∞
|û(ω, t)|2 dω.

For this example, where |û(ω, t)|2 = |f̂(ω)eiωat|2 = |f̂(ω)|2, we have, using
again Plancherel’s identity on f that:∫ ∞

−∞
|u(x, t)|2 dx =

∫ ∞

−∞
|u(x, 0)|2 dx

for all time t ≥ 0, which is nothing but the conservation of energy. This fact
also tells us something about the existence of solutions: if

∫∞
−∞ |f(x)|2 dx⟨∞,

then the solution remains bounded at any given tine (that is, there is no
"blow-up").

Remark 5.1. In the equation ut − aux = 0 there appear one derivative in
space and one in time. Space and time here play an interchangeable role, a
fact that is reflected in the solution itself.

Example 5.2. We shall consider now a very different example, where the
equation is not reversible in time:

ut(x, t) = auxx(x, t), a > 0, u(x, 0) = f(x).

Using again Fourier transforms we obtain in the Fourier space the following
ordinary differential equation:

∂ û

∂ t
(ω, t) = a(iω)2û(ω, t) = −aω2û(ω, t), û(ω, 0) = f̂(ω),

which yields:
û(ω, t) = f̂(ω)e−aω2t,

and thus
u(x, t) = 1

2π

∫ ∞

∞
f̂(ω)e−aω2teiωx dω.

Since e−aω2t ∈ (0, 1) for all ω and all t > 0, we have that |û(ω, t)| ≤ |f̂(ω)|,
and using Plancherel’s identity we obtain for the energy of the system the
inequality:

E(t) =
∫ ∞

∞
|u(x, t)|2 dx = 1

2π

∫ ∞

∞
|û(ω, t)|2 dω ≤ 1

2π

∫ ∞

∞
|f̂(ω)|2 dω = E(0),

which implies that the energy decreases in time.

This equation is known as the heat conduction equation. It is parabolic
and its Properties are quite different from those of hyperbolic equations like
the previous example. Some of these properties are:

5.1. DEFINITION AND EXAMPLES 103

1. The energy is being dissipated,

2. the system tends to a steady state, known as the equilibrium: lim
t→∞

u(x, t) =
0

3. From the expression for û we see that roughness of the initial data
is smoothed out, since even if f̂(ω) is large for high modes, û(ω, t) is
decreasing in time. Therefore, due to dissipation, the solution becomes
smoother as time goes by.

Example 5.3. We go back now to study hyperbolic equations, considering
the two-way wave equation:

utt = uxx

u(x, 0) = f1(x)
ut(x, 0) = f2(x)

First we rewrite this equation in the general form stated at the beginning
of this chapter, where only one time derivative appears. For this purpose,
assume the solution u(x, t) exists and let v be a function defined such that:

∂ v

∂ x
= ∂ u

∂ t
,

∂ v

∂ t
= ∂ u

∂ x
.

So we get,
∂

∂ t

(
u
v

)
=
(

0 1
1 0

)
∂

∂ x

(
u
v

)
.

Since vx(x, 0) = ut(x, 0) = f2(x), we have,

v(x, 0) = F2(x) ≡
∫ x

0
f2(ξ) dξ, u(x, 0) = f1(x).

In the notation of expressions (5.1) we have:

P(x, t, ∂
∂ x

) =
(

0 1
1 0

)
∂

∂ x
,

(
u
v

)
(x, 0) = f(x) =

(
f1(x)
F2(x)

)
.

Let A =
(

0 1
1 0

)
, then the ODEs that are satisfied by this system in the

Fourier space are:

∂

∂ t

(
û
v̂

)
= iωA

(
û
v̂

)
=
(
iωû
iωv̂

)

104 5. WELL POSEDNESS

which we can decouple into two simpler equations, namely:

∂

∂ t
(û+ v̂) = iω(û+ v̂)

∂

∂ t
(û− v̂) = − iω(û− v̂)

Both equations can now be treated separately in the same way as the
one-way wave equation.

Remark 5.2. To rewrite the two-way wave equation as a first order system,
we can also introduce new functions

v(x, t) = ux(x, t), w(x, t) = ut(x, t),

then we get
vt = uxt = wx, wt = utt = uxx = vx,

thus
∂

∂ t

(
v
w

)
=
(

0 1
1 0

)
∂

∂ x

(
v
w

)
,

(
v
w

)
(x, 0) =

(
f ′

1(x)
f2(x)

)
.

The new initial conditions involve f ′
1(x) so we can get only weakly well

posedness.

The fact that we have obtained two equations of the form of one-way
wave equations follows because the dynamics given by the two-way wave
equation are equivalent to two scalar equations of the form:

z
(1)
t = z(1)

x

z
(2)
t = −z(2)

x .

In general, decoupling is a consequence of the symmetry of the matrix
A. Indeed, consider the problem:

ut = Aux, u(x, 0) = f(x),

where u(x, t) and f(x) are vector-valued functions. Assume A is diagonal-
izable (e.g., when A is real symmetric), which implies the existence of a
matrix T such that T−1AT is a diagonal matrix. Define Λ = T−1AT and
define the transformation of variables: w = T−1u so that w satisfies:

wt = T−1ut = T−1Aux = (T−1AT)wx = Λwx

5.1. DEFINITION AND EXAMPLES 105

Since Λ is diagonal, this system is equivalent to a collection of scalar equa-
tions of the form of one-way wave equations. Let w = (w1, w2, · · · , wn)T .
Then we get the energy for each wi as∫ ∞

−∞
|wi(x, t)|2 dx =

∫ ∞

−∞
|wi(x, 0)|2 dx.

On the other hand,

⟨u,u⟩ = ⟨Tw, Tw⟩ = w∗T ∗Tw,

where the superscript ∗ denotes the conjugate transpose. Let λ1, · · · , λn

be the eigenvalues of the matrix T ∗T . Then λi are real positive numbers
because T ∗T is a Hermitian positive definite matrix (∀x ̸= 0, x∗T ∗Tx =
⟨Tx, Tx⟩ = ∥x∥2⟩0). Let λn be the largest and λ1 be the smallest eigenvalue.
By the Courant-Fischer-Weyl min-max principle, we have

λ1 ≤
w∗T ∗Tw

w∗w ≤ λn,

thus
λ1⟨w,w⟩ ≤ ⟨u,u⟩ ≤ λn⟨w,w⟩.

Finally, we have the strongly well posedness,

E(t) =
∫ ∞

−∞
⟨u,u⟩(x, t) dx ≤ λn

∫ ∞

−∞
⟨w,w⟩(x, t) dx = λn

∫ ∞

−∞
⟨w,w⟩(x, 0) dx

≤ λn

λ1

∫ ∞

−∞
⟨u,u⟩(x, 0) dx = λn

λ1
E(0).

In the examples given so far, the norm of the solution at any time can be
bounded in terms of the norm of the initial condition. In order to illustrate
how things can go wrong, we present now two examples in which this is no
longer the case.

Example 5.4. Consider the backward time heat equation:

ut = −uxx, u(x, 0) = f(x).

In the Fourier space we have:

ût(ω, t) = −(iω)2û(ω, t) = ω2û(ω, t)

and therefore û(ω, t) = f̂(ω)eω2t, which yields the solution in the physical
space as:

u(x, t) = 1
2π

∫ ∞

−∞
eω2tf̂(ω)eiωx dω.

The above expression is well defined only in the extreme case that f is
analytic, which means that there is a positive finite number ω0 such that

106 5. WELL POSEDNESS

f̂(ω) = 0 for all ω > ω0. Nonetheless, in most physical problems the initial
function is not analytic and f̂(ω) does not have a compact support. In these
situations, the integral u(x, t) might not even exist for some values of t.
When f̂(ω) does not tend to zero fast enough to counteract the growth of the
integrand as ω → ∞, then even for finite intervals of time the integral will
not converge and thus there is no solution. We shall say that this problem
is not well posed.

Physically, we can relate the forward and backward heat equations. In
the former one the energy of the system is being lost or dissipated as time
increases, and so the function u(x, t) smooths out loosing information on the
initial condition. The backward problem could be seen as the time-reversed
problem, where energy is now being "pumped’ into the system. The initial
function, therefore, does not give us enough information to bound the energy
at future times.

Example 5.5. Consider now the equation:

∂

∂ t

(
u
v

)
=
(

1 1
0 1

)
∂

∂ x

(
u
v

)
,

u(x, 0) = f1(x)
v(x, 0) = f2(x).

The matrix is already in Jordan form and therefore it cannot be diagonal-
ized, so we cannot represent the system in terms of scalar equations directly.
Transforming the functions, we get in the Fourier space:

∂

∂ t

(
û
v̂

)
= iω

(
1 1
0 1

)(
û
v̂

)

We solve for v̂ first, getting

v̂(ω, t) = eiωtf̂2(ω)

and substituting this function in the differential equation for û we obtain:

∂

∂ t
û(ω, t)− iωû(ω, t) = iωeiωtf̂2(ω)

or, equivalently:
∂

∂ t

[
e− iωtû(ω, t)

]
= iωf̂2(ω)

Integrating this equation we finally get:

û(ω, t) = f̂1(ω)eiωt + iωtf̂2(ω)eiωt

v̂(ω, t) = f̂2(ω)eiωt,

5.1. DEFINITION AND EXAMPLES 107

and so û contains a term that grows linearly on ω. We evaluate now the
energy of this system, using Plancherel’s identity:

E(t) =
∫ ∞

−∞
(|u(x, t)|2 + |v(x, t)|2) dx

= 1
2π

∫ ∞

−∞
(|û(ω, t)|2 + |v̂(ω, t)|2) dω

≤ 2 1
2π

∫ ∞

−∞
(|f̂1(ω)|2 + |f̂2(ω)|2 + t2|ωf̂2(ω)|2) dω

= 2
∫ ∞

−∞
(|u(x, 0)|2 + |v(x, 0)|2) dx+ 2t2

∫ ∞

−∞
| ∂
∂ x

v(x, 0)|2 dx

This implies that if we start with an initial function f2(x) with p continuous
derivatives, we end up with v(x, t) having p−1 continuous derivatives. This
example illustrates a case, which is sort of "in between" the extreme cases
given in the previous examples.

We are now ready to give the formal definitions of well posedness, keeping
in mind the examples seen so far.

Definition 5.2. The Sobolev p-norm of a function f(x) of the vector x =
(x1, · · · , xs), denoted by ∥f∥p is defined by

∥f∥p =

 ∑
α:|α|≤p

∫ ∣∣∣∣∂α f

∂ xα
(x)
∣∣∣∣2
 1

2

.

In particular, if x is a scalar, we have:

∥f∥2p =
∫ ∞

−∞
|f(x)|2 dx+

p∑
k=1

∣∣∣∣∣∂k f

∂ xk
(x)
∣∣∣∣∣
2

dx.

and it should be noted that, in order for the above definition to make sense,
we must assume some suitable conditions on f and its derivatives up to
order p. We shall, however, work with functions that have p continuous
derivatives, so their Sobolev p-norm will be well defined.

Definition 5.3. If f(x) is an n-vector valued function of x = (x1, · · · , xs)
which has continuous derivatives up to order r and which has compact sup-
port, we write f ∈ Cr

0 .

Definition 5.4. The initial value problem

ut(x, t) = P
(
x, t,

∂

∂x

)
u(x, t),

u(x, 0) = f(x),

108 5. WELL POSEDNESS

is said to be weakly well posed if for every f ∈ Cr
0 and for each time T0 > 0

there exists a unique solution u(x, t) which is a classical solution and such
that:

∥u(t)∥ ≤ K(t)∥f∥p, 0 ≤ t ≤ T0, (5.2)

for p ≤ r and K(t) < Ceαt for some positive constants C and α. It is called
strongly well posed (or simply well posed) if (5.2) holds with p = 0, in which
case ∥f∥p = ∥f∥ is just the usual L2-norm.

The initial value problems of Examples 5.1, 5.2 and 5.3 are all strongly
well posed. The problem given in Example 5.5 is weakly, but not strongly
well posed, with p = 1. Finally the problem of Example 5.4 is not well
posed, since there is no integer p for which (5.2) is satisfied.

So far we have considered classical solutions of the initial value problems.
But the concept of ”solution“ may be broadened to include functions u(x, t)
that might fail differentiability at some points. We shall show now that the
definition of well posedness allows natural extension for initial conditions
that are not continuously differentiable and yet (5.2) holds.

Example 5.6. Consider the heat equation with a = 1 in Example 5.2 and
a classical solution will be a function u(x, t) which is differentiable in time
and twice differentiable in space, such that ut = uxx with u(x, 0) = f(x).
On the other hand, we have already evaluated the expression that any such
solutions satisfy in terms of the initial condition f(x), namely:

u(x, t) = 1
2π

∫ ∞

−∞
f̂(ω)e−ω2teiωx dω. (5.3)

where, as usual,
f̂(ω) = 1

2π

∫ ∞

−∞
f(x)e− iωx dx. (5.4)

We may therefore define the solution of the heat equation to be a function
u(x, t) that satisfies (5.3). Notice that (5.4) is well defined even when f(x)
has a finite number of discontinuities, and so is (5.3), in which case u(x, t)
will no longer be a classical solution. As long as f has a bounded L2-norm,
we will have: ∥u(t)∥ ≤ ∥f∥ for all t > 0. We have thus constructed expres-
sion (5.3) which is satisfied by all classical solutions, but does not require
differentiability. From here we were able to extend the concept of a solution
of the heat equation.

More generally, assume that the linear, homogeneous partial differential
equation:

ut = P(x, t, ∂ / ∂ x)u

is strongly well posed. (The case for weak well posedness follows in an
analogous way, replacing the L2-norm by the corresponding Sobolev p-norms

5.1. DEFINITION AND EXAMPLES 109

and the details are left to the reader.) Then for any initial condition on Cr
0

there is a classical solution satisfying (5.2).
Let H be any space of functions such that Cr

0 is dense in H in the L2-
norm (e.g., C∞

0 (R) is dense in H = L2(R)), and let f(x) belong to H. Then
there is a scquence {fn} of functions with fn ∈ Cr

0 for all n and such that
∥f − fn∥ → 0 as n→∞.

Since the problem is well posed, to each fn, there corresponds a function
u(x, t) which solves ut = P(x, t, ∂ / ∂ x)u with initia] condition u(x, 0) =
fn(x). It follows from (5.2) that the sequency is Cauchy in the L2-norm, for
each t⟩0. To prove this, let

vn,m ≡ un(x, t)− um(x, t).

Since the differential equation is linear and homogeneous,

P(x, t, ∂ / ∂ x)vn,m = P(x, t, ∂ / ∂ x)un − P(x, t, ∂ / ∂ x)um

= ∂

∂ t
un −

∂

∂ t
um = (un − um)t = vn,m

t ,

so that vn,m is a solution of the equation with initial condition fn − fm.

fn − fm ∈ Cr
0 ⇒ K(t)∥fn − fm∥,

which holds for each t ≥ 0 and for any integers n,m. Therefore as n,m→∞
we get:

lim
n,m→∞

∥un − um∥ ≤ lim
n,m→∞

K(t)∥fn − fm∥ = 0,

which proves the assertion.
It follows now that for each t, the limit of {un(t)} in the L2-norm exists,

although it may not be continuously differentiable. Define u(x, t) as the
limit limn→∞ un(x, t) for each t and now define u(x, t) to be the solution of
the equation with initial condition u(x, 0) = f(x). Since all limits are in the
L2-norm, it follows that u(x,t) satisfies (5.2):

∥u(t)∥ ≤ lim
n→∞

∥un(x, t)∥ ≤ K(t) lim
n→∞

∥fn(x)∥ = K(t)∥f∥.

Remark 5.3. The concept of Sobolev spaces underlies this type of gener-
alization. Actually, Sobolev spaces are constructed as the complction of the
spaces Cr

0 under a Sobolev p-norm. This way the concept of a solution of
a well posed or weakly well posed problem can be generalized and the corre-
sponding Sobolev space contains all possible initial functions for which that
solution is well defined and such that (5.2) holds. The notions of weak and
strong well posedness are related to the bound of the L2-norm of the solution
u(x, t) in terms of the Sobolev p-norm or L2-norm of the initial condition
f .

110 5. WELL POSEDNESS

All examples seen so far involve constant coefficients. The following two
examples consider cases of variable coefficients. Generally in this situation
we cannot use Fourier transforms to get simpler problems in the Fourier
space, so we have to resort to the so-called energy estimate in order to check
well posedness.

Example 5.7. Consider the scalar hyperbolic equation:

ut = a(x)ux, u(x, 0) = f(x),

where a ∈ Cr
0 , f ∈ C ∈ Cr

0 for r ≥ 2. We define the energy of the system at
time t by the L2-norm of the solution:

E(t) =
∫ ∞

−∞
|u(x, t)|2 dx.

Differentiating E(t) with respect to t, we get:

d

dt
E(t) = 2

∫ ∞

−∞
u(x, t)ut(x, t) dx = 2

∫ ∞

−∞
u(x, t)a(x)ux(x, t) dx

=
∫ ∞

−∞
a(x) ∂

∂ x
[u(x, t)]2 dx.

Integrating by parts and using the fact that a(x) has a compact support we
obtain:

d

dt
E(t) = −

∫ ∞

−∞
ax(x)u2(x, t) dx.

By assumption, a has r ≥ 2continuous derivatives, and all of them have
compact support. Since any continuous function on a compact set is bounded,
we have

sup
x∈R
{ax(x)} ≤ K <∞,

for some constant K, yielding:

d

dt
E(t) ≤ K

∫ ∞

−∞
u2(x, t) dx = KE(t)

which yields the differential inequality d
dtE −KE ≤ 0 or d

dt [e−KtE(t)] ≤ 0.
This implies that e−KtE(t) ≤ E(0) thus E(t) ≤ eKtE(0) for all t ≥ 0. In
terms of the L2-norm, this inequality becomes:

∥u(x, t)∥ ≤ e
K
2 t∥u(x, 0)∥.

This proves that the problem is strongly well posed. Notice that we did
not prove the existence of the classical solution, we simply assumed it, but
methods to prove existence and uniqueness of solutions are beyond the scope
of this text.

5.2. LOWER ORDER TERMS 111

Example 5.8. Consider the scalar partial differential equation:

ut = ∂

∂ x
[a(x)ux], u(x, 0) = f(x),

where a ∈ Cr
0 and a(x) ≥ 0. We define the energy as the L2-norm of the

solution. In order to obtain in this case the appropriate estimate, we multiply
the equation by u(x, t) and integrate by parts to get:

d

dt
E(t) = 2

∫ ∞

−∞
u(x, t)ut(x, t) dx = 2

∫ ∞

−∞
u(x, t) ∂

∂ x
[a(x)ux(x, t)] dx

= −2
∫ ∞

−∞
a(x)[ux(x, t)]2 dx ≤ 0,

where we have used that a has compact support and it is non-negative. There-
fore the energy itself is not increasing, E(t) ≤ E(0) for all t ≥ 0, which
implies that the problem is well posed.

5.2 Lower Order Terms
In the previous section we discussed well posedness of linear, homogeneous
partial differential equations. For more general problems it is often difficult
to characterize well posedness. In this section we address the question of
well posedness of a particular type of problems, relating then to a “simpler”
problem. In some cases the properties of a differential equation are the same
as those of a “perturbation” of the problem, and these are precisely the cases
we shall focus on later in this section, but before we address this subject,
we present an example where the situation is quite different.

Example 5.9. Consider the problem studied in Example 5.5 of the previous
section:

∂

∂ t

(
u
v

)
=
(

1 1
0 1

)
∂

∂ x

(
u
v

)
,

with initial functions u0(x) and v0(x). In the Fourier space we obtain:

∂

∂ t

(
û
v̂

)
= P(iω)

(
û
v̂

)
,

where P(iω) denotes the matrix:

P(iω) = iω

(
1 1
0 1

)
=
(
iω iω
0 iω

)
.

This is not a diagonalizable matrix and, as we have scen, the proble in is
not strongly well posed. Consider now the perturbed problem:

∂

∂ t

(
uε

vε

)
=
(

1 1
0 1

)
∂

∂ x

(
uε

vε

)
+ ε

(
0 0
1 0

)(
uε

vε

)
,

112 5. WELL POSEDNESS

with same initial functions. The new equation involves a lower order term
perturbation and we want to know how the solution of the new problem be-
haves. The ordinary differential equation in the Fourier space now becomes:

∂

∂ t

(
ûε

v̂ε

)
= P

ε(iω)
(
ûε

v̂ε

)
,

where Pε(iω) denotes the matrix:

P
ε(iω) =

(
iω iω
ε iω

)
.

The solution in the Fourier space is given in terms of the exponential matrix
eP

ε(iω)t as: (
ûε(ω, t)
v̂ε(ω, t)

)
= eP

ε(iω)t
(
û0(ω)
v̂0(ω)

)
.

It is well known that the growth of the vector
(
ûε(ω, t)
v̂ε(ω, t)

)
with respect to

ω is related to the growth of eigenvalues of ePε(iω)t. Furthermore, if λε
1(ω)

and λε
2(ω) denote the eigenvalues of Pε(iω), then the eigenvalues of the

exponential matrix ePε(iω)t are eλε
1(ω)t and eλε

2(ω). We have:

λε
1(ω) = iω +

√
εω(i+1)/

√
2, λε

2(ω) = iω −
√
εω(i+1)/

√
2.

If ε = 0, then
∣∣∣eλε

i (ω)t
∣∣∣ = 1 for any ω. If ε ̸= 0, then

∣∣∣eλε
i (ω)t

∣∣∣ cannot be
uniformly bounded on ω. Unboundedness of the eigenvalues implies that the
perturbed problein is not well posed at all. This illustrates the fact that
adding lower order terms may change the behavior of the solution.

However, the situation is far from hopeless, and there is a lot we can say
about lower order term perturbations, provided that the original problein is
strongly well posed. In what follows we shall not be concerned with weakly
well posed problems. Let v(x, t) be the solution of the initial value problem:

vt = P
(
x, t,

∂

∂ x

)
v, v(x, t0) = g(x), (5.5)

where t0 is an arbitrary initial time and v(x, t) is defined for t ≥ t0. We
assume that for any such t0 this problem is strongly well posed. This is
equivalent to assume that there exists a solution operator S(t, t0) with the
following properties:

1. For any t ≥ t0, v(x, t) = S(t, t0)v(x, t0).

2. For any t0, S(t0, t0) is the identity operator.

5.2. LOWER ORDER TERMS 113

3. For all t, t1, t0 s.t. t0 ≤ t1 ≤ t, we have S(t, t0) = S(t, t1)S(t1, t0).

4. For all t ≥ t0, |S(t, t0)| ≤ Kea(t−t0) for some constants K and a.

Theorem 5.1. The Duhamel Principle. Consider the non-homogeneous,
initial value problem:

ut = P
(
x, t,

∂

∂ x

)
u+ F (x, t), u(x, 0) = f(x), (5.6)

where P is the polynomial on ∂
∂ x of degreer r, f ∈ Cr

0 , F (x, t) ∈ Cr
0 for all

t. Then this problem has a unique solution given by:

u(x, t) = S(t, 0)f(x) +
∫ t

0
S(t, τ)F (x, τ)dτ, (5.7)

where S is the solution operator for the strongly well posed homogeneous
problem (5.5) defined above.

Proof. First we prove uniqueness. Assume that u1 and u2 are both solutions
to (5.6). Then their difference v = u1−u2 satisfies (5.5) with initial condition
v(x, 0) = 0. Since (5.5) is a well posed problem, it follows that v(x, t) = 0
and thus u1(x, t) = u2(x, t), yielding uniqueness.

The rest of the proof follows by differentiating directly expression (5.7)
and verifying that it satisfies (5.6). We define first the functions:

v(x, t) = S(t, 0)f(x), w(x, t, τ) = S(t, τ)F (x, τ).

It is clear that v solves the problem (5.5) with initial condition v(x, 0) =
f(x). For any fixed τ , w(r, t, τ) can be viewed as the solution of (5.5) with
initial value g(x) = F (x, τ) starting at time t0 = τ . Therefore:

∂

∂ t
w(x, t, τ) = P

(
x, t,

∂

∂ x

)
w(x, t, τ), w(x, τ, τ) = F (x, τ).

Differentiating now (5.7) with respect to time t and substituting S(t, 0)f(x) =
v and S(t, τ)F (x, τ) = w, we get:

ut = vt + w(x, t, t) +
∫ t

0

∂

∂ t
w(x, t, τ)dτ

= vt + S(t, t)F (x, t) +
∫ t

0

∂

∂ t
w(x, t, τ)dτ

= P

(
x, t,

∂

∂ x

)
v + F (x, t) +

∫ t

0
P

(
x, t,

∂

∂ x

)
w(x, t, τ)dτ

= P

(
x, t,

∂

∂ x

){
v +

∫ t

0
w(x, t, τ)dτ

}
+ F (x, t)

= P

(
x, t,

∂

∂ x

)
u+ F (x, t)

For the initial condition, let t = 0 in (5.7) we get u(x, 0) = f(x).

114 5. WELL POSEDNESS

Before stating the main result on well posedness of a lower order term
perturbation of the problem (5.5), we state and prove a technical lemma.

Lemma 5.1. Assume that the problem (5.5) is strongly (or weakly) well
posed. Then the solution u(x, t) of (5.6) satisfies: for any T > 0 there exist
constants K and a such that:

∥u(t)∥ ≤ Keat

{
∥f∥p + sup

0≤τ≤t
∥F (x, τ)∥p

(
1− e−at

a

)}
, 0 ≤ t ≤ T. (5.8)

Remark 5.4. If (5.5) is weakly well posed, then the solution operator
S(t, t0) satisfies

∥S(t, t0)f∥ ≤ Kea(t−t0)∥f∥p,

for some integer p and any initial function f . Notice that in the proof of
Theorem 5.1 the condition ∥S(t, t0)f∥ ≤ Kea(t−t0)∥f∥ was not used, thus
its conclusion holds also in the case that the original unperturbed problem
is only weakly well posed. If the problem is strongly well posed, we simply
replace the Sobolev p-norms by the L2-norm, both in (5.8) as well as in the
proof that follows.

Proof. The proof of the lemma follows as a straightforward application of
Duhamel’s principle. Taking norms in (2.19) we have:

∥u(t)∥ ≤ ∥S(t, 0)f(x)∥+
∫ t

0
∥S(t, τ)F (τ)∥dτ,

and using the well posedness, we obtain:

∥u(t)∥ ≤ Keat∥f∥p +
∫ t

0
Kea(t−τ)∥F (τ)∥pdτ

≤ Keat∥f∥p +Keat sup
0≤τ≤t

∥F (τ)∥p
∫ t

0
e−aτdτ.

Theorem 5.2. Let the initial value problem (5.5) be strongly well posed and
assume the perturbed problem:

ut = P
(
x, t,

∂

∂ x

)
u+B(x, t)u, u(x, 0) = f(x), (5.9)

has a solution, where f ∈ C∞
0 . Assume also that:

sup
0≤τ≤t

∥B(x, τ)u(τ)∥ ≤ b0∥u(t)∥,

where b0 is a positive constant and t ≥ 0. Then the problem (5.9) is also
strongly well posed.

5.2. LOWER ORDER TERMS 115

Proof. We define the function:

y(x, t) = e−βtu(x, t),

where β ≥ 0 is a real number to be determined later on. Then y satisfies:

∂ y

∂ t
= βy + P(x, t, ∂ / ∂ x)y +B(x, t)y = (P(x, t, ∂ / ∂ x)− β)y +B(x, t)y

Using the Duhamel principle with F (x, t) = B(x, t)y(x, t) we get:

y(x, t) = S̄(t, 0)f(x) +
∫ t

0
S̄(t, τ)B(x, τ)y(x, τ)dτ,

where S̄(t, t0) is now the solution operator of the modified problem:

wt = (P(x, t, ∂ / ∂ x)− β)w.

By the assumption on strong well posedness of (5.5) it follows that S̄ also
satisfes: |S̄(t, τ)| ≤ Ke(α−β)(t−τ) in the operator norm. Therefore:

∥y(t)∥ ≤ Ke(α−β)t∥f∥+K

∫ t

0
e(α−β)(t−τ)b0∥y(τ)∥dτ

≤ Ke(α−β)t∥f∥+Kb0 sup
0≤τ≤t

∥y(τ)∥|1− e
(α−β)t|

|α− β|
.

Now we choose β large enough so that α⟨β and also, given T ≥ 0,

γ ≡ sup
0≤t≤T

Kb0
1− e(α−β)t

β − α
≤ 1

2 ,

then taking the supremum over 0 ≤ t ≤ T , we have:

(1− γ) sup
0≤t≤T

∥y(t)∥ ≤ K∥f∥,

and therefore for all t with 0 ≤ t ≤ T :

∥y(t)∥ ≤ sup
0≤t≤T

∥y(t)∥ ≤ K

1− γ ∥f∥,

which, in terms of u(x, t) = eβty(x, t) yields the inequality:

∥u(x, t)∥ ≤ K

1− γ e
βt∥f∥.

116 5. WELL POSEDNESS

5.3 General results on constant coefficient prob-
lems

Well posedness is often difficult to establish for general problems. Now we
restrict our attention to constant coefficient problems, for which a number of
useful results are available. As usual, we shall present a series of examples
in order to illustrate the formal results and their applications. We have
chosen to summarize the main concepts and theorems for the specific case
of hyperbolic equations.

By constant coefficient problems we mean an initial value problem of the
form (5.1) where the operator P depends neither on x nor on t. That is, we
consider the problem:

ut = P(∂ / ∂ x)u,
u(x, 0) = f(x). (5.10)

Here, P(∂ / ∂ x) represents a polynomial whose coefficients are, in general,
n× n matrices With constant entries, and u(x, t) = (u1(x, t), · · · , un(x, t))T

is a function of x = (x1, · · · , xs) and time t. In the Fourier space, (5.10)
becomes:

ût(ω, t) = P(iω)û(ω, t),
û(ω, 0) = f̂(ω). (5.11)

The matrix P(iω) depends on ω = (ω1, · · · , ωs). Therefore the above equa-
tions represent a system of ordinary differential equations with constant co-
efficients, and ω appears as a parameter. Denote by ⟨ω, x⟩ the inner product∑

i ωixi, then the solution is given by

û(ω, t) = eP(iω)tf̂(ω),

thus
u(x, t) = 1

(2π)s

∫
Rs
eP(iω)tf̂(ω)ei⟨ω,x⟩dω.

Therefore in order to establish conditions for well posedness of the problem
(5.10) we only need to study the properties of eP(iω)t.

Definition 5.5. The matrix P(iω) is called the symbol of the partial dif-
ferential equation it is associated with.

For a vector-valued function u(x, t) = (u1(x, t), · · · , un(x, t))T we denote
by ∥u∥ the L2-norm:

∥u∥2 =
n∑

k=1

∫
Rs
|uk(x, t)|2dx.

5.3. GENERAL RESULTS ON CONSTANT COEFFICIENT PROBLEMS117

The problem of well posedness reduces to the study of the growth of the
matrix eP(iω)t as a function of ω. By the Plancherel’s identity (4.10), we
get

∥u(x, t)∥2 = 1
(2π)s

∥û(ω, t)∥2 = 1
(2π)s

∫
Rs

∣∣∣eP(iω)tf̂(ω)
∣∣∣2 dω

so that

∥u(x, t)∥2 = 1
(2π)s

∥û(ω, t)∥2 ≤ 1
(2π)s

∫
Rs

∥∥∥eP(iω)t
∥∥∥2 ∣∣∣f̂(ω)

∣∣∣2 dω,
where

∥∥∥eP(iω)t
∥∥∥ is the matrix norm of the symbol. If this norm is uniformly

bounded on ω, say
∥∥∥eP(iω)t

∥∥∥ ≤ eαt for some constant α and all values of ω,
then ∥u∥ ≤ eαt∥f∥ which guarantees strong well posedness. We first work
on some examples and later focus on more general results.

Example 5.10. Let u =
(
u1(x, t)
u2(x, t)

)
and consider

∂ u

∂ t
=
(

0 1
1 0

)
∂ u

∂ x
.

The symbol is given by

P(iω) =
(

0 1
1 0

)
(iω).

The eigenvalues of the symbol are ± iω with two eigenvectors
(

1
1

)
and(

1
−1

)
, thus it can be diagonalized by an unitary matrix P(iω) = T

(
iω 0
0 − iω

)
T−1

with T = 1√
2

(
1 1
1 −1

)
. Therefore, eP(iω)t = T

(
eiωt 0

0 e− iωt

)
T−1. Since

T is an unitary matrix (TT ∗ = I), the singular values of eP(iω)t are equal
to 1, thus

∥∥∥eP(iω)t
∥∥∥ = 1. Therefore the IVP for this equation is strongly

wellposed.

Example 5.11. Let u =
(
u1(x, y, t)
u2(x, y, t)

)
and consider

∂ u

∂ t
=
(

1 0
0 1

)
∂ u

∂ x
+
(

0 1
1 0

)
∂ u

∂ y
.

Then the symbol is given by

P(iω) =
(

1 0
0 1

)
iω1 +

(
0 1
1 0

)
iω2 = i

(
ω1 ω2
ω2 ω1

)
.

118 5. WELL POSEDNESS

The eigenvalues are i(ω1∓ω2) with eigenvectors
(

1
1

)
and

(
1
−1

)
. Thus it can

be diagonalized by an unitary matrix P(iω) = T i

(
ω1 − ω2 0

0 ω1 + ω2

)
T−1

with T = 1√
2

(
1 1
1 −1

)
. Therefore, eP(iω)t = T

(
ei(ω1−ω2)t 0

0 ei(ω1+ω2)t

)
T−1.

Since T is an unitary matrix (TT ∗ = I), the singular values of eP(iω)t are
equal to 1, thus

∥∥∥eP(iω)t
∥∥∥ = 1. Therefore the IVP for this equation is strongly

wellposed.

Example 5.12. Consider u =
(
u1(x, y, t)
u2(x, y, t)

)
and

ut =
(

1 0
0 1

)
uxx +

(
0 1
1 0

)
uxy +

(
1 0
0 1

)
uyy.

The symbol is

P(iω) =
(
−ω2

1 − ω2
2 −ω1ω2

−ω1ω2 −ω2
1 − ω2

2

)
with eigenvalues

λ = −ω2
1 − ω2

2 ± ω1ω2 ≤ 0.

The symmetry of the symbol implies that it is diagonalizable and we get

eP(iω)t = T

(
e(−ω2

1−ω2
2−ω1ω2)t 0
0 e(−ω2

1−ω2
2+ω1ω2)t

)
T−1.

Since eP(iω)t is a negative semi-definite matrix, the singular values of eP(iω)t

are equal to its eigenvalues, thus
∥∥∥eP(iω)t

∥∥∥ = e(−ω2
1−ω2

2+|ω1ω2|)t ≤ e0∗t = 1.
Therefore the IVP for this equation is strongly wellposed.

Theorem 5.3. The initial value problem (5.10) is weakly (strongly) well
posed if and only if there exist constants K, α and an integer p independent
of ω, such that ∥∥∥eP(iω)t

∥∥∥ ≤ K(∥ω∥p + 1)eαt.

If p = 0, then the problem is strongly well posed.

Proof. Suppose that
∥∥∥eP(iω)t

∥∥∥ ≤ K(∥ω∥p + 1)eαt holds. Using the fact that
the Sobolev p-norm ∥f∥2p is equivalent to

∫
Rs(∥ω∥p + 1)2|f̂(ω)|2dω and the

Plancherel’s identity, we get:

∥u(x, t)∥ = 1
(2π) s

2
∥û(ω, t)∥ = 1

(2π) s
2

∥∥∥eP(iω)tf̂(ω)
∥∥∥

5.3. GENERAL RESULTS ON CONSTANT COEFFICIENT PROBLEMS119

≤ 1
(2π) s

2
Keαt∥(∥ω∥p + 1)f̂(ω)∥ ≤ K ′eαt∥f∥p.

Denote by A∗ the conjugate transpose of the matrix A. We recall now
that if A and B are two Hermitian matrices (that is, A = A∗ and B = B∗),
we say that A ≤ B if A−B is a negative definite matrix or, equivalently, if
the eigenvalues of A−B are all non-positive.

Theorem 5.4. Suppose that there exists a constant α such that for all values
of ω we have:

P(iω) +P
∗(iω) ≤ αI, (5.12)

then
∥∥∥eP(iω)t

∥∥∥ ≤ eαt for all values of ω, thus the initial value problem (5.10)
is strongly well posed.

Remark 5.5. We are not interested in bounding α, only in the fact that α
does not depend on ω. Also note that condition (5.12) is a sufficient although
not necessary condition for well posedness, as will be made clearer later on.

Proof. Let ϕ(ω, t) denote the inner product

ϕ(ω, t) = ⟨û(ω, t), û(ω, t)⟩ =
n∑

i=1
|ûk(ω, t)|2,

so that the energy is given by

E(t) = 1
(2π)s

∫
Rs
ϕ(ω, t)dω.

We now have

∂ ϕ

∂ t
(ω, t) = ⟨ût(ω, t), û(ω, t)⟩+ ⟨û(ω, t), ût(ω, t)⟩

where ût(ω, t) = P(iω)û(ω, t), thus

∂ ϕ

∂ t
(ω, t) = ⟨P(iω)û, û⟩+ ⟨û,P(iω)û⟩

= ⟨[P(iω) +P
∗(iω)]û, û⟩

≤ α⟨û, û⟩ = αϕ(ω, t)

Since α is independent of ω, we get ϕ(ω, t) ≤ eαtϕ(ω, 0) for all ω, thus

E(t) = 1
(2π)s

∫
Rs
ϕ(ω, t)dω ≤ 1

(2π)s

∫
Rs
eαtϕ(ω, 0)dω = eαtE(0).

120 5. WELL POSEDNESS

The parameter α is associated with the growth of the solution in time.
Therefore negative value of or implies that the energy is decreasing, that is,
the system in this case is dissipative.

Example 5.13. Let x be a scalar and consider u =
(
u1(x, t)
u2(x, t)

)
in the equa-

tion

ut =
(

0 1
1 0

)
ux +

(
2 1
7 π

)
u.

The symbol is given by

P(iω) = iω

(
0 1
1 0

)
+
(

2 1
7 π

)
=
(

2 1 + iω
7 + iω π

)
,

and we have

P(iω) +P
∗(iω) =

(
4 8
8 2π

)
,

which is a constant matrix thus (5.12) is satisfied for large α.

Example 5.14. Let A and B be real symmetric matrices (therefore Hermi-
tian), with A ≤ 0 and B ≥ 0 and consider the problem

ut = Auxxxx +Buyy,

then P = Aω4
1−Bω2

2, which is a real, symmetric matrix. Therefore P(iω)+
P∗(iω) = 2P(iω) ≤ 0, because A ≤ 0 and B ≥ 0, which gives the well
posedness without finding the eigenvalues of P(iω) or eP(iω)t.

Theorem 5.5. The initial value problem (5.10) is strongly well posed if and
only if there exist a Hermitian matrix H(ω) > 0 and a constant α such that

∥H(ω)∥ ≤ K, ∥H−1(ω)∥ ≤ K

for some K > 0 and

H(ω)P(iω) +P
∗(iω)H(ω) ≤ αH(ω). (5.13)

Remark 5.6. Theorem 5.4 is a special case of Theorem 5.5, taking H(ω)
to be the identity. Theorem 5.5 is much stronger, since it states necessary
and sufficient conditions for strong well posedness.

Proof. To show the sufficiency, assume first that (5.13) holds and define an
energy E(t) according to the inner product: ϕ(ω, t) = ⟨û(ω, t), H(ω)û(ω, t)⟩
so that:

E(t) = 1
(2π)s

∫
Rs
ϕ(ω, t)dω.

5.3. GENERAL RESULTS ON CONSTANT COEFFICIENT PROBLEMS121

Then we have
∂ ϕ

∂ t
(ω, t) = ⟨P(iω)û, H(ω)û⟩+ ⟨û,H(ω)P(iω)û⟩

= ⟨[H(ω)P(iω) +P
∗(iω)H(ω)]û, û⟩

≤ α⟨H(ω)û, û⟩ = α⟨û,H(ω)û⟩ = αϕ(ω, t).

Since ∥H(ω)∥ and ∥H−1(ω)∥ are the largest and smallest singular values
of H(ω), and eigenvalues of H(ω) are also its singular values (because it is
positive definite), we have

1
K
≤ λ(H(ω)) ≤ K, ∀ω,

where λ(H(ω)) denotes any eigenvalue of H(ω). By the Courant-Fischer-
Weyl min-max principle, we have

1
K
⟨û, û⟩ ≤ ⟨û, H(ω)û⟩ = ϕ(ω, t) ≤ eαtϕ(ω, 0).

Therefore, using the Courant-Fischer-Weyl min-max principle one more
time, we have

1
K
|û(ω, t)|2 ≤ eαt⟨û(ω, 0), H(ω)û(ω, 0)⟩ ≤ Keαt|û(ω, 0)|2.

Integrating now with respect to ω yields well posedness of the problem.
The proof of the necessity is much more technical. See Theorem 2.3.2 in

[6].

Theorem 5.5 is not very useful in practical applications, since it does not
provide the construction of the matrix H(ω), which nakes it hard to prove
conditions (5.13). The following two results are more useful in practice.

Theorem 5.6. If P(iω) is a normal matrix (a normal matrix means that
P(iω)P∗(iω) = P∗(iω)P(iω)), then the initial value problem (5.10) is well
posed if and only if there exists a constant α such that

Re[λj(ω)] ≤ α,

for all eigenvalues λj(ω) of P(iω).

Proof. Normal matrices are unitarily diagonalizable, thus there is an unitary
matrix T such that P(iω) = TΛT ∗ where Λ is diagonal with eigenvalues of
P(iω) as diagonal entries. Therefore eP(iω) = TeΛtT ∗ where eΛt is a diago-
nal matrix with diagonal entries eλjt. Let λj = aj + i bj with aj , bj ∈ R. Re-
call that

∥∥∥eP(iω)
∥∥∥ is the largest singular value of the matrix eP(iω), which is

the square root of the eigenvalue (with largest magnitude) of eP(iω)(eP(iω))∗.
We have eP(iω)(eP(iω))∗ = Te(Λ+Λ∗)tT ∗ where Λ + Λ∗ is a diagonal matrix
with diagonal entries 2aj . Thus

∥∥∥eP(iω)
∥∥∥ = maxj |ajt| ≤ αt.

122 5. WELL POSEDNESS

Theorem 5.7. The initial value problem (5.10) is weakly well posed if and
only if there exists a constant α such that Re[λj(ω)] ≤ α for all eigenvalues
λj(ω) of P(iω).

See [6] for the proof.

Example 5.15. Consider the normalized Schrödinger equation:

ut = iuxx.

Here we have P(iω) = i(iω)2 = − iω2, therefore: P(iω) + P∗(iω) = 0
which yields strong well posedness. As can be seen from the proof of Theorem
5.4, it turns out that P(iω) +P∗(iω) is related to the time derivative of the
energy:

E(t) =
∫
R

u2(x, t) dx,

and in this system E(t) = E(0) remains constant, that is, it represents a
conservative system.

Example 5.16. Let A,B be two matrices such that A = −A∗ and B = B∗,
and let C be any matrix. Consider the equation:

ut = Auxx +Bux + Cu.

Then we have
P(iω) = −Aω2 + iBω + C,

P(iω) +P
∗(iω) = −ω2(A+A∗) + iω(B −B∗) + C + C∗ = C + C∗

which is independent of ω and so there is a constant α such that P(iω) +
P∗(iω) ≤ αI. Notice that the growth in time depends on the matrix C. If,
for instance, C = 0, then the energy remains constant.

Example 5.17. Consider now the scalar equation:

ut = −uxxxx − uxx + ux + u,

where u(x, t) is a real valued function. P(iω) is therefore just a polynomial:

P(iω) = −ω4 + ω2 + iω + 1,

and it satisfies the inequality:

P(iω) +P
∗(iω) = −2ω4 + 2ω2 + 2 ≤ 4,

so the problem is well posed.

5.4. HYPERBOLIC EQUATIONS 123

5.4 Hyperbolic equations
In this section we shall focus on hyperbolic equations with constant coeffi-
cients given in its general form by the expression:

ut(x, t) =
s∑

j=1
Aj

∂ u

∂ xj
(x, t) (5.14)

u(x, 0) = u0(x),

where x = (x1, ..., xs), u(x, t) = (u1(x, t), · · · , un(t, t))T , and each Aj is an
n× n real matrix.

Definition 5.6. Equation (5.14) is said to be weakly hyperbolic if the symbol

P(iω) = i

s∑
j=1

Ajωj

has purely imaginary eigenvalues. It is called strongly hyperbolic if its has
purely imaginary eigenvalues and if there exists a matrix T (ω) such that

• There exists a constant K such that for all values of ω, ∥T (ω)∥ ≤ K,
and ∥T−1(ω)∥ ≤ K,

• T (ω) diagonalizes P(iω), that is T (ω)−1P(iω)T (ω) = Λ(ω) is a diag-
onal matrix with purely imaginary eigenvalues.

Theorem 5.8. A weakly (strongly) hyperbolic equation is weakly (respec-
tively, strongly) well posed.

Proof. If (5.14) is weakly hyperbolic, then by definition P(iω) has purely
imaginary eigenvalues, thus is weakly well posed, by Theorem 5.7.

Assume now that it is strongly hyperbolic. Since Λ(ω) + Λ∗(ω) = 0, we
have

T (ω)−1
P(iω)T (ω) + [T (ω)−1

P(iω)T (ω)]∗ = 0,

T (ω)−1
P(iω)T (ω) + T (ω)∗

P
∗(iω)[T−1]∗(ω) = 0,

[T−1]∗(ω)T (ω)−1
P(iω) +P

∗(iω)[T−1]∗(ω)T−1(ω) = 0.

Let H(ω) = [T−1]∗(ω)T (ω)−1, then by Theorem 5.5 we get strong well
posedness.

Example 5.18. We consider here the Euler equation for gas dynamics.
Calling ρ the density, u the velocity and p the pressure, the laws of conser-
vation of mass, flow and energy yield:ρu

p


t

= −

u ρ 0
0 u ρ−1

0 ρc2 u


ρu
p


x

124 5. WELL POSEDNESS

where c2 = γp/ρ and γ = 1.4. The above is not a constant coefficient
equation, since the matrix depends on the state variables. Linearizing the
problems around some fixed state (ρ0, u0, p0) we get the problem:

wt = Awx

Where w = (ρ0, u0, p0)T and A is the constant matrix:

A = −

u0 ρ0 0
0 u0 ρ−1

0
0 ρ0c

2
0 u0


For this problem P(iω) = iωA. The eigenvalues of −A are u0, u0 + c0 and
u0−c0. So it has three distinct eigenvalues when c0 is a nonzero real number
and thus it can be diagonalized, yielding strong hyperbolicity. If either p0 or
ρ0 is negative then c0 is purely imaginary, which results in illposedness.

Example 5.19. Consider the system:(
u
v

)
t

=
(

1 1
0 1

)(
u
v

)
x

,

then the symbol

P(iω) = iω

(
1 1
0 1

)
is already in Jordan form. Although its eigenvalues are purely imaginary, it
cannot be diagonalized. This is therefore a weakly hyperbolic equation. This
system is indeed only weakly but not strongly well posed as we discussed in
Example 5.5.

Example 5.20. Consider now the equations(
u
v

)
t

=
(

0 1
−1 0

)(
u
v

)
x

.

The symbol

P(iω) =
(

0 iω
− iω 0

)
is a Hermitian matrix with real eigenvalues. Thus it is neither weakly nor
strongly hyperbolic. In fact, this problem is not well posed at all, since the
eigenvalues ±ω are not bounded. This gives rise to an exponential growth of
the matrix eP(iω)t with respect to ω. The equations above can be rewritten
as the Laplace equation:

ut = vx, vt = −ux

and therefore utt = vxt = vtx = −uxx, which yields utt + uxx = 0. So it is
not well posed for the initial value problem but well posed for boundary value
problem in a bounded space-time domain.

5.4. HYPERBOLIC EQUATIONS 125

Lemma 5.2. If

ut(x, t) =
s∑

j=1
Aj

∂ u

∂ xj
(x, t)

u(x, 0) = u0(x),

is weakly (strongly) well posed, then so is the system

ut(x, t) = −
s∑

j=1
Aj

∂ u

∂ xj
(x, t)

u(x, 0) = u0(x).

The proof of the lemma is straightforward, since the conditions on the
eigenvalues of P(iω) (which is a purely imaginary matrix in this case) for
well posedness do not depend on the sign of the matrices Aj . This is equiv-
alent to time reversal, which means that in hyperbolic systems knowledge of
the "present" (t = 0) gives as much information about the "future" (t < 0)
as it gives about the "past" (t < 0). Recall that this is not the situation in
all cases, e.g., heat equations, for which the time reversal leads to a blow-up
of the solution.

Definition 5.7. We call system (5.14) is strictly hyperbolic if all eigenvalues
of the symbol P(iω) are purely imaginary and are distinct from each other.

Definition 5.8. We call system (5.14) symmetric hyperbolic if there exists a
constant real matrix S such that Bj = S−1AjS are real symmetric matrices,
for all j.

Theorem 5.9. If the system (5.14) symmetric hyperbolic, then it is also
strongly well posed

Proof. If the system is symmetric hyperbolic, then ∑
j Bjωj is real sym-

metric thus has real eigenvalues, thus S−1P (iω)S has purely imaginary
eigenvalues, and so does P (iω). So symmetry at least implies the weak
hyperbolicity. To see why it is also strongly well posed, consider the matrix
S−1P (iω)S which satisfes

S−1P (iω)S + [S−1P (iω)S]∗ = 0,

thus
S−1P (iω)S + S∗P ∗(iω)(S−1)∗ = 0,

[S∗]−1S−1P (iω) + P ∗(iω)[S−1]∗S−1 = 0.
Notice that [S∗]−1 = [S−1]∗, thus we find a constant matrix H = [S∗]−1S−1

such that
HP (iω) + P ∗(iω)H = 0.

126 5. WELL POSEDNESS

If the equation (5.14) is symmetric hyperbolic, then it is also strongly
hyperbolic, see [4, 6]. Notice, though that a strictly hyperbolic equation
might not be symmetric hyperbolic and vice versa

Suppose now that equation (5.14) is symmetric hyperbolic. It is not
straightforward to calculate the matrix S that symmetrizes all matrices Aj .
We give now a procedure shown how this matrix can be constructed.

Method for Symmetrizing

Let the matrices A1, ..., As, be given and suppose that there exists the ma-
trix S such that all Bj = S−1AjS are symmetric. Then for each integer j,
Bj can in turn be diagonalized, although in general there will be a different
transformation for each Bj . Let U1 be the orthogonal, unitary transforma-
tion that diagonalizes B1, that is,

U∗
1B1U1 = Λ1,

with Λ1 diagonal, and define Cj , for j ≥ 2 by:

Cj = U∗
1BjU1,

Since Bj is a real symmetric matrix, then Bj = B∗
j and therefore C∗

j =
U∗

1B
∗
jU1 = U∗

1BjU1 = Cj is also symmetric for each j. From this ob-
servation we can now conclude that if the matrices A1, · · · , As can all be
symmetrized by one matrix S, then one matrix S̄ = SU1 can diagonalize A1
while symmetrizing Aj for j = 2, · · · , s. Let us assume now that we do not
know explicitly S and U1 and let S̄ be a matrix such that

S̄−1A1S̄ = Λ1,

and note that S̄ is determined from the above requirement up to multipli-
cation by a diagonal matrix. Once S̄ is chosen, one evaluates the matrices:

Āj = S̄−1AjS̄

and now it remains to check whether all these matrices Ā can be symmetrized
by a single diagonal matrix D with diagonal entries d1, · · · , n. Try to find
the scalars d1, · · · , n, such that D−1ĀjD, j = 2, ..., s are all symmetric. If
there exists such a matrix D, then it is possible to symmetrize all Aj with a
single matrix S and the problem is symmetric hyperbolic. If such a matrix
D does not exist, then the problem is not symmetric hyperbolic.

Example 5.21. Consider one form of the two dimensional Euler equation
for gas dynamics on a plane, and denote now the velocity components by u

5.4. HYPERBOLIC EQUATIONS 127

and v:
ρ
u
v
p


t

= −


u ρ 0 0
0 u 0 ρ−1

0 0 u 0
0 ρc2 0 u



ρ
u
v
p


x

−


v 0 ρ 0
0 v 0 0
0 0 v ρ−1

0 0 ρc2 v



ρ
u
v
p


y

For the linearized problem, where we evaluate the matrices at some fixed
value of the state variables, say (ρ0, u0, v0, p0), we have:

P(iω) = i(ω1A1 + ω2A2),

where

A1 =


u0 ρ0 0 0
0 u0 0 ρ−1

0
0 0 u0 0
0 ρ0c

2
0 0 u0

 , A2 =


v0 0 ρ0 0
0 v0 0 0
0 0 v0 ρ−1

0
0 0 ρ0c

2
0 v0


Now the eigenvalues of A1 are: u0, u0, and u0 ± c0 those of A2 are: v0, v0,
and v0 ± c0. Therefore the equation is not strictly hyperbolic. Nonetheless,
the matrix:

S̄ =


0 ρ0 1 −ρ0
0 c0 0 c0√
2c0 0 0 0
0 ρ0c

2
0 0 −ρ0c

2
0


diagonalizes A1 and symmetrizes A2, so the problem is symmetric hyperbolic
and thus it is strongly well posed.

128 5. WELL POSEDNESS

6

Ordinary differential
equations

6.1 Exact solutions

• For the constant coefficient linear system

u′(t) = Au(t),

the solution to the initial value problem is

u(t) = eA(t−t0)u(t0).

• For the nonhomogeneous linear system

u′(t) = Au(t) + g(t),

the solution formula is known as Duhamel’s principle

u(t) = eA(t−t0)u(t0) +
∫ t

t0
eA(t−τ)g(τ) dτ.

• For the nonlinear case,

u′(t) = f(u, t), u(0) = a,

the Lipschitz continuity on f can guarantee the existence and unique-
ness of the solution. A function f(u) is Lipschitz continuous w.r.t u if
|f(u)− f(v)| ≤ L|u− v| for some constant L. For instance, f(u) = |u|
is Lipschitz continuous because ||x| − |y|| ≤ |x− y|.

129

130 6. ORDINARY DIFFERENTIAL EQUATIONS

6.2 Some numerical methods

Consider solving u′(t) = f(u, t), u(0) = a with a uniform mesh in time
0 = t0 < t1 < · · · tn < · · · and tn = n∆t. Let Un be the numerical solution
at time tn. Here are a few standard numerical methods:

• Forward Euler
Un+1 = Un + ∆tf(Un, tn).

• Backward Euler

Un+1 = Un + ∆tf(Un+1, tn+1).

• Trapezoidal method

Un+1 = Un + ∆tf(Un, tn) + f(Un+1, tn+1)
2 .

• Midpoint method (also called leapfrog method)

Un+1 − Un−1

2∆t = f(Un, tn).

• A second order backward differentiation formula (BDF) method

3Un − 4Un−1 + Un−2

2∆t = f(Un, tn)

• A second order explicit Runge-Kutta method

U∗ = Un + 1
2∆tf(Un, tn)

Un+1 = Un + ∆tf(U∗, tn + 1
2∆t).

Remark 6.1. The BDF method and the leapfrog method are multi-step
methods, for which the initial conditions must be generated by other meth-
ods. For instance, given the initial value U0 = u(0), to start the computation
3U2−4U1+U0

2∆t = f(U2, t2), we still need U1, which can be generated by using
forward Euler on a much finer mesh for the time interval [0,∆t].

6.3 Truncation errors

The local truncation error (LTE) is defined similarly as before: it is the
residue of the scheme (in the form which recovers the differential equation

6.4. CONVERGENCE OF THE FORWARD EULER’S METHOD 131

u′ − f(u, t) = 0 as ∆t → 0) after replacing the numerical solution by the
exact solution. For instance, the LTE of the leapfrog method is

τn = u(tn+1)− u(tn−1)
2∆t − f(u(tn), tn)

=
[
u′(tn) + 1

6∆t2u′′′(tn) +O(∆t4)
]
− u′(tn) = 1

6∆t2u′′′(tn) +O(∆t4).

If the local truncation error of a scheme is O(∆tp), we say that the
scheme is consistent of order p.

6.4 Convergence of the forward Euler’s method

Let T be a given terminal time and assume N = T
∆t . We say the scheme is

convergent if lim∆t→0 U
N = u(tN). The scheme is convergent of order p if

the global error en = Un − u(tn) = O(∆p) for n = 1, 2, · · · , N .

6.4.1 Linear problems

Now we prove the convergence of the forward Euler method solving u′ =
λu, u(0) = a with the exact solution as u(t) = aeλt. We have

Un+1 = Un + ∆tλUn = (1 + ∆tλ)Un,

thus

Un+1 = (1+∆tλ)Un = (1+∆tλ)2Un−1 = (1+∆tλ)n+1U0 = a(1+∆tλ)n+1.

So we want lim∆t→0(1 + ∆tλ)N = eλT which is equivalent to limN→∞(1 +
T
N λ)N = eλT . By the change of variable N = N/(Tλ), it becomes

lim
N→∞

[
(1 + 1

N
)N
]λT

= eλT .

To obtain the global error en = Un − u(tn), consider the LTE

τn = u(tn+1)− u(tn)
∆t − λu(tn) = 1

2∆tu′′(tn) +O(∆t2)

which implies
u(tn+1) = (1 + ∆tλ)u(tn) + ∆tτn,

thus
en+1 = (1 + ∆tλ)en −∆tτn.

132 6. ORDINARY DIFFERENTIAL EQUATIONS

Therefore,

en+1 = (1 + ∆tλ)en −∆tτn

= (1 + ∆tλ)((1 + ∆tλ)en−1 −∆tτn−1)−∆tτn

= · · ·

= (1 + ∆tλ)n+1e(0)−∆t
n∑

m=1
(1 + ∆tλ)n−m+1τm

= −∆t
n∑

m=1
(1 + ∆tλ)n−m+1τm

With the fact |1 + ∆tλ| ≤ e∆t|λ|, we have

(1 + ∆tλ)n−m+1 ≤ e(n−m+1)∆t|λ| ≤ en∆t|λ| ≤ eT |λ|.

So we get

|en| ≤ eT |λ|
(

∆t
n∑

m=1
|τm|

)
≤ eT |λ|n∆t max

1≤m≤n
|τm| ≤ eT |λ|T max

1≤m≤n
|τm| = O(∆t)

6.4.2 Nonlinear problems

Now consider solving u′(t) = f(u) and f satisfies the Lipschitz continuity
|f(u) − f(v)| ≤ L|u − v|. For instance, if f(u) = |u| then L = 1; if f(u) =
sin(2u) then L = 2. We have

Un+1 = Un + ∆tf(Un),

τn = u(tn+1)− u(tn)
∆t − f(u(tn)) = 1

2∆tu′′(tn) +O(∆t2),

and
u(tn+1) = u(tn) + ∆tf(u(tn)) + ∆tτn.

Therefore
en+1 = en + ∆t (f(Un)− f(u(tn)))−∆tτn.

The Lipschitz continuity implies

|f(Un)− f(u(tn))| ≤ L|Un − u(tn)| = L|en|,

thus

|en+1| ≤ |en|+ ∆tL|en|+ ∆t|τn| = (1 + ∆tL)|en|+ ∆t|τn|,

from which we can show by induction that

|en| ≤ (1 + ∆tL)n|e0|+ ∆t
n∑

m=1
(1 + ∆tL)n−m|τm−1|.

Assuming |e0| = 0, we get |en| ≤ eLTT max1≤m≤n |τm−1| = O(∆t).

6.5. 0-STABILITY 133

6.5 0-stability
We can define a more abstract concept 0-stability (0 refers to the stability
when ∆t→ 0) to conclude what we have seen for the convergence of forward
Euler’s method.

Consider solving a nonlinear equation u′ = f(u, t) with u(0) = a. Let
N∆t denote a difference scheme operator on any fuction y defined on the
mesh points tn (we say y is a mesh function). For example, the forward
Euler operator is

N∆ty(tn) = y(tn+1)− y(tn)
∆t − f(y(tn), tn).

Definition 6.1. A scheme is 0-stable if there are positive constants K and
h0 such that for any two mesh functions x and z with ∆t ≤ h0,

|x(tn)−z(tn)| ≤ K
[
|x(0)− z(0)|+ max

1≤m≤N
|N∆tx(tm)−N∆tz(tm)|

]
, 1 ≤ n ≤ N.

If we choose the mesh function x to be the numerical solution Un and
z to be the exact solution u(tn) in the definition above, then 0-stability
simply says that the global error of the scheme has the same order as the
local truncation error. Thus we have following fact

consistency+0-stability ⇒ convergence.

6.6 Absolute stability
The 0-stability is the "mathematical stability" to guarantee convergence. In
practice, it is not sufficient to ensure the numerical stability. To understand
the importance of numerical stability, consider the IVP for the scalar test
equation u′ = λu and u(0) = u0 with λ = a+ i b where a, b are real numbers.
The exact solution is u(t) = e(a+i b)tu0:

• If a > 0, then the solution is unstable in the sense that lim
t→+∞

|u(t)| =
+∞.

• If a = 0, then the solution oscillates/circles around the origin as time
evolves.

• if a < 0, then the solution is stable in the sense that lim
t→+∞

|u(t)| = 0.

Now we focus on the stable case and consider the forward Euler scheme:
Un+1 = (1 + ∆tλ)Un. The exact solution satisfies |u(tn+1)| ≤ |u(tn)|
thus we would like to have the same property for our numerical solution
|Un+1| ≤ |Un|, which we call absolute stability. For forward Euler, the ab-
solute stability requires |1 + ∆tλ| ≤ 1.

134 6. ORDINARY DIFFERENTIAL EQUATIONS

Let us see what happens if we do not have the absolute stability. Let u0 =
0 then the exact solution u(t) = 0. Assume the numerical initial condition
is U0 = 10−15 due to the round-off error in double precision floating point
computation. If |1 + ∆tλ| = c > 1, then UN = (1 + ∆tλ)NU0 thus |UN | =
cN |U0| → +∞ when ∆t→ 0.
Definition 6.2. For a given numerical method, the region of absolute
stability (also called stability region) is that region of the complex z plane
such that applying the method for the equation u′ = λu, with z = λ∆t from
within this region, yields an approximate solution satisfying the absolute
stability requirement |Un+1| ≤ |Un|.

So the region of absolute stability for forward Euler is {z : |1 + z| ≤ 1}
which is a disk of radius 1 with −1 as origin.

Consider backward Euler method Un+1 = Un +∆tλUn+1. Then Un+1 =
1

1−∆tλU
n and the absolute stability requires |1− z| ≥ 1.

For the trapezoidal method, the stability region is {z : |2 + z| ≤ |2− z|,
which is the whole left plane including the imaginary axis.
Definition 6.3. A method is said to be A-stable if its region of absolute
stability contains the entire left plane ∆tRe(λ) < 0.

The backward Euler method is A-stable and the forward Euler is not.
If λ is real and negative, a A-stable method is numerically stable with any
positive time step ∆t, but the forward Euler is stable only when ∆t ≤ − 2

λ .
For the trapezoidal method, we have

Un+1 = Un + ∆tλU
n + λUn+1

2 ,

thus Un+1 = 1+ 1
2 λ∆t

1− 1
2 λ∆t

Un. Therefore its stability region is {z : |2+z|
|2−z| ≤ 1},

which is A-stable.

6.7 Method of lines
Linear systems of ODE naturally arise in solving PDE. For example, consider
solving the following initial boundary value problem

ut = uxx, x ∈ (0, 1), u(0) = u(1) = 0, u(x, 0) = f(x). (6.1)
We first discretize the spatial variable x on a uniform grid xi = i∆x (i =
1, · · · ,M) with ∆x = 1

M+1 , then we get an ODE system

U ′
i(t) = 1

∆x2 (Ui−1(t)− 2Ui(t) + Ui+1(t)),

or the matrix-vector form U′(t) = − 1
∆x2KU. Then we can use a numerical

method for ODE to solve this system. Such an approach is called method
of lines (MOL) discretization of the PDE. The ODE system obtained above
is called a semidiscrete method,

6.8. A-STABILITY IN SOLVING LINEAR SYSTEMS 135

6.8 A-stability in solving linear systems

Consider solving u′(t) = Au(t) with a constant diagonalizable matrix A =
TΛT−1. Take forward Euler method as an example, we have

Un+1 = Un + ∆tAUn.

Now we analyze what the stability region implies by consider the change of
variable W = T−1U. Then the scheme above is equivalent to

Wn+1 = Wn + ∆tΛWn.

Recall in Chapter 5, by Courant-Fischer-Weyl min-max principle, we
use the largest and smallest eigenvalues of T ∗T to estimate ∥U∥/∥W∥. The
eigenvalues of T ∗T are preciously the square of singular values of T ∗T . A
different and simpler approach is to use ∥U∥ = ∥TW∥ ≤ ∥T∥∥W∥ and
∥W∥ = ∥T−1U∥ ≤ ∥T−1∥∥U∥. Notice that ∥T∥ and ∥T−1∥ are the largest
and smallest singular values.

If |1 + ∆tλi| ≤ 1 then ∥Wn∥ ≤ ∥W 0∥ thus ∥Un∥ ≤ ∥T∥∥T−1∥∥U0∥.
By considering the SVD of T , we can see that ∥T∥∥T−1∥ is the ratio of
the largest and smallest singular values of T . This ratio is also called the
condition number of the matrix T . In general condition number may depend
on the size of U, which is huge in a semi discrete method solving PDEs.
Fortunately, if A is real symmetric or complex Hermitian, then we can pick
orthonormal eigenvectors so that ∥T∥ = ∥T−1∥=1.

Example 6.1. Consider solving (6.1) in Section 6.7. The semidiscrete
method is U′(t) = − 1

∆x2KU. The matrix A = − 1
∆x2K with eigenvalues

− 1
∆x2 (2 − 2 cos(iπ 1

M+1)) (i = 1, · · · ,M), where M is the number of grid
points for spatial discretization. Thus forward Euler is stable if

∆t ≤ 1
2∆x2.

Example 6.2. Consider solving the wave equation with periodic boundary
conditions

ut = ux, x ∈ (0, 1), u(0) = u(1), u(x, 0) = f(x). (6.2)

Let us approximate the spatial derivative by the centered difference:

U ′
i(t) = 1

2∆x(Ui+1(t)− Ui−1(t)),

on the spatial grid points xi = i∆x (i = 1, · · · ,M) and ∆x = 1
M . The

136 6. ORDINARY DIFFERENTIAL EQUATIONS

semidiscrete method is U′(t) = AU, with

A = 1
2∆x



0 1 −1
−1 0 1

−1 0 1
.

−1 0 1
1 −1 0


.

The eigenvectors of A are the DFT matrix because A is a circulant ma-
trix. The eigenvalues of A are either zero or purely imaginary because A
is skew symmetric. (What are the eigenfunctions to the eigenvalue problem
u′ = λu, u(0) = u(1)?) Forward Euler is not stable for any nonzero time
step because its stability region does not contain any nonzero part of the
imaginary axis.

6.9 Stiffness
An IVP is stiff if the step size needed to maintain stability of the forward
Euler method is much smaller than the step size required to represent the
solution accurately. In Example 6.1, the stability requires ∆t ≤ ∆x2 while
we only need ∆t = O(∆x) obtain the first order accuracy as ∆x→ 0.

The following is an example in which a time step constraint is derived
from accuracy requirement.

Example 6.3. The harmonic oscillator

u′′ + ω2u = 0, u(0) = 1, u′(0) = 0,

has the solution u = cos(ωt). If the frequency ω is high, ω ≫ 1 , then the
derivatives grow larger and larger, because

∥u(p)∥∞ = ωp

The local truncation error of a discretization method of order p is at least

O(∆tpωp).

For instance, the centered difference would be second order accurate and the
leading term in the local truncation error is 1

12∆t2u(4) = 1
12∆t2ω4 cos(ωt)

This means that to recover an oscillatory solution u(t) accurately, we need
to at least require

∆t < 1
ω2 ,

regardless of the order of the method. In fact, for ∆t > 1
ω2 , increasing the

order of the method as such is useless.

6.10. RUNGE-KUTTA METHODS 137

6.10 Runge-Kutta methods
High order methods include the linear multistep methods, and Runge-Kutta
methods which are one-step methods. First we look at a few examples of
Runge-Kutta methods for solving u′(t) = f(u, t) and how they are derived.

Example 6.4. If we use the midpoint rule for the integral in

u(tn+1) = u(tn) +
∫ tn

tn+1
f(u, t) dt,

we get an implicit Runge-Kutta method:

Un+1 = Un + ∆tf
(
Un+1 + Un

2 , tn+ 1
2

)
.

If we approximate Un+1+Un

2 by U∗ = Un + 1
2∆tf(Un, tn), we obtain the

explict midpoint method (a second order accurate Runge-Kutta method):

U∗ = Un + 1
2∆tf(Un, tn)

Un+1 = Un + ∆tf(U∗, tn + 1
2∆t).

Even tough U∗ is only first order accurate, Un+1 becomes second order ac-
curate because f(U∗, tn + ∆t) is multiplied by ∆t when computing Un+1. To
check the local truncation error, replace only Un and Un+1 in the scheme.
For convenience, let u denote u(tn) and f denote f(u(tn), tn)), then we have

U∗ = u(tn) + 1
2∆tf(u(tn), tn) = u+ 1

2∆tf

and

τn =u(tn+1)− u(tn)
∆t − f(U∗, tn + 1

2∆t)

=u′(tn) + 1
2u

′′(tn)∆t+ 1
6u

′′′(tn)∆t2

−
[
f + 1

2∆t (fuf + ft) + 1
2

(1
2∆t

)2
(fuuf

2 + 2ftuf + ftt)
]
.

Thus τn = O(∆t2) because the exact solution u satisfies

u′ = f

u′′ = ∂

∂ t
f = fuu

′ + ft.

The obtained explicit midpoint method gives us a first real taste of the
original Runge-Kutta idea: a higher order is achieved by repeated function
evaluations of f within the interval [tn, tn+1].

138 6. ORDINARY DIFFERENTIAL EQUATIONS

Example 6.5. If we use the trapezoidal rule for the integral, then we get
an implicit scheme

Un+1 = Un + 1
2∆tf(Un, tn) + 1

2∆tf(Un+1, tn+1).

If approximating Un+1 by forward Euler, we get the explicit trapezoidal
method (another explicit two-stage Runge-Kutta method of order two):

U∗ = Un + ∆tf(Un, tn)

Un+1 = Un + 1
2∆tf(Un, tn) + 1

2∆tf(U∗, tn+1).

Example 6.6. A very popular fourth order Runge-Kutta method is related
to the Simpson’s quadrature rule:

u(tn+1)−u(tn) ≈ ∆t
[1

6f(u(tn), tn) + 4
6f(u(tn + 1

2∆t), tn + 1
2∆t) + 1

6f(u(tn+1), tn+1)
]
.

The scheme is given as

U (1) = Un

U (2) = Un + 1
2∆tf(U (1), tn)

U (3) = Un + 1
2∆tf(U (2), tn+ 1

2
)

U (4) = Un + ∆tf(U (3), tn+ 1
2
)

Un+1 = Un + 1
6∆t

[
f(U (1), tn) + 2f(U (2), tn+ 1

2
) + 2f(U (3), tn+ 1

2
) + f(U (4), tn+1)

]
,

where tn+ 1
2

= tn + 1
2∆t.

6.10.1 Order of accuracy

A general s-stage Runge-Kutta method (which may not be s order accurate)
can be written as

U (i) = Un + ∆t
s∑

j=1
aijf(U (j), tn + cj∆t)

Un+1 = Un + ∆t
s∑

i=1
bif(U (i), tn + ci∆t),

which can be represented conveniently in a shorthand notation called Butcher
tableau:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

cs as1 as2 · · · ass

b1 b2 · · · bs

6.10. RUNGE-KUTTA METHODS 139

Examples:

• Forward Euler:

0 0
1

• One-parameter family of second order methods:

0 0 0
α α 0

1− 1
2α

1
2α

For α = 1, we have the explicit trapezoidal method, and for α = 1
2 it

is the explicit midpoint method.

• One-parameter families of third order 3-stage methods:

0 0 0 0
2
3

2
3 0 0

2
3

2
3 - 1

4α
1

4α 0
1
4

3
4 − α α

• The fourth order Runge-Kutta:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Consistency requires ∑s
j=1 aij = ci and ∑s

i=1 bi = 1.
We see that there are s-stage explicit Runge-Kutta methods of order s,

at least for s ≤ 4. One may wonder if it is possible to obtain order p > s ,
and if it is possible to always maintain at least p = s. The answers are both
negative. An explicit Runge-Kutta method can have at most order s, i.e.,
p ≤ s. For explicit s-stage Runge-Kutta method, we have

number of stages 1 2 3 4 5 6 7 8 9 10
attainable order 1 2 3 4 4 5 6 6 7 7

140 6. ORDINARY DIFFERENTIAL EQUATIONS

6.10.2 0-stability and convergence

Since Runge-Kutta methods are one-step methods, the discussion of 0-
stability will be very similar to forward Euler for explicit Runge-Kutta meth-
ods (Implicit Function Theorem is needed for implicit schemes).

Consider solving the nonlinear equation u′ = f(u) where f is Lip-
conitinuous w.r.t u with Lipschitz constant L. The one-step method takes
the form

Un+1 = Un + ∆tΨ(Un, tn,∆t),
then Ψ is Lip-continuous w.r.t. Un with Lip-constant L′.

For example, for the explicit midpoint method we have

Un+1 = Un + ∆tf
(
Un + 1

2∆tf(Un)
)
,

u(tn+1) = u(tn) + ∆tf
(
u(tn) + 1

2∆tf(u(tn))
)

+ ∆tτn.

Subtracting these two equations, we get

|en+1| ≤ |en|+ ∆tL|en + 1
2∆t (f(Un)− f(u(tn))) |+ ∆t|τn|

≤ |en|+ ∆tL|en|+ ∆tL1
2∆tL|en|+ ∆t|τn|

= (1 + ∆tL+ 1
2∆t2L2)|en|+ ∆t|τn|

= (1 + ∆tL′)|en|+ ∆t|τn|,

where L′ = L+ 1
2∆t2L. The rest will be similar to Section 6.4.2.

6.10.3 Absolute stability of explicit Runge-Kutta methods

Consider the test equation u′ = λu and an explicit s-stage Runge-Kutta
method of order p with a Butcher tableau

c A

bT

The s× s matrix A is lower triangular thus As = 0. Let U =


U (1)

U (2)

...
U (s)

 , and

e =


1
1
...
1

. Then the scheme can be written as

U = Une + ∆tλAU,

Un+1 = Un + ∆tλbT U.

6.10. RUNGE-KUTTA METHODS 141

Thus we obtain

Un+1 = Un + ∆tλbT (I −∆tλA)−1Une

=
[
1 + zbT (I − zA)−1e

]
Un

=
[
1 + zbT (I + zA+ · · ·+ zs−1As−1)e

]
Un.

Here we use the fact that (I− zA)(I+ zA+ · · ·+ zkAk) = I− zk+1Ak+1 = I
if k ≥ s− 1. Let R(z) = 1 + zbT (I + zA+ · · ·+ zs−1As−1)e then

R(z) = 1 + z + z2

2! + · · ·+ zp

p! +
s∑

j=p+1
zjbTAj−1e.

To prove it, notice that the exact solution satisfies u(tn+1) = e∆tλu(tn) =
ezu(tn) = (1 + z + z2

2! + · · ·+ zp

p! + · · ·)u(tn). And the local truncation error
is of order p implies u(tn+1) − R(z)u(tn) = O(∆tp+1) thus we must have
R(∆tλ)− e∆tλ = O(∆tp+1) in an p-th order accurate method.

Remark 6.2. A byproduct of this discussion is a collection of necessary
conditions for constructing an explicit p-th order Runge-Kutta method:

bT e =
s∑

i=1
bi = 1

bTAe = 1
2

bTA2e = 1
3!

...

bTAp−1e = 1
p!

The stability region is defined by |R(z)| = 1. To plot the region, there
are at least two methods:

• Find solutions to R(z) = ei θ for θ ∈ [0, 2π] which will give the bound-
ary curve of the stability region. We sample θ at uniform N points,
i.e., consider θi = (i − 1)2π

N for i = 1, 2, · · · , N . For θ1 = 0, the solu-
tion to R(z) = 1 is z1 = 0. To solve R(zj) = ei θj (j ≥ 2), we can use
Newton’s method with zj−1 as an initial guess. This is an elementary
example of continuation method.

• Brutal force method: use enough uniform grid points zij on the com-
plex plane, mark/color the point if |R(zij)| ≤ 1.

142 6. ORDINARY DIFFERENTIAL EQUATIONS

Remark 6.3. We can also use root function in MATLAB to find all s roots
of the polynomial R(z)− ei θ. If s >= 5, there is no explicit polynomial root
formula, implied by the Fundamental Theorem of Galois theory. So how can
MATLAB still find all roots?

In particular, if s = p (possible only for s = 1, 2, 3, 4), then we get

R(z) = 1 + z + z2

2! + · · ·+ zs

s! .

For fixed s ≤ 4, explicit s-stage methods of order s are not unique but they
always have the same stability region! See Figure 6.1 for the stability region
of Runge-Kutta methods.

-2 -1 0
-1.5

-1

-0.5

0

0.5

1

1.5
Adams-Bashforth

-6 -4 -2 0
-4

-3

-2

-1

0

1

2

3

4
Adams-Moulton

-10 0 10 20 30

-20

-10

0

10

20

Backward Differentiation

-4 -2 0 2

-3

-2

-1

0

1

2

3

Runge-Kutta

Figure 6.1: Stability region boundary curves for methods of increasing or-
der colored by yellow, violet, green and blue. The Runge-Kutta methods
are explicit s-stage with order s. For Adams and Runge-Kutta methods,
the region is enclosed by the curve. For backward differentiation formulae
methods, the region is outside of the curve. For Adams-Moulton, yellow
curve is the third order method. For the other three methods, yellow curve
is the first order method (forward or backward Euler).

We can also see that explicit RK methods cannot be A-stable.

6.11. LINEAR MULTISTEP METHODS 143

6.11 Linear multistep methods
Let Fn denote f(Un, tn). For solving the equation u′ = f(u, t), a general
linear multistep method can be written as

k∑
j=0

αjU
n+1−j = ∆t

k∑
j=0

βjF
n+1−j . (6.3)

The scheme is linear w.r.t. each fn (it is nonlinear in Runge-Kutta methods).
This is why it is called linear multistep methods.

The normalization α0 = 1 is often assumed to fix the scale factor. The
scheme is explicit if β0 = 0.

Linear multistep methods typically come in families. The most popular
for nonstiff problems is the Adams family and the most popular for stiff
problems is the BDF family.

6.11.1 Adams methods

Given ODE u′ = f(u, t), we can consider the integral form

u(tn+1) = u(tn) +
∫ tn+1

tn

f(u(t), t) dt.

The k-step explicit Adams method is obtained by interpolating f through
the previous points t = tn, tn−1, · · · , tn−k+1. Adams methods are the most
popular among explicit multistep methods. A simple exercise in polynomial
interpolation yields the formulae

Un+1 = Un + ∆t
k∑

j=1
βjF

n+1−j ,

with

βj = (−1)j−1
k−1∑

i=j−1

(
i

j − 1

)
γi, γi = (−1)i

∫ 1

0

(
−s
i

)
ds,

where the binomial coefficients are
(
s
i

)
= s(s−1)···(s−i+1)

i! ,

(
s
0

)
= 1. This is

called Adams-Bashforth, in which the local truncation error turns out to be
Cp+1∆tpu(p+1)(tn) +O(∆tp+1), where p = k.

Examples of Adams-Bashforth methods:

k = 1 : Un+1 = Un + ∆tFn

k = 2 : Un+1 = Un + ∆t(3
2F

n − 1
2F

n−1)

k = 3 : Un+1 = Un + ∆t(23
12F

n − 16
12F

n−1 + 5
12F

n−2)

k = 4 : Un+1 = Un + ∆t(55
24F

n − 59
24F

n−1 + 37
24F

n−2 − 9
24F

n−3)

144 6. ORDINARY DIFFERENTIAL EQUATIONS

Unfortunately, the Adams-Bashforth methods are explicit methods with
very small regions of absolute stability. This has motivated the implicit
versions of Adams methods, also called Adams-Moulton. The k-step implicit
Adams method is derived similarly to the explicit method. The difference
is that for this method, the interpolating polynomial is of degree ≤ k and it
interpolates f at the unknown value tn+1 as well:

Un+1 = Un + ∆t
k∑

j=0
βjF

n+1−j ,

The order of the k-step Adams-Moulton method is p = k + 1 because k + 1
points are used in the underlying polynomial interpolation). An exception is
the backward Euler in which k = 1 and Fn is not used, yielding p = k = 1.
A few examples of Adams-Moulton methods:
p = 1, k = 1 : Un+1 = Un + ∆tFn+1

p = 2, k = 1 : Un+1 = Un + ∆t(1
2F

n+1 + 1
2F

n)

p = 3, k = 2 : Un+1 = Un + ∆t(5
12F

n+1 + 8
12F

n − 1
12F

n−1)

p = 4, k = 3 : Un+1 = Un + ∆t(9
24F

n+1 + 19
24F

n − 5
24F

n−1 + 1
24F

n−2)

They have much larger stability regions than the Adams-Bashforth methods.
But they are implicit.

6.11.2 Backward Differentiation Formulae

The BDF methods are derived by differentiating the polynomial which inter-
polates past values of u, and setting the derivative at tn+1 to f(Un+1, tn+1).
The k-step BDF method, which has order p = k, has the form

k∑
j=0

αjU
n+1−j = ∆tβ0F

n+1.

The BDF formulae are implicit. A few examples:
k = 1 : Un+1 = Un + ∆tFn+1

k = 2 : 3Un+1 − 4Un + Un−1

2∆t = Fn+1

k = 3 : 11Un+1 − 18Un + 9Un−1 − 2Un−2

6∆t = Fn+1

6.11.3 Order of accuracy

Given a multistep method (6.3), it is much easier to check its local truncation
error by Taylor expansion than Runge-Kutta methods.

6.11. LINEAR MULTISTEP METHODS 145

6.11.4 Characteristic polynomials

Given a multistep method (6.3), we define characteristic polynomials ρ(ξ)
and σ(ξ) as

ρ(ξ) =
k∑

j=0
αjξ

k−j ,

σ(ξ) =
k∑

j=0
βjξ

k−j .

A linear multistep method (6.3) is consist (LTE goes to zero as ∆t→ 0)
if and only if ρ(1) = 0 and ρ′(1) = σ(1).

6.11.5 0-stability and convergence

The 0-stability can be defined for LMM as for one-step method but it is
cumbersome to check. Fortunately, it turns out that it is equivalent to a
simple condition on the roots of the characteristic polynomial.

Theorem 6.1. The linear multistep method is 0-stable if all roots of the
characteristic polynomial ρ(ξ) satisfy

• |ξj | ≤ 1, j = 1, 2, · · · , k.

• If |ξj | = 1 then ξj is a simple root (not repeated).

If this root condition is satisfied, the method is accurate to order p, and the
initial values are accurate to order p, then the method is convergent to order
p.

This root condition is derived by checking the 0-stability of (6.3) solving
a very simple problem

u′(t) = 0, u(0) = 0.

The scheme (6.3) becomes a linear difference equation

k∑
j=0

αjU
n+1−j = 0.

Given initial values
U0, U1, · · · , Uk−1,

we want to solve this difference equation. We will first construct a solution
then show it is the only solution. Assume Un = ξn (on the right hand side,
it is ξ to the power n but n is only an index on the left hand side), then

k∑
j=0

αjξ
n+1−j = 0.

146 6. ORDINARY DIFFERENTIAL EQUATIONS

Notice that α0 = 1 thus ξ ̸= 0. We can divide both sides by ξn−k+1, then

k∑
j=0

αjξ
k−j = 0,

which is ρ(ξ) = 0. Suppose ρ(ξ) has k distinct roots ξ1, · · · , ξk, then we find
k linearly independent solutions to the difference equation. And a general
solution to the difference equation can be be written as

Un = c1ξ
n
1 + c2ξ

n
2 + · · ·+ ckξ

n
k ,

where the coefficients ci are uniquely determined by the k × k system

c1 + c2 + · · ·+ ck = U0

c1ξ1 + c2ξ2 + · · ·+ ckξk = U1

...
...

c1ξ
k−1
1 + c2ξ

k−1
2 + · · ·+ ckξ

k−1
k = Uk−1.

So we have just constructed one solution. Next we only need to show
there is only one solution to the initial value problem of the difference equa-
tion. If Un and V n are both solutions, then Wn = Un − V n satisfies the
difference equation with zero initial values. Thus Wn can only be zero (solve
the difference equation with zero initial states, you get only zero).

Suppose we compute the numerical solution UN at time T = 1. If one of
the roots has magnitude larger than 1, then lim

∆t→0
|UN | = lim

N→+∞
|UN | = +∞.

Therefore all roots must satisfy |ξ| ≤ 1.
Now suppose we have repeated roots ξ1 = ξ2, then the solution becomes

Un = c1ξ
n
1 + c2nξ

n
1 + c3ξ

n
3 + · · ·+ ckξ

n
k ,

thus |ξ1| = 1 will also imply divergence.
It turns out that the root conditions is all that is needed for convergence

Theorem 6.2. For LMMs applied to the initial value problem for u′ =
f(u, t) where f is Lipschitz continuous w.r.t. u,

consistency + 0-stability⇒ convergence.

Note that the root condition guaranteeing 0-stability relates to the char-
acteristic polynomial ρ(ξ) alone. Also, for any consistent method the poly-
nomial ρ(ξ) has the root 1. One-step methods have no other roots, which
again highlights the fact that they are automatically 0-stable.

6.11. LINEAR MULTISTEP METHODS 147

Example 6.7. The LMM

Un+1 − 3Un + 2Un−1 = −∆tFn−1,

has an LTE of first order. Apply it to u′ = 0 then Un can be explicitly solved
in terms of U0 and U1. we obtain

Un = 2U0 − U1 + 2n(U1 − U0).

Unless U1 = U0 = 0, the approximate solution is never convergent to con-
stant zero.

Example 6.8. Applying the consistent LMMs

Un+1 − 2Un + Un−1 = 1
2∆t(Fn+1 − Fn−1),

to u′ = 0 gives
Un+1 − 2Un + Un−1 = 0.

The characteristic polynomial is

ρ(ξ) = ξ2 − 2ξ + 1 = (ξ − 1)2.

The general solution is

Un = U0 + (U1 − U0)n.

If U0 = 0 and U1 = ∆t, then UN = ∆tN = T → T as ∆t→ 0.

Example 6.9. Consider

Un+1 = −4Un + 5Un−1 + 4∆tFn + 2∆tFn−1.

In terms of the local truncation error, this is the most accurate explicit 2-step
method. However, ρ(ξ) = (ξ − 1)(ξ + 5). The root condition is violated.

6.11.6 Stability region

Applying (6.3) to the test equation u′ = λu, we get

k∑
j=0

(αj − zβj)Un+1−j = 0.

where z = ∆tλ. The stability polynomial is denoted by

π(ξ, z) = ρ(ξ)− zσ(ξ).

The LMM is absolutely stable for a particular value of z if errors introduced
in one time step do not grow in future time steps.

148 6. ORDINARY DIFFERENTIAL EQUATIONS

Definition 6.4. The region of absolute stability for the LMM is the set of
points z in complex plane for which the polynomial π(ξ, z) satisfies the root
condition.

Finding the region of absolute stability is simple for linear multistep
methods. Just look for the boundary

z = ρ(ei θ)
σ(ei θ) , θ ∈ [0, 2π].

Problem 6.1. Follow the discussions in Section 6.11.5 to show that the root
condition of π(ξ, z) can guarantee the numerical solution to u′ = λu does
not blow up (in what sense?) as ∆t→ 0.

Example 6.10. Recall that as absolute stability for one-step methods such
as Runge-Kutta methods is to require |Un+1/Un| ≤ 1 for solving u′ = λu.
The definition of absolute stability region for LMMs is related to the solution
of difference equation thus not necessarily the same. Let us consider the
second order BDF method as an example:

3Un+1 − 4Un + Un−1 = 2∆tFn+1.

The stability polynomial is given as 3ξ2 − 4ξ + 1 = 2zξ2. Thus to draw the
boundary curve of the stability region, we have

z = 3ξ2 − 4ξ + 1
ξ2 , ξ = ei θ, θ ∈ [0, 2π].

On the other hand, if we have to define something similar to |Un+1/Un| ≤ 1,
then it is natural to rewrite the scheme in the one-step matrix vector form.
For u′ = λu, the second order BDF method becomes

3Un+1 − 4Un + Un−1 = 2∆tλUn+1,

thus
Un+1 = 4

3− 2zU
n − 1

3− 2zU
n−1, z = ∆tλ.

We can rewrite it as(
Un+1

Un

)
=
(

4
3−2z

−1
3−2z

1 0

)(
Un

Un−1

)
.

For computing eigenvalues of the matrix A =
(

4
3−2z

−1
3−2z

1 0

)
, we have

det(ξI −A) =
(
ξ − 4

3− 2z

)
ξ + 1

3− 2z = 0,

6.11. LINEAR MULTISTEP METHODS 149

which becomes
3ξ2 − 4ξ + 1 = 2zξ2.

The natural choice for defining |Un+1/Un| ≤ 1 in multi-step methods is
to require eigenvalues of A to be insied unit circle. Thus we end up with
the same equation for drawing a curve derived from the one-step method
perspective:

z = 3ξ2 − 4ξ + 1
2ξ2 , ξ = ei θ, θ ∈ [0, 2π].

6.11.7 Strong stability

Consider (6.3) for the test equation u′ = λu:

k∑
j=0

αjU
n+1−j −∆t

k∑
j=0

βjλU
n+1−j = 0.

The solution to this linear difference equation is related to roots of the
polynomial

ϕ(ξ) = ρ(ξ)−∆tλσ(ξ).
Since the exact solution for u(0) = 1 is u = eλt = (e∆tλ)n, we expect one
root to approximate e∆tλ, which is required from consistency. That root is
called principal root. The other roots called extraneous roots.

If Re(λ) < 0, then the exact solution decays and we must prevent any
growth in the approximate solution. This is not possible for all such λ if
there are extraneous roots of the polynomial ϕ(ξ) with magnitude 1. For
∆t > 0 sufficiently small the difference equation must be asymptotically
stable in this case. We define a linear multistep method to be

• strongly stable if all roots of ρ(ξ) = 0 are inside the unit circle except
for the root ξ = 1.

• weakly stable if it is 0-stable but not strongly stable.

Weakly stable methods can be numerically unstable for some problems.
Strongly stable k-step methods can have at most order k +1.

Example 6.11. The leapfrog method

Un+1 − Un−1

2∆t = Fn

has characteristic polynomial ρ(ξ) = ξ2 − 1 with two roots ξ = ±1 on the
unit circle thus it is weakly stable. The stability region boundary curve is
determined by

z = ρ(ei θ)
2σ(ei θ) = (ei θ)2 − 1

2ei θ
= 1

2(ei θ − e− i θ) = i sin θ.

150 6. ORDINARY DIFFERENTIAL EQUATIONS

Therefore the stability region boundary is an interval [− i, i] on the imaginary
axis. To determine the stability region, we can check the root conditions for
the polynomial

π(ξ, z) = ξ2 − 1− 2zξ, z ∈ [− i, i].

If z = i, then π(ξ, i) has two same roots ξ = i thus the root condition is not
satisfied thus not absolutely stable. Similarly, we do not have the absolute
stability for z = − i. For z ∈ (− i, i), the roots of π(ξ, z) are ξ = z±

√
z2 + 1.

The stability region is the interval (− i, i).

Therefore the leapfrog method is not numerically stable for solving prob-
lems like diffusion, e.g., Example 6.1, which involves u′ = λu with real nega-
tive λ. On the other hand, it is well suited for problems involving only purely
imaginary λ, e.g., hyperbolic problems like Example 6.2. The very popular
FDTD (finite-difference time-domain or Yee’s method) for Maxwell’s equa-
tions uses centered difference in both space and time to achieve second order
accuracy, which is the leapfrog method in time on staggered grids.

7

Finite difference schemes for
linear time-dependent
problems

7.1 Basic concepts, definitions and notation
Consider a general initial value problem for linear partial differential equa-
tions:

ut(x, t) = P
(
x, t,

∂

∂x

)
u(x, t),

u(x, 0) = f(x), (7.1)
where x is a vector of s components: x = (x1, · · · , xs), u is a vector of p
components: u(x, t) = (u1(x, t), · · · , up(x, t)) and P is a polynomial of ∂

∂x .
If the highest order time derivative in a linear partial differential equation
is ∂m

∂ tmu, then we can always rewrite it in the form of (7.1) as a system for
a unknown vector [u, ∂

∂ tu, · · · ,
∂m−1

∂ tm−1u]T . For instance, the two way wave
equation utt = uxx can be written as

∂

∂ t

(
u
ut

)
=
(

0 1
∂2

∂ x2 0

)(
u
ut

)
. (7.2)

Remark 7.1. Let (v1, v2)T denote the unknown functions in (7.2) and take
the Fourier transform, then we get

∂

∂ t

(
v̂1(t)
v̂2(t)

)
=
(

0 1
−ω2 0

)(
v̂1(t)
v̂2(t)

)
.

Notice that
(

0 1
−ω2 0

)
is diagonalizable with eigenvalues ± iω, thus (7.2) is

the convection to two directions even though ∂2

∂ x2 is the only spatial differ-
ential operator in (7.2).

151

152 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

For computational convenience we will restrict the domain of the solution
u(x, t) of (7.1) to a bounded region, even though it might be defined for all
x and all t > 0. On this bounded region we construct a grid of points,
discretizing both space (in each of the space coordinates) and time. For this
purpose, we specify the step sizes ∆t and ∆xi for i = 1, · · · , s and define
the grid points as points of the form (x1, · · · , xs, tn), where:

tn = n∆t

xji = ji∆xi, i = 0, · · · , Ni.

Although in many practical applications it is preferable to define suitable
varying step sizes, we have chosen here constant ones for simplicity of nota-
tion. However, the concepts and properties discussed in this chapter can be
readily generalized to the variable step-size case.

The main idea of any finite difference scheme attempting to approximate
the values of u(x, t) by computer methods is to construct a vector of p
components for given integers n and j1, · · · , js with 0 ≤ ji ≤ Ni, which we
call Un

j1,··· ,js
and which "approximates" the value of u(xj1 , · · · , xjs , n∆t).

For fixed n, Un
j1,··· ,js

is therefore a vector-valued function of the set of
integers {ji = 0, · · · , Ni; 0 ≤ i ≤ s}. For such functions, we define the k-th
shift operator Ek to be the operator that shifts the index jk to its right
(jk + 1), that is:

EkU
n
j1,··· ,jk,··· ,js

= Un
j1,··· ,jk+1,··· ,js

, 1 ≤ k ≤ s.

Definition 7.1. A finite difference scheme is a recursion formula of the
form:

B0(E1, · · · , Es)V n+1
α = B1(E1, · · · , Es))V n

α (7.3)

where α = j1, · · · , js is a multi-index, and B0(E1, · · · , Es) and B1(E1, · · · , Es)
are functions of the operators Ei, 1 ≤ i ≤ s. If B0 is the identity operator,
we say the scheme is explicit. Otherwise it is called an implicit scheme.

We now give some examples to illustrate our notation.

Example 7.1. Consider the two-dimensional problem:

ut = ux + uy,

where u(x, y, t) is a real valued function. Let ∆t, ∆x and ∆y be positive,
fixed quantities. One possible finite difference scheme is given by:

Un+1
i,j = 1

4
(
Un

i+1,j+1 + Un
i−1,j+1 + Un

i+1,j−1 + Un
i−1,j−1

)
+ ∆t

2∆x(Un
i+1,j − Un

i−1,j) + ∆t
2∆y (Un

i,j+1 − Un
i,j−1)

7.1. BASIC CONCEPTS, DEFINITIONS AND NOTATION 153

which in terms of the shift operators E1 and E2, can be written in the form:

Un+1
i,j =

(1
4(E1 + E−1

1)(E2 + E−1
2) + ∆t

2∆x(E1 − E−1
1) + ∆t

2∆y (E2 − E−1
2)

)
Un

i,j .

Thus V n = Un in this case.

Example 7.2. Conside the Leapfrog scheme for the one-way wave equation:

Un+1
j − Un−1

j

2∆t =
Un

j+1 − Un
j−1

2∆x

In order to write down this scheme in the form (7.3), we define the two
dimensional vector:

V n
j =

(
Un

j

Un−1
j

)
,

and express V n+1
j = B1(E)V n

j , where now B1(E) is a 2×2 matrix depending
on the shift operator E. In fact, since:(

Un+1
j

Un
j

)
=
(

∆t
∆x(Un

j+1 − Un
j−1) + Un−1

j

Un
j

)
,

then
V n+1

j =
(

∆t
∆x(E − E−1) 1

1 0

)
V n

j

Example 7.3. For the same equation ut = ux, consider the scheme:

Un+1
j = Un

j + ∆t
∆x(Un+1

j+1 − U
n+1
j).

This can be written in terms of the shift operator E in the following way:

(1 + ∆t
∆x −

∆t
∆xE)Un+1

j = Un
j .

For implicit schemes like the example above, to find Un+1
j , we need to

solve a globally coupled linear sytem. We shall assume that the operator
B−1

0 exists and it is bounded, so the finite difference scheme (7.3) can always
be written in matrix form as:

V n+1 = C(∆t,∆x, x̄, t)V n

where we are taking all the components {V n
α : α = (j1, ..., jx); ji = 0, ..., Ni}

ordered to form a vector (e.g., the vec(X) operation in Chapter 2); ∆x =
(∆x1, · · · ,∆xs), and x̄ = {xji : ji = 0, ..., Ni, i = 1, ..., s}. We will assume
that ∆xi = hi(∆t) for some functions hi of the parameter ∆t, for all space
coordinates i = 0, ..., s. If the operator P in (7.1) does not depend on time,

154 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

then it is reasonable to limit our study to the case where C does not depend
on time either. We will refer to this situation as the autonomous equation.
If C does not depend on x̄ either, we call the scheme a constant coefficient
scheme, which we shall study in detail later. For the remainder of this
chapter we shall simply write C(∆t), keeping in mind that it may depend
on t and x̄ as well. We will therefore analyze the finite difference scheme
(7.3) in its equivalent form:

V n+1 = C(∆t)V n (7.4)

where now C(∆t) is an N ×N matrix, with:

N =
s∏

i=1
(Ni + 1).

Recall that, Ni depends on ∆xi which is a function of ∆t, thus the dimension
of the matrix C(∆t) depends on ∆t.

Definition 7.2. Let ∆x = (∆x1, · · · ,∆xNs), then for any fixed real number
t ≥ 0, we define the operator Q∆x by:

Q∆xu(x, t) = {u(xj1 , · · · , xjs , t), j = 0, · · · , Ni, i = 0, · · · , s.}

So given a function u(x, t), Q∆xu(x, t) is a vector with N = ∏s
i=1(Ni +

1) components, each of them representing a vector (recall that u(x, t) =
(u1(x, t), ..., up(x, t)) is a vector of p components).

At any fixed time t, Q∆x is an operator which "looks" at the values that
u(x, t) attains at the space grid points. In some cases it is more appropriate
to specify projection operators which assign some values between the grid
points. The space where we "project" the solution u(x, t) via Q∆x is the
same space where we are to construct the numerical solution, in accordance
with (7.4). We are interested in studying the behavior of the collection of
vectors in (7.4) for "small" values of ∆t. We shall assume that:

lim
∆t→0

∆xi = lim
∆t→0

hi(∆t) = 0.

We now want to give a precise meaning to the statement as ∆t becomes
smaller, the numeical solution gets closer to the analytical solution at any
given time t = n∆t held fixed. Specifically, we want to compare the limit
of V n

i as ∆t → 0 and n → ∞ such that t = n∆t is constant, with the
corresponding limit of Q∆xu. This involves the concept of norms on the
euclidean space RN when the dimensjon N grows as ∆t→ 0.

Definition 7.3. For any vector V = (V1, ..., VN), we define the norm |V |N
by:

|V |2N = 1
N

N∑
j=1
|Vj |2

7.2. PROPERTIES OF FINITE DIFFERENCE SCHEMES 155

where, if each component V , is itself a vector, |Vj | denotes the usual vector
norm.

By our notations, (7.4) can denote a "one-step" method if V n = Un

where Un approximates u at tn, or a "k-step" method if

V n =


Un

Un−1

...
Un−k

 . (7.5)

7.2 Properties of Finite Difference Schemes
Throughout this section, we shall consider u(x, t) to be the solution of a well
posed initial value problem. That is, calling S(t, t0) the solution operator,
the function u is specified by:

u(x, t) = S(t, t0)u(x, t0),

thus in particular:

u(x, (n+ 1)∆t) = S((n+ 1)∆t, n∆t)u(x, n∆t).

If the problem is autonomous,that is, the operator P in (7.1) is indepen-
dent of time, then S is a function of the elapsed (t− t0) and we can simply
write S(t− t0) and S(∆t) in the above expressions.

Definition 7.4. We say that the scheme Un+1 = C(∆t)Un is accurate of
degree (or order) q1 in space and q2 in time, or more shortly, accurate (or
consistent) of order (q1, q2) if for any fixed t = n∆t and a very smooth
solution u(x, t):

|[C(∆t)Q∆x −Q∆xS(t+ ∆t, t)]u(x, t)|N ≤ K(t)∆t(|∆x|q1 + ∆tq2) (7.6)

where

|∆x| =

√√√√ s∑
i=1

(∆xi)2.

If the system is autonomous, we can write (7.6) in the form

|[C(∆t)Q∆x −Q∆xS(∆t)]u(x, t)|N ≤ K(t)∆t(|∆x|q1 + ∆tq2).

For a k-step method (7.4) with (7.5), accuracy of order (q1, q2) means∣∣∣∣∣∣∣∣∣∣
[C(∆t)Q∆x −Q∆xS(∆t)]


u(x, t)

u(x, t−∆t)
...

u(x, t− k∆t)


∣∣∣∣∣∣∣∣∣∣
N

≤ K(t)∆t(|∆x|q1 + ∆tq2).

(7.7)

156 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

In most of the cases, it is desirable to have the same degree of accuracy in
space and time, q1 = q2 = q, and when this happens, if no confusion arises,
we will say that the scheme is accurate of degree q, or q-th order accurate.
In some situations, however, we will work with accurate schemes for which
q1 ̸= q2.

This definition of accuracy (7.7) is simply an abstract description of the
following local truncation error.

Definition 7.5. Rewrite the scheme V n+1 = C(∆t)V n for solving 7.1 in the
form approaching ut(x, t)− P

(
x, t, ∂

∂x

)
u(x, t) = 0 as ∆t→ 0 and ∆x→ 0.

The local truncation error is the residue of replacing numerical solutions by
a smooth exact solution in the scheme of this form. The scheme is accurate
of degree (or order) q1 in space and q2 in time if the local truncation error
is equal to O(|∆x|q1) +O(∆tq2).

We give now some examples of different schemes for the problem ut = ux.
Scheme 1:

Un+1
j = Un

j + ∆t
2∆x(Un

j+1 − Un
j−1).

This scheme is useless since it will never be stable as we have seen in Example
6.2. Nonetheless let us consider its accuracy. We denote by un

j , the true
solution at the grid points: un

j = u(j∆x, n∆t). Then

[C(∆t)Q∆xu(x, n∆t)]j = un
j + ∆t

2∆x(un
j+1 − un

j−1)

is the j-th component of the vector C(∆t)Q∆xu(x, n∆t). By definition,

S(∆t)u(x, n∆t) = u(x, (n+ 1)∆t),

and therefore:
[Q∆xS(∆t)u(x, n∆t)]j = un+1

j .

By the Taylor’s expansion around (xj , tn), and the fact ut = ux, we get

|C(∆t)Q∆xu(x, n∆t)−Q∆xS(∆t)u(x, n∆t)|j

=|un+1
j − un

j −
∆t

2∆x(un
j+1 − un

j−1)|

=|∆t(ut)n
j + 1

2∆t2(utt)n
j −

∆t
2∆x(2∆x(ux)n

j + 21
6∆x3(uxxx)n

j)|

=|12∆t2(utt)n
j −

1
6∆t∆x2(uxxx)n

j |

≤1
2 max

{
max

x
|utt(x, n∆t)|, 1

3 max
x
|uxxx(x, n∆t)|

}
∆t(∆t+ ∆x2).

Assume there is a very smooth solution u(x, t) s.t.

max
{

max
x
|utt(x, n∆t)|, 1

3 max
x
|uxxx(x, n∆t)|

}
≤ K,

7.2. PROPERTIES OF FINITE DIFFERENCE SCHEMES 157

then the scheme is accurate of order (2, 1). The scheme can be rewritten in
the form approaching ut − ux = 0:

Un+1
j − Un−1

j

2∆t −
Un

j+1 − Un
j−1

2∆x = 0

As an alternative way to check accuracy, we can compute the local truncation
error as:

τn
j =

un+1
j − un

j

∆t −
un

j+1 − un
j−1

2∆x = ut(xj , tn) +O(∆t)− ux(xj , tn) +O(∆x2)

and using now the equation ut = ux, satisfied by u(x, t), we conclude that
this scheme is accurate of second order in space and first order in time.
Scheme 2: Lax-Friedrich’s Scheme:

Un+1
j = 1

2(Un
j+1 + Un

j−1) + ∆t
2∆x(Un

j+1 − Un
j−1).

This scheme is a first order accurate scheme, that is, q1 = q2 = 1.
Scheme 3: Upwind Scheme: Consider the one-sided difference for the
spatial derivative:

Un+1
j = Un

j + ∆t
∆x(Un

j+1 − Un
j).

This is a first order accurate scheme.
Scheme 4: Downwind Scheme: Consider the one-sided difference for the
spatial derivative:

Un+1
j = Un

j + ∆t
∆x(Un

j − Un
j−1).

This is a first order accurate scheme. However this scheme is also useless.
The domain of dependence (the exact solution is a wave travelling to the
left thus u(xj , tn + ∆t) = u(xj −∆t, tn) thus Un+1

j depends on values of Un

to the right of xj) is not included in the scheme stencil (Un+1
j is based on

Un
j and Un

j−1) therefore such a scheme is unstable.
Scheme 5: Leapfrog Scheme: If we use the centered difference for both
time and spatial derivatives, we get

Un+1
j = Un−1

j + ∆t
∆x(Un

j+1 − Un
j−1). (7.8)

To find its accuracy, rewrite it as

Un+1
j − Un−1

j

2∆t −
Un

j+1 − Un
j−1

2∆x = 0,

158 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

and compute

τn
j =

un+1
j − un−1

j

2∆t −
un

j+1 − un
j−1

2∆x = ut +O(∆t2)− ux +O(∆x2).

So this is a second order accurate scheme. It should be noticed that in order
to implement this scheme it is not enough to specify initial conditions U0

since it involves two time steps. To obtain U1 for initiate the computation,
there are many different ways. For instance, we can use a one-step method
to approximate U1.
Scheme 5: Lax-Wendroff Scheme: This scheme was developed around
1960 - 1964 and it is very frequently used. It is based on the Taylor series
expansion for u(x, t) given by:

u(x, t+ ∆t) = u(x, t) + ∆tut(x, t) + 1
2∆t2utt(x, t) +O(∆t3),

which, using ut = ux , reduces to:

u(x, t+ ∆t) = u(x, t) + ∆tux(x, t) + 1
2∆t2uxx(x, t) +O(∆t3).

Using the centered difference, we obtain a scheme with second order accuracy
in both time and space:

Un+1
j = Un

j + ∆t
2∆x(Un

j+1 − Un
j−1) + ∆t2

2∆x2 (Un
j+1 − 2Un

j + Un
j−1)

Scheme 5: Cranck-Nicholson Scheme: This is a second order accurate
implicit scheme

Un+1
j = Un

j + ∆t
2∆x(Un+1

j+1 − U
n+1
j−1 + Un

j+1 − Un
j−1).

The mere fact that a scheme is accurate does not imply that it pro-
vides useful results. Therefore we would like to compare the behavior of
the numerical solution with the true solution, and not only the discrepan-
cies resulting from one step of the time iterations. This comparison is the
underlying concept of convergence.

Definition 7.6. For a scheme V n+1 = C(∆t)V n in which Un approximates
u at n∆t, we say that the scheme converges if for arbitrary fixed t > 0 we
have, for all n, ∆t such that in n∆t = t:

lim
∆t→0,∆x→0

|Un −Q∆xu(x, n∆t)|N = 0.

7.2. PROPERTIES OF FINITE DIFFERENCE SCHEMES 159

Notice that the number N of points in the space grid becomes larger as
∆t → 0. If the initial condition of the original problem is u(x, 0) = f(x),
then we can write:

u(x, t) = S(t)f(x) = S(t− t1)S(t1)f(x),

for any intermediate time 0 ≤ t1 ≤ t. In general we have:

u(x, n∆t) = S(∆t)nf(x),

and analogously, a scheme in the form of Un+1 = C(∆t)Un can also be
written as:

Un+1 = C(∆t)nU0

where U0 = Q∆xf(x). In this notation, the convergence condition reads as
follows:

lim
∆t→0,∆x→0

|(C(∆t)nQ∆x −Q∆xS(∆t)n)f(x)|N = 0.

It should be clear now that convergence involves the difference between the
values predicted by the numerical solution itself and those of the true so-
lution "projected" at the grid points. On the other hand, to establish the
accuracy of the scheme, we only need to check how the operator C(∆t)
changes the value of the true solution during only one time step, as com-
pared to the true solution ∆t units of time later. Convergence is the most
important property of a numerical method. However, it cannot be estab-
lished directly, since the true solution u(x, t) is not known. We therefore
look for ways to determine convergence indirectly, using only the partial dif-
ferential equation and properties of the scheme that do not involve explicit
knowledge of the function u that we want to approximate.

Definition 7.7. We say that scheme V n+1 = C(∆t)V n is stable if for any
fixed t > 0, there exist constants K and a such that:

∥C(∆t)n∥ ≤ Keαn∆t,

for all n and ∆t such that n∆t = t.. Here ∥C∥ is the spectral norm for the
matrix C.

Notice, first of all, that stability is indeed the discrete analog of well
posedness. Recall from Chapter 5 that well posedness of the problem, in
terms of the solution operator is equivalent to

|S(t, t0)| ≤ Kea(t−t0), ∀t ≥ t0,

where |S| denotes the "operator norm". Therefore, for an autonomous sys-
tem, where S(n∆t) = S(∆t)n, we have:

|S(∆t)n| ≤ Kean∆t,

160 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

which is almost identical to the stability condition, except that here S is an
operator acting on functions (generally belonging to some Hilbert space),
and consequently the above norm refers to the corresponding operator norm,
whereas in |C(∆t)n| is the matrix norm.

Theorem 7.1. Lax Equivalence Theorem. Let u(x, t) be a classical
solution of the well posed linear problem (7.1) and let the finite difference
scheme V n+1 = C(∆t)V n be accurate of order (q1, q2), i.e., the scheme
satisfies (7.6). If the scheme is stable, then for any T , there exists a bounded
function G(t) such that for all t ∈ [0, T] and n∆t = t, the following holds

|Un −Q∆xu(x, n∆t)|N ≤ G(t)(|∆x|q1 + ∆tq2).

Remark 7.2. The theorem states not only the convergence but also the rate
of convergence for a smooth solution of a wellposed initial value problem of
any linear PDEs.

Proof. For simplicity, we consider the one-step method Un+1 = C(∆t)Un

and the extension to the k-step case is straightforward. Let

δn = [C(∆t)Q∆x −Q∆xS(∆t)]u(x, t).

The actual error that we want to control to prove the convergence is

εn+1 = Un+1 −Q∆xu(x, (n+ 1)∆t)
= C(∆t)[Un −Q∆xu(x, n∆t)] + [C(∆t)Q∆x −Q∆xS(∆t)]u(x, t)
= C(∆t)εn + δn

By solving εn+1 = C(∆t)εn + δn and ε0 = 0 (because we have U0 =
Q∆xu(x, 0)), we get

εn =
n−1∑
k=0

C(∆t)n−k−1δk,

thus

|εn|N ≤
n−1∑
k=0
∥C(∆t)n−k−1∥|δk|N .

By stability, ∥C(∆t)n−k−1∥ ≤ Kea(n−k−1)∆t ≤ K1 for some constant K1
and all k s.t. 0 ≤ k ≤ n− 1, and using accuracy on |δn|N :

|[C(∆t)Q∆x −Q∆xS(∆t)]u(x, t)|N ≤ K(t)∆t(|∆x|q1 + ∆tq2),

we get
|εn|N ≤ K1n∆tK(n∆t)(|∆x|q1 + ∆tq2),

which is the desired result, upon letting G(t) = K1tK(t).

7.2. PROPERTIES OF FINITE DIFFERENCE SCHEMES 161

Remark 7.3. The Lax Equivalence Theorem applies to any linear scheme
(for solving a linear PDE) in the form of V n+1 = C(∆t)V n. For instance,
in a finite element method in the form Un+1 = C(∆t)Un solving (7.1), Un

denotes the finite element basis coefficients (in contrast to point values in a
finite difference method) and Q∆xu(x, t) denotes the projection of the exact
solution onto the finite element space, then the same proof is still valid.

In the Lax Equivalence Theorem, the assumption that u(x, t) is a clas-
sical solution amounts to assume that the initial data f(x) is a function
with r continuous derivatives - where r is the degree of the polynomial P
and with compact support, which we denote by f(x) ∈ Cr

0 . Indeed, the
assumption f(x) ∈ Cr

0 together with well posedness is equivalent to stating
that u(x, t) is a classical solution. However, the theorem can be general-
ized for the case where the initial function is not in Cr

0 , provided that we
can approximate this function in the L2-sense by functions in Cr

0 . To see
this, assume that there exists a sequence fl(x) ∈ Cr

0 , l = 1, 2, · · · satisfying
liml→+∞ ∥f−fl∥2 = 0 where the norm is the L2 norm (for example, f(x) can
be a step function multiplying a Gaussian, then f(x) is not even continuous
but can be approximated by a sequence of functions in Cr

0). Let S(t − t0)
be the solution operator for the problem and define the sequence ul(x, t) as
the corresponding solution with initial value fl(x), that is:

ul(x, t) = S(t)fl(x).

Since for any given t ≥ 0, S(t) is a bounded operator on L2, it follows by
convergence of fl to f that the sequence of functions ul(x, t) for fixed t,
converges in L2 to some limit function u(x, t) (which, however, may lack
smoothness). Using the Lax Equivalence Theorem for each integer l we
have:

|Un
l −Q∆xul(x, n∆t)|N ≤ Gl(t)(|∆x|q1 + ∆tq2), (7.9)

where the Un
l are defined for each l using scheme Un+1 = C(∆t)Un with

initial value U0 = Q∆xfl(x). Therefore:

|Un
l − Un

m|N ≤ ∥C(∆t)n∥|Q∆x(fl − fm)|N .

As a consequence of the L2 convergence of fl, it follows that for sufficiently
large N , |Q∆x(fl − fm)|N → 0 as l,m → ∞, implying that the sequences
{Un

l : l ≥ 1} are Cauchy sequences for each n. This ensures the existence of
the limiting vectors:

Un = lim
l→∞

Un
l for each n ≥ 1.

Now to prove convergence we express the difference:

|Q∆xu(x, n∆t)− Un|N = |Q∆x[u(x, n∆t)− ul(x, n∆t)] +Q∆xul(x, n∆t)− Un
l + (Un

l − Un)|N
≤ |Q∆x(u− ul)|N + |Q∆xul − Un

l |N + |Un
l − Un|N

162 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

The first and third terms of this last inequality tend to zero as l increases, due
to the definitions of u and Un. The middle term satisfies (7.9), so all these
facts together yield the convergence result for more general initial conditions.
Notice that we loose information on the rate of convergence, since we do not
know how the functions Gl(t) in (7.9) behave with increasing l. Even if we
know the rates for each l, the above inequality involves two limit processes.

Theorem 7.2. Kreiss Perturbation Theorem. Suppose that the scheme:

V n+1 = C(∆t)V n

is stable. Then the perturbed scheme:

V n+1 = [C(∆t) + ∆tD(∆t)]V n

is stable, provided that |D(∆t)| ≤ H, for some constant H ≥ 0.

Before we give the proof of Kreiss perturbation theorein, we shall illus-
trate its usefulness.

Example 7.4. Consider the partial differential equation:

ut = ux − βu

and the scheme:

Un+1
j = Un−1

j + ∆t
∆x(Un

j+1 − Un
j−1)− 2∆tβUn

j

The Kreiss Perturbation Theorem states that it is enough to check stability
for the leapfrog scheme (7.8), since D(t) = −2βI.

Proof. We will just prove the "one-step" version, i.e., the case when V n =
Un. The multi-step case is similar. Define the vectors Wn by the transfor-
mation:

Wn = e−n∆tβUn

where β > 0 is a constant to be determined later. The perturbed scheme
becomes

Wn+1 = e−(n+1)∆tβ[C(∆t)+∆tD(∆t)]en∆βWn = e−∆tβ[C(∆t)+∆tD(∆t)]Wn,

so we get:
Wn+1 = e−∆tβC(∆t)Wn + ∆tD̄(∆t)Wn

where D̄(∆t) = e−∆tβD(∆t). Let δn = ∆tD̄(∆t)Wn, then the analog of the
Duhamel principle for the finite difference equation:

Wn+1 = e−∆tβC(∆t)Wn + δn

7.2. PROPERTIES OF FINITE DIFFERENCE SCHEMES 163

is given by

Wn = [e−∆tβC(∆t)]nW 0 +
n−1∑
k=0

[e−∆tβC(∆t)]n−k−1δk

thus

Wn = [e−∆tβC(∆t)]nW 0 +
n−1∑
k=0

[e−∆tβC(∆t)]n−k−1∆tD̄(∆t)W k

By stability of C(∆t) and boundedness of D(∆t), there is a constant C1
such that:

|C(∆t)n−k−1||D(∆t)| ≤ C1

for all integers k with 0 ≤ k ≤ n− 1. Thus:

|Wn|N ≤ |C(∆t)|ne−n∆tβ|W 0|N +
(
C1∆t

n−1∑
k=0

e−∆tβ(n−k)
)

max
0≤k≤n−1

|W k|N .

Let z = e−∆tβ, then 0 ≤ z ≤ 1 and:

n−1∑
k=0

e−∆tβ(n−k) =
n−1∑
k=0

e−∆tβk =
n−1∑
k=0

zk = 1− zn

1− z = 1− e−n∆tβ

1− e−∆tβ

and since 1 − e−∆tβ ≈ β∆t + O(∆t2), we may now pick β large enough so
that the quantity:

C1∆t
n−1∑
k=0

e−∆tβ(n−k) = C1
1− e−n∆tβ

β +O(∆t)

is bounded by some constant γ < 1/2 for all integers n and all ∆t > 0. Since
|C(∆t)|n ≤ C2e

an∆t for some constants C2 and a, and using U0 = W 0, it
follows that:

|Wn|N ≤ C2e
(a−β)n∆t|U0|N + γ max

0≤k≤n−1
|W k|N .

We may assume that a − β < 0, for if this is not the case, we just increase
the value of β and we will still have γ < 1/2. Then e(a−β)∆t ≤ 1 for all n,
∆t, and:

|Wn|N ≤ C2|U0|N + γ max
0≤k≤n−1

W |W k|N ,

where C2 does not depend on n. Now for any arbitrary large integer M , we
take the maximum on both sides over 0 ≤ n ≤M :

max
0≤n≤M

|Wn|N ≤ C2|U0|N + max
0≤n≤M

γ max
0≤k≤n−1

|W k|N ,

164 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

thus
max

0≤n≤M
|Wn|N ≤ C2|U0|N + γ max

0≤n≤M
|W k|N .

Therefore,

(1− γ)|Wn|N ≤ (1− γ) max
0≤n≤M

|Wn|N ≤ C2|U0|N ,

for all 0 ≤ n ≤M . We finally get

|Un|N ≤
C2

1− γ e
βn∆t|U0|N .

Stability follows from the fact that Un = C(∆t)nU0.

As can be deducted from the proof, it is extremely important that the
perturbation be of the order ∆t, more specifically, that it has the form
∆tD(∆t). In many practical situations one has to be careful in applying the
result of this perturbation theorem, always checking first if the assumptions
are indeed satisfied. The following is an example in which the perturbation
has apparently the form ∆tD(∆t), yet it gives rise to an unstable scheme.

Example 7.5. For the equation:

ut = uxx + ux

the term ux is a lower order term. One possible scheme is the following:

Un+1 = Un
j + ∆t

∆x2 (Un
j+1 − 2Un

j + Un
j−1) + ∆t

2∆x(Un
j+1 − Un

j−1).

The last term corresponds to the "perturbation" and we want to know whether
we can neglect this term by applying Kreiss Perturbation Theorem, in order
to check stability. Although it appears that the perturbation is of order ∆t,
this may not be the case, for if we choose ∆t/∆x2 constant to achieve stabil-
ity of the unperturbed scheme, then the perturbation is really of order

√
∆t

and the theorem is not applicable in this case.

7.3 Basic definitions and notations for stability

Next we will consider the stability for constant coefficient schemes. As al-
ready mentioned, stability of a finite difference scheme is the discrete analog
of the concept of well posedness of a partial differential equation. We present
the basic results and tools that allow us establish the stability of a constant
coefficient finite difference scheme. Examples are inserted throughout the
rest of this chapter in order to introduce and illustrate the concepts involved
in the problem.

7.3. BASIC DEFINITIONS AND NOTATIONS FOR STABILITY 165

Example 7.6. Consider

ut(x, t) = ux(x, t), x ∈ [0, 2π],

and we assume 2π-periodicity of the solution. We construct a grid of points
with constant spacing ∆x in space and ∆t in time, such that:

∆t
∆x = λ ≤ 1; xj = j∆x, j = 0, · · · , N − 1,∆x = 2π

N
.

Let us focus on the upwind scheme:

Un+1
j = Un

j + ∆t
∆x(Un

j+1 − Un
j)

with the appropriate boundary conditions given by the periodicity require-
ment:

Un
−1 = Un

N−1, U
n
N = Un

0 ,

which holds for all n > 0. This upwind scheme can be written in the matrix
form as:

Un+1 = C(∆t)Un

where each Un is a vector of N components:


Un+1

0
Un+1

1
...

Un+1
N−2

Un+1
N−1

 =



1− λ λ · · · 0 0
0 1− λ · · · 0 0
...

...
...

0 0
... 1− λ λ

λ 0
... 0 1− λ




Un

0
Un

1
...

Un
N−2

Un
N−1

 .

The dimension of the matrix C(∆t) depends on ∆t itself, through the de-
pendence of N on ∆t. In general, this makes it hard to check directly the
stability of the scheme, that is, to find constants K and α such that:

∥C(∆t)n∥ ≤ Keαt,

for all n and ∆t such that t = n∆t is held fixed.

Before we analyze the stability, let us recall several matrix notations:

• AT is the transpose of A. A∗ is the complex conjugate transpose.

• Eigenvalues: eigi(S) denotes the eigenvalue of S with i-th largest mag-
nitude.

• Jordan Normal Form: any matrix S can be decomposed as S = PΛP−1

where Λ is upper-triangular and the diagonal entries are eigenvalues
of S.

166 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

• Singular Value: the i-th largest one is denoted as σi(S) =
√

eigi(SS∗) =√
eigi(S∗S).

• Normal Matrix: a matrix A is called normal if AA∗ = A∗A.

• The following are equivalent:

1. A is normal.
2. A is diagonalizable by a unitary matrix, i.e., A = PΛP ∗, Λ is a

diagonal matrix and PP ∗ = I.
3. σi(A) = | eigi(A)|.

For the particular case in Example 7.6, we can find ∥C(∆t)n∥ since
C(∆t) is circulant thus can be diagonalized by the DFT matrix, which is a
unitary matrix. By multiplyting C(∆t) to the vector obtained by sampling
einx at x = (0,∆x, 2∆x, · · · , (N − 1)∆x)T , we can get the eigenvalues as
λk = 1− λ+ λei k∆x. Let T be the DFT matrix then C(∆t) = TΛT ∗ where
the diagonal matrix Λ has diagonal entries λk (k = 0, 1, · · · , N − 1). Since
C(∆t)n = TΛnT ∗ (so C(∆t)n is a normal matrix), thus C(∆t)n[C(∆t)n]∗ =
T [ΛΛ∗]nT ∗, we get the singular values of C(∆t)n as

|λk|n = [(1− λ)2 + λ2 + 2 cos(k∆x)λ(1− λ)]
n
2 .

Next we use an easier alternative method instead of looking directly at
the matrix C(∆t). In Example 7.6, we can consider the discrete Fourier
transform (4.8) and the inverse discrete Fourier transform (4.9) for Un

j .
Assume N is even, we use a normalized (also index shifted) version of (4.8)
and (4.9):

Ûn
k =

N−1∑
j=0

e− i kj∆xUn
j , k = 0, · · · , N − 1.

Un
j = 1

N

N−1∑
k=0

ei kj∆xÛn
k , j = 0, · · · , N − 1,

We also have the Parseval’s identity for the discrete Fourier transform above:

N−1∑
j=0
|Un

j |2 = 1
N

N−1∑
k=0
|Ûn

k |2.

Replace Un by its inverse discrete Fourier transform in the upwind
scheme, we get

1
N

N−1∑
k=0

ei kj∆xÛn+1
k = 1

N

N−1∑
k=0

ei kj∆xÛn
k +λ(1

N

N−1∑
k=0

ei k(j+1)∆xÛn
k−

1
N

N−1∑
k=0

ei kj∆xÛn
k),

7.3. BASIC DEFINITIONS AND NOTATIONS FOR STABILITY 167

thus
1
N

N−1∑
k=0

ei kj∆x
[
Ûn+1

k − Ûn
k − λ(ei k∆xÛn

k − Ûn
k)
]

= 0.

which means that the inverse discrete Fourier transform of Ûn+1
k − Ûn

k −
λ(ei k∆xÛn

k − Ûn
k) is equal to zero. Therefore, we get

Ûn+1
k − Ûn

k − λ(ei k∆xÛn
k − Ûn

k) = 0,

which can be written as

Ûn+1
k = g(k)Ûn

k , g(k) = 1 + λ(ei k∆x − 1). (7.10)

Then we have
N−1∑
j=0
|Un+1

j |2 = 1
N

N−1∑
k=0
|Ûn+1

k |2

= 1
N

N−1∑
j=0
|g(k)|2|Ûn

k |2

≤ max
k
|g(k)|2

N−1∑
j=0
|Un

j |2.

Thus if maxk |g(k)|2 is bounded for all possible values of k∆x, we have a
bound for ∥C(∆t)∥, which yields stability. The main idea is therefore to
study the functions g(k) instead of working with the matirx C(∆t), even
though these two methods are essentially equivalent. Recall that we have
used the DFT matrix to diagonalize the circulant matrix and the DFT
matrix represents precisely the discrete Fourier transform. Notice that g(k)
are exactly the eigenvalues of C(∆t). Notheless, the second method is easier,
because we can obtain (7.10) simply by asserting an ansatz Un

j = Ûn
k e

i kxj

into the scheme.

Example 7.7. We consider now a generalization of the previous example.
Let A be a constant p× p matrix and and u(x, t) = (u1(x, t), · · · , up(x, t))T

satisfying:
ut = Aux, x ∈ [0, 2π],

and we also assume 2π-periodicity of u(x, t). Consider a naive extension of
the upwind scheme:

Un+1
j = Un

j + ∆t
∆xA(Un

j+1 − Un
j),

with boundary conditions

Un
−1 = Un

N−1, U
n
N = Un

0 .

168 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

Now let us use the ansatz Un
j = Ûn

k e
i kj∆x, which is equivalent to apply

the discrete Fourier transform to the scheme or use the DFT matrix to
"diagonalize" C(∆t). We get

Ûn+1
k ei kj∆x = Ûn

k e
i kj∆x + λA(Ûn

k e
i k(j+1)∆x − Ûn

k e
i kj∆x),

thus
Ûn+1

k = G(k)Ûn
k , G(k) = I + λA(ei k∆x − 1).

where G(k) is a p× p matrix. Notice that C(∆t) is a Np×Np matrix with
N → 0 while the size of G(k) is fixed.

We now generalize the concepts introduced in the examples given above.
As we recall from Chapter 5, the general form of a partial differential equa-
tion with constant coefficients is given by

ut = P(∂ / ∂ x)u,
u(x, 0) = f(x), (7.11)

where u(x, t) = (u1(x, t), · · · , un(x, t))T is a function of x = (x1, · · · , xs) and
time t. In an analogous way, we can define a finite difference scheme with
constant coefficients in general form:

Definition 7.8. Let ∆t and ∆xi be any given step sizes, for i = 1, · · · , s,
and denote by X = {xji : ji = 0, · · · , Ni; i = 1, · · · , s} the collection of all
grid points in the space coordinates. A scheme of the form:

V n+1 = C(∆t,X, t)V n

is called a constant coefficient scheme if the matrix C(∆t,X, t) does not
depend on X and t, so we can write:

V n+1 = C(∆t)V n.

Consider the constant coefficient scheme:

Un+1 = C(∆t,X, t)Un.

For each multiindex j = (j1, · · · , ji) with ji = 0, · · · , Ni and i = 1, · · · , s, Un
j

is a vector of p components approximating the value of the true solution at
the grid points u(j1∆x1, · · · , js∆xs, n∆t). The discrete Fourier transform
is now given by

Ûn
k =

∑
j∈J

e− i⟨k,xj⟩Un
j ,

Un
j = 1

N

∑
k∈K

ei⟨k,xj⟩Ûn
k .

7.4. VON NEUMANN STABILITY 169

where N = Πs
i=1Ni, k = (k1, · · · , ks) is a multi-index, the sets J and K are

the set of multiindex j and k so that 0 ≤ ki ≤ Ni − 1 and 0 ≤ ji ≤ Ni − 1.
Using the discrete Fourier transform of the scheme yields the difference
equations in the Fourier space:

Ûn+1
k = G(∆t, k)Ûn

k .

We call the matrix G(∆t, k) the amplification matrix. If the problem is
scalar (p = 1), then we write g(∆t, k) or sometimes just g(k), and usually
call it the amplification factor.

7.4 von Neumann stability
Stability of the scheme V n+1 = C(∆t)V n can be written in terms of the
amplification matrix as the following condition: given t > 0, there exist
constants K and α such that for all multi-index k and all n such that n∆t =
t,

∥G(∆t, k)n∥ ≤ Keαt.

The condition must be satisfied for all multi-index k in order to establish
stability of the scheme. This condition involves an infinite number of matri-
ces being uniformly bounded, yet in practice it turns out to be remarkably
easier to deal with the amplification matrices treating k as a parameter,
than it is to study stability working directly with C(∆t), whose dimension
depends on the chosen discretization of space and time. Our first result
presents a necessary although not sufficient condition for stability.

Theorem 7.3. The von Neumann Condition The amplification matrix
of a stable scheme satisfies the condition:

ρ[G(∆t, k)] ≤ eγ∆t = 1 +O(∆t),

where ρ[G(∆t, k)] denotes the spectral radius (largest magnitude of eigenval-
ues) of the matrix G(∆t, k).

The von Neumann stability condition is necessary but not sufficient for
stability. In most practical applications, turns out to be easily checked
whether this condition holds or not, as we shall examplify later on. When
determining stability of a scheme, our first step shall always be verifying
whether this condition holds or not.

Proof. If the scheme is stable, then

∥Gn∥ ≤ Keαt,

where t = n∆t. We need a fact for the spectral radius

ρ(A)n ≤ ∥An∥.

170 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

To see why this is true, let v and λ be eigenvectors and eigenvalues of A,
then

|λ|k∥v∥ = ∥λkv∥ = ∥Akv∥ ≤ ∥Ak∥ · ∥v∥ ⇒ |λ|k ≤ ∥Ak∥.

So we have
ρ[G(∆t, k)] ≤ ∥Gn∥

1
n ≤ K

1
n eα∆t.

Since t = n∆t is held fixed at a constant value, K 1
n = K

∆t
t . Let β = logK,

then
ρ(G) ≤ eβ∆t/teα∆t = e(β/t+α)∆t = eγ∆t

where γ = β/t+α is a positive constant for all n and ∆t such that t = n∆t
is constant, yielding the von Neumann condition.

Remark 7.4. The von Neumann condition is also sufficient for stability in
the following two cases:

• If G is a normal matrix (the scalar case G = g is a special case), then
so is Gn thus ∥Gn∥ = ρ[Gn].

• If G is diagonalizable G(∆t, k) = TΛT−1 with ∥T∥∥T−1∥ ≤ K for
all ∆t and k, then Gn = TΛnT−1 thus ∥G∥ ≤ ∥T∥∥Λn∥∥T−1∥ =
∥T∥ρ[Gn]∥T−1∥.

7.5 The leapfrog scheme

7.5.1 The one way wave equation

In this section we first study in detail the leap frog scheme for the one
dimensional scalar equation ut = ux to understand the stability we have
defined for finite difference schemes. The scheme is:

Un+1
j = Un−1

j + ∆t
∆x(Un

j+1 − Un
j−1)

and we impose the periodic boundary conditions through the usual period-
icity requirement:

Un
−1 = Un

N−1, Un
0 = Un

N

Define the vector
V n

j =
(
Un

j

Un−1
j

)
,

then we can rewrite the scheme into the form V n+1 = C(∆t)V n. Let λ = ∆t
∆x ,

then the scheme becomes

V n+1
j =

(
λ(E − E−1) 1

1 0

)
V n

j ,

7.5. THE LEAPFROG SCHEME 171

where E and E−1 are the shift operations, as introduced in Section 7.1.
Therefore, although the original problem is a scalar one, here V is a 2-
component vector: we have considered a "fictitious" component to be able
to represent the scheme by V n+1 = C(∆t)V n. Plugging in the ansatz V n

j =
V̂ n

k e
i kj∆x (which is equivalent to plugging in the discrete Fourier transform

of V n), we get

V̂ n+1
k ei kj∆x =

(
λ(E − E−1) 1

1 0

)
V̂ n

k e
i kj∆x.

Notice that the shift operators act only on the functions of xj = j∆x, we
have

Eêi kj∆xV n
k = ei k∆xei kj∆xV̂ n

k ,

E−1êi kj∆xV n
k = e− i k∆xei kj∆xV̂ n

k ,

thus

V̂ n+1
k = e− i kj∆x

(
λ(ei k∆x − e− i k∆x) 1

1 0

)
ei kj∆xV̂ n

k =
(

2 iλ sin(k∆x) 1
1 0

)
V̂ n

k .

Therefore we have the explicit expression for the amplification matrix:

G(∆x, k) =
(

2 iλ sin(k∆x) 1
1 0

)

The variable k∆x appears in the expression of the amplilication matrix
as the argument of a trigonometric function. This is in general true, and
in order to analyze the amplification matrix in terms of its arguments, it
is enough to consider the variable ξ = k∆x restricted to 0 ≤ ξ < 2π.
Throughout the rest of this text, we shall often write ξ = k∆x without
further mentioning that we actually consider ξ to be restricted to the interval
[0, 2π).

The eigenvalues of the amplification matrix G(∆x, k) can be calculated
as:

µ1(ξ) = iλ sin ξ +
√

1− λ2 sin2 ξ,

µ1(ξ) = iλ sin ξ −
√

1− λ2 sin2 ξ,

We will check now the von Neumann condition as well as the conditions
for stability of the leap frog scheme under study.
Case I: If λ2 > 1, then for those values of k such that ξ = k∆x = pi

2 we
have:

µ1(π/2) = i(λ+
√
λ2 − 1),

so |µ1(π/2)| > 1, yielding that the von Neumann stability condition is not
satisfied by the amplification matrix. We conclude that the leap frog scheme
is unstable when λ > 1.

172 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

Case II: If λ2 ≤ 1, then

|µi(ξ)|2 = λ2 sin2 ξ + 1− λ2 sin2 ξ = 1,

for i = 1, 2 which holds for any value of ξ. Therefore ρ[G] = 1 and the von
Neumann condition is satisfied. Nonetheless, this does not imply that the
scheme is stable for λ ≤ 1. Indeed we will show that the scheme is actually
unstable for λ = 1.

To see this, recall that stability requires that the family of matrices
G(∆, k) be uniformly bounded by Keαt for all values of k. Consider now
λ = ∆t/∆x = 1, then for all n with n∆t fixed, stability would certainly
imply the uniform bound in ∥Gn(∆, k)∥ as n→∞ for all possible values of
k. Notice that λ = 1 is also fixed. In order to prove our claim that this
case is unstable, it suffices to show that for one particular value of ξ = k∆x,
∥Gn(∆, k)∥ is not bounded as n→∞. Let ξ = π/2 and k0 denote the modes
for which k0∆x = π

2 (modulo 2π), then

G(∆t, k0) =
(

2 i 1
1 0

)
.

Notice that G(∆t, k0) has one repeated eigenvalue µ1 = µ2 = i and it is not
diagonalizable (because the eigenspace is one-dimensional). Let v1 the be
one eigenvector and v2 be one generalized eigenvector. Let T = [v1, v2], then
the Jordan form of this matrix can be written as

G(∆t, k0) = T

(
i 1
0 i

)
T−1.

Therefore,

Gn(∆t, k0) = T

(
i 1
0 i

)n

T−1 = T

(
i
n n in−1

0 i
n

)
T−1.

Obviously
∥∥∥∥∥
(
i
n n in−1

0 i
n

)∥∥∥∥∥ → ∞ as n → ∞, thus ∥Gn(∆t, k0)∥ → ∞ as

n→∞. Therefore, the leap frog scheme is unstable for λ = 1, although the
von Neumann condition is satisfied.

Lemma 7.1. The leap frog scheme for ut = ux is stable for λ < 1.

Proof. Let λ < 1. Then the two eigenvalues µ1(ξ) and µ2(ξ) are distinct
thus G is diagonalizable. Let T be the eigenvector matrix then we have

G = T

(
µ1 0
0 µ2

)
T−1,

7.5. THE LEAPFROG SCHEME 173

thus
Gn = T

(
µn

1 0
0 µn

2

)
T−1,

and
∥Gn∥ ≤= ∥T∥

∥∥∥∥∥
(
µn

1 0
0 µn

2

)∥∥∥∥∥ ∥T−1∥

The spectral norm of
(
µn

1 0
0 µn

2

)
is equal to maxi |µi|n = 1 (recall that

∥µi∥ = 1) because we have (the singular values of A are square roots of
eigenvalues of AA∗)(

µn
1 0

0 µn
2

)(
µ̄n

1 0
0 µ̄n

2

)
=
(
|µ1|2n 0

0 |µ2|2n

)
.

Therefore ∥Gn∥ ≤ ∥T∥∥T−1∥. To conclude the uniform boundedness of ∥Gn∥
as n → ∞, we still need to show ∥T∥∥T−1∥ are bounded as n → ∞. This
is true since T depends on only ξ and λ. The eigenvectors of G can be
explicitly computed. For instance, we can take

T =
(
µ1 µ2
1 1

)
, T−1 = 1

µ1 − µ2

(
1 −µ2
−1 µ1

)
.

We have

T ∗T =
(

2 µ∗
1µ2 + 1

µ1µ
∗
2 + 1 2

)
=
(

2 −(µ1 + µ2)µ2
−(µ1 + µ2)µ1 2

)

whose eigenvalues are bounded at least by 4, yielding ∥T∥ ≤ 2. Similarly,

(T−1)∗T−1 = 1
(µ1 − µ2)2

(
2 −(µ1 + µ2)
0 µ1(µ1 − µ2)

)
,

whose eigenvalues are also bounded. Indeed, since 1
(µ1−µ2)2 ≤ 1

4(1−λ2) , we
have ∥T−1∥2 ≤ C

1−λ2 for some constant C.
This implies that ∥Gn(∆t, k)∥ is bounded for all values of ∆t, k and n

such that t = n∆t is held fixed, which proves the assertion.

Example 7.8. Now we use a numerical example to understand the stability
condition λ < 1 that we have just derived. Consider using the leapfrog
scheme to solve ut = ux with periodic boundary conditions on the inverval
x ∈ [−1, 1] and initial condition f(x) = 1

ae
−x2/a2 with a = 0.02.

First we consider the exact initial conditions, i.e, suppose we take U0 =
f(x) and U1 = f(x+∆t). See Figure 7.1 for three cases ∆t

∆x = λ = 0.9, λ = 1,
and λ = 1.1 at time t = 0.8. We can observe that:

174 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

1. The numerical solution blows up for λ = 1.1, as expected.

2. The case λ = 1 gives the best solution. This is actually not a sur-
prise because the numerical stencil happens to coincide with the char-
acteristic lines of ut = ux. In other words, the numerical scheme
produces the exact solution in this case. For instance, the exact so-
lution at (xj , 2∆t) is f(xj + 2∆t), while the leapfrog scheme gives
U2

j = U0
j + (U1

j+1 − U1
j−1) = U1

j+1 = f(xj+1 + ∆t) = f(xj + 2∆t),
where we use facts that U0

j = U1
j−1 and U1

j+1 = f(xj+1 + ∆t) (both are
due to exact initial conditions).

3. There are some oscillations in the case λ = 0.9. There is nothing
contradictory to the stability ∥Gn∥ ≤ Keαt because this stability is 0-
stability, similar to what we defined for ODE solvers in Chapter 6.
These oscillations imply the error at this specific grid is large. On
the other hand, if we refine the mesh (∆x → 0), these errors will go
away in a second order rate since this is a smooth solution. In other
words, the oscillations in Figure 7.1 (d) are accuracy issues rather
than stability issues.

It is counterintuitive that an unstable scheme λ = 1 can produce a very
nice solution. Actually it produces the exact one, which cannot be better.
However, we have used the exact initial conditions. Now let us see what will
happen if using inexact initial conditions to initiate the leapfrog scheme. We
consider the following consistent perturbed initial conditions:

1 U_0=f(x);
2 U_1=f(x+dt)+dt *10* randn(size(x));

See Figure 7.2 for numerical solutions of λ = 0.9 and λ = 1 at a longer
time t = 2.8. We can see that both stable and unstable schemes produce
oscillations. However, the oscillations reduce when we refine the mesh in
the stable scheme (λ = 0.9) while the oscillations increase when we refine
the mesh in the unstable scheme (λ = 1). This is preciously what will happen
for unstable schemes: we lose convergence (as ∆x→ 0,∆t→ 0).

We have two interesting observations in this example:

• An unstable scheme does not necessarily produce blow-ups. It is not
enough to assert a scheme designed/implemented is stable if we only
see the numerical solution on a coarse grid fits the reference solution
well. It is necessary to validate the convergence by refining the mesh.
For a linear problem, if there is no convergence (error stops to decrease
when refining meshes), then there is no stability.

• On some grid, an unstable scheme may produce better solutions, which
does not imply any of its usefulness though.

7.5. THE LEAPFROG SCHEME 175

-1 -0.5 0 0.5 1

x

-50

-40

-30

-20

-10

0

10

20

30

40

50

s
o
lu

ti
o
n

(a) Reference Solution.

-1 -0.5 0 0.5 1

x

-50

-40

-30

-20

-10

0

10

20

30

40

50

s
o
lu

ti
o
n

(b) λ = 1 with exact initial conditions on
200 grid points.

-1 -0.5 0 0.5 1

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

s
o
lu

ti
o
n

×10
13

(c) λ = 1.1 with exact initial conditions on
200 grid points.

-1 -0.5 0 0.5 1

x

-50

-40

-30

-20

-10

0

10

20

30

40

50

s
o
lu

ti
o
n

(d) λ = 0.9 with exact initial conditions on
200 grid points.

Figure 7.1: The leapfrog scheme for ut = ux with exact initial conditions at
time t = 0.8.

176 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

-1 -0.5 0 0.5 1

x

-50

-40

-30

-20

-10

0

10

20

30

40

50

s
o
lu

ti
o
n

(a) λ = 1 on 200 grid points.

-1 -0.5 0 0.5 1

x

-50

-40

-30

-20

-10

0

10

20

30

40

50

s
o
lu

ti
o
n

(b) λ = 1 on 800 grid points.

-1 -0.5 0 0.5 1

x

-50

-40

-30

-20

-10

0

10

20

30

40

50

s
o
lu

ti
o
n

(c) λ = 0.9 on 200 grid points.

-1 -0.5 0 0.5 1

x

-50

-40

-30

-20

-10

0

10

20

30

40

50

s
o
lu

ti
o
n

(d) λ = 0.9 on 800 grid points.

Figure 7.2: The leapfrog scheme for ut = ux with consistent perturbed
initial conditions at time t = 2.8. The oscillatory perturbation in the initial
condition will vanish as ∆t → 0. However, the oscillations in the unstable
scheme do not vanish as mesh refines.

7.5. THE LEAPFROG SCHEME 177

-1 -0.5 0 0.5 1

x

-50

-40

-30

-20

-10

0

10

20

30

40

50

s
o
lu

ti
o
n

(a) λ = 1 on 200 grid points at time t = 0.8.
Exact initial conditions.

-1 -0.5 0 0.5 1

x

-50

-40

-30

-20

-10

0

10

20

30

40

50

s
o
lu

ti
o
n

(b) λ = 0.9 on 200 grid points at time t =
0.8. Exact initial conditions.

-1 -0.5 0 0.5 1

x

-50

-40

-30

-20

-10

0

10

20

30

40

50

s
o
lu

ti
o
n

(c) λ = 1 on 800 grid points at time t = 2.8.
Perturbed initial conditions.

-1 -0.5 0 0.5 1

x

-50

-40

-30

-20

-10

0

10

20

30

40

50

s
o
lu

ti
o
n

(d) λ = 0.9 on 800 grid points at time t =
2.8. Perturbed initial conditions.

Figure 7.3: The upwind scheme for ut = ux.

178 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

Finally as a comparison, consider the first order accurate upwind scheme

Un+1
j = Un

j + ∆t
∆x(Un

j+1 − Un
j).

Plugging in the ansatz Un+1
j = Ûn+1

k ei kj∆x, we get

Ûn+1
k ei kj∆x = Ûn

k e
i kj∆x + λ(Ûn

k e
i k(j+1)∆x − Ûn

k e
i kj∆x),

thus the amplification factor is g(k) = 1− λ+ λei k∆x. We have

|gn| = |g|n =
[
(1− λ)2 + λ2 + 2λ(1− λ) cos ξ

]n
2 .

For stability, we need |gn| to be uniformly bounded as n → ∞, which holds
if and only if

(1− λ)2 + λ2 + 2λ(1− λ) cos ξ ≤ 1,

i.e.,
2(1− cos ξ)λ(λ− 1) ≤ 0.

So the upwind scheme is stable if and only if λ ≤ 1. See Figure 7.3 for the
performance of the upwind scheme with exact and similarly perturbed initial
conditions. We can observe that

• The upwind scheme with λ = 1 also produces the exact solution with
exact initial conditions, and it is stable.

• If we compare Figure 7.3 (b) with Figure 7.1 (d), then it may seem that
the upwind scheme gives a better solution in some sense (less oscilla-
tory), which is not contradictory to the fact that the leapfrog scheme
is a more accurate scheme. Recall that we define the order of accu-
racy for ∆x → 0 for smooth solutions. In this example, the solution
is smooth, but obviously it is underresovled on the 200-point mesh. In
other words, comparison of accuracy of numerical schemes makes little
sense (if there is any) on this mesh because even the sampling error
(representing the initial data on 200 grid points) is huge. Recall that
sampling in space is equivalent to periodization in frequency. Also see
Shannon Sampling Theorem in Chapter 4.

Finally, let us try to understand the stability and "oscillations" in Figure
7.1 (d) from the perspective of stability region of ODE solvers. Recall that
in Section 6.11.6 we defined the absolute stability for the linear multistep
methods. In Example 6.11, we found the stability region of the leagfrog
method is the inverval (− i, i) on the imagnary axis. In particular, con-
sider solving Example 6.2 by the leapfrog method. Namely, we solve the

7.5. THE LEAPFROG SCHEME 179

semidiscrete scheme U′(t) = AU, with

A = 1
2∆x



0 1 −1
−1 0 1

−1 0 1
.

−1 0 1
1 −1 0


,

by centered difference for the time derivative. Recall that A is circulant so
DFT matrix diagonalizes it thus it is easy to find eigenvalues. The matrix A
has purely imagnary eigenvalues because it is skew-symmetric. The eigen-
values are i sin(k∆x)/∆x, k = 0, · · · , N − 1. Since ∆x = 2π

N , the largest
magnitude of the eigenvalues are i /∆x when k∆x = π

2 . Thus to ensure
the absolute stability, we need to take the time step to satisfy ∆t/∆x < 1
(notice that λ = 1 will be on the outside of the stability region).

The "oscillations" in Figure 7.1 (d) do not "grow" in time. On the other
hand, we need to see why we still have "oscillations" with absolute stability
ensured. The absolute stability for a multistep method means the set of
points z in complex plane so that the polynomial π(ξ, z) = ρ(ξ) − zσ(ξ)
satisfies the root condition. The root condition is derived from the initial
value problem for the difference equation (for the leapfrog method solving
u′ = au),

Un+1 = Un−1 + 2∆taUn.

If z = ∆ta ∈ (− i, i), then π(ξ, z) = ρ(ξ) − zσ(ξ) = ξ2 − 2zξ − 1 has two
distinct roots ξ1 and ξ2 satisfying |ξi| ≤ 1. The solution to this IVP can be
written as

Un = c1ξ
n
1 + c2ξ

n
2 .

Even though, ∥ξn
1 ∥ ≤ 1 and ∥ξn

2 ∥ ≤ 1, obviously we do not necessarily
have ∥Un+1∥ ≤ ∥Un∥, which explains the "oscillations" in Figure 7.1 (d).
However, the "energy" of Un does not grow for fixed c1 and c2. In other
words, the "oscillations" in Figure 7.1 (d) will not grow as time evolves.

7.5.2 The two way wave equation

The leapfrog method (second order centered difference for time and space
derivatives) for the two-way wave equation utt = uxx is

Un+1
j − 2Un

j + Un−1
j

∆t2 =
Un

j+1 − 2Un
j + Un

j−1
∆x2 . (7.12)

The simplified 1D Maxwell’s equations can be written as{
Et = Hx

Ht = Ex
, (7.13)

180 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

which is equivalent to Ett = Exx or Htt = Hxx.
The FDTD method (second order centered difference for time and space

derivatives) for (7.13) is defined on staggered grid for H:
En+1

j −En
j

∆t =
H

n+ 1
2

j+ 1
2

−H
n+ 1

2
j− 1

2
∆x

H
n+ 1

2
j+ 1

2
−H

n− 1
2

j+ 1
2

∆t = En
j+1−En

j

∆x

(7.14)

It is a simple excersie to show that (7.14) is equivalent to (7.12) solving
Ett = Exx if we ignore the initial conditions.

Next, we consider the scheme (7.12) on the interval x ∈ [0, 2π] with
periodic boundary conditions. Let λ = ∆t

∆x , then (7.12) can be written as

Un+1
j = 2Un

j + λ2(E − 2 + E−1)Un
j − Un−1

j ,

where E is the shift operator. Define

V n
j =

(
Un

j

Un−1
j

)
,

then we get

V n+1
j =

(
2 + λ2(E − 2 + E−1) −1

1 0

)
V n

j . (7.15)

Plugging in the ansatz V n
j = V̂ n

k e
i kj∆x, we get

V̂ n+1
k =

(
2 + λ2(ei k∆x − 2 + e− i k∆x) −1

1 0

)
V̂ n

k .

Thus

G =
(

2 + λ2(2 cos ξ − 2) −1
1 0

)
.

The eigenvalues of G are µ1 = a +
√
a2 − 1, µ2 = a −

√
a2 − 1 with a =

1 + λ2(cos ξ − 1). Notice that −1 ≤ a ≤ 1 if and only if 1− 2
λ2 ≤ cos ξ ≤ 1.

• If λ > 1, consider those ξ0 such that cos ξ0 < 1− 2
λ2 . Then a(ξ0) < −1

and |µ2(ξ0)| = |a −
√
a2 − 1| > 1. The von Neumann stability is

violated thus not stable.

• If λ ≤ 1, then a2−1 ≤ 0 thus µ1 = a+i
√

1− a2, µ2 = a−i
√

1− a2. So
|µi| = 1 and the von Neumann stability is satisfied. On the other hand,
G is not a normal matrix and ∥G∥ > 1. Nonetheless, G is diagonalizable

7.5. THE LEAPFROG SCHEME 181

if µ1 ̸= µ2, which is true if cos ξ ̸= 1. So G = T

(
µ1 0
0 µ2

)
T−1 implies

Gn = T

(
µn

1 0
0 µn

2

)
T−1, thus

∥Gn∥ ≤ ∥T∥
∥∥∥∥∥
(
µn

1 0
0 µn

2

)∥∥∥∥∥ ∥T−1∥ = ∥T∥∥T−1∥max
i
|µn

i | = ∥T∥∥T−1∥.

(7.16)
We still need to discuss ∥T∥ and ∥T−1∥ and the case cos ξ = 1 (or
ξ = 0), see the discussion below for stability.

First we estimate ∥T∥ and ∥T−1∥ for the case λ ≤ 1 and ξ ̸= 0 (since
ξ = k∆x, we consider k = 1, 2, · · · , N − 1). By using the fact µ1µ2 = 1, the
eigenvectors can be chosen as

T =
(
µ1 µ2
1 1

)
, T−1 = 1

µ1 − µ2

(
1 −µ2
−1 µ1

)
.

Since µ∗
1 = µ2 and µ∗

2 = µ1, we have

T ∗T =
(

2 µ∗
1µ2 + 1

µ1µ
∗
2 + 1 2

)
=
(

2 (µ1 + µ2)µ2
(µ1 + µ2)µ1 2

)

whose eigenvalues are bounded at least by 4 (let x be an eigenvalue of TT ∗,
then (x − 2)2 = (µ1 + µ2)2µ1µ2 = 4a2), yielding ∥T∥ ≤ 2. With µ1µ2 = 1,
µ1 + µ2 = 2a and µ1 − µ2 = 2 i

√
1− a2, we have

(T−1)∗T−1 = 1
(µ1 − µ2)(µ∗

1 − µ∗
2)

(
2 −(µ1 + µ2)

−(µ1 + µ2) 2µ1µ2

)
= 1

2(1− a2)

(
1 −a
−a 1

)
.

Let xi be eigenvalues of (T−1)∗T−1, then

x1 = 1
2

1
1− a, x2 = 1

2
1

1 + a
.

Since a = 1 + λ2(cos(k∆x) − 1), for fixed λ ≤ 1, by Taylor expansion on
cos ∆x, we have

|xi| ≤
1

2λ2
1

1− cos ∆x = O(∆x−2),

thus
∥T−1∥ ≤ C∆x−1.

With (7.16), we have ∥Gn∥ ≤ C∆x−1, which means the scheme (7.12) is not
stable according to the definition of stability.

182 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

Notice that we have used inequalities in (7.16), which might not be sharp.
We can also compute Gn directly by

Gn(k,∆t) = T

(
µn

1 0
0 µn

2

)
T−1 = 1

µ1 − µ2

(
µn+1

1 − µn+1
2 −µn

1 + µn
2

µn
1 − µn

2 −µn−1
1 + µn−1

2

)
.

Since |µi| = 1, we can rewrite them as µ1 = ei θ, µ2 = e− i θ. So

Gn(k,∆t) = 1
ei θ − e− i θ

(
ei(n+1)θ − e− i(n+1)θ −einθ + e− inθ

einθ − e− inθ −ei(n−1)θ + e− i(n−1)θ

)

=
(sin(n+1)θ

sin θ − sin nθ
sin θ

sin nθ
sin θ − sin(n−1)θ

sin θ

)

As k −→ 0, θ −→ 0 thus sin(n+1)θ
sin θ ≈ n+ 1. So we have shown the following

result

Lemma 7.2. For the scheme (7.12), for fixed λ ≤ 1, each entry of Gn(k,∆t)
for k = 1 is O(n).

Next we look at what may happen when ξ = 0 and λ < 1 (similarly
for the case λ = 1 with ξ = π). Recall the discrete frequencies are k =
0, 1, · · · , N − 1 in the discrete Fourier transform that we used to derive the
amplification matrix G(∆t, k). We have

G(∆t, 0) =
(

2 −1
1 0

)

with a repeated eigenvalue µ = 1. The Jordan form and the eigen-decomposition
are

G(∆t, 0) = T

(
1 1
0 1

)
T−1,

thus
G(∆t, 0)n = T

(
1 n
0 1

)
T−1.

Obviously we have ∥G(∆t, 0)n∥ → ∞ and ∥G(∆t,N/2)n∥ → ∞ (assume N is
even) as n→∞. So the scheme is unstalbe by the original definition. Now
let us try to understand what it means that the stability is lost only when
k = 0 for λ < 1 (and also k = 0, N/2 for λ = 1). The fact ∥G(∆t, 0)n∥ → ∞
implies that limn→∞ |Ûn

0 | =∞. In the discrete Fourier transform, the zero-
th frequency corresponds to

Ûn
k =

N−1∑
j=0

e− i kj∆xUn
j , k = 0,

7.5. THE LEAPFROG SCHEME 183

thus

Ûn
0 =

N−1∑
j=0

Un
j .

Therefore this means that any perturbation in the total sum of the initial
condition will not vanish as mesh refines. For instance, consider solving the
IVP

utt = uxx, u(x, 0) = 0, ut(x, 0) = 0,

with periodic b.c. on an interval. Then the exact solution is constant zero.
If we use the leapfrog scheme with the following initial conditions:

U0 ≡ 0, U1 ≡ ∆t.

Plugging initial conditions into the scheme (7.12), we obtain Um = m∆t.
For any n satisfying n∆t = t, Un ≡ t thus we do not have convergence at
all. On the other hand, if we use a second order accurate initial conditions:

U0 ≡ 0, U1 ≡ ∆t2,

then Un ≡ n∆t2 = t∆t→ 0 as n→∞.
Similar discussion holds for k = N when λ = 1. The frequency k = 0

corresponds to the vector [1 1 · · · 1] while k = N corresponds to the
vector v(N) = [1 − 1 1 − 1 · · · − 1] (if N is even). So any perturbation
of the form ∆tv(N) in the initial condition will destroy convergence.

Therefore, at least for the case λ < 1, as long as we have an accurate
initial condition so that the perturbation in the total sum is smaller than
O(∆t) (a second order initial condition can be achieved by Taylor expansion
u(x,∆t) ≈ u(x, 0) + ∆tut(x, 0) since both u(x, 0) and ut(x, 0) are given), it
is still possible to have convergence.

7.5.3 Convergence for the two way wave equation

We can modify the proof of the Lax equivalence theorem to prove the con-
vergence for the scheme (7.12). First, replace Un

j by u(xj , t
n) in (7.12), the

residue is the local truncation error

τn = O(∆t2) +O(∆x2).

Second, replace Un
j by u(xj , t

n) in (7.15), the residue is

∆t2τn = ∆t2[O(∆t2) +O(∆x2)].

184 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

Let V n+1 = C(∆t)V n denote the leapfrog scheme. Suppose

V n+1 =



Un+1
0
Un

0
Un+1

1
Un

1
...

Un+1
N−1

Un
N−1


,

then define Q∆x as the sampling operator of any function at the spatial grid
points and two time steps:

Q∆xu(x, t) =



u(x0, t)
u(x0, t−∆t)
u(x1, t)

u(x1, t−∆t)
...

u(xN−1, t)
u(xN−1, t−∆t)


.

Define
δn = [C(∆t)Q∆x −Q∆xS(∆t)]u(x, t),

where S(∆t)u(x, t) = u(x, t+ ∆t) is the exact solution operator. Then
δn = ∆t2τn.

The actual error that we want to control to prove the convergence is
εn+1 = V n+1 −Q∆xu(x, (n+ 1)∆t)

= C(∆t)[V n −Q∆xu(x, n∆t)] + [C(∆t)Q∆x −Q∆xS(∆t)]u(x, n∆t)
= C(∆t)εn + δn

By solving εn+1 = C(∆t)εn + δn (we no longer assume ε0 = 0), we get

εn = C(∆t)nε0 +
n−1∑
k=0

C(∆t)n−k−1δk.

Let F denote the 2N×2N matrix representing the linear transformation
of taking the discrete Fourier transform for Un and Un+1 respectively in
V n+1, i.e.,

FV n+1 =



Ûn+1
0
Ûn

0
Ûn+1

1
Ûn

1
...

Ûn+1
N−1

Ûn
N−1


.

7.5. THE LEAPFROG SCHEME 185

Let V̂ n = FV n and the amplification matrix be G(k) (k = 0, · · · , N − 1 is
the discrete frequency). Then the scheme V n+1 = C(∆t)V n is equivalent to
V̂ n+1 = FC(∆t)F−1V̂ n and FC(∆t)F−1 is a block diagonal matrix:

FC(∆t)F−1 = G =


G(0)

G(1)
. . .

G(N − 1)

 .
In otherwords, the discrete Fourier transform that we have been using can
block diagonalize the matrix C(∆t).

Thus the error satisfies

εn = F−1GnFε0 +
n−1∑
k=0

F−1Gn−k−1Fδk,

Fεn = GnFε0 +
n−1∑
k=0

Gn−k−1Fδk,

ε̂n = Gnε̂0 +
n−1∑
k=0

Gn−k−1δ̂k.

For λ = ∆t
∆x ≤ 1, in the previous subsection we have shown ∥Gn(k)∥ =

O(n) = O(∆t−1) for any n and ∆t satisfying n∆t = t for fixed time t. Thus
∥Gn∥ = O(∆t−1)

For the local truncation error part, since F is unitary, δ̂k = ∆t2τ̂k =
∆t2[O(∆t2) +O(∆x2)]. Thus∥∥∥∥∥

n−1∑
k=0

Gn−k−1δ̂k

∥∥∥∥∥ ≤
n−1∑
k=0
∥Gn−k−1∥∥δ̂k∥ =

n−1∑
k=0
O(∆t)[O(∆t2)+O(∆x2)] = O(∆t2)+O(∆x2).

In other words, ∥Gn∥ = O(∆t−1) does not decrease the order of conver-
gence by ∆t−1 for the local truncation error part!

We only need to look at the numerical initial conditions. If the initial
condition is second order accurate, i.e., ε0 = O(∆t2) thus ε̂0 = O(∆t2).
Then Gnε̂0 = O(∆t), which is only first order. For instance, ε̂0(0) denote
the first two components in the vector ε̂0, then

G(0)nε̂0(0) = T

(
1 n
0 1

)
T−1

(
O(∆t2)
O(∆t2)

)
= T

(
O(∆t2) +O(∆t2)n

O(∆t2)

)
= T

(
O(∆t)
O(∆t2)

)
.

So we still have the convergence lim∆t→0 ∥εn∥ = 0.

To summarize, the scheme (7.12) is not stable by the stability defi-
nition even though we can still have convergence with more assumptions on
initial conditions. On the other hand, the scheme (7.14) is stable if ∆t

∆x < 1
thus (7.14) is convergent with consistent initial conditions.

186 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

Remark 7.5. Recall that the 1D Maxwell equation (7.13) is equivalent to the
equation Ett = Exx. However, the initial value problems for these two equa-
tions (even with periodic boundary conditions) are not necessarily equivalent.
Consider the following initial value problems on the interval x ∈ [0, 2π] with
periodic boundary conditions:

1. Ett = Exx with E(x, 0) and Et(x, 0) given.

2. The system (7.13) with E(x, 0) and H(x, 0) given.

For these two IVPs to be equivalent, H(x, 0) =
∫
Et(x, 0) dx must hold. In

other words, for generic periodic initial data E(x, 0), Et(x, 0) and H(x, 0),
these two IVPs are not equivalent.

Problem 7.1. Show the scheme (7.14) with periodic boundary conditions
on x ∈ [0, 2π] is stable for ∆t

∆x < 1, by plugging in the ansatz En
j = Ên

k e
i kj∆x

and H
n+ 1

2
j = Ĥ

n+ 1
2

k ei k(j+ 1
2)∆x. The ansatz H

n+ 1
2

j = Ĥ
n+ 1

2
k ei k(j+ 1

2)∆x is

equivalent to using the transform H
n+ 1

2
j = ∑N−1

k=0 Ĥ
n+ 1

2
k ei k(j+ 1

2)∆x (why?).

Problem 7.2. Recall that the scheme (7.14) is formally equivalent to (7.12).
However, these two schemes are obviously different since one is stable and
the other one is not. To understand the difference or advantage on a stag-
gered grid, consider the initial data E(x, 0) = Et(x, 0) = H(x, 0) ≡ 0, with
which the two IVPs are equivalent. The scheme (7.12) is not convergent
with the initial condition E0 ≡ 0, E1 ≡ ∆t. Derive an initial condition E0

and H
1
2 so that the solution to (7.14) is the same the solution to (7.12)

with E0 ≡ 0, E1 ≡ ∆t. What does this initial condition imply? Is there
any contradiction to the fact that (7.14) is convergent with consistent initial
conditions?

7.6 Dissipative schemes

In practical applications, the spectral radius of the amplification matrix is
often easy to evaluate. Looking for a sufficient condition, this time in terms
of the spectral radius leads us to the concept of dissipation of a scheme, to
which we now turn our attention.

Definition 7.9. A finite difference scheme V n+1 = C(∆t)V n is called dis-
sipative of order 2r if the amplification matrix satisfies:

ρ[G(∆t, k)] ≤ 1− δ|ξ|2r,

where ξ = k∆x for all ∆t, k and δ > 0 is independent of k and ∆t.

7.6. DISSIPATIVE SCHEMES 187

This condition means that the eigenvalues of the amplification matrix
are bounded away from one in a way proportional to the parameter ξ. As
mentioned earlier, it is in general true that even stable schemes have eigen-
value 1 for the mode ξ = 0. We shall let return to this fact in examples to
come. Dissipation allows this case to happen, but all other eigenvalues are
strictly inside the unit circle.

When a scheme is dissipative, it is very likely to be stable, even in the
variable coefficient case, a fact that makes dissipation an important prop-
erty of the schemes. We present some examples to illustrate the concept
of dissipation and its relation to stability and "growth" of the numerical
solution.

Example 7.9. Consider the Lax-Wendroff scheme for ut = ux with periodic
boundary conditions:

Un+1
j = Un

j + ∆t
2∆x(Un

j+1 − Un
j−1) + ∆t2

2∆x2 (Un
j+1 − 2Un

j + Un
j−1).

This scheme is second order accurate, both in space and time. By the ansatz
Un

j = ei kj∆tÛn
k , we get the corresponding amplification factor

g(ξ) = 1 + iλ sin ξ + λ2(cos ξ − 1).

For convenience, let η = sin(ξ/2) then sin ξ = 2 sin(ξ/2) cos(ξ/2) = 2η
√

1− η2,
thus

g(ξ) = 1− 2λ2η2 + 2 iλη
√

1− η2,

and
|g(ξ)|2 = 1− 4λ2(1− λ2)η4.

If λ ≤ 1, we get |g(ξ)| ≤ 1 for all ξ thus we have stability. If λ < 1, the
scheme is dissipative of order 4. To see why this is true, we have

|g(ξ)|2 = 1− 4λ2(1− λ2)
(

sin4(ξ/2)
(ξ/2)4

)(
ξ

2

)4
= 1− 4λ2(1− λ2)γ

(
ξ

2

)4
.

We also have
sin θ
θ

= sin |θ|
|θ|

≥ 2
π
,

thus
γ = sin4(ξ/2)

(ξ/2)4 ≥
(2
π

)4
.

So we get

|g(ξ)|2 ≤ 1− 4λ2(1− λ2)
(2
π

)4 (ξ
2

)4
= 1− 4

π4λ
2(1− λ2)ξ4 ≤ 1.

Notice, however, that if λ = 1, then the scheme is not dissipative.

188 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

Dissipation of a scheme may be desirable in some problems, as is the case
of highly fluctuating initial data (or "noisy information"), and it ensures
stability. But in other cases, if the effect of dissipation is too strong, we
might lose our solution by an exaggerated smoothing mechanism, which is
very likely to occur if we want to perform a large number of time iterations.
Therefore, whether we should choose a dissipative scheme or not strongly
depends on the particular problem we want to solve.

Example 7.10. Consider again the problem ux = ux with periodicity con-
ditions, and the scheme:

Un+1
j = 1

2(Un
j+1 + Un

j−1) + ∆t
2∆x(Un

j+1 − Un
j−1)

This scheme is both accurate and stable when the CFL condition λ ≤ 1.
holds. The amplification factor is given by:

g(ξ) = cos ξ + i sin ξ

and therefore:

|g(ξ)| = cos2 ξ + λ2 sin2 ξ = 1− (1− λ2) sin2 ξ.

By a similar argument to the one given in the previous example, it can be
shown that when λ < 1, the scheme is dissipative of order 2. At this point
we should notice that, as seen directly from expression of |g(ξ)|, the values
ξ = −π, 0, π yield |g(ξ)| = 1. Although the definition of dissipation does not
hold exactly in the way stated, the inequality fails only for a finite number of
values of ξ. We in general consider these schemes as dissipative ones. Again
we have that the scheme reproduces the exact solution at the grid points when
λ = 1, so in that case there is no dissipation.

Example 7.11. Consider now the leap frog scheme for approximating the
solution of ux = ux with periodic boundary conditions. The amplification
matrix is

G(ξ) =
(

2 iλ sin ξ 1
1 0

)
.

If λ < 1, then the scheme is stable as discussed before, and the eigenvalues
satisfy

µ1(ξ) = iλ sin ξ +
√

1− λ2 sin2 ξ,

µ2(ξ) = iλ sin ξ −
√

1− λ2 sin2 ξ,

|µi(ξ)| = 1.

Thus ρ(G) = 1 for all values of k and ∆t, which implies the leapfrog scheme
is not dissipative.

7.6. DISSIPATIVE SCHEMES 189

The following example illustrates how a non-dissipative scheme may give
rise to a very a bad approximation of a system for which energy is being
dissipated.

Example 7.12. Let u(x, t) be the solution of:

ux = ux − βu,

where β > 0, and assume periodicity conditions. The usual energy estimates
for this system can be evaluated multiplying by it and integrating by parts,
yielding:

d

dt
∥u(x, t)∥2 = d

dt

∫ 2π

0
|u(x, t)|2 dx =

∫ 2π

0

d

dx
u2(x, t) dx− 2β

∫ 2π

0
u2(x, t) dx

= −2β∥u(x, t)∥2,

where we have used u(0, t) = u(2π, t) for all t > 0. Integrating with respect
to time we obtain:

∥u(x, t)∥2 = 2−2βt∥u(x, 0)∥2

so the solution decreases in time, that is, the system is dissipating energy.
Consider now the leap frog scheme for this problem, given by:

Un+1
j = Un−1

j + ∆t
∆x(Un

j+1 − Un
j−1)− 2β∆tUn

j

with periodicity conditions:

Un
−1 = Un

N−1, U
n
0 = Un

N .

It is easy to check that this scheme is second order accurate. If λ = ∆t
∆x <

1, then Un+1
j = Un−1

j + ∆t
∆x(Un

j+1 − Un
j−1) is stable. Thus by the Kreiss

Perturbation Theorem 7.2, the scheme in this example is also stable.
The amplification matrix is

G(ξ) =
(

2 iλ sin ξ − 2β∆t 1
1 0

)
.

In particular, for the mode corresponding to ξ = π

G(π) =
(
−2β∆t 1

1 0

)
.

whose eigenvalues are

µ1(π) = −β∆t−
√

1 + β2∆t2,

µ2(π) = −β∆t+
√

1 + β2∆t2.

190 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

If ∆t is small but positive, we have:

µ1(π) ≈ −β∆t− (1 + 1
2β

2∆t2) ≈ −1− β∆t

and thus, upon calling T = n∆t,

µ1(π)n ≈ (−1)n(1 + β∆t)n = (1 + βT/n)n(−1)n.

We know the scheme is accurate and stable, so by Lax equivalence the-
orem, it converges. Nonetheless, the concept of convergence involves taking
limits of the approximations as ∆t→ 0 with T = n∆t fixed. In practice we
deal with a fixed positive ∆t > 0 and compute n time steps. As the number
of time steps increases, the eigenvalue grows exponentially as:

µ1(π)n ≈ (−1)neβT .

As discussed before, the energy of the true solution decreases exponentially
with time, for any initial condition, whereas the scheme might give rise to
increasing numerical solution in practice. To verify this statement, it is
enough to consider a particular case for the initialization of the scheme and
show that the corresponding numerical solution Un grows in time. Consider
the initial condition:

U0
j = u(xj , 0) = (−1)j .

In order to implement the scheme, we need to specify also the first time step
U1, which we give as

U1
j = µ1(π)(−1)j .

Then the numerical solution is

Un
j = (−1)jqn

where q satisfies:
qn+1 = qn−1 − 2β∆qn.

This equation is equivalent to the quadratic equation:

q2 + 2β∆tq − 1 = 0,

whose roots are preciously µ1(π) and µ2(π). Thus the general solution for q
is of the form:

q = α1µ1(π) + α2µ2(π).

Since U1
j must coincide with the initialization given above, it follows that

q = µ1(π) thus Un
j = (−1)jµn

1 (π), which grows exponentially with the number
of iterations performed, keeping ∆t > 0 fixed. In other words, if using a
fixed time step ∆t, for computing longer and longer time T , the energy of
the numerical solution grows exponentially in T .

7.7. DIFFERENCE SCHEMES FOR HYPERBOLIC SYSTEMS IN ONE DIMENSION 191

7.6.1 0-stability V.S. absolute stability

For a finite difference scheme V n+ = C(∆t)V n, the stability that we defined
in this chapter is to require ∥C(∆t)n∥ ≤ Keαt for any n and ∆t satisfying
n∆t = t, which is also called Lax-Richtmyer stability, which is very sim-
ilar to the 0-stability as defined in Chapter 6. On the other hand, we did not
define the absolute stability for the scheme V n+ = C(∆t)V n. Nonetheless,
sometimes we achieved the absolute stability by requiring the Lax-Richtmyer
stability. For instance, the amplification factor for the upwind scheme solv-
ing ut = ux is g(k) = 1− λ+ λei k∆x, and

|gn| = |g|n =
[
(1− λ)2 + λ2 + 2λ(1− λ) cos ξ

]n
2 .

For the Lax-Richitmyer stability, we need |gn| to be uniformly bounded as
n→∞, which holds if and only if

(1− λ)2 + λ2 + 2λ(1− λ) cos ξ ≤ 1,

i.e.,
2(1− cos ξ)λ(λ− 1) ≤ 0.

Therefore, the Lax-Richitmyer stability holds if and only if |g| ≤ 1, which is
very similar to the absolute stability defined in Chapter 6. In other words,
we actually have the "absolute stability" for the schemes which perform well
numerically, e.g., upwind and leagfrog schemes for ut = ux.

However, the "absolute stability" is less general than the Lax-Richtmyer
stability, which is one of the reasons that we did not introduce or define the
"absolute stability". For instance, the leapfrog scheme has Lax-Richtmyer
stability and the "absolute stability" for the equation ut = ux. For the per-
turbed equation ut = ux− βu with any β > 0 in Example 7.12, the leapfrog
scheme also has Lax-Richtmyer stability due to the Kreiss Perturbation The-
orem (Theorem 7.2), but the "absolute stability" is lost.

7.7 Difference schemes for hyperbolic systems in
one dimension

It is often the case that the dimension of the space variable may change
dramatically the properties of the numerical schemes, here we shall focus
on problems in one dimension. Throughout this section, x will denote a
scalar, and u(x, t) = (u1(x, t), · · · , up(x, t))T will denote the solution of a
system of hyperbolic partial differential equations. We will be interested in
approximating the solution u(x, t) of the general, nonlinear equation of the
form:

ut(x, t) = ∂

∂ x
F (u(x, t)), (7.17)

192 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

where F (u) is a function F (u1, · · · , up) = (F1(u1, · · · , up), · · · , Fp(u1, · · · , up))T ,
e.g., the Euler equations discussed in Chapter 5. Therefore we have:

∂

∂ x
F (u(x, t)) = ∂

∂ u
F (u) ∂

∂ x
u(x, t),

where ∂
∂ uF (u) denotes the gradient matrix A(u) with components aij(u) =

∂ Fi(u)
∂ uj

so that the nonlinear system can be written in the form:

ut = A(u)ux. (7.18)

We now generalize the definitions given previously in Chapter 5 for hy-
perbolic partial differential equations in the nonlinear case.

Definition 7.10. The nonlinear equation (7.18) is called weakly, strongly,
symmetric or strictly hyperbolic if for every u0 fixed, the corresponding lin-
earized system:

ut = A(u0)ux

is weakly, strongly, symmetric or strictly hyperbolic, respectively.

As already mentioned before, the Lax equivalence theorem states basi-
cally that an accurate scheme is stable if and only if it converges, provided
that the problem is strongly well posed. Weak well posedness may give
rise to instabilities. Therefore, we shall consider only problems which are
strongly, symmetric or strictly hyperbolic, yielding strong well posedness.
We study separately the schemes which are accurate of order (1, 1), or first
order schemes, and schemes which are accurate of order (2, 2), or second
order schemes.

7.7.1 First order schemes

We shall consider two schemes: Friedrich’s scheme and the upwind schemes.
We will assume that the problem (7.18) is strongly well posed. The accuracy
of the schemes can be checked directly in the nonlinear form (7.18), but
in order to establish stability, as done for well posedness, we look at the
linearized scheme substituting A(u) by a constant matrix of the form A(u0),
for which the problem is strongly well posed, as our previous assumption
implies. Consider Friedrich’s scheme:

Un+1
j = 1

2(Un
j+1 + Un

j−1) + ∆t
2∆x(Fn

j+1 − Fn
j−1)

where Fn
j+1 = F (Un

j+1). This scheme is based on a first order approximation
of the derivatives using Taylor expansion, and it can be easily shown that this
scheme is first order accurate, and details are left to the reader. Linearizing
the function F (u) around some arbitrary value to u0 we replace A(u) by

7.7. DIFFERENCE SCHEMES FOR HYPERBOLIC SYSTEMS IN ONE DIMENSION 193

a constant matrix A, so that the linearized problem is equivalent to the
original problem with F (u) = Au. Substituting in the Friedrich’s scheme,
we get the linearized form of the scheme as:

Un+1
j = 1

2(Un
j+1 + Un

j−1) + ∆t
2∆xA(Un

j+1 − Un
j−1).

The corresponding amplification matrix is given by:

G(ξ) = I cos ξ + iλA sin ξ,

where ξ = k∆x, and I is the p× p identity matrix. If the original problem
is strongly or strictly hyperbolic, then it follows that the matrix A = A(u0)
is diagonalizable, i.e. there exists a matrix T such that

T−1AT =

a1 · · · 0
...
0 · · · ap


where a1, · · · , ap are the real eigenvalues of A. Therefore:

T−1G(ξ)T = I cos ξ + iλ

a1 · · · 0
...
0 · · · ap

 sin ξ

which is also diagonal with entries (eigenvalues) given explicitly by:

µk(ξ) = cosξ + iλak sin ξ,

which implies that:

|µk(ξ)|2 = cos2 ξ + λ2a2
k sin2 ξ = 1− (1− λ2a2

k) sin2 ξ.

Therefore, if ρ(A) = maxk |ak| satisfies the inequality

∆t
∆xρ(A) ≤ 1,

then von Neumann stability condition will hold and |µk(ξ)| ≤ 1 for all k and
ξ. Furthermore, if ∆t

∆xρ(A) < 1, then |µk(ξ)| will be bounded away from 1
for all 0 ≤ ξ < 2π except for ξ = 0, π. It is left as an exercise to prove that
under strict inequality of von Neumann condition, the scheme is dissipative
of order 2. Since G is diagonalized by a constant matrix T , the scheme for
the linearized system is stable when ∆t

∆xρ(A) ≤ 1. In practice, if the scheme
for the linearized system is stable under the CFL condition ∆t

∆xρ(A) ≤ 1,
then the scheme for the nonlinear system is usually "stable" under the CFL
condition ∆t

∆x maxu ρ(A(u)) ≤ 1 for solving smooth solutions.

194 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

We now turn to the study of upwind schemes. These schemes are moti-
vated by the scalar equation:

ut = aux

, when p = 1. If a > 0 the characteristics are straight lines moving to the left,
and the scheme constructed in order to "follow" the physical characteristics
is:

Un+1
j = Un

j + ∆t
∆xa(Un

j+1 − Un
j), a > 0, (7.19)

and, as discussed before, the scheme is accurate and stable for 0 < aλ ≤ 1,
for λ = ∆t/∆x. On the other hand, if a < 0, then the characteristics point
to the right and it is more reasonable to use the information carried by Un

j

and Un
j−1, in order to evaluate Un+1

j through the scheme:

Un+1
j = Un

j + ∆t
∆xa(Un

j − Un
j−1), a < 0, (7.20)

In this case, stability follows from the condition −1 ≤ λa < 0.
In order to extend the concept of upwind schemes to systems of hyper-

bolic equations some care must be taken. We shall gradually construct the
general recursion formula.

Example 7.13. Consider first the following example:(
u
v

)
t

=
(

0 c
c 0

)(
u
v

)
x

where c > 0. This system is equivalent to:

(u+ v)t = c(u+ v)x

(u− v)t = −c(u− v)x

Therefore an upwind schemecan be constructed naturally for U + V and
U − V , which yields:

Un+1
j + V n+1

j = Un
j + V n

j + ∆t
∆xc(U

n
j+1 + V n

j+1 − Un
j − V n

j)

Un+1
j + V n+1

j = Un
j − V n

j −
∆t
∆xc(U

n
j + V n

j − Un
j−1 − V n

j−1).

Adding and subtracting these two equations, we get the following equivalent
scheme:

Un+1
j = Un

j + ∆t
2∆xc(V

n
j+1 − V n

j−1) + ∆t
2∆xc(U

n
j+1 − 2Un

j + Un
j−1)

V n+1
j = V n

j + ∆t
2∆xc(U

n
j+1 − Un

j−1) + ∆t
2∆xc(V

n
j+1 − 2V n

j + V n
j−1). (7.21)

7.7. DIFFERENCE SCHEMES FOR HYPERBOLIC SYSTEMS IN ONE DIMENSION 195

Looking at these equations it is clear that even though we started with
upwind schemes, (7.21) are centered expressions: there is no longer any ex-
plicit direction for the characteristics. Also, it should be noticed that besides
an approximation of a first order derivative, the above equations also contain
an approximation to a second order derivative, which we did not have when
we started the construction of the schemes. When generalizing the concept of
an upwind scheme, we must allow for centered expressions that at first sight
may not seem to carry information along characteristics, keeping in mind
this simple example. The scheme (7.21) is a first order accurate (both in
time and space) scheme for the first order convection equation, and a second
order accurate (in space) scheme for the convection diffusion equation:

ut = cvx + c∆xuxx

vt = cux + c∆xvxx,

which is called the modified equation for the scheme (7.21). Thus at least in-
tuitively we expect the scheme (7.21) produces a smoother numerical solution
than the exact solution to the original first order convection equation.

We now write an equivalent expression for (7.19) and (7.20) by adding
and subtracting the appropriate terms

Un+1
j = Un

j + ∆t
2∆xa(Un

j+1 − Un
j−1) + ∆t

2∆xa(Un
j+1 − 2Un

j + Un
j−1), a > 0

(7.22)
Un+1

j = Un
j + ∆t

2∆xa(Un
j+1 − Un

j−1)− ∆t
2∆xa(Un

j+1 − 2Un
j + Un

j−1), a < 0
(7.23)

from where it is clear now that the general form of upwind Scheme for the
scalar case p = 1 is given by:

Un+1
j = Un

j + ∆t
2∆xa(Un

j+1 − Un
j−1) + ∆t

2∆x |a|(U
n
j+1 − 2Un

j + Un
j−1) (7.24)

While schemes (7.22) and (7.23) are hard to generalize to the variable co-
efficient case in the form they are usually written, it is straightforward to
implement (7.24) in the case a = a(x) using the values of a(x) and |a(x)|.

As can be verified from (7.25), there is indeed a term that approximates a
second derivative within the upwind schemes. Furthermore, this term has a
positive coefficient, |a| > 0, which in turn introduces a dissipative mechanism
for the scheme.

In order to generalize (7.24) for systems of hyperbolic equations we first
have to define the "absolute" value of a matrix that will play the role of |a| in
the scalar case. Consider again the linearized, strongly hyperbolic system,
so that the matrix A is a constant, diagonalizable matrix:

ut = Aux.

196 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

Definition 7.11. Let A be diagonalizable by T , so that:

Λ = T−1AT =

a1 · · · 0
...
0 · · · ap

 .
The absolute value of Λ is defined by:

|Λ| =

|a1| · · · 0
...
0 · · · |ap|


and the absolute value of the matrix A is defined to be |A| = T |Λ|T−1, so
that |A| is also a p× p matrix which T itself diagonalizes.

Example 7.14. For the matrix A =
(

0 c
c 0

)
, we have:

A = T

(
c 0
0 −c

)
T−1, T = T−1 = 1√

2

(
1 1
1 −1

)
.

Thus
|A| = T

(
c 0
0 c

)
T−1 = cI.

The generalization of scheme (7.24) to the system ut = Aux is given by the
scheme:

Un+1
j = Un

j + ∆t
2∆xA(Un

j+1 − Un
j−1) + ∆t

2∆x |A|(U
n
j+1 − 2Un

j + Un
j−1) (7.25)

It is straightforward to verify that (7.21) satisfy (7.25).

Definition 7.12. Let f(x) be a real valued function of the variable x. We
define the positive part f+ of f as the function f+(x) = max{0, f(x)} or
equivalently:

f+(x) =
{
f(x), if f(x) > 0
0, if f(x) ≤ 0

and analogously, the negative part f−(x) of f is defined by f−(x) = −max{0,−f(x)}.
Using these definitions, it follows that:

f = f+ + f−, |f | = f+ − f−.

Substituting in (7.24) the values of a and |a| in terms of the positive and
negative parts, we obtain an alternative expression for the upwind scheme
in the scalar case, namely,

Un+1
j = Un

j + (a+) ∆t
∆x(Un

j+1 − Un
j) + (a−) ∆t

∆x(Un
j − Un

j−1). (7.26)

7.7. DIFFERENCE SCHEMES FOR HYPERBOLIC SYSTEMS IN ONE DIMENSION 197

This representation of the upwind scheme has the advantage that it
shows explicitly the directions of the characteristics that the scheme "picks’
according to the sign of a, which becomes more useful when a is a variable
coefficient a(x). Following the natural extension, we can now define the
positive and negative part of a diagonalizable matrix in terms of the absolute
value.

Definition 7.13. Let A be a diagonalizable matrix. We define the positive
(negative) part of A by:

A+ = A+ |A|
2 , A− = A− |A|

2 .

Scheme (7.25) can now be written in a more compact form using the
positive and negative parts of the matrix A, yielding:

Un+1
j = Un

j + ∆t
∆xA

+(Un
j+1 − Un

j) + ∆t
∆xA

−(Un
j − Un

j−1).

This expression gives the general form of the upwind scheme for approxi-
mating the solution of symmetric, strongly or strictly hyperbolic systems
with constant coefficients. To generalize the scheme to the nonlinear case,
where A = A(u), we need some material on nonlinear equations in a more
general scope. The foundamental method of this type is called Godunov’s
scheme, which we will not introduce in this chapter. We summarize now the
concepts related to the upwind scheme in the linear case:

ut = Aux

where A is diagonalizable, so that the problem is strongly well posed. Accu-
racy of order (1,1) and stability of the upwind scheme follow straightforward
assuming:

ρ(A) ∆t
∆x ≤ 1.

Indeed, one can decouple the system using the transformation w = Tu,
which yields

wt = Λwx.

The corresponding scheme defined by Wn
j = TUn

j has p components that
satisfy schemes (7.24) or, equivalently, (7.26) with a, |a|, and a+, a− replaced
in terms of the eigenvalues ak of A. For each component the scheme for Wn

j

is accurate of first order and stable, as an approximation of the solution
of wt = Λwx. Applying the bounded, linear transformation T to Wn

j , the
result for the original problem is established.

198 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

7.7.2 Second order schemes

Roughly speaking, we can divide second order schemes into the dissipative
and the non-dissipative ones. As before, we will assume strong well posed-
ness of the problem ut = A(u)ux. Accuracy of the schemes can be evaluated
directly for the schemes in general form, but in order to establish stability,
we shall consider the linearized versions, as we did in the previous section.
A representative of the class of dissipative schemes of second order accuracy
is the Lax-Wendroff scheme, which we shall study first.

Definition 7.14. A scheme for approximating the solution of ut = A(u)ux

is called a Lax-Wendroff scheme if under the assumption A(u) = A (or
F (u) = Au is linear), the scheme reduces to:

Un+1
j = Un

j + ∆t
2∆xA(Un

j+1−Un
j−1)+ 1

2

(∆t
∆xA

)2
(Un

j+1−2Un
j +Un

j−1). (7.27)

It may be shown that the scheme (7.27) is actually the only second
order scheme for the linear problem that uses Un

j−1, U
n
j , and Un

j+1, to
evaluate Un+1

j .
Lax-Wendroff schemes arise from the idea of replacing time derivatives

by space derivatives, using the equation ut = F (u), and approximating the
latter by finite differences. Using a Taylor expansion for u, we have:

u(x, t+ ∆t) = u(x, t) + ∆tut(x, t) + ∆2

2 utt(x, t) +O(∆t3).

Since ut(x, t) = F (u(x, t)), in the linear case where F (u) = Au we get:

ut(x, t) = Aux(x, t), utt(x, t) = A2uxx(x, t).

Using now finite difference approximations for ux and uxx, it follows that the
linear form of the scheme (7.27) is accurate of order (2,2). The amplification
matrix of the linear form of the Lax-Wendroff scheme is:

G(ξ) = I + iλA sin ξ + λ2A2(cos ξ − 1),

where, as usual, ξ = k∆t and λ = ∆t/∆x. Calling η = sin(ξ/2) we can
write:

G(ξ) = I + 2 iλAη
√

1− η2 − 2λ2A2η2.

Therefore any eigenvalue µ(η) of the amplification matrix will be of the form:

µ(η) = 1 + 2 iλµ(A)η
√

1− η2 − 2λ2µ(A)2η2,

which follows from the fact that A is diagonalizable. From the expression
of the eigenvalues µ(η) of the amplification matrix we have:

|µ(η)|2 = 1− λ2µ(A)2η4(1− λ2µ(A)2)

7.7. DIFFERENCE SCHEMES FOR HYPERBOLIC SYSTEMS IN ONE DIMENSION 199

which holds for every eigenvalue of G(ξ). Recall that the spectral radius of
G(ξ) is defined as the maximum value of µ(η). Therefore, upon letting µ∗
be the eigenvalue of A which maximizes the above expression for |µ(η)| we
get:

|ρ(G)|2 = 1− λ2µ2
∗η

4(1− λ2µ2
∗)

Clearly, von Neumann condition will be satisfied if

λρ(A) ≤ 1

which implies λµ(A) ≤ 1 for all eigenvalues of A. Furthermore, if λµ∗ < 1,
then the scheme given by (7.27) is dissipative of order 4. Here the dissipation
can be controlled through the parameter λ, or, equivalently, through the
choice of ∆t. In the nonlinear case we can construct different schemes which
fall within the class of LaxWendroff schemes, depending on the way we
approximate the derivatives.

For the nonlinear case, we have

utt = [F (u)]xt = [F (u)t]x = [A(u)ut]x = [A(u)F (u)x]x.

Substituting ut = F (u)x and the above expression in the Taylor expansion,
we get:

u(x, t+ ∆t) = u(x, t) + ∆tF (u)x + ∆t2
2 [A(u)F (u)x]x +O(∆t3).

The scheme originally proposed by Lax and Wendroff is based on approx-
imating the space derivatives in the expansion above up to order O(∆x2)
and is given by:

Un+1
j = Un

j + ∆t
2∆x(Fn

j+1−Fn
j−1)+1

2

(∆t
∆x

)2
(An

j+ 1
2
(Fn

j+1−Fn
j)−An

j− 1
2
(Fn

j −Fn
j−1)).

(7.28)
where:

Fn
j = F (Un

j), An
j+ 1

2
= A(

Un
j+1 + Un

j

2).

Scheme (7.28) becomes rather inefficient in practical applications due to the
many computations involved at each time step iteration in order to evaluate
A, and F . A modification of this scheme which is very popular considers
approximating derivatives at "half stages” of the iteration, using:

u(x, t+ ∆t) = u(x, t) + ∆tut(x, t+ 1
2∆t) +O(∆t2),

and it is known as the MacCormack scheme. Each iteration has two steps
corresponding to first order approximations of the solution at half steps.

200 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

The Scheme is given by:

U∗
j = Un

j + ∆t
∆x(Fn

j+1 − Fn
j)

Un+1
j = 1

2

(
Un

j + U∗
j + ∆t

∆x(F ∗
j − F ∗

j−1)
)

where
Fn

j = F (UN
j), F ∗

j = F (U∗
j).

This scheme is a two-stage scheme which evaluates a "predictor" U∗
j and a

"corrector" U∗∗
j = U∗

j + ∆t
∆x(F ∗

j −F ∗
j−1), and then forms Un+1

j as the average
(U∗

j + U∗∗
j)/2.

It is clear that in order to evaluate Un+1
j the scheme uses the same points

in the grid at time in as the Lax-Wendroff scheme. Notice, however, that
here we go from right to left at the middle stage ∗, and then from left to right.
The "efficiency” of a scheme is often related to the cost in computer time of
each iteration. In these terms, one can compare different schemes. For the
Lax-Wendroff scheme, we need to evaluate Fn

j−1, Fn
j , Fn

j+1, An
j+ 1

2
and An

j− 1
2

and perform matrix multiplications in each iteration, whereas MacCormack
Scheme requires only the evaluation of Fn

j , Fn
j+1, F ∗

j and F ∗
j−1.

It only remains to prove the order of accuracy of MacCormack scheme.
The fact that it belongs to the class of Lax-Wendroff schemes follows straight-
forward replacing F (u) by Au with A a constant matrix.

The local truncation error of the MacCormack scheme is O(∆t2) +
O(∆x2) +O(∆t∆x), in which we assume ∆t = O(∆x). Thus it is a second
order accurate in space and time.

Among the class of second order non-dissipative schemes is the leap frog
scheme. For the general non-linear equation, the scheme is given by:

Un+1
j = Un−1

j + ∆t
∆x(Fn

j+1 − Fn
j−1). (7.29)

We analyzed this scheme in detail for the linear case, and found out that it
is not dissipative and it is stable, provided that ∆t

∆xρ(A) < 1. The fact that
(7.29) is accurate of second order follows a straightforward calculation. This
scheme is generally more efficient than Lax-Wendroff schemes, although it
needs roughly twice as much memory due to the dependence on two pre-
vious time stages to evaluate Un+1, therefore in practice, we usually face
the trade-off between efficiency and storage requirements. Since this is a
non-dissipative scheme, it will not give good approximations for nonlinear
equations. We now proceed to describe a way to introduce a dissipative
term in (7.29) to deal with this problem. When adding a dissipative term in
the form of a small perturbation, care must be taken so that the resulting
linear scheme retains stability. Recall that in the linear case F (u) = Au,

7.7. DIFFERENCE SCHEMES FOR HYPERBOLIC SYSTEMS IN ONE DIMENSION 201

the amplification matrix G(ξ) is a 2p× 2p matrix (A itself is a p× p matrix)
given by:

G(ξ) =
(

2 iλA sin ξ I
I 0

)
.

where now each of the entries is itself a p × p matrix. In order to express
the eigenvalues µ(ξ) of G in terms of those of A, we use the fact that if A is
diagonalizable by a matrix T , then Ĝ possesses the same eigenvalues of G,
for:

Ĝ(ξ) =
(
T−1 0

0 I

)(
2 iλA sin ξ I

I 0

)(
T 0
0 I

)
=
(

2 iλT−1AT sin ξ I
I 0

)
.

Recall that T−1AT is a diagonal matrix with diagonal entries a1, · · · , ap.
From this expression (by rearranging rows/columns, Ĝ(ξ) is similar to a

block diagonal matrix with 2 × 2 diagonal blocks
(

2 iλaj sin ξ 1
1 0

)
), it

follows that any eigenvalue µ(ξ) of the amplification matrix satisfies:

µ2(ξ) = 1 + 2 iλaj sin ξµ(ξ),

for some j = 1, · · · , p.
We will show that, if we add a dissipative term to the leap frog scheme

at time level n, this will give rise to instabilities. By a dissipative term we
mean an approximation to a second derivative, as would be a term of the
form:

ε(Un
j+1 − 2Un

j + Un
j−1), (7.30)

added to the scheme (7.29), where ε is a "small" perturbation. Notice that
any modification at time level n will affect the first block in the amplification
matrix. If the term added is (7.30), then the modified amplification matrix
will be of the form:

G(ξ) =
(

2 iλA sin ξ + ε sin2(ξ/2)I I
I 0

)

and therefore the eigenvalues will now satisfy:

µ2(ξ) = 1 + (2 iλaj sin ξ + ε sin2(ξ/2))µ(ξ).

In general, if E denotes the shift operator EUn
j = Un

j+1, adding a dissipative
term at time level n amounts to modifying (7.29) yielding the scheme:

Un+1
j = Un−1

j + ∆t
∆xA(Un

j+1 − Un
j−1) + εP (E)Un

j , (7.31)

where P (E) is a function of the shift operator (in particular, the term in
(7.30) corresponds to P (E) = E − 2I + E−1). Since P (E) approximates a

202 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

second order derivative, its Fourier transform P̂ (ξ) will be a real function of
ξ. It is this function P̂ (ξ) which will appear now added in the first block of
the amplification matrix and thus the modified eigenvalues will in general
satisfy:

µ2(ξ) = 1 + (2 iλaj sin ξ + εP̂ (ξ))µ(ξ).
for some eigenvalue at of A. The fact that (7.31) is an unstable scheme
follows now from the following lemma, applied to the eigenvalues µ(ξ).

Lemma 7.3. Let x1 and x2 be the solutions of the equation x2−αx−1 = 0.
If both |x1| ≤ 1 and |x2| ≤ 1, then necessarily the coefficient α is purely
imaginary.

Proof. Let x1 = rei θ, then x1x2 = −1 implies x2 = 1
re

− i θ. Both |x1| ≤ 1
and x2 ≤ 1 imply r = 1. Thus α = x1 + x2 = 2 i sin θ.

Remark 7.6. Using exactly the same analysis, we may conclude in general
that the leap frog scheme gives rise to instabilities when it is used to approx-
imate parabolic equations. For the heat equation, this can also be explained
by the stability region of the leapfrog method, which is only on the imaginary
axis, while the centered finite difference used in approximating the second
order derivatives will give real eigenvalues, as discussed in Example 6.1.

In order to introduce the correct amount of dissipation, we must add the
dissipation term at time level n − 1. We shall use the following operator
E

1
2 which is defined as E 1

2Un
j = Un

j+ 1
2
. Using this notation, the leap frog

scheme (7.29) can be rewritten in the form:

Un+1
j = Un−1

j + ∆t
∆x(E

1
2 − E− 1

2)(E
1
2 + E− 1

2)Fn
j

We shall show now that the modification of the scheme that is dissipative is
given in general form by the expression:

Un+1
j = Un−1

j + ∆t
∆x(E

1
2 − E− 1

2)(E
1
2 + E− 1

2)Fn
j −

ε

16(E
1
2 − E− 1

2)4Un−1
j .

(7.32)
Let η = sin(ξ/2), the amplification matrix of the linearized scheme (7.32)
is:

G(ξ) =
(

2 iλA sin ξ (1− εη4)I
I 0

)
and the eigenvalues hold the relations:

µ2(ξ) = 1− η4 + 2 iλµ(A) sin ξ sin ξµ(ξ),

for some eigenvalue µ(A) of A. Therefore:

µ(ξ) = iλµ(A) sin ξ ±
√

1− |µ(A)|2 sin2 ξ − εη4

7.7. DIFFERENCE SCHEMES FOR HYPERBOLIC SYSTEMS IN ONE DIMENSION 203

and we have |µ(ξ)|2 = 1− εη4, provided that

1− |λµ(A)|2 sin2 ξ − εη4 > 0, (7.33)

for all eigenvalues of A and all ξ. Under this condition, the modified scheme
(7.32) is stable and dissipative. Remark, though, that in order for (7.33) to
hold, whenever we add dissipation (ε > 0), we must also decrease the value
of λ = ∆t/∆x. This means that for a fixed space grid, a larger number of
time steps must be evaluated to get the approximation of the solution at
some given time t.

204 7. FINITE DIFFERENCE SCHEMES FOR LINEAR TIME-DEPENDENT PROBLEMS

8

Iterative methods for solving
linear systems

In this chapter we briefly discuss a few iterative methods for solving the
large sparse linear systems arising from discretizing time-dependent PDEs.
We start with two such examples:

• Implicit time discretization for the diffusion terms. Consider solving
the heat equation ut = uxx with periodic b.c. on x ∈ [0, π]. Let us use
the centered difference for the spatial derivative. If we use the explicit
forward Euler for the time derivative,

Un+1
j = Un

j + ∆t
∆x2 (Un

j−1 − 2Un
j + Un

j+1)

then the amplification factor is g(ξ) = 1 + 2 ∆t
∆x2 (cos ξ − 1) where ξ =

∆x. The Lax-Richtmyer stability |g(ξ)n| ≤ Keαt holds if and only
if |g(ξ)| ≤ 1, which implies ∆t

∆x2 ≤ 1
2 . In practice, the time step

∆t = 1
2∆x2 is unbearably small. A larger time step like ∆t = O(∆x)

can be achieved if using the backward Euler time discretization,

Un+1
j = Un

j + ∆t
∆x2 (Un+1

j−1 − 2Un+1
j + Un+1

j+1).

For implementing this implicit scheme, a linear system AUn+1 = Un

must be solved in each time step. The matrix A approximates the
operator I −∆t ∂2

∂ x2 .

• Incompressible flows. If we take the curl of 2D incompressible Navier-
Stokes

ut + (u · ∇)u +∇p = ν∆u, ∇ · u = 0,
we get the vorticity stream-function formulation of the the 2D incom-
pressible Navier-Stokes equations:

ωt + uωx + vωx = 1
Re

∆ω, (8.1)

205

206 8. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

∆ψ = ω, ⟨u, v⟩ = ⟨−ψy, ψx⟩, (8.2)

Here ψ is the stream function and ω = ∇ × u = vx − uy (∇ × u is
a scalar because u is a 2D vector) is the vorticity. Suppose we use
forward Euler to solve (8.1):

ωn+1 = ωn − unωn
x − vnωn

x + 1
Re

∆ωn,

then in each time step we need to ψn by solving ∆ψn = ωn to obtain
the velocity by computing un = −ψn

y , v
n = ψn

x .

If we use finite difference methods on a rectangular domain, then the
linear systems involved the two examples above can surely be solved by
the eigenvector method discussed in Chapter 2. However, the eigenvector
method can be used for solving a system Ax = b only when the matrix A
has a tensore structure like A = I ⊗ B + C ⊗ I, which no longer holds in
general. For instance, if we solve a elliptic equation in the form of

∇ · (a(x, y)∇u) = f,

then any non-constant coefficient a(x, y) will destroy the tensor structure.
The following are two quick examples of this kind:

• Consider solving the Poisson equation uxx + uyy = f on a disk. Then
we can use the finite difference method in the polar coordinates, under
which the disk becomes a rectangle. The Poisson equation uxx +uyy =
f in the polar coordinates becomes,

1
r

∂

∂ r

(
r
∂ u

∂ r

)
+ 1
r2
∂2 u

∂ θ2 = f(r, θ).

• Consider the variable density incompressible Naiver-Stokes equations,

ρt + (uρ)x + (vρ)y = 0,
ρ(ut + (u · ∇)u) +∇p− ν(ρ)∆u = f .

To obtain the pressure for evolving u, we can take the divergence of
the second equation divided by ρ, then we get an elliptic equation for
the pressure

∇ · (1
ρ(x, y)∇p) = ∇ · (f + 1

ρ
ν(ρ)∆u− (u · ∇)u).

8.1 Linear iterative methods
We discuss the linear iterative methods with matrix splitting for solving
the linear system Au = f , obtained from discretizing with the centered

8.1. LINEAR ITERATIVE METHODS 207

difference for the 1D Poisson equation −uxx = f on the interval [0, 1] with
homogeneous Dirichlet boundary conditions:

−uj−1 + 2uj − uj+1 = ∆x2fj , (8.3)

or the 2D Poisson equation −uxx = f on the square [0, 1] × [0, 1] with
homogeneous Dirichlet boundary conditions (assuming ∆x = ∆y):

−ui−1,j − ui,j−1 + 4ui,j − ui+1,j − ui,j+1 = ∆x2fi,j , (8.4)

See Chapter 2 for details. For the 1D case, A = K and the system is

2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2





u1
u2
u3
...

un−1
un


= ∆x2



f1
f2
f3
...

fn−1
fn


. (8.5)

For the 2D case, assume ∆x = ∆y, then A = K ⊗ I + I ⊗K.
Suppose we split the matrix A as A = B−C for any nonsingular matrix

B, then the exact solution u to the linear system satisfies:

Bu = Cu+ f,

thus we use the following iterative methods,

Buk+1 = Cuk + f,

in which uk will converge to the exact solution if convergence is guaranteed.
By subtracting the two equations above, the error ek = uk − u satisfies,

ek+1 = B−1Cek = Mek,

where M = B−1C is called the iteration matrix. Thus ek = Mke0, and the
convergence is guaranteed if ρ(M) < 1 due to the following fact:

Theorem 8.1. A square matrix M satisfies limk→∞Mk = 0 if and only if
its spectral radius ρ(M) < 1.

If M is a normal matrix, i.e, it can be unitarily diagonalized

M = U

λ1
. . .

λn

U∗,

208 8. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

then

Mk = U

λ
k
1

. . .
λk

n

U∗,

thus ∥Mk∥ = maxk |λj |k = ρ(M)k, therefore ∥ek∥ ≤ ∥Mk∥∥e0∥ = ρ(M)k∥e0∥
the convergence rate is ρ(M).

If M is not a normal matrix, then the asymptotic convergence rate is
ρ(M) due to the fact:

Theorem 8.2. Gelfand’s formula. Any square matrix M satisfies

lim
k→∞

∥Mk∥
1
k = ρ(M).

8.1.1 Jacobi and weighted Jacobi iterations

Let D be a diagonal matrix denoting the diagonal part of the matrix A,
L be a lower triangular matrix denoting the lower triangular part of the
matrix −A, U be a upper triangular matrix denoting the upper triangular
part of the matrix −A. In other words, assume A = D−L−U . The Jacobi
iteration for solving Au = f is defined as

Duk+1 = (L+ U)uk + f.

For the 1D Poisson scheme (8.3), the Jacobi iteration is equivalent to

−uk
j−1 + 2uk+1

j − uk
j+1 = ∆x2fj .

It can be implemented an iteration of

uk+1
j = 1

2u
k
j−1 + 1

2u
k
j+1 + 1

2∆x2fj , (8.6)

and the 2D case is

uk+1
i,j = 1

4u
k
i,j−1 + 1

4u
k
i,j+1 + 1

4u
k
i−1,j + 1

4u
k
i+1,j + 1

4∆x2fi,j .

Now let us compute the spectral radius of the iteration matrix M =
D−1(D−A) for the second finite difference scheme on a N×N mesh solving
the 2D Poisson equation with zero boundary conditions, in which A = K ⊗
I + I ⊗K and D = 4I ⊗ I. We have M = D−1(D − A) = I − 1

4A thus the
eigenvalues (see Chapter 2 for the eigenvalues of A) are

λi,j(M) = 1− 1
4λi,j(A) = 1− 1

4

[
2− cos(i π

N + 1) + 2− cos(j π

N + 1)
]

= 1
2 cos(i π

N + 1) + 1
2 cos(j π

N + 1).

8.1. LINEAR ITERATIVE METHODS 209

Thus ρ(M) = cos θ with θ = 1
N+1 . Similarly for the 1D case λj(M) =

cos(j π
N+1) = cos(jθ). In particular the convergence rate for large N is

ρ(M) = cos θ ≈ 1− 1
2θ

2 = 1− 1
2

π2

(N + 1)2 ≈ 1− cN−2,

which means that the convergence is slower for larger system.
The Jacobi iteration can be regarded as solving a time-dependent heat

equation till the steady state. If using the forward Euler for the equation
ut = uxx + f , we get

un+1
j = un

j + ∆t
∆x2 (un

j−1 − 2un
j + un

j+1) + ∆tfj ,

where becomes (8.6) if ∆t = 1
2∆x2 (the Lax-Richtmyer stability requires

the amplification factor |g(ξ)| ≤ 1 in forward Euler solving ut = uxx, which
implies ∆t ≤ 1

2∆x2).

The weighted Jacobi iteration is to use the splitting A = D/w− (D/w−
A) where w is a constant parameter/weight, which results in the iteration

D/wuk+1 = (D/w −A)uk + f,

and its iteration matrix is M = (D/w)−1(D/w −A) = I − wD−1A. Notice
that w = 1 is the original Jacobi iteration. For the 1D Poisson equation
case, we have λj(M) = 1 − 1

2wλj(A) = 1 − w + w cos(jθ) with θ = π
N+1 .

For the comparison of the two eigenvalues, see Figure 8.1, where |λj(M)| in
the weighted Jacobi is smaller for large j (meaning faster convergence for
high frequencies) and |λj(M)| in the weighted Jacobi is larger for small j
(meaning slower convergence for low frequencies).

0 0.5 1 1.5 2 2.5 3

jθ

-1

-0.5

0

0.5

1

E
ig

e
n
v
a
lu

e

Jacobi Iteration

Weighted Jacobi with w=2/3

Figure 8.1: The eigenvalues of iteration matrices in the Jacobi iteration and
the weighted Jacobi iteration with w = 2

3 .

210 8. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

8.1.2 Gauss-Seidel iteration

Suppose A = D − L− U as before, then the Gauss-Seidel iteration is

(D − L)uk+1 = Uuk + f,

where the system (D−L)x = b can be easily solved by forward substitution
since D−L is lower triangular. For the 1D Poisson scheme (8.3), the Gauss-
Seidel iteration is conceptually

−uk+1
j−1 + 2uk+1

j − uk
j+1 = ∆x2fj ,

and in 2D it is

−uk+1
i−1,j − u

k+1
i,j−1 + 4uk+1

i,j − u
k
i+1,j − uk

i,j+1 = ∆x2fi,j .

To find the eigenvalues for M = (D − L)−1U , assume λ and v form a
eigenvalue-eigenvector pair for M , then Mv = λv thus

Uv = λ(D − L)v,

λDv = λLv + Uv,

which in 2D is equivalent to

4λvi,j = λvi−1,j + λvi,j−1 + vi+1, + vi,j+1.

Consider a change of variable by introducing a vector w so that vi,j =
λ

i+j
2 wi,j , then w satisfies

4λ
i+j+2

2 wi,j = λ
i+j+1

2 wi−1,j + λ
i+j+1

2 wi,j−1 + λ
i+j+1

2 wi+1,j + λ
i+j+1

2 wi,j+1.

Therefore the vector w satisfies

4λ
1
2wi,j = wi−1,j + wi,j−1 + wi+1, + wi,j+1,

whose matrix form is precisely λ 1
2Dw = (L+U)w, i.e., D−1(L+U)w = λ

1
2w.

Since D−1(L+U) is the iteration matrix in the Jacobi iteration, this means
that λ(MGS) = λ(MJacobi)2. Thus ρ(MGS) = cos2 θ, which means that the
Gauss-Seidel iteration is twice as fast as the Jacobi iteration.

The Gauss-Seidel iteration can also be regarded as a scheme solving a
time-dependent equation. Consider the equation

ut = uxx − εuxt + f,

and the scheme
un+1

j − un
j

∆t =
un

j−1 − 2un
j + un

j+1
∆x2 − ε

(un+1
j − un+1

j−1)− (un
j − un

j−1)
∆x∆t + fj ,

which is accurate around t = (n + 1
2)∆t and x = xj . If setting ∆t = ∆x2

and ε = ∆x, the scheme becomes the Gauss-Seidel iteration.

8.2. STEEPEST DESCENT 211

8.1.3 SOR

Another popular iteration method is successive overrelaxation (SOR), which
is a combination of Jacobi and Gauss-Seidel. The matrix splitting is A =
1
w (D − wL)− 1

w [(1− w)D + wU], thus

1
w

(D − wL)uk+1 = 1
w

[(1− w)D + wU]uk + f,

which is equivalent to

Duk+1 = Duk + w(Luk+1 + Uuk −Duk) + wf.

For the 2D Poisson scheme, this is

4uk+1
i,j = 4uk

i,j + w(uk+1
i,j−1 + uk+1

i−1,j + uk
i,j+1 + uk

i+1,j − 4uk
i,j) + w∆x2fi,j .

There are ways to choose w to improve the spectral radius from ρ(M) =
1− cN−2 to ρ(M) = 1− cN−1.

8.2 Steepest descent
Consider any linear system Ax = b where A is a real square matrix and x
and b are real vectors of size n. It is equivalent to solving a minimization
problem:

min
x∈Rn

1
2∥Ax− b∥

2.

The method of gradient descent is the simplest first order method for
solving a minimization problem min

x∈Rn
f(x):

xk+1 = xk − αk∇f(xk),

where αk > 0 is the optimal step size to be chosen to guarantee convergence.
The steepest descent method is to use the optimal step size αk along the
search direction −∇f(xk). Recall that the function ascent/descent the most
along the positive/negative gradient: the directional derivative along a unit
vector u is

Duf(x) = ∇f(x) · u = ∥∇f(x)∥∥u∥ cos θ,

where θ is the angle between two vectors ∇f(x) and u, thus Duf(x) attends
its maximum (minimum) at θ = 0 (θ = π). First order here refers to the
fact that only the gradient ∇f(x) is used in the algorithm. A typical second
order method is the Newton’s method: for example, suppose n = 1, if the
minimizer of f(x) exists (a convex function f(x) suffices for the existence,
and convex function means that f ′′(x) ≥ 0), it must be a critical point of
f(x), thus we can solve f ′(x) = 0 instead, and the second order derivative
f ′′(x) is needed in Newton’s method solving f ′(x) = 0.

212 8. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

To simplify the discussion, from now on, we assume A is real symmetric
and positive semi-definite (if the coefficient matrix in Ax = b is not sym-
metric or positive definite, then we consider solving ATAx = AT b instead).
For Ax = b, define the cost function

f(x) = 1
2x

TAx− xT b,

and its gradient is
∇f(x) = Ax− b.

The function f(x) is convex because ∇2f(x) = A ≥ 0, which guarantees
that the minimizer of f(x) must be a solution to ∇f(x) = 0.

In the steepest descent method xk+1 = xk − αk∇f(xk), the step size αk

can be chosen so that f(xk+1) is the smallest:

αk = arg min
α≥0

f(xk − α∇f(xk)).

Let ϕ(α) = f(xk − α∇f(xk)). Let rk denote −∇f(xk) = b− Axk, which is
also called residue. Then

ϕ(α) = f(xk + αrk)

= 1
2x

T
kAxk + αrT

k Axk + 1
2α

2rT
k Ark − xT

k b− αrT
k b

= 1
2x

T
kAxk − xT

k b+ αrT
k (Axk − b) + 1

2α
2rT

k Ark

= f(xk)− αrT
k rk + 1

2α
2rT

k Ark,

which is quadratic in α thus attains its minimum at the critical point. By
setting ϕ′(α) = 0, we get

αk = arg min
α≥0

ϕ(α) = rT
k rk

rT
k Ark

.

The steepest descent method can be implemented as iterations of the fol-
lowing steps:

1. rk = b−Axk.

2. αk = rT
k rk

rT
k

Ark
.

3. xk+1 = xk + αkrk.

We can use the eigenvectors vj and eigenvalues λj of A to undertand the
convergence of the steepest descent method. Define the error ek = xk − x,
then rk = b−Axk = Ax−Axk = −Aek and we have:

ek+1 = ek + αkrk.

8.2. STEEPEST DESCENT 213

Since A is real symmetric, we can choose orthonormal eigenvectors vj (j =
1, · · · , n) which can span the whole space Rn. The error can be expressed
as linear combinations of vj :

ek =
n∑

j=1
ajvj .

We also have

rk = −Aek = −
n∑

j=1
ξjAvj = −

n∑
j=1

ajλjvj ,

eT
kAek = (

n∑
j=1

ajv
T
j)(

n∑
j=1

ajλjvj) =
n∑

j=1
a2

jλj ,

rT
k rk =

n∑
j=1

a2
jλ

2
j ,

rT
k Ark =

n∑
j=1

a2
jλ

3
j

Assume λ1 ≤ λ2 ≤ · · · ≤ λn, then (or we can simply use the Courant-
Fischer-Weyl min-max principle to obtain the following),

λ1r
T
k rk ≤ rT

k Ark ≤ λnr
T
k rk,

and also
λ1e

T
kAek ≤ rT

k rk ≤ λne
T
kAek.

Define the energy norm ∥e∥A = (eTAe) 1
2 which is easier to work with

than the Euclidean norm. Then

∥ek+1∥2A = eT
k+1Aek+1

= (ek + αkrk)TA(ek + αkrk)
= eT

kAek + 2αkr
T
k Aek + α2

kr
T
k Ark

= eT
kAek − 2 rT

k rk

rT
k Ark

rT
k rk +

(
rT

k rk

rT
k Ark

)2

rT
k Ark

= eT
kAek −

(rT
k rk)2

rT
k Ark

= ∥ek∥2A

(
1− (rT

k rk)2

rT
k Arke

T
kAek

)
= ∥ek∥2Aw,

where
w = 1− rT

k rk

rT
k Ark

rT
k rk

eT
kAek

≤ 1− 1
λn
λ1 = 1− λ1

λn
.

214 8. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

The condition number for a positive definite real symmetric matrix A is
κ = λn

λ1
, thus w ≤ κ−1

κ . Therefore,

∥ek∥A ≤
√
κ− 1
κ
∥ek−1∥A ≤

(
κ− 1
κ

) k
2
∥e0∥A.

Recall that Ax = b, therefore xTAx = xT b thus

xTAx = −2(1
2x

TAx− xT b) = −2f(x).

For a symmetric A, we have

∥ek∥2A = (xk − x)TA(xk − x) = xT
nAxk − xTAxk − xT

kAx+ xTAx

= xT
kAxk − bTxk − xT

k b+ xTAx = 2f(xk)− 2f(x).

We can summarize the convergence rate of steepest descent for linear system
as the following:

Theorem 8.3. Let A be a positive definite matrix with eigenvalues 0 <
λ11 ≤ · · · ≤ λn. For steepest descent minimizing a quadratic function f(x) =
1
2x

TAx− xT b, the convergence rate is linear (exponentially fast):

∥ek+1∥A ≤
√
λn − λ1
λn

∥ek∥A,

and
f(xk+1)− f(x∗) ≤

(
1− λ1

λn

)
[f(xk)− f(x∗)].

Remark 8.1. The steepest descent has an exponential convergence rate√
1− 1

κ , which is slow in practice for large κ from large matrices, e.g., solv-
ing the Poisson equation in 2D/3D.

8.3 The Conjugate Gradient method
We still assume A is real symmetric and A > 0. In practice, the steepest
descent method is simple to apply however very slow. The conjugate gradi-
ent method is a faster popular choice. The conjugate gradient method can
be regarded as an acceleration of steepest descent:

xk+1 = xk + αk(rk + γk(xk − xk−1)),

where αk and γk are parameters. This formula shows that the new change in
position, xk+1−xk , is a linear combination of the steepest descent direction
and the previous change in position xk − xk−1. It can be rewritten as

xk+1 = xk + αkpk,

8.3. THE CONJUGATE GRADIENT METHOD 215

where the search direction pk is

pk = rk + γk(xk − xk−1) = rk + γkαk−1pk−1 = rk + βk−1pk−1.

These formulas can be summarized as

xk+1 = xk + αkpk (8.7)
rk+1 = rk − αkApk (8.8)
pk+1 = rk+1 + βkpk. (8.9)

We still need to determine the initial search direction p0 and the pa-
rameters α and β. Suppose pk is known, then we can ask for a αk so that
f(xk +αkpk) is the smallest. Minimizing the function ϕ(α) = f(xk +αpk) =
f(xk)− αrT

k pk + 1
2α

2pT
kApk gives us the best αk:

αk = pT
k rk

pT
kApk

. (8.10)

Using this optimal αk, we have

f(xk+1) = f(xk)− (pT
k rk)2

pT
kApk

.

From the formula above, we can see that p0 = r0 will guarantee f(x1) <
f(x0). Now we assume p0 = r0 which will imply other useful properties. By
(8.8) and (8.10), we get

pT
k rk+1 = pT

k rk − αkp
T
kApk = 0.

Together with (8.9), we get

pT
k+1rk+1 = rT

k+1rk+1 + βkp
T
k rk+1 = rT

k+1rk+1, k ≥ 0.

Notice that p0 = r0 ensures pT
k rk = rT

k rk for k ≥ 0. Thus (8.10) becomes

αk = rT
k rk

pT
kApk

,

and we have
f(xk+1) = f(xk)− (rT

k rk)2

pT
kApk

.

Next we choose some β to minimize pT
kApk thus to minimize f(xk+1). Since

(8.9) implies

pT
kApk = rT

k Ark + 2βk−1r
T
k pk−1 + β2

k−1p
T
k−1Apk−1,

216 8. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

the best choice of βk−1 is,

βk−1 = − rT
k Apk−1

pT
k−1Apk−1

, k ≥ 1,

or equivalently

βk = −
rT

k+1Apk

pT
kApk

, k ≥ 0,

which with (8.9) implies

pT
k+1Apk = rT

k+1pk + βkp
T
kApk = 0. (8.11)

The property pT
k+1Apk = 0 means that the search direction pk+1 is A-

orthogonal to the previous one pk. In other words, pk+1 is conjugate to pk.
By (8.11) and (8.9), we get

pT
kApk = rT

k Apk + βk−1pk−1Apk = rT
k Apk,

which with (8.8) and (8.10) implies,

rT
k+1rk = rT

k rk − αkp
T
kArk = 0.

Therefore, by (8.8), we have

rT
k+1rk+1 = rT

k+1rk − αkr
T
k+1Apk = −αkr

T
k+1Apk,

thus the formula for β becomes

βk = −
rT

k+1Apk

pT
kApk

= 1
αk

rT
k+1rk+1

pT
kApk

=
rT

k+1rk+1

rT
k rk

.

Now we summarize the formula for the conjugate gradient method:

p0 = r0 = b−Ax0, (8.12a)

αk = ∥rk∥2

pT
kApk

, (8.12b)

xk+1 = xk + αkpk, (8.12c)
rk+1 = rk − αkApk, (8.12d)

βk = ∥rk+1∥2

∥rk∥2
(8.12e)

pk+1 = rk+1 + βkpk. (8.12f)

The following important property of conjugate gradient method can be
shown by induction:

8.3. THE CONJUGATE GRADIENT METHOD 217

Theorem 8.4. For the conjugate gradient method defined above, the search
direction pk and the residue rk satisfies:

rT
k rj = pT

kApj = 0, ∀k ̸= j.

An implication of this property is that the conjugate gradient method
in theory converges in at most n steps for a n× n matrix, because rj ∈ Rn

and Rn can have at most n linear dependent vectors. On the other hand,
the iteration (8.12) is unstable subject to round-off errors, thus it will never
give the exact solution to the linear system, though usually (8.12) is still a
good choice for finding an approximate solution to certain accuracy.

Remark 8.2. Notice that we have assumed A is real symmetric positive
definite. For solving Ax = b with a real symmetric positive semi-definite
matrix A, e.g., the Poisson equation with purely Neumann b.c., then (8.12)
might diverge if Ax = b does not have a solution. Notice that f(x) =
1
2x

TAx − bTx always has minimizers for A ≥ 0, even if Ax = b is an
inconsistent linear system.

In practice, usually it is not affordable to have n iteration steps thus it
is important to analyze the convergence rate, for which we have

Theorem 8.5. If 0 < λ1 ≤ λ2 ≤ · · · ≤ λn are eigenvalues of the positive
definite matrix A, then the error in the conjugate gradient method satisfies

∥ek∥A ≤ 2
(√

λn −
√
λ1√

λn +
√
λ1

)k

∥e0∥A.

The proofs of these two theorems can be found in [12]. A weaker estimate
is given by the condition number κ:

∥ek∥A ≤ 2
(√

κ− 1√
κ+ 1

)k

∥e0∥A.

The dominating operations in each iteration of either steepest descent or
conjugate gradient are matrix-vector multiplications. For many problems,
A is sparse and one matrix-vector multiplication requires O(m) operations
where m is the number of nonzero entries in A.

Suppose we wish to reduce the norm of the error by a factor of ε, which
is to achieve ∥ek∥A ≤ ε∥e0∥A. Then by the convergence rate, the maximum
number of iterations required in steepest descent is

k ≤
⌈1

2κ ln(1
ε

)
⌉
,

and the maximum number of iterations in CG is

k ≤
⌈1

2
√
κ ln(2

ε
)
⌉
.

218 8. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

So the time complexity of steepest descent isO(mκ) and the time complexity
of CG is O(m

√
κ). Both have the space complexity O(m).

For the second order finite difference scheme solving the Poisson equation
with Dirichlet boundary conditions on [0, 1] with n grid points in 1D (on
[0, 1]× [0, 1] with n = N ×N grid points in 2D; on [0, 1]× [0, 1]× [0, 1] with
n = N ×N ×N grid points in 3D), the condition number of the coefficient
A is κ = 1−cos(Nθ)

1−cos θ where θ = π 1
N+1 . We have

κ = 1− cos(Nθ)
1− cos θ = 1 + cos(θ)

1− cos θ ≈
1 + 1 + 1

2θ
2

1− 1 + 1
2θ

2 = O(N2) = O(n
2
d),

where d is the dimension. Therefore, steepest descent has complexity O(n2)
and CG has complexity O(n 3

2) for 2D problems, and steepest descent has
complexity O(n 5

3) and CG has complexity O(n 4
3) for 3D problems.

The multigrid method for the elliptic problems has complexity O(n) in
any dimension.

8.4 Multigrid methods

In this section we only consider the linear system Au = b obtained in the
finite difference scheme for the Poisson equation. The (weighted) Jacobi
iteration (and Gauss-Seidel) produce smooth errors. The high frequencies
error vector e can be nearly removed in a few iterations, e.g., see Figure
8.1. But low frequencies are reduced very slowly, and convergence requires
O(n2) iterations, which is unacceptable. The multigrid idea is to change to
a coarser grid, on which "smooth becomes rough" and low frequencies act
like higher frequencies.

On coarser grids a big piece of the error is removable. We iterate a few
times then change from fine to coarse, and coarse to fine. The multigrid
method can solve many sparse systems to high accuracy in a fixed number
of iterations, not growing with n.

8.4.1 Interpolation and restriction

Now consider solving −uxx = f on [0, 1] with homogeneous Dirichlet bound-
ary conditions, i.e., the system (8.5). The key steps in a multigrid method
are the two matrices R and I (in this section I denotes the interpolation
matrix rather than the identity unless otherwise specified):

• A restriction matrix R = R2h
h transfers vectors from the fine grid

with grid size h = ∆x to the coarse grid with size 2h.

• An interpolation matrix I = Ih
2h returns to the fine grid from the

coarse grid.

8.4. MULTIGRID METHODS 219

• The original matrix on the fine grid is denoted as Ah, which is approx-
imated by A2h = RAhI on the coarse grid.

To see an example of R and I, suppose h = 1
8 and 2h = 1

4 , then the coarse
grid has three grid points and the fine grid has seven grid points, for which
the matrix R has size 3×7 and I has size 7×3. We use the following simple
linear interpolation interpolation:

Iv = u : 1
2



1
2
1 1

2
1 1

2
1



v1
v2
v3

 =



v1/2
v1

v1/2 + v2/2
v2

v2/2 + v3/2
v3
v3/2


=



u1
u2
u3
u4
u5
u6
u7


,

where v is defined on the coarse grid and u. In other words, we linear
interpolation for the in-between values u1, u3, u5, u7.

For the restriction matrix, we can simply assign v1 = u2, v2 = u4, and
v3 = u6. Another way is to use the full weight operator by setting R = 1

2I
T :

Ru = v : 1
4

1 2 1
1 2 1

1 2 1





u1
u2
u3
u4
u5
u6
u7


=

(u1 + 2u2 + u3)/4
(u3 + 2u4 + u5)/4
(u5 + 2u6 + u7)/4

 =

v1
v2
v3

 .

The advantages of the full weight operator include

• the matrix RAhI is still symmetric positive definite.

• RAhI = A2h. See Example 8.1 below.

For the 2D equation −uxx − uyy = f on [0, 1]× [0, 1] with homogeneous
Dirichlet boundary conditions. Assume h = ∆x = ∆y. We can use the same
linear interpolation then the interpolation matrix is

I2D = I ⊗ I.

For instance, if U denotes a 2D array with U(j, i) denoting the point value
at (xi, yj) in the mesh. Then

I2Dvec(U) = (I ⊗ I)vec(U) = vec(IUIT),

which represents the linear interpolation in a dimension by dimension fash-
ion. And the restriction matrix is

R2D = R⊗R = 1
4I

T ⊗ IT = 1
4(I ⊗ I)T = 1

4I2DT .

220 8. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

The coefficient matrix on the fine mesh is Ah = 1
h2K2D = Kh

h2 ⊗Id+Id⊗Kh
h2 ,

thus

R2D ∗Ah ∗ I2D = (R⊗R)(Kh

h2 ⊗ Id+ Id⊗ Kh

h2)(I ⊗ I)

= (RKh

h2 I)⊗ (I ∗ Id ∗R) + (I ∗ Id ∗R)⊗ (RK
h2 I)

= K2h

(2h)2 ⊗ (I ∗ Id ∗R) + (I ∗ Id ∗R)⊗ K2h

(2h)2 ,

where we use the fact that RKh
h2 I = K2h

(2h)2 , see Example 8.1. However,
(I ∗Id∗R) is not a smaller identity matrix. Therefore R2D∗Ah∗I2D = A2h

is no longer true.

8.4.2 A two-grid V-cycle

We first consider the multigrid method using only two grids. We use the
subscript h to denote a notation defined on the grid of size h. The system
we want to solve is denoted as

Ahu = fh,

and u denotes the exact solution to this system. The iterations on each
grid can use Jacobi (or weighted Jacobi with w = 2

3) or Gauss-Seidel. For
the larger problem on the fine grid, iteration converges slowly to the low
frequency smooth part of the solution. Let uh be the Jacobi’s solution
after a few iterations. The multigrid method transfers the current residue
rh = fh − Ahuh to the coarse grid. Define the error as e = u − uh then it
satisfies

Ahe = Ah(u− uh) = bh −Ahuh = rh.

We iterate a few times on the coarse 2h grid, to approximate the coarse-grid
error by E2h, then interpolate back to Eh on the fine grid, and make the
correction to uh + Eh.

This fine-coarse-fine loop is a two-grid V-cycle, also called a v-cycle
(small v cycle). Here are the steps in one v-cycle:

1. Iterate on Ahu = bh to reach uh (e.g., 3 Jacobi or Gauss-Seidel steps).
The iteration step is also called relaxation.

2. Restrict the residual rh = fh−Ahuh to the coarse grid by r2h = R2h
h rh.

3. Solve A2hE2h = r2h, either by E2h = A−1
2h r2h or by 3 Jacobi iterations

with initial guess E = 0. Here A2h denotes the discretization matrix
on the coarser mesh, which happens to be RAhI in the 1D case.

4. Interpolate E2h back to Eh = Ih
2hE2h. Add Eh to uh.

5. Iterate 3 more times by Jacobi’s method on Ahu = fh starting from
the improved uh + Eh.

8.4. MULTIGRID METHODS 221

8.4.3 The errors eh and Eh

Even if we solve the coarse grid equation exactly in step 3 above, the multi-
grid error correction Eh is not equal to the true fine-grid error eh = u− uh.
But these two errors are related. We can track down steps from E to e.

First, the residue satisfies rh = Aheh thus

Eh = IE2h = IA−1
2h r2h = I(RAhI)−1r2h = I(RAhI)−1Rrh = I(RAhI)−1RAheh.

So Eh = Seh and
S = I(RAhI)−1RAh,

where S satisfies

S2 = I(RAhI)−1RAhI(RAhI)−1RAh = I(RAhI)−1RAh = S.

So the multigrid correction Eh = Seh is not the whole error, but a projection
of eh. The new error after a v-cyle is eh−Eh = (Id−S)eh where Id denotes
the identity matrix. The matrix Id − S a two-grid operator. This matrix
Id−S plays the same role as the iteration matrix M = B−1C in the matrix
splitting iteration method.

Example 8.1. Suppose h = ∆x = 1
6 , then the matrices are

Ah = 1
h2


2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2

 ,

R = 1
4

(
1 2 1

1 2 1

)
, I = 1

2


1
2
1 1

2
1

 ,

RAh = 1
(2h)2

(
0 2 0 −1 0
0 −1 0 2 0

)
,

Coarse grid matrix : A2h = RAhI = 1
(2h)2

(
2 −1
−1 2

)
.

Notice that A2h happens to be the discrete Laplacian matrix on the coarse
grid, which is still true for smaller h. The matrix S is

S = IA−1
2hRAh =


0 1/2 0 0 0
0 1 0 0 0
0 1/2 0 1/2 0
0 0 0 1 0
0 0 0 1/2 0

 .

222 8. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

Due to its three columns of zeros, the nullspace of S contains all fine-grid
vectors of the form (e1, 0, e3, 0, e5)T , which are vectors that do no appear on
the coarse grid. If the error eh has this form, then Eh = Seh would be zero,
meaning that there is no improvement from the multigrid. Notice that any
vector in such a form represents high frequencies. We do not expect a large
component of those high frequency vectors in eh because of the smoothing in
(weighted) Jacobi iterations.

8.4.4 High and low frequencies in O(n) operations

If Sv = λv, then λv = Sv = S2v = λ2v thus λ2 = λ. So the eigenvalues of S
must be 0 or 1. In the previous example, the eigenvalues of S are 1, 1, 0, 0, 0.
The eigenvectors reveal what multigrid does:

• λ = 0. The eigenvectors have the form (e1, 0, e3, 0, e5)T . In this case
multigrid makes no changes at all.

• λ = 1. The two eigenvectors are (1, 2, 2, 2, 1)T and (1, 2, 0,−2,−1)T .
Those have large low-frequency components. If the error eh are spanned
by these two vectors, then (Id− S)eh = 0, which is perfect. Such er-
rors are not exactly sines but a large part of the low-frequency error
is removed.

In other words, the Jacobi iteration handles the high frequencies and
multigrid handles the low frequencies. In practice, we do not exactly solve
A2hE2h = r2h. But it can be shown that a multigrid cycle with good smooth-
ing can reduce the error by a constant factor ρ that is independent of h. A
typical value is ρ = 0.1 while it might be ρ = 0.99 in Jacobi’s method. We
can achieve a given relative accuracy in a fixed number of cycles. Since
each step of each cycle requires only O(n) operations on sparse problems of
size n, multigrid is an O(n) algorithm, independent of the dimension of the
problem.

For solving the second order finite difference equation for the Poisson
equation, instead of achieving a given relative accuracy, we may want a
solution with accuracy O(h2) = O(N−2) which matches the discretization
error. In this case we need more than a fixed number of v-cycles. To reach
ρk = (N−2) we need k = O(logN) cycles.

The two-grid v-cycle extends to a natural way to more grids. It can
go down to coarser grids 2h, 4h, 8h and back up to 4h, 2h, h. This nested
sequence of v-cycles is a V-cycle. The W-cycle stays coarse longer, which is
generally superior to a V-cycle. The full multigrid cycle is asymptotically
better than V or W. The full multigrid stars on the coarsest grid. The
operation counts of the full multigrid is O(n) even for the higher required
accuracy e = O(h2).

8.4. MULTIGRID METHODS 223

Figure 8.2: V-cycle, W-cycle and the full multigrid (FMG).

We can use the weighted Jacobi with w = 2
3 for the iteration/relaxation.

One V-cycle on the grid of size h can be denoted as the following operator
(inputs are an initial guess uh and the right hand side data fh, the output
is an improved uh by the V-cycle).

V-Cycle : uh ← Vh(uh, fh)

• Iterate/Relax Ahu = fh three times with initial guess uh.

• Compute restriction f2h = R2h
h rh.

– Iterate/Relax A2hE = f2h three times with initial guess E2h = 0.
– Compute restriction f4h = R4h

2hr2h.
∗ Iterate/Relax A4hE = f4h three times with initial guess
E4h = 0.

∗ Compute restriction f8h = R8h
4hr4h.

· Solve A8hE = f8h (exactly).
∗ Correct E4h ← E4h + I4h

8hE8h.
∗ Iterate/Relax A4hE = f4h three times with initial guess E4h.

– Correct E2h ← E2h + I2h
4hE4h.

– Iterate/Relax A2hE = f2h three times with initial guess E2h.

• Correct uh ← uh + Ih
2hE2h.

• Iterate/Relax Ahu = fh three times with initial guess uh.

We have used coarse grids to obtain improved initial guesses for fine-
grid problems. In looking at the V-cycle, we might ask how to obtain an
informed initial guess for the first fine-grid relaxation. Nested iteration
would suggest solving a problem on a coarse of size 2h. But how can we
obtain a good initial guess for the size 2h problem? Nested iteration sends
us to 4h. Clearly, we are on another recursive path that leads to the coarsest
grid. The algorithm that joins nested iteration with the V-cycle is called the
full multigrid V-cycle (FMG). We can initialize the coarse-grid right sides

224 8. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

by transferring fh from the fine grid. Another option is to use the original
right-side function f(x) sampled on coarse grids.

f
FMG V-Cycle : uh ← FMGh(fh)

Initiate f2h = R2h
h fh, f4h = R4h

2hf2h, f8h = R4h
8hf4h (or simply sample f(x) on

these coarser grids).

· Solve exactly or iterate/relax A8hu8h = f8h.
∗ Set u4h = I4h

8hu8h.
∗ u4h ← V 4h(u4h, f4h).

– Set u2h = I2h
4hu4h.

– u2h ← V 2h(u2h, f2h).

• Set uh = Ih
2hu2h.

• uh ← V h(uh, fh).

Read [1] for more details.

Remark 8.3. The FMG V-cycle should be used iteratively as an iterative
solver. In order to do so, we can apply the FMG V-cycle to the error equation
Aheh = rh instead of Ahu = fh. In other words, we can implement it as an
iteration consisting of three steps:

1. rh = fh −Ahuh

2. Eh ← FMGh(rh)

3. Correction uh ← uh + Eh

8.5 Preconditioned Conjugate Gradient
In practice, for solving Ax = b we can consider solving instead an equivalent
system

PAP T y = Pb

where P is a preconditioner matrix. Recall that the performance of Con-
jugate Gradient method solving Ax = b depends on the condition number
κ(A). If we can find a nonsingular matrix P such that κ(PAP T) ≪ κ(A),
then we can more efficiently solve the system PAP T y = Pb with CG then
find x by x = P T y.

For instance, if A = LLT is the Cholesky factorization (L is lower trian-
gular), then P = L−1 is the most ideal preconditioner, because PAP T = I
thus κ(P 1AP T) = 1. The full Cholesky factorization costs O(n3) which
is as expensive as solving Ax = b by Gaussian elimination. On the other
hand, we can use a cheaper approximate Cholesky factorization to construct

8.5. PRECONDITIONED CONJUGATE GRADIENT 225

a preconditioner, i.e., if A ≈ L̃L̃T (L̃ is lower triangular) then use P = L̃−1.
For a sparse coefficient matrix A = LLT , the matrix L may have non-zero
fill-in for the zero entries of A. The incomplete Cholesky factorization will
have zero fill-in, returning an approximation A ≈ L̃L̃T .

By applying the conjugate gradient method to PAP T y = Pb, we get the
following algorithm:

p̄0 = r̄0 = Pb− PAP T y0,

ᾱk = ∥r̄k∥2

p̄T
k PAP

T p̄k
,

yk+1 = yk + ᾱkp̄k,

r̄k+1 = r̄k − ᾱkPAP
T p̄k,

β̄k = ∥r̄k+1∥2

∥r̄k∥2

p̄k+1 = r̄k+1 + β̄kp̄k.

With the change of variables x = P T y and p = P T p̄, multiplying certain
rows by either P or P T , we get

p0 = P T r̄0 = P TPb− P TPAx0,

ᾱk = ∥r̄k∥2

pT
kApk

,

xk+1 = xk + P T ᾱkP
−T pk = xk + ᾱkpk,

r̄k+1 = r̄k − ᾱkPApk = r̄k − PᾱkApk,

β̄k = ∥r̄k+1∥2

∥r̄k∥2

pk+1 = P T r̄k+1 + P T β̄kP
−T pk = P T r̄k+1 + β̄kpk.

Now introduce new variables r0 = b−Ax0 and r = P−1r̄, then we get

r0 = b−Ax0, p0 = P TPr0

ᾱk = rT
k P

TPrk

pT
kApk

,

xk+1 = xk + ᾱkpk,

rk+1 = rk − ᾱkApk,

β̄k =
rT

k+1P
TPrk+1

rT
k P

TPrk
,

pk+1 = P TPrk+1 + β̄kpk,

226 8. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

Finally, let M = P−1[P−1]T and z = M−1r = P TPr. Set ᾱ = α and
β̄ = β, then we get the following implementation:

r0 = b−Ax0, z0 = M−1r0, p0 = z0 (8.13a)

αk = rT
k zk

pT
kApk

, (8.13b)

xk+1 = xk + αkpk, (8.13c)
rk+1 = rk − αkApk, (8.13d)
zk+1 = M−1rk+1 (8.13e)

βk =
zT

k+1rk+1

zkrk
, (8.13f)

pk+1 = zk+1 + βkpk. (8.13g)

In practice we can simply use any matrix M−1 ≈ A−1 in the implemen-
tation (8.13) without deriving the matrix P . But here both M and A must
be symmetric positive definite. Otherwise the iteration above may not con-
verge. Also, M must be a matrix that can be efficiently inverted (Mz = r
must be efficiently solved) for the algorithm to make any sense.

Example 8.2. Consider solving a 1D variable coefficient problem as dis-
cussed in Section 2.11:

−(a(x)u′(x))′ = f(x), x ∈ [0, 1],

with homogeneous Dirichlet boundary conditions. A conservative discretiza-
tion must be used:

− 1
∆x2 [−aj− 1

2
uj−1 + (aj− 1

2
+ aj+ 1

2
)uj − aj+ 1

2
uj+1] = fj ,

where aj− 1
2

= a(xj− 1
2∆x). The matrix vector form of this scheme is Au = f

where A is a real symmetric tridiagonal matrix:

A = − 1
∆x2


a 1

2
+ a 3

2
−a 3

2
−a 3

2
a 3

2
+ a 5

2
−a 5

2
.

 .
Notice that A reduces to tridiagonal (−1, 2,−1) K matrix if a(x) ≡ 1. Thus
we can use the preconditioner M = K in Preconditioned CG (8.13) even for
solving a 2D variable coefficient problem −∇ · (a(x, y)∇u) = f , since K2D
matrix can be efficiently inverted by eigenvector method as we have discussed
in Chapter 2.

Example 8.3. In practice, multigrid methods such as the V-cycle can also
be used as a preconditioner in the Preconditioned Conjugate Gradient method

8.5. PRECONDITIONED CONJUGATE GRADIENT 227

(8.13). In this case, the matrix M−1 in (8.13e) should be implemented as
the V-cycle operator. Recall that V-cycle for solving Ahu = fh is given as
uh ← V-cycle(uh, fh). We can implement the step (8.13e) as

zk+1 = V-cycle(0, rk+1),

i.e., applying V-cycle to rk+1 with initial guess 0.

Problem 8.1. Consider solving the 1D (or 2D) Poisson equation −u′′ = f
with PCG (8.13) with M−1 implemented as V-cycle. Recall that the matrix
M (or equivalently M−1) must be real symmetric and positive definite. With
the weighted Jacobi relaxation/smoother and the restriction matrix defined
as transpose of the interpolation operator, show that the matrix represen-
tation of a two-grid V-cycle operator using initial guess 0 is real symmet-
ric and positive definite. Namely, show the matrix for the linear operator
V-cycle(0, r) is equivalent to applying a positive definite matrix to r.

228 8. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

9

A brief introduction to
nonlinear conservation laws

Preliminaries
• Model problem: Scalar conservation law

ut + fx(u) = 0. (9.1)

Given initial: u(x, 0). Note, the subscript in (9.1) denotes derivative,
for instance ut = ∂tu and fx = ∂xf .

• Weak solution: Multiply test function ϕ ∈ C1
0 (R×R+) on (9.1) and

integrate over space and time∫ +∞

0

∫ +∞

−∞
(ut + fx(u))ϕ dxdt = 0. (9.2)

Here, C1
0 is the space of function that are continuous differentiable

with compact support. Integrate by part, yield the weak solution∫ +∞

0

∫ +∞

−∞
(ϕtu+ ϕxf(u)) dxdt = −

∫ +∞

−∞
ϕ(x, 0)u(x, 0) dx. (9.3)

• Numerical scheme

Un+1
j = Un

j −
k

h
(F (Un; j)− F (Un; j − 1)) (9.4)

Here, F (Un; j) is a flux function which is allow to depend on any finite
number of elements of the vector Un, “centered” about the jth point.

F (Un; j) = F (Un
j−p, U

n
j−p+1, · · · , Un

j+q). (9.5)

229

230 9. A BRIEF INTRODUCTION TO NONLINEAR CONSERVATION LAWS

• Consistency: The numerical flux function F reduces to the true flux
f for the case of constant flow, namely for all ū ∈ R,

F (ū; j) = f(ū) (9.6)

Recall the concept of Lipschitz continuous: |F (Un; j)−f(ū)| ≤ K max
−p≤i≤q

|Uj+i−

ū|.

• Discrete conservation: The numerical flux on cell interface is single-
valued. Therefore, we have∑

j

Un+1
j =

∑
j

Un
j for all n. (9.7)

• Example: Lax–Friedrichs method, see book page 125, equation (12.15)
and (12.16).

231

Lax–Wendroff Theorem

Theorem 9.1 (Lax–Wendroff). Consider a sequence of grids indexed by ℓ =
1, 2, · · · , with mesh parameters kℓ, hℓ → 0 as ℓ→∞, let Uℓ(x, t) denote the
numerical approximation computed with a consistent and conservative
method on the ℓth grid. Suppose Uℓ converges to a function u as ℓ→∞, in
the sense that:

1. The 1-norm convergences: ∥Uℓ − u∥1,Ω → 0 as ℓ → ∞, where Ω =
[a, b]× [0, T].

2. Total variation bounded: there exists an R > 0, such that TV(Uℓ(·, t)) <
R, for all 0 ≤ t ≤ T , ℓ = 1, 2, · · · .

Then, u is a weak solution of the conservation law.

Remark 9.1. The Lax–Wendroff theorem does not guarantee that we do
converge.

Remark 9.2. Even we have convergence, the Lax–Wendroff theorem does
not guarantee that the weak solution obtained satisfy the entropy condition.

Remark 9.3. In case of a subsequence from a scheme convergences to phys-
ically correct solution (satisfies entropy condition), then the limit of this
subsequence is a weak solution.

Outline proof of Lax–Wendroff Theorem

• Starting point: The numerical scheme (9.4) for discussion.

• Goal: Show the limit function u satisfies (9.3).

• “Roadmap” and motivation:

– Step 1. Analog the argument of deriving weak solution, multiply
“test function” ϕ(xj , tn) on both side of the numerical scheme
(9.4).

integrate :
∫ +∞

0

∫ +∞

−∞
→ sum :

+∞∑
n=0

+∞∑
j=−∞

– Step 2. Analog the argument of deriving weak solution, “integra-

232 9. A BRIEF INTRODUCTION TO NONLINEAR CONSERVATION LAWS

tion by part” becomes “summation by part”. Here use formulae

m∑
n=0

an(bn+1 − bn) = ambm+1 − a0b0 +
m−1∑
n=0

(an − an+1)bn+1,

(9.8)
m∑

j=−m

aj(bj − bj−1) = ambm − a−mb−m−1 −
m−1∑

j=−m

(aj+1 − aj)bj .

(9.9)

Idea: original sum involves the product of aj with differences of
b’s. Rewrite: final sum involves the product of bj with differences
of a’s

– Step 3. Figuring out suitable conditions for our goal.
◦ We will see how the conditions 1 and 2 are applied in the

proof.
◦ Review the concept of the 1-norm convergences and total

variation, see book page 131.

• Something to keep in mind: the support of test function is com-
pact, namely ϕ(xj , tn) = 0 for |j| or n sufficiently large.

233

More details of the proof for Lax–Wendroff Theo-
rem

• Apply Step 1, we get:
+∞∑
n=0

+∞∑
j=−∞

ϕ(xj , tn)(Un+1
j − Un

j) = −k
h

+∞∑
n=0

+∞∑
j=−∞

ϕ(xj , tn) (F (Un; j)− F (Un; j − 1)) .

(9.10)

• Apply Step 2 (note the support of ϕ is compact), we get:

– Apply (9.8) to the left-hand side in (9.10) for “index n”,

LHS =
+∞∑
n=0

+∞∑
j=−∞

ϕ(xj , tn)(Un+1
j − Un

j)

= −
+∞∑

j=−∞
ϕ(xj , t0)U0

j −
+∞∑

j=−∞

+∞∑
n=1

(ϕ(xj , tn)− ϕ(xj , tn−1))Un
j .

(9.11)

– Apply (9.9) to the right-hand side in (9.10) for “index j”,

RHS = −k
h

+∞∑
n=0

+∞∑
j=−∞

ϕ(xj , tn) (F (Un; j)− F (Un; j − 1))

= k

h

+∞∑
n=0

+∞∑
j=−∞

(ϕ(xj+1, tn)− ϕ(xj , tn))F (Un; j). (9.12)

Therefore, substitute (9.11) and (9.12) into (9.10), we obtain

−
+∞∑

j=−∞
ϕ(xj , t0)U0

j −
+∞∑

j=−∞

+∞∑
n=1

(ϕ(xj , tn)− ϕ(xj , tn−1))Un
j

− k

h

+∞∑
n=0

+∞∑
j=−∞

(ϕ(xj+1, tn)− ϕ(xj , tn))F (Un; j) = 0. (9.13)

Multiply h on both side above and move the last two terms to the
right side, we get

hk
+∞∑
n=1

+∞∑
j=−∞

ϕ(xj , tn)− ϕ(xj , tn−1)
k

Un
j︸ ︷︷ ︸

=T1

+hk
+∞∑
n=0

+∞∑
j=−∞

ϕ(xj+1, tn)− ϕ(xj , tn)
h

F (Un; j)
︸ ︷︷ ︸

=T2

= −
+∞∑

j=−∞
ϕ(xj , t0)U0

j︸ ︷︷ ︸
=T3

.

(9.14)

234 9. A BRIEF INTRODUCTION TO NONLINEAR CONSERVATION LAWS

• Apply Step 3, take limit ℓ→∞ (kℓ, hℓ → 0)

– The term T1 and T3 are handled by using condition 1.
– The term T2 is handled by using condition 2.

235

How to take limit?

• Review our goal: we want to obtain the following convergence, as
ℓ→∞ (kℓ, hℓ → 0).

T1 →
∫ +∞

0

∫ +∞

−∞
ϕtudxdt, (9.15)

T2 →
∫ +∞

0

∫ +∞

−∞
ϕxf(u) dxdt, (9.16)

T3 →
∫ +∞

−∞
ϕ(x, 0)u(x, 0)dx. (9.17)

• Notice, ϕ has compact support. For each ℓ, only finitely many terms
in the sum of terms T1, T2, T3 are non-zero. thus the sums are well-
defined.

• Employ the notation Uℓ(xj , tn) for piecewise constant function defined
by Un

j for a grid ℓ on [xj−1/2, xj+1/2) × [tn, tn+1). The (9.18) is a
Riemann sum of step functions, which can be written as∫ +∞

0

∫ +∞

−∞

ϕℓ(x, t)− ϕℓ(x, t− k)
k

Uℓ(x, t) dxdt︸ ︷︷ ︸
=T1

+
∫ +∞

0

∫ +∞

−∞

ϕℓ(x+ h, t)− ϕℓ(x, t)
h

F (Uℓ(x− ph, t), · · · , Uℓ(x+ qh, t)) dxdt︸ ︷︷ ︸
=T2

= −
∫ +∞

−∞
ϕℓ(x, 0)Uℓ(x, 0) dx︸ ︷︷ ︸

=T3

. (9.18)

• For the term T1, in order to obtain (9.15), we employ condition “the
1-norm convergences”.

– Recall our goal is to show (9.15). Insert term “u − u” after Uℓ,
we get

T1 =
∫ +∞

0

∫ +∞

−∞

ϕℓ(x, t)− ϕℓ(x, t− k)
k

u(x, t) dxdt

+
∫ +∞

0

∫ +∞

−∞

ϕℓ(x, t)− ϕℓ(x, t− k)
k

(
Uℓ(x, t)− u(x, t)

)
dxdt.

(9.19)

– By mean value theorem, ∃ξℓ,t ∈ [t− k, t], such that

ϕℓ(x, t)− ϕℓ(x, t− k) = kϕt(x, ξℓ,t) (9.20)

Recall ϕ ∈ C1
0 (R×R+) with compact support and the definition

of ϕℓ.

236 9. A BRIEF INTRODUCTION TO NONLINEAR CONSERVATION LAWS

– Use the condition “the 1-norm convergences”, consider the sup-
port of ϕt is compact and ϕt ≤ ∥ϕt∥L∞ . Take limit of the following
expression

T1 =
∫ +∞

0

∫ +∞

−∞
ϕt(x, ξℓ,t)u(x, t) dxdt

+
∫ +∞

0

∫ +∞

−∞
ϕt(x, ξℓ,t)

(
Uℓ(x, t)− u(x, t)

)
dxdt︸ ︷︷ ︸

≤ ∥ϕt∥L∞(R+×R) ∥Uℓ−u∥1,Ω

. (9.21)

• For the term T2, insert term “f(Uℓ(x, t)) − f(Uℓ(x, t))” after F , we
have

T2 =
∫ +∞

0

∫ +∞

−∞

ϕℓ(x+ h, t)− ϕℓ(x, t)
h

f(Uℓ(x, t)) dxdt

+
∫ +∞

0

∫ +∞

−∞

ϕℓ(x+ h, t)− ϕℓ(x, t)
h

(
F (Uℓ(x−ph, t), · · · , Uℓ(x+qh, t))−f(Uℓ(x, t))

)
dxdt

= S1 + S2 (9.22)

Let us show S2 → 0 as ℓ→∞.

– By mean value theorem, ∃ξℓ,x ∈ [x, x+ h], such that

ϕℓ(x+ h, t)− ϕℓ(x, t) = hϕx(ξℓ,x, t). (9.23)

Recall ϕ ∈ C1
0 (R×R+) with compact support and the definition

of ϕℓ.
– Rewrite the term S2 into the summation with respect to n and j.

Note ϕ has compact support, we can assume ϕ = 0 for all t > T .

|S2| ≤ ∥ϕx∥L∞(R+×R)

∫ T

0

∫ +∞

−∞
|F (Uℓ(x− ph, t), · · · , Uℓ(x+ qh, t))− f(Uℓ(x, t))| dxdt

= ∥ϕx∥L∞(R+×R) hk

T/k∑
n=0

+∞∑
j=−∞

|F (Uℓ(xj−p, tn), · · · , Uℓ(xj+q, tn))− f(Uℓ(xj , t))|

(9.24)

– Flux F is Lipschitz continuous, see LeVeque’s book page 126
equation (12.19).

|F (Uℓ(xj−p, t), · · · , Uℓ(xj+q, t))− f(Uℓ(xj , t))|
≤K max

−p≤i≤q
|Uℓ(xj+i, t)− Uℓ(xj , t)|. (9.25)

Substitute (9.25) into (9.24), notice the width of stencil is finite
p + q + 1, the term S2 can be bounded by (trick: telescoping

237

summation)

|S2| ≤ ∥ϕx∥L∞(R+×R) hk

T/k∑
n=0

+∞∑
j=−∞

K max
−p≤i≤q

|Uℓ(xj+i, tn)− Uℓ(xj , tn)|

≤ K∥ϕx∥L∞(R+×R) h

T/k∑
n=0

k
(
(p+ q + 1)

+∞∑
j=−∞

|Uℓ(xj , tn)− Uℓ(xj−1, tn)|
)
.

(9.26)

– Recall Uℓ is bounded total variation, see LeVeque’s book page 131
equation (12.39 and 12.40). The term S2 can be bounded by

|S2| ≤ K(p+ q + 1)∥ϕx∥L∞(R+×R) h
(
k

T/k∑
n=0

TV(Uℓ(·, tn))
)

≤ KRT (p+ q + 1)∥ϕx∥L∞(R+×R) h (9.27)

Therefore, S2 → 0 as h→ 0 (ℓ→∞).
– Example: Lax–Friedrichs flux (stencil width 2).

238 9. A BRIEF INTRODUCTION TO NONLINEAR CONSERVATION LAWS

• The rest terms S1 and T3 can be processed similarly.

10

Boundary conditions for
hyperbolic systems

10.1 Statement of the problem
So far we have studied hyperbolic partial differential equations assuming
periodicity conditions. In this chapter, we analyze the treatment of general
boundary conditions. We shall state the problem under consideration via
the model example:

ut = aux, u(x, 0) = f(x), x ∈ (−1, 1). (10.1)

In general, initial values of f(x) defined on x ∈ (−1, 1), are not enough to
solve for u(x, t). In addition to f(x), we need to specify boundary condition.
The first problem is to determine what type of boundary conditions should
we specify, the second is to study well posedness of the problem with bound-
ary conditions. In this example, an immediate answer may be given to the
first question using characteristics. The equation for the characteristics of
(10.1) is:

dt = −1
a
dx,

and therefore u(x, t) is constant when x + at is a constant. This follows
immediately, since calling ϕ(t) = u(k − at, t) for k a constant, we have:

dϕ(t)
dt

= ux(k − at, t)(−a) + ut(k − at, t) = 0.

Therefore, the solution is a constant along the characteristics, which for this
problem, are straight lines. The information given by f(x) for −1 < x < 1
is therefore insufficient to solve the problem, since we do not have values
at points x > 1. We therefore need to specify for a > 0, right boundary
conditions in the form:

u(1, t) = g+(t), if a > 0.

239

240 10. BOUNDARY CONDITIONS FOR HYPERBOLIC SYSTEMS

Analogously, if a < 0, we need to specify left boundary conditions:

u(−1, t) = g−(t), if a < 0.

Suppose that a > 0, so that we specify right boundary conditions. Can we
also specify left boundary conditions safely? The answer is no. The values of
u(−1, t) must coincide with u(x, t) along the corresponding characteristic in
order for the solution to be continuous. This is in general true and therefore
we must determine first which boundary conditions are needed and avoid
overspecification. We now turn to the second problem for which we shall
use energy estimates. We define the energy of the system in (10.1) by:

E(t) =
∫ 1

−1
u2(x, t) dx.

Under periodic boundary conditions, we saw that there is conservation of
energy, but for this problem this is no longer true, since there is an external
influence through the boundaries. Differentiating the energy we get:

d

dt
E(t) = d

dt

∫ 1

−1
u2(x, t) dx = 2a

∫ 1

−1
u(x, t)ux(x, t) dx

= a

∫ 1

−1

d

dx
u2(x, t) dx

= a[u2(1, t)− u2(−1, t)].

We can now see how the boundary condition affects the energy of the system.
Define:

g(t) =
{
g+(t), if a > 0
g−(t), if a < 0

then, whether a is positive or negative, we have

d

dt
E(t) ≤ |a|g2(t).

If g(t) = 0, then there is dissipation of energy. Dissipative mechanisms for
these equations come from the boundaries. Physically, there is an interaction
between the system and the exterior: energy goes out from the system at
the left boundary (for a > 0), and it is "pumped” into the system through
the right boundary, depending on the right boundary condition given. If
there is no energy pumped into the system (g(t) = 0), then the energy flows
out from the system and eventually reaches zero. In the periodic case, we
require u(1, t) = u(−1, t) and conservation of energy is a consequence of the
fact that energy flows into the system at the same rate that it goes out from
it through the boundaries. Upon integration of the last inequality, we get:

E(t) =
∫ 1

−1
u2(x, t) dx ≤

∫ 1

−1
f(x, t) dx+ |a|

∫ t

0
g2(s) ds,

10.1. STATEMENT OF THE PROBLEM 241

that is, we control the norm of the solution at any given time t >0 by the
bounded function

∫ t
0 g

2(s) ds, which yields well posedness of the solution.
We conclude that for these problems:

• There is a definite direction of inflow-outflow related to the character-
istics,

• We must specify the incoming flow through the corresponding bound-
ary, but not the outgoing flow,

• The energy of the system may decay.

It is in general true that for linear hyperbolic equations we control the
system’s energy through the boundary conditions and therefore when mod-
elling real life problems, special care must be taken on the specification of
boundary conditions. Let us now turn to a more interesting example, where
inflow of energy may come from both boundaries.

Example 10.1. Consider the wave equation:

utt = uxx, |x| < 1.

As we saw in Chapter 5, we can decouple this system in order to get two
scalar equations of the form (10.1). Define:

v = ut, = ux,

then we have: (
v
w

)
t

=
(

0 1
1 0

)(
v
w

)
x

which, in turn, is equivalent to:

uI
t = −uI

x

uII
t = uII

x

where uI = (v−w)/2 and uII = (v+w)/2. From the discussion on (10.1), it
is clear now that for this problem, we must specify both boundary conditions.
There are two classes of characteristics: one with slope 1 related to uI , and
the other with slope −1, related to uII . We must, however, take into account
that uI and uII might still be coupled, precisely through the boundary con-
ditions. In order to see this coupling mechanism, suppose that the boundary
conditions are given for the original variable u(x, t) by:

u(1, t) = g+(t), u(−1, t) = g−(t).

242 10. BOUNDARY CONDITIONS FOR HYPERBOLIC SYSTEMS

This gives the boundary conditions for ut, although not for ux. In terms of
the variables uI and uII , we have:

uI(−1, t) = ut(−1, t)− ux(−1, t)
2

= −ut(−1, t) + ux(−1, t)
2 + ut(−1, t)

= −uII(−1, t) + d

dt
g−(t).

uII(1, t) = −uI(1, t) + g′
+(t).

If the initial conditions are

u(x, 0) = F (x), ut(x, 0) = f2(x),

then we have:
ux(x, 0) = f1(x), ut(x, 0) = f2(x),

and therefore we have initial conditions for uI and uII :

uI(x, 0) = f2(x)− f1(x)
2 ,

uII(x, 0) = f2(x) + f1(x)
2 .

Figure 10.1: An illustration of characteristics and boundary conditions.

In Figure (10.1), the solution evaluated at some point D is constructed in
the following way: uII has the same value at B as the initial value A. At the
point B, uI = uII + g′

−(t), and uI maintains this value up to the point C in
the right boundary. At that point C, uII = uI + g′

+(t), and this is the value
of uII at the point D. Analogously, following now the characteristics, we
obtain the value of uI at the point D. As seen in this example, the boundary
conditions g−(t) and g+(t) give the amount of "reflection” at the boundaries,
relating uI and uII at those points. Therefore, specification of the initial and
boundary conditions provide enough data to solve the problem.

10.2. BOUNDARY CONDITIONS FOR 1D HYPERBOLIC SYSTEMS243

We cannot, however, specify any kind of boundary conditions at will,
since we may lack enough information to solve the problem, as the following
example shows.

Example 10.2. Consider the equation utt = uxx, x ∈ [−1, 1] under the
boundary conditions:

ut(−1, t) + ux(−1, t) = 0,

ut(1, t) + ux(1, t) = 0.

As before, define uI and uII and we get a decoupled system for uI and uII .
But now we have the boundary conditions:

uII(−1, t) = 0, uII(1, t) = 0,

and there are no boundary conditions for uI . Following the solid line from
point A to point B, we see that there might be a contradiction between the
initial value of uII at A, and the boundary value at B, set to zero. This is
an over specification and we should not use boundary condition for uII at
the left boundary. On the other hand, we are lacking information about uI .

Let us summarize the results illustrated in the examples, extracting the
ideas to be generalized later on. Upon diagonalizing the system, we ex-
pressed the problem through the equivalent equation(

uI

uII

)
t

=
(
−1 0
0 1

)(
uI

uII

)
x

The fact that there is one negative eigenvalue and one positive eigenvalue
allows us to decouple the original equation, where now there is one charac-
teristic slope for each of the new variables uI and uII . In general, it should
also be true that the number of right (left) boundary conditions coincides
with the number of positive (negative) eigenvalues. Given these conditions
as g−(t) and g+(t), we get:

uI(−1, t) = −uII(−1, t) + g′
−(t),

uII(1, t) = −uI(1, t) + g′
+(t).

10.2 Boundary conditions for 1D hyperbolic sys-
tems

Consider the one dinnensional hyperbolic system:

wt = Awx

244 10. BOUNDARY CONDITIONS FOR HYPERBOLIC SYSTEMS

where A is a p × p matrix, and −1 < x < 1. We will assume that the
system is strongly hyperbolic (see Chapter 5) thus A can be diagonalized.
Furthermore, we will assume that A has nonzero eigenvalues. We order the
eigenvalues of A, denoted by λ1 ≤ λ2 ≤ · · · ≤ λp , so that if A has r negative
eigenvalues, then these will correspond to λ1, · · · , λr, and 0 < λr+1 ≤ · · · ≤
λp. Since A is diagonalizable, there exists a matrix T such that:

T−1AT =
(
−ΛI 0

0 ΛII

)

where ΛI and ΛII are diagonal matrices with positive entries:

ΛI =

−λ1
. . .

−λr

 , ΛII =

λr+1
. . .

λp

 .
Under the transformation induced by T , we obtain the equivalent system:(

uI

uII

)
t

=
(
−ΛI 0

0 ΛII

)(
uI

uII

)
x

,

where uI contains the first r components of Tw and uII the last (p − r)
components.

Let L be an r×(p−r) matrix, and R be a (p−r)×r matrix and consider
the boundary conditionsin the form:

uI(−1, t) = LuII(−1, t), (10.2)
uII(1, t) = RuI(1, t). (10.3)

The notation is clear: here, L and R stand for "left” and "right” boundary
conditions, respectively. The aim of this section is to prove that the problem
with boundary conditions above is well posed. We shall do this in two steps,
first considering the case ∥L∥∥R∥ ≤ 1, and then the case ∥L∥∥R∥ > 1.

Theorem 10.1. For the boundary conditions (10.2) and (10.3), if ∥L∥∥R∥ ≤
1, then the solutions uI and uII do not grow in time.

Proof. Rescale the matrices by

SI = ∥R∥(ΛI)−1, SII = ∥L∥(ΛII)−1.

Note that this scaling is used to obtain a speed of propogation of one. We
want to show the energy

E(t) =
∫ 1

−1
∥uI∥2 + ∥uII∥2 dx

10.2. BOUNDARY CONDITIONS FOR 1D HYPERBOLIC SYSTEMS245

decays w.r.t. time. Instead, we will show an equivalent norm decays. Define

Ẽ(t) =
∫ 1

−1

(
⟨uI , SIuI⟩+ ⟨uII , SIIuII⟩

)
dx.

Notice that SI and SII are diagonal matrices. So we get

⟨uI , SIuI⟩ =
r∑

i=1
uI

iS
I
iiu

I
i = ∥R∥

r∑
i=1

|uI
i |2

|λi|
,

⟨uII , SIIuII⟩ =
p−r∑
i=r

uII
i S

II
ii u

II
i = ∥L∥

p−r∑
i=r

|uII
i |2

|λi|
,

thus
min{∥L∥, ∥R∥}

maxi ∥λi∥
E(t) ≤ Ẽ(t) ≤ max{∥L∥, ∥R∥}

mini ∥λi∥
E(t).

Evaluating the derivatives, we get

d

dt
Ẽ(t) =

∫ 1

−1

d

dt

(
⟨uI , SIuI⟩+ ⟨uII , SIIuII⟩

)
dx

=
∫ 1

−1

(
⟨uI

t , S
IuI⟩+ ⟨uI , SIuI

t ⟩+ ⟨uII
t , S

IIuII⟩+ ⟨uII , SIIuII
t ⟩
)
dx

=
∫ 1

−1
2
(
⟨uI , SIuI

t ⟩+ ⟨uII , SIIuII
t ⟩
)
dx

=
∫ 1

−1
2
(
⟨uI ,−SIΛIuI

x⟩+ ⟨uII , SIIΛIIuII
x ⟩
)
dx

=
∫ 1

−1

d

dx

(
⟨uI ,−SIΛIuI⟩+ ⟨uII , SIIΛIIuII⟩

)
dx

=
∫ 1

−1

d

dx

(
−∥R∥⟨uI , uI⟩+ ∥L∥⟨uII , uII⟩

)
dx

=
(
−∥R∥⟨uI , uI⟩+ ∥L∥⟨uII , uII⟩

)∣∣∣x=1

x=−1
.

Plugging in the boundary conditions (10.2) and (10.3), we get

d

dt
Ẽ(t) =

(
−∥R∥⟨uI , uI⟩+ ∥L∥⟨uII , uII⟩

)∣∣∣
x=1

−
(
−∥R∥⟨uI , uI⟩+ ∥L∥⟨uII , uII⟩

)∣∣∣
x=−1

=
(
−∥R∥⟨uI , uI⟩+ ∥L∥⟨RuI , RuI⟩

)∣∣∣
x=1

−
(
−∥R∥⟨LuII , LuII⟩+ ∥L∥⟨uII , uII⟩

)∣∣∣
x=−1

=(−∥R∥+ ∥L∥∥R∥2)∥uI(1, t)∥2 − (−∥R∥∥L∥2 + ∥L∥)∥uII(−1, t)∥2

=∥R∥(∥L∥∥R∥ − 1)∥uI(1, t)∥2 + ∥L∥(∥L∥∥R∥ − 1)∥uII(−1, t)∥2.

Thus ∥L∥∥R∥ ≤ 1 implies d
dtẼ(t) ≤ 0.

246 10. BOUNDARY CONDITIONS FOR HYPERBOLIC SYSTEMS

The above result relates the boundary conditions given through L and R,
with the amount of the growth on the solution that comes as a reflection at
the boundaries. This statement is illustrated geometrically in the following
example.

Example 10.3. Consider the case where p = 2, and A has one negative
and one positive eigenvalue. Then the system is decoupled as:

uI
t = −a1u

I
x,

uII
t = a2u

II
x ,

where a1 = −λ1 > 0, a2 = λ2 > 0. The boundary conditions (10.2) and
(10.3) are now:

uI(−1, t) = LuII(−1, t),

uII(1, t) = RuI(1, t),

where now L and R are real numbers. In Figure (10.1), if the value of uII

at A is α, then at B uI has value Lα, and uII has value LRα at C, thus
uII has value LRα at D. Therefore, if |LR| ≤ 1, the magnitude of uII does
not increase in time, whereas if |LR| > 1, the function uII will grow as time
goes on. An analogous argument follows for uI , which yields the relation
between the boundary conditions R and L, and the amount of the reflection.

It turns out that this is a general result. When R and L are matrices,
if ∥L∥∥R∥ > 1, then d

dtẼ(t) is no longer bounded by 0, and solutions may
grow in time. Nevertheless, this growth is bounded by a function of the form
eαt∥u(x, 0)∥, as the following result shows.

Theorem 10.2. For the boundary conditions (10.2) and (10.3), if ∥L∥∥R∥ >
1, then there exist an energy function E(t) such that

E(t) ≤ Keαt.

Proof. Rescale different scaling matrices by

SI = 1
∥L∥

(ΛI)−1, SII = 1
∥R∥

(ΛII)−1.

Define the energy as

E(t) =
∫ 1

−1

(
(1 + εx)⟨uI , SIuI⟩+ (1− εx)⟨uII , SIIuII⟩

)
dx,

10.2. BOUNDARY CONDITIONS FOR 1D HYPERBOLIC SYSTEMS247

where ε ∈ [0, 1] is to be determined later. It is easy to show this energy is
equivalent to the “standard” energy. We have

d

dt
E(t) =

∫ 1

−1

d

dt

(
(1 + εx)⟨uI , SIuI⟩+ (1− εx)⟨uII , SIIuII⟩

)
dx

=
∫ 1

−1
2
(
(1 + εx)⟨uI , SIuI

t ⟩+ (1− εx)⟨uII , SIIuII
t ⟩
)
dx

=
∫ 1

−1
2
(
(1 + εx)⟨uI ,−SIΛIuI

x⟩+ (1− εx)⟨uII , SIIΛIIuII
x ⟩
)
dx

=
∫ 1

−1

(
(1 + εx) d

dx
⟨uI ,−SIΛIuI⟩+ (1− εx) d

dx
⟨uII , SIIΛIIuII⟩

)
dx

=
∫ 1

−1

(
− 1
∥L∥

(1 + εx) d
dx
⟨uI , uI⟩+ 1

∥R∥
(1− εx) d

dx
⟨uII , uII⟩

)
dx.

Integration by parts gives us

d

dt
E(t) =− 1 + ε

∥L∥
∥uI(1, t)∥2 + 1− ε

∥L∥
∥uI(−1, t)∥2 + ε

∥L∥

∫ 1

−1
∥uI(x, t)∥2 dx

+ 1− ε
∥R∥

∥uII(1, t)∥2 − 1 + ε

∥R∥
∥uII(−1, t)∥2 + ε

∥R∥

∫ 1

−1
∥uII(x, t)∥2 dx

The boundary conditions (10.2) implies that

1− ε
∥L∥

∥uI(−1, t)∥2 − 1 + ε

∥R∥
∥uII(−1, t)∥2

=1− ε
∥L∥

∥LuII(−1, t)∥2 − 1 + ε

∥R∥
∥uII(−1, t)∥2

≤(1− ε)∥L∥∥uII(−1, t)∥2 − 1 + ε

∥R∥
∥uII(−1, t)∥2

=∥uII(−1, t)∥2
(

(1− ε)∥L∥ − 1 + ε

∥R∥

)
=∥uII(−1, t)∥2

(
∥L∥ − 1

∥R∥
− ε(∥L∥+ 1

∥R∥
)
)
,

which is zero if we choose ε = ∥L∥∥R∥−1
∥L∥∥R∥+1 .

248 10. BOUNDARY CONDITIONS FOR HYPERBOLIC SYSTEMS

Similarly, the boundary conditions (10.3) implies that

− 1 + ε

∥L∥
∥uI(1, t)∥2 + 1− ε

∥R∥
∥uII(1, t)∥2

=− 1 + ε

∥L∥
∥uI(1, t)∥2 + 1− ε

∥R∥
∥RuI(1, t)∥2

≤− 1 + ε

∥L∥
∥uI(1, t)∥2 + (1− ε)∥R∥∥uI(1, t)∥2

=∥uI(1, t)∥2
(
−1 + ε

∥L∥
+ (1− ε)∥R∥

)
=∥uI(1, t)∥2

(
− 1
∥L∥

+ ∥R∥ − ε(1
∥L∥

+ ∥R∥),
)

which is also zero if we choose ε = ∥L∥∥R∥−1
∥L∥∥R∥+1 .

For the two integrals left, notice that for |x| ≤ 1, we have 1 + εx ≥ 1− ε
thus 1 + ε(1 + x) ≥ 1. Then

ε

∥L∥

∫ 1

−1
∥uI(x, t)∥2 dx

≤ ε

∥L∥

∫ 1

−1

1 + εx

1− ε ∥u
I(x, t)∥2 dx

= 1
∥L∥

ε

1− ε

∫ 1

−1
(1 + εx)∥uI(x, t)∥2 dx

= 1
∥L∥

ε

1− ε

∫ 1

−1
(1 + εx)⟨uI , SIΛIuI⟩∥L∥ dx

= ε

1− ε

∫ 1

−1
(1 + εx)⟨uI , SIΛIuI⟩ dx

≤ ε

1− ερ(ΛI)
∫ 1

−1
(1 + εx)⟨uI , SIuI⟩ dx

≤ ε

1− ερ(A)
∫ 1

−1
(1 + εx)⟨uI , SIuI⟩ dx.

Similarly, we have

ε

∥R∥

∫ 1

−1
∥uII(x, t)∥2 dx ≤ ε

1− ερ(A)
∫ 1

−1
(1− εx)⟨uII , SIIuII⟩ dx.

Therefore, by setting ε = ∥L∥∥R∥−1
∥L∥∥R∥+1 , we get

d

dt
E(t) ≤ ε

1− ερ(A)E(t) = 1
2(∥L∥∥R∥ − 1)ρ(A)E(t).

10.3. KREISS THEORY, THE MULTIDIMENSIONAL CASE 249

Combining this with Gronwall’s inequality,1 we get that

E(t) ≤ E(0)eαt,

where α = 1
2(∥L∥∥R∥ − 1)ρ(A) > 0.

We have thus established that wt = Awx with boundary conditions (10.2)
and (10.3) yields well posedness. It is in general true that the problem is
well posed if and only if the boundary conditions are of the form:

uI(−1, t) = LuII(−1, t) + g−(t),

uII(1, t) = RuI(1, t) + g+(t).

We have studied the case g−(t) = g+(t) ≡ 0, which illustrates the ap-
propriate treatment of boundary conditions through energy estimates in a
somewhat simpler notation. The arguments can be generalized for nonzero
g−(t) and g+(t), but we omit the details here.

10.3 Kreiss theory, the multidimensional case
So far we have studied the problem of well posedness of hyperbolic system in
one dimension. For one dimensional systems, the matrix A can be diagonal-
ized under strong hyperbolicity, and the treatment of boundary conditions
strongly relies on the “splitting” of the diagonalized matrix into ΛI and ΛII .

Consider now the multidimensional system:

ut =
d∑

j=1
Aj

∂ u

∂ xj
, (10.4)

where x = (x1, · · · , xd)T and u = (u1, · · · , up). We will assume that the
system is symmetric hyperbolic so that we can diagonalize one of the d ma-
trices Aj and symmetrize the others under the same transformation. Since,
in general, we cannot diagonalize simultaneously all the d matrices appear-
ing in (10.4), Kreiss theory is based on looking at one boundary at a time.
That is, we consider the domain to be of the form

−∞ < xj < +∞, j = 2, · · · , d
1Here is a proof of Gronwall’s inequality. Suppose ϕ′(t) ≤ αϕ(t), then

d

dt
(ϕ(t)e−αt) = −αϕ(t)e−αt + ϕ′(t)e−αt ≤ 0.

Thus ϕ(t)e−αt ≤ ϕ(0) which gives us

ϕ(t) ≤ ϕ(0)eαt.

250 10. BOUNDARY CONDITIONS FOR HYPERBOLIC SYSTEMS

0 ≤ x1 < +∞

and we analyze the appropriate left boundary condition for x1. Let T be
the transformation that diagonalizes A1 and symmetrizes the other matrices
A2, · · · , Ad and denote:

A = T−1A1T,

Bj = T−1AjT, j = 2, · · · , d.

We will use the same notation u(x, t) to denote the function under the
transformation T , so that the original problem is equivalent to:

ut = A
∂ u

∂ x1
+

d∑
j=2

Bj
∂ u

∂ xj
, (10.5)

where A is a diagonal matrix and Bj , 2 < j < d are symmetric matrices.
We assume that the eigenvalues of A are ordered such that:

λ1 ≤ · · · ≤ λr < 0 < λr+1 ≤ · · · ≤ λp,

and we shall split A accordingly, by:

A =
(
−ΛI 0

0 ΛII

)
.

We also split u by

u =
(
uI

uII

)

where uI denotes the first r components of u and uII denote the last (p− r)
components. The number r stands for the number of negative eigenvalues
of the matrix A. At the boundary x = 0, we must specify r left bound-
ary conditions for the component uI(0, x2, · · · , xd, t). We shall consider the
boundary conditions to be of the form:

uI(0, x2, · · · , xd, t) = LuII(0, x2, · · · , xd, t), (10.6)

where L is an r × (p− r) matrix.
Unlike the one dimensional case, having boundary conditions of the form

(10.6) does not ensure well posedness of the problem. In this section, we
study necessary conditions under which the problem is not well posed, and
later state necessary conditions for well posedness. Energy estimates involve
the definition of an appropriate energy for the system, which in the multi-
dimensional case may lead to cumbersome analysis. The main contribution
of Kreiss theory on boundary conditions lies on the construction of an ap-
propriate framework which turns the problem into an algebraic problem, so

10.3. KREISS THEORY, THE MULTIDIMENSIONAL CASE 251

that the aforementioned conditions may be easily verified. Our first task
will be to look for necessary conditions for the problem

ut = A
∂ u

∂ x1
+

d∑
j=2

Bj
∂ u

∂ xj
,

uI(0, x2, · · · , xd, t) = LuII(0, x2, · · · , xd, t),
not to be well posed. Roughly speaking, we will look for "bad" boundary
conditions for L, but we will not require these conditions to be also sufficient.

As mentioned before, we shall construct an appropriate framework that
will simplify the characterization of such bad situations, however, the nota-
tion may seen complicated. We shall therefore present the main arguments
in a step-by-step way. The next two results set up the fundamental ideas
that will help us simplify the problem.

Lemma 10.1. Let s be any complex number and ω2, · · · , ωd to be any real
numbers. Let û(x1) be a solution of the ordinary differential equation

sû(x1) = A
dû

dx1
(x1) + i

d∑
j=2

Bjωj û(x1), (10.7)

then u(x, t) defined by

u(x, t) = este
i
∑d

j=2 ωjxj û(x1)

satisfies (10.5).

Proof. The proof follows by substitution. The u(x, t) defined above satisfies

∂ u

∂ t
= su(x, t) = este

i
∑d

j=2 ωjxj [sû(x1)]

= este
i
∑d

j=2 ωjxjA
dû

dx1
+ este

i
∑d

j=2 ωjxj
i

d∑
j=2

Bjωj û(x1)

= Aeste
i
∑d

j=2 ωjxj dû

dx1
+

d∑
j=2

Bj(iωj)este
i
∑d

j=2 ωjxj û(x1)

= A
∂ u

∂ x1
(x, t) +

d∑
j=2

Bj(iωj)u(x, t).

The definition of u(x, t) implies ∂ u
∂ xj

= iωju for j = 2, · · · , d, thus

∂ u

∂ t
= A

∂ u

∂ x1
+

d∑
j=2

Bj
∂ u

∂ xj
. (10.8)

252 10. BOUNDARY CONDITIONS FOR HYPERBOLIC SYSTEMS

The above proof is quite straightforward. However, it does not tell us
anything about the relation between the original partial differential equation
(10.5) and the ordinary differential equation satisfied by û(x1). Actually,
this ordinary differential equation is obtained through a transformation of
u(x, t). Consider the Fourier transform of u(x, t) applied to the coordinates
x2, · · · , xd, and Laplace transform on the time variable. Call ũ(x1, ω, s) the
resulting transform, where ω = (ω2, · · · , ωd) denotes the Fourier variables.
Then we get:

sũ(x1, ω, s) = A
∂

∂ x1
ũ(x1, ω, s) + i

d∑
j=2

Bjωj ũ(x1, ω, s).

The difference between this equation and (10.7) is a subtle one: here ω and
s are variables, but in (10.7) they play the role of parameters. Although
we will use (10.7), it is important to keep in Inind that these parameters
contain relevant information about the solution u(x, t). For instance, con-
sidering ω2 = 0 would yield a solution u(x, t) that does not depend on the
corresponding variable x2, and we would be studying a (d− 1)-dimensional
problem instead of the original d-dimensional problem. We shall therefore
allow ω to be arbitrary, not fixed at any particular value. The parameters
in (10.7) is related to the initial condition u(x, 0). For example, if we con-
sider the solution û(x1) for s = 0, we get a function u(x, t) in (10.8) that
is independent of time. Solutions that are time independent correspond to
particular initial conditions. In general, given a value for ω, the value of s
for which we define û(x1) will be related to a particular initial condition.

Before stating the next result, we recall from the definition of well posed-
ness that the problem (10.5) is not well posed if for every pair of constants K
and α, there is a bounded initial condition f(x) such that ∥u(t)∥ > Keαt∥f∥
where u(x, t) satisfies (10.5) and u(x, 0) = f(x).

Notice now that for all solutions of the form (10.8) we have for each
x = (x1, x2, · · · , xd), |u(x, 0)| = |û(x1)| and therefore ∥u(0)∥ = ∥û∥.
Lemma 10.2. The problem (10.5) is not well posed if for some s with
Re(s) > 0, (10.7) has a bounded solution û(x1).
Proof. Suppose û(x1) satisfies (10.7) for some s with Re(s) > 0, then

u(x, t) = est exp(i
d∑

j=2
ωjxj)û(x1)

is a solution to (10.5). Moreover, if u(x, t) is a solution to (10.5) then so
is wβ(x, t) = u(βx, βt) for any β > 0. Thus for any fixed β > 0, f(x) =
exp(i∑d

j=2 ωjβxj)û(βx1) is a bounded initial condition, for which a solution
to (10.5) is

u(x, t) = esβt exp(i
d∑

j=2
ωjβxj)û(βx1) = esβtf(x).

10.3. KREISS THEORY, THE MULTIDIMENSIONAL CASE 253

Let T be fixed. For any K and α, we can find a β such that eRe(s)βt >
KeαT . For this β, f(x) = exp(i∑d

j=2 ωjβxj)û(βx1) is a bounded initial
condition, and u(x, t) = esβtf(x) is a solution. Moreover,

∥u(x, t)∥ = eRe(s)βt∥f(x)∥ > Keαt∥f(x)∥, ∀t ∈ [0, T].

Now we have stated a necessary condition for the problem to be ill-posed.
But how does this relate to the boundary operator L? In what follows,
we focus on the characterization of such solutions û(x1) of the ordinary
differential equation (10.7) that are bounded and correspond to a value of s
with Re(s) > 0, requiring that they also satisfy the boundary conditions.

Collecting the results obtained so far, we conclude that the problem
(10.5) with boundary condition (10.6) will not be well posed if for some s
with Re(s) > 0 the problem:

sû(x) = A
dû

dx
(x) + i

d∑
j=2

Bjωj û(x), x ≥ 0, (10.9)

ûI(0) = LuII(0), (10.10)

has a bounded solution û(x). We have changed now the notation x1 by x,
since the problem is already a one-dimensional one and the variables xj ,
j > 2 do not appear. Equations (10.9) represent, for given ω and s, an
initial valued ordinary differential equation for û(x). Since A is a diagonal
matrix with no zero eigenvalue, A−1 exists and we may rewrite (10.9) as:

d

dx
û(x) = Mû, (10.11)

where

M = A−1(sI − i
d∑

j=2
ωjBj),

is a p×p matrix depending on s and ω, but not on x. Let κν(s) (ν = 1, · · · , p)
denote the eigenvalues of M (they also depend on ω but we do not make
this dependence explicit in our notation).

Notice that if ϕν(s) is the eigenvector such that

Mϕν(s) = κν(s)ϕν(s),

then the function eκν(s)xϕν(s) satisfies (10.11):

d

dx
eκν(s)xϕν(s) = κν(s)eκν(s)xϕν(s)

= eκν(s)xMϕν(s)
= Meκν(s)xϕν(s).

254 10. BOUNDARY CONDITIONS FOR HYPERBOLIC SYSTEMS

In order to characterize the general for in of the bounded solutions of
(10.11) we make the use of the following result without proof (How to prove
it? Hint: the number of eigenvalues with positive real parts is a continuous
function of ω. See Lemma 10.5.4 in [4] for the detailed proof):

Lemma 10.3. For every s such that Re(s) > 0, M has r eigenvalues with
negative real part and no purely imaginary eigenvalues.

We will order the eigenvalues of M such that:

Re[κν(s)] < 0, ν = 1, · · · , r,

Re[κν(s)] > 0, ν = r + 1, · · · , p.

Since the eigenvalues of a matrix are continuous functions of the entries
of the matrix, we consider each κν(s) as a continuous function of s. For
Re(s) > 0, the general solution of (10.11) is of the form:

û(x) =
p∑

ν=1
ρνe

κν(s)xϕν(s)

where ρν are coefficients to be determined by the initial condition. An
alternative way to write the solution is to use the matrix exponential û(x) =
eMtû(0).

From the above expression, since Re[κν(s)] > 0 for ν > r, it follows that
in order for û(x) to be a bounded solution of x, ρν = 0 for ν = r+ 1, · · · , p.

Therefore if Re(s) > 0, the bounded solutions of (10.11) have the general
form

û(x) =
r∑

ν=1
ρνe

κν(s)xϕν(s). (10.12)

In addition, we require û(x) to satisfy (10.10). Note that if we denote,
for each ν, ϕI(s) the first r copponents of ϕ(s) and ϕII(s) the last (p − r)
components, (10.10) reduces to:

r∑
ν=1

ρν(ϕI
ν(s)− LϕII

ν (s)) = 0.

which is a r × r linear system for ρν . Thus it can be written as

Q(s)ρ = 0,

where

ρ =

ρ1
...
ρr



10.3. KREISS THEORY, THE MULTIDIMENSIONAL CASE 255

and the matrix Q(s) has the form

Qνj(s) = eκν(s)[ϕI
ν − LϕII

ν]j .

Therefore, in order for (10.12) to be a non-trivial bounded solution of
(10.9), it is necessary that det[Q(s)] = 0, so that Q(s)ρ = 0 admits a
nontrivial solution. We summarize the result in the following.

Theorem 10.3. If det[Q(s)] = 0 for some s with Re(s) > 0, then the
problem (10.5) with boundary conditions (10.6) is not well posed.

In practical situations, it is often impossible to evaluate an explicit ex-
pression for det[Q(s)] as a function of s, so the verification of the conditions
in the Theorem above is not straightforward. The main difficulty is that one
generally obtains an equation for the eigenvalues κν(s) which also depends
on ω and other coefficients, and it may be difficult to characterize which are
the eigenvalues for which Re[κν(s)] < 0. We shall give a detailed example
on how Kreiss theory is applied for a specific problem, but before, we state
without proof the conditions for the problem to be well posed.

Theorem 10.4. Kreiss. If det[Q(s)] ̸= 0 for all complex numbers s with
Re(s) ≥ 0 then the problem (10.5) and (10.6) is strongly well posed.

And finally, we have:

Theorem 10.5. Hersch. If det[Q(s)] ̸= 0 for all complex numbers s with
Re(s) > 0 and det[Q(s0)] = 0 for some purely imaginary s0, then the prob-
lem (10.5) and (10.6) is weakly well posed.

As already mentioned, if we consider ωj = 0 for all j ≥ 2, then the prob-
lem reduces to a one-dimensional problem. For this case we studied in pre-
vious section and showed that the boundary condition uI(0, t) = LuII(0, t)
preserves well posedness. Therefore, it is always true that det[Q(s)] ̸= 0 for
all s with Re(s) ≥ 0 if ωj = 0 for all j ≥ 2.

As an example, we consider the two dimensional system (d = 2):

∂

∂ t

(
u
v

)
=
(
−1 0
0 1

)
∂

∂ x

(
u
v

)
+
(

0 1
1 0

)
∂

∂ y

(
u
v

)
,

0 ≤ x ≤ ∞
−∞ ≤ y ≤ ∞

so that p = 2. Here A is already diagonal and B is symmetric. The number
of left boundary conditions is r = 1, and we consider it to be of the form:

u(0, y, t) = lv(0, y, t),

where l is a real number. The ODE (10.9) is

s

(
û
v̂

)
=
(
−1 0
0 1

)
d

dx

(
û
v̂

)
+ iω

(
0 1
1 0

)(
û
v̂

)
.

256 10. BOUNDARY CONDITIONS FOR HYPERBOLIC SYSTEMS

And (10.10) becomes
û(0) = lv̂(0).

In this example A = A−1, so we obtain(
û
v̂

)
x

=
(
−1 0
0 1

)(
sI −

(
0 iω
iω 0

))(
û
v̂

)

=
(
−s iω
− iω s

)(
û
v̂

)
,

which gives an explicit form of M . The eigenvalues of M must satisfy

κ2
ν(s) = s2 + ω2, (10.13)

where s is complex and ω is real.
It is clear now that even for this simple example, it is not convenient to

try to express κ1(s) = Re[κ1(s)] + i[κ1(s)] as a function of s such that if
Re(s) > 0 then Re[κ1(s)] < 0. Instead, we use the equation (10.13) which
is satisfied by κ1(s).

The eigenvector ϕν(s) satisfies(
−s iω
− iω s

)(
ϕI

ν

ϕII
ν

)
= κν(s)

(
ϕI

ν

ϕII
ν

)
,

which gives two linearly dependent equations equivalent to

−(s+ κν(s))ϕI
ν(s) + iωϕII

ν (s) = 0.

Recall that eigenvectors are defined up to a normalization constant, so that
in general we have that:

ϕI
ν(s) = iω,

ϕII
ν (s) = s+ κν(s).

Of course for ϕν(s) to be an eigenvector, it must be a nonzero vector.
This rules out the case ω = 0, for which κ1(s) = −s, κ2(s) = s and ϕ1(s)
is the zero vector. As already mentioned before, if ω = 0 we are reducing
the problem to a one-dimensional one, which is well posed according to the
results of last section.

According to our previous discussion, we have that for any s withRe(s) >
0, the bounded solutions of the ODE are of the form:(

û
v̂

)
= ρ1

(
iω

s+ κ1(s)

)
eκ1(s)x

where Re[κ1(s)] < 0 if Re(s) > 0. So far we have not made use of the
boundary condition. Now we want to see is for some s with Re(s) > 0, there

10.3. KREISS THEORY, THE MULTIDIMENSIONAL CASE 257

is a nontrivial solution of the form above which also satisfies the boundary
condition. If so, the problem is not well posed.

Using the boundary condition at x = 0, we get

ρ1 iω = lρ1(s+ κ1(s)),

where Q(s) = iω−l(s+κ1(s)) is a 1×1 matrix. The condition det[Q(s)] = 0
becomes

iω = l(s+ κ1(s)). (10.14)

In other words, the statement that det[Q(s)] = 0 for some s with Re(s) >
0 is equivalent to equations (10.13) and (10.14) have a solution (κ1(s), s)
satisfying Re(s) > 0 and Re[κ1(s)] < 0.

Notice that without the constraint Re[κ1(s)] < 0, the solution to both
(10.13) and (10.14) may be κ2(s), which is not the one giving bounded
solutions to the ODE (10.9).

The problem is clearly an algebraic one, we can express (10.14) as κν(s) =
1
l iω − s and plug it into (10.13). Later we determine whether the solution
corresponds to ν = 1 or ν = 2. We get

−ω
2

l2
− 2 iωs

l
+ s2 = s2 + ω2,

2 i s
l

= −ω1 + l2

l2
.

So the value of s satisfying both (10.13) and (10.14) must be

s0 = iω
l2 + 1

2l .

And
κν(s0) = iω

1− l2
2l . (10.15)

Since s0 is purely imaginary, the first conclusion is that there is no so-
lution to (10.13) and (10.14) with Re(s) > 0. Thus Theorem 10.3 does
not apply. The only solution to (10.13) and (10.14) holds Re(s0) = 0 and
Re[κν(s0)] = 0. In order to determine whether Theorem 10.4 or Theorem
10.5 is applicable, we must know if ν = 1 or ν = 2.

As defined above, κν(s) is the continuous function of s which is an eigen-
value of M and such that Re[κ1(s)] < 0 < Re[κ2(s)] for Re(s) > 0.

In order to determine whether κν(s0) in (10.15) is κ1(s0) or κ2(s0), we
make a perturbation analysis. Indeed, by the definition of κν(s), we have
for any positive real number α > 0:

Re[κ1(s0 + α)] < 0 < Re[κ2(s0 + α)]. (10.16)

258 10. BOUNDARY CONDITIONS FOR HYPERBOLIC SYSTEMS

Since κν(s) are solutions to (10.13), then both κν(s) are continuous func-
tions of s, so that for small α > 0,

κν(s0 + α) = κν(s0) + βν ,

where |βν | = |κν(s0 +α)− κν(s0)| is of the order α. We think of perturbing
s0 along a line so that sα ≡ s0 + α only differs from s0 in the real part, it
may be that βν = κν(s0 +α)−κν(s0) has a nonzero imaginary part. In any
cases, |βν | = O(α), and so |βν | will be negligible when α is very small.

The sign of Re(βν) will give us the answer of which one is κν(s0), since
by (10.16):

Re(β1) < 0 < Re(β2).
The eigenvalues κν(s0 + α) must also satisfy

κ2
ν(s0 + α) = (s0 + α)2 + ω2,

thus
β2

ν + 2βνκν(s0) + κν(s0)2 = s2
0 + 2αs0 + α2 + ω2,

and since κ2
ν(s0) = s2

0 +ω2, neglecting the terms of order O(α2), this yields:

2βνκν(s0) = 2αs0.

Using (10.15) and s0 = iω l2+1
2l , we get

βν = α
l2 + 1
l2 − 1 .

In the last expression we have assumed l ̸= 1. From this expression we
obtain:

• If |l| < 1, then Re(βν) > 0 implies ν = 2, and therefore the solution
to (10.13) and (10.14) is κ2(s0). We conclude that det[Q(s)] ̸= 0 for
all s with Re(s) ≥ 0 and therefore the problem is well posed.

• If |l| > 1, then Re(βν) < 0, so that κ1(s0) is a solution to (10.14)
yielding that det[Q(s0)] = 0 for s0 = iω l2+1

2l . The problem is therefore
weakly but not strongly well posed.

As for the case l = 1, we have s0 = iω, κν(s0) = 0, so the perturbation
analysis will not give the information about ν being 1 or 2. However, the
case l = 1 turns out to be simple enough so that we can apply the energy
estimates directly and do not have to use Kreiss theory. We show how to
handle this case for periodic boundary conditions instead of general inifinite
domains:
Claim: The problem

∂

∂ t

(
u
v

)
=
(
−1 0
0 1

)
∂

∂ x

(
u
v

)
+
(

0 1
1 0

)
∂

∂ y

(
u
v

)
,

10.3. KREISS THEORY, THE MULTIDIMENSIONAL CASE 259

defined in the space domain x ∈ [0, 1], y ∈ [0, 2π] satisfying the periodicity
condition in y:

u(x, 0, t) = u(x, 2π, t), v(x, 0, t) = v(x, 2π, t)

with left boundary condition and right boundary condition given by

u(0, y, t) = lv(0, y, t), l = 1,

v(1, y, t) = 0,

is strongly well posed.

Remark 10.1. Periodic boundary conditions on y are assumed in order to
simplify the computations. We have taken the finite domain 0 ≤ x ≤ 1,
which requires a right boundary condition for v (in the same way at we need
a left boundary condition for u at x = 0). We use v(1, y, t) = 0 which can be
generalized to the natural condition limx→+∞ v(x, y, t) = 0 when we consider
x ≥ 0. This condition ensures boundedness.

Proof. The equations imply

ut = −ux + vy, vy = vx + uy.

Define the energy by

E(t) =
∫ 2π

0
dy

∫ 1

0
dx
(
u2(x, y, t) + v2(x, y, t)

)
.

Then we have

1
2E

′(t) =
∫ 2π

0
dy

∫ 1

0
dx (uut + vvt)

thus

E′(t) =
∫ 2π

0
dy

∫ 1

0
dx
[
−(u2)x + (v2)x

]
+ 2

∫ 2π

0
dy

∫ 1

0
dx [uvy + vuy]

=
∫ 2π

0
[−u2(1, y, t) + u2(0, y, t) + v2(1, y, t)− v2(0, y, t)]dy + 2

∫ 2π

0
dy

∫ 1

0
dx[(uv)y].

Plugging in the boundary conditions, we get

E′(t) = −
∫ 2π

0
u2(1, y, t)dy+

∫ 1

0
[u(x, 2π, t)v(x, 2π, t)− u(x, 0, t)v(x, 0, t)]dx.

(10.17)
The first term is non-positive and the second integral vanishes due to y-
periodicity, so E′(t) ≤ 0, proving the claim.

260 10. BOUNDARY CONDITIONS FOR HYPERBOLIC SYSTEMS

When we considered the infinite domains, the integrations were per-
formed on x ∈ R and y ∈ R. In this case we impose the condition:

lim
x→+∞

u(x, y, t) = lim
x→+∞

v(x, y, t) = 0,

so that in (10.17) the first term would also vanish.
If imposing

lim
y→+∞

u(x, y, t) = lim
y→+∞

v(x, y, t) = 0,

then the second integral in (10.17) also vanishes. In this case we therefore
have that the energy is conserved. Notice that for the finite domain case
with periodicity conditions on y, any right boundary condition of the form
u(1, y, t) = c a constant, will yield well posedness, where now E′(t) ≤ −2πc2.
As mentioned at the beginning of this section, Kreiss theory is based on
looking at one boundary at a time, and we can now illustrate how things can
be put together if we consider the general right boundary condition:

v(1, y, t) = ru(1, y, t).

Then for |r| ≤ 1 and |l| ≤ 1 the problem is strongly well posed. The case
where either |r| > 1 or |l| > 1 is studied through the Kreiss theory, as we
did before, for one boundary at a time.

Theorems 10.3 and 10.4 have been extended to more general domains
with variable coefficients. For these problems, it is not yet clear what the
analog of Theorem 10.4 should be.

11

Selected applications

In this section, we list a few selected applications.

11.1 TV norm minimization and Poisson equation
The Laplacian operator emerges in many classical and popular optimization
algorithms for total variation (TV) norm minimization problems. As an
example, we will consider the TV norm minimization for image denoising [10,
11]. All derivatives in this section should be understood as weak derivatives
as in Chapter 3.

11.1.1 Continuum ROF image denoising model

Consider a rectangular domain Ω = [0, 1] × [0, 1], and a function u(x, y) ∈
H1(Ω), which represents an image with infinite resolution. Then its total
variation is defined as

∥u∥T V =
∫∫

Ω
|∇u|dxdy,

where ∇u = (ux, uy) and |∇u| =
√
|ux|2 + |uy|2. With L2-norm as ∥u∥L2 =√∫∫

Ω |u|2dxdy, for a given a(x, y), the ROF (Rudin, Osher, and Fatemi,
1992) model [10] is to minimize (over u in a proper function space)

∥u∥T V + 1
2λ∥u− a∥

2
L2 ,

where λ is a fixed parameter.
The function space that the minimizer should belong to, is a subspace of

H1(Ω) with suitable boundary conditions. For instance, periodic or homo-
geneous Dirichlet boundary conditions make sense for MRI images, but not
for a generic image. For convenience, for a generic image, we just consider
homogeneous Neumann boundary conditions, which will naturally emerge

261

262 11. SELECTED APPLICATIONS

Figure 11.1: Periodic or zero bounary conditions are suitable for MRI im-
ages, but not for a generic image.

in the discrete setup as will be seen in the following subsections. See Figure
11.1.

To this end, we define

H = {u ∈ H1(Ω) : ∇u · n|∂Ω = 0},

where n is the unit normal vector of the boundary ∂Ω.
The gradient operator ∇ is a linear mappping, and we use an abstract

name for it K = ∇:

K = ∇ : H −→ V = (L2(Ω), L2(Ω))
u 7−→ ∇u = (ux, uy)

To understand the adjoint operator of K = ∇, we need the H(div)-space:

H(div) = {q = (q1, q2) ∈ (L2(Ω), L2(Ω)) : ∇ · (q1, q2) ∈ L2(Ω)} ⊂ V.

Remark 11.1. Elements in H(div) are not necessarily in H1(Ω). For in-

stance, let f(x) =
{

1, x ≥ 0
0, x < 0

, then q(x, y) := (0, f(x)) is in H(div) but

f(x) /∈ H1(Ω).

The divergence operator ∇· is a linear mapping from H(div) to L2(Ω).
If we assume suitable boundary conditions for smooth q, then K∗ = −∇· is
the adjoint operator of K = ∇ since

⟨Ku,q⟩ :=
∫∫

Ω
∇u·qdxdy = −

∫∫
Ω
u∇·qdxdy = ⟨u,−∇·q⟩, ∀q ∈ (C1

0 (Ω), C1
0 (Ω)).

11.1.2 Discrete ROF model

Consider an image of size n × n, corresponding to domain [0, 1] × [0, 1]
and a uniform grid xi, yj = (j − 1)h, j = 1, · · · , n with h = 1

n−1 . Notice
that an image does not have any necessary association of a domain of size

11.1. TV NORM MINIMIZATION AND POISSON EQUATION 263

[0, 1] × [0, 1], and this assumption of domain [0, 1] × [0, 1] should not affect
the final implementation.

Recall that D is the finite difference matrix approximating first order
derivative, then we have

DT =



−1
1 −1

1 −1
.

1 −1
1 0


n×n

, DTD =



1 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 1


.

Now for a bivariate function u(x, y), let U be a 2D array with U(j, i) =
u(xi, yj), then

U ≈ u⇒ 1
h
UDT ≈ ux,

1
h
DU ≈ uy.

Remark 11.2. We may also choose the notation U(i, j) = u(xi, yj), then
1
hDU ≈ ux.

For function u(x, y) and a(x, y), we have

||u||T V ≈
∑

i

∑
j

h2
√
|ux(xi, yj)|2 + |uy(xi, yj)|2

||u− a||2L2 ≈
∑

i

∑
j

h2|u(xi, yj)− a(xi, yj)|2.

Introduce Ux := 1
hUD

T and Uy := 1
hDU. Let A be a 2D array with

A(j, i) = a(xi, yj), then the discrete ROF model is

min
U∈Rn×n

∑
i

∑
j

(
h2
√
Ux(j, i)2 + Uy(j, i)2 + h2 1

2λ|U(j, i)−A(j, i)|2
)

= min
U∈Rn×n

∑
i

∑
j

(
h
√

[UDT](j, i)2 + [DU](j, i)2 + h2 1
2λ|U(j, i)−A(j, i)|2

)
.

Notice that its minimizer does not depend on the choice of h if λ = C
h

for some constant C. An image has no physical grid spacing anyway, so h
should be arbitrary, for which we should take λ = C

h . In practice, C = 10
usually produces a reasonable result. See Figure 11.2 and Figure 11.3.

11.1.3 Primal, dual and primal-dual forms

Using all notation above, the discrete ROF model can be written as

min
U∈Rn×n

f(KU) + g(U), (11.1a)

264 11. SELECTED APPLICATIONS

(a) Noisy Image (b) C = 4

(c) C = 8 (d) C = 12

Figure 11.2: ROF solutions using isotropic TV-norm with different λ = C
h .

where K = ∇h : Rn×n −→ R2(n×n) is a linear mapping

K(U) = ∇hU = 1
h

(UDT , DU), (11.1b)

and

f(P,Q) =
∑
i,j

h2
√
P 2(i, j) +Q2(i, j), g(U) = λ

∑
i,j

h2|U(i, j)− a(i, j)|2.

(11.1c)
It is straightforward to verify that the adjoint operator of K is given by

K∗ = −∇h· : R2(n×n) −→ R
n×n

(P,Q) 7−→ 1
h

(PD +DTQ)

The convex minimization (11.1a) is called primal form. To solve (11.1a),

11.1. TV NORM MINIMIZATION AND POISSON EQUATION 265

(a) Noisy Image (b) C = 4

(c) C = 8 (d) C = 12

Figure 11.3: ROF solutions using isotropic TV-norm with different λ = C
h .

equivalently we can solve its dual form

− min
P∈R2(n×n)

f∗(P) + g∗(−K∗P). (11.2)

Both (11.1a) and (11.2) are also equivalent to the primal-dual form:

min
U∈Rn×n

max
P∈R2(n×n)

⟨KU,P⟩ − f∗(P) + g(U), (11.3)

Recall that the minimizer U∗ to (11.1a) and the minimizer P∗ to (11.2)
are related via the optimality condition in the primal-dual form in the pre-
vious chapter. To recover the physical image U from P, we need the relation
obtained from the Legendre transform of g(U):

0 ∈ K∗P + ∂g(U),

which gives
0 = K∗P + λ(U −A)⇒ U = A− 1

λ
K∗P.

266 11. SELECTED APPLICATIONS

11.1.4 ADMM and Douglas-Rachford splitting

Both alternating direction method of multipliers (ADMM) (Glowenski and
Marrocco 75) and Douglas-Rachford splitting (Lions and Mercier 79) are
popular and successful splitting convex minimization algorithms, and they
are equivalent in the following sense:

ADMM on primal⇔ Douglas-Rachford on dual,

ADMM on dual⇔ Douglas-Rachford on primal.

The ADMM method is for solving min f(x) + g(y) under the linear con-
straint Ax+By = b, and it is given as

xk+1 = argminxf(x) + g(yk)− ⟨λk, Ax+Byk − b⟩+ β

2 ∥Ax+Byk − b∥2

yk+1 = argminyf(xk+1) + g(y)− ⟨λk, Axk+1 +By − b⟩+ β

2 ∥Axk+1 +By − b∥2

λk+1 = argmaxλf(xk+1) + g(yk+1)− ⟨λ,Axk+1 +Byk+1 − b⟩ −
1

2β ∥λ− λk∥2,

where λ is the Lagrangian multiplier and β > 0 is a step size.

11.1.5 Discrete Laplacian in ADMM on primal

By plugging in the linear constraint Ax+By = b as −P +KU = 0, ADMM
applied on f(P) + g(U) in the primal form (11.1a) becomes

Pk+1 = argminPf(P) + g(Uk)− ⟨λk,−P +KUk⟩+ β

2 ∥ −P +KUk∥2

Uk+1 = argminUf(Pk+1) + g(U)− ⟨λk,−Pk+1 +KU⟩+ β

2 ∥ −Pk+1 +KU∥2

λk+1 = argmaxλf(Pk+1) + g(Uk+1)− ⟨λ,−Pk+1 +KUk+1⟩ −
1

2β ∥λ− λk∥2.

To implement the second line, by ignoring constants, we consider

Uk+1 = argminUg(U)− ⟨λk,KU⟩+ β

2 ∥KU −Pk+1∥2.

Notice that g(U) is a simple quadratic function, thus the minimizer is ob-
tained by finding critical point, for which we need to take derivative of
∥KU −Pk+1∥2 w.r.t. U :

∂

∂U
⟨KU −Pk+1,KU −Pk+1⟩ = h2(2K∗KU − 2K∗Pk+1).

So the second line can be equivalently written as

λ(Uk+1 −A)−K∗λk + βK∗KUk+1 − 2K∗Pk+1 = 0

11.1. TV NORM MINIMIZATION AND POISSON EQUATION 267

which is
(λI + βK∗K)Uk+1 = −λA+K∗λk + 2K∗Pk+1.

Notice that K∗K = −∆h is precisely the discrete Laplacian with purely
Neumann boundary conditions, and λI − β∆h can be inverted similar as in
Chapter 2 (notice that eigenvalues of λI − β∆h are strictly positive).

11.1.6 Discrete Laplacian in Douglas-Rachford on the dual

Though ADMM on the primal problem is mathematically equivalently to
the Douglas-Rachford splitting on the dual problem, the Poisson equation
arises in a seemingly very different manner.

Using notation in this section, for the TV-norm denoising problem of a
2D image B ∈ Rn×n, the primal problem is equivalently written as

min
U∈Rn×n

∥KU∥1 + λ

h
∥U −B∥2F ,

where ∥·∥F is the Frobenius norm for a matrix ∥U−B∥F =
√∑

i,j |U(i, j)− a(i, j)|2
and the 1-norm for a pair of matrices V = (P,Q) is

F (V) = ∥(P,Q)∥1 =
∑
i,j

√
P (i, j)2 +Q(i, j)2.

The convex conjugate of F (V) is

F ∗(V) =
∑
i,j

ι{P (i,j)2+Q(i,j)2≤1}.

Up to a constant shift, the dual problem can be written as

−minF ∗(V) + h

2λ∥K
∗V− λ

h
B∥2F .

Problem 11.1. Derive the dual problem.

The proximal operator of F ∗ can be easily computed as the projection
to the unit ball for each entry (i, j).

Now consider the proximal operator of the function

G∗(V) = h

2λ∥K
∗V− λ

h
B∥2F ,

which is written as

Proxη
G∗(W) = argmin

V

h

2λ∥K
∗V− λ

h
B∥2F + 1

2η∥V−W∥2F .

Let V = argmin, then the critical point equation gives

h

λ
K(K∗V− λ

h
B) + 1

η
(V−W) = 0

268 11. SELECTED APPLICATIONS

⇒ (1
η
I+ h

λ
KK∗)V = KB + 1

η
W.

We need to solve V in an equation in the form
KK∗V + βV = F

where β = λ
ηh and F = ηKB+W is some known vector field. At first glance,

this corresponds to an equation
∇(−∇ · p) + βp = f ,

which is a harder equation to solve due to the mixed second order derivatives,
compared to the Poisson equation.

However, to solve this seemingly difficult equation, we can just compute
(−∆h + βI)−1, mainly due to a simple linear algebra fact:
Lemma 11.1. For a linear operator K : Rn×n −→ R2(n×n), assume K∗K
has an inverse or a right pseudo-inverse (K∗K)−1, then the solution to the
equation KK∗V + βV = F can be written as

V = 1
β

[F−K(βI+K∗K)−1K∗F].

Proof. The kernal of K∗ is orthogonal to the range of K (column space of a
matrix K is orthogonal to the left null space of K), thus

R
2(n×n) = Kernel(K∗)⊕ Range(K),

which implies a very useful fact (corresponding to Helmholtz decomposition
for suitable vector fields):

V = KW + G = ∇hW + G, where G ∈ Kernel(K∗), i.e., ∇h ·G = 0.
Apply K∗ to both sides of the equation, we can first solve for W as

follows
K∗KK∗V + βKT V = K∗F⇒ K∗V = (βI+K∗K)−1K∗F,

V = KW+G⇒ K∗V = K∗(KW+G)⇒W = (K∗K)−1K∗V = (K∗K)−1(βI+K∗K)−1K∗F.
Then we can solve G by

KK∗(KW + G) + β(KW + G) = F⇒ G = 1
β

[F−KK∗KW]−KW.

Finally we get

V = KW + G = 1
β

[F−KK∗KW] = 1
β

[F−K(βI+K∗K)−1K∗F].

Remark 11.3. It is not a surprise that the seemingly more difficult equation
∇(−∇·p)+βp = f can actually be solved by computing (−∆h +βI)−1, since
the Douglas-Rachford splitting on the dual problem is equivalent to ADMM
on the primal problem, which involves solving (−∆h + βI)−1.

Appendices

269

Appendix A

Linear algebra

A.1 Eigenvalues and Courant-Fischer-Weyl min-
max principle

Notations and quick facts:

• AT denote the transpose. A∗ denote the conjugate transpose of A.

• A matrix A ∈ Cn×n is called Hermitian if A∗ = A. Any Hermitian
matrix A has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn with a complete set
of orthonormal eigenvectors.

• Any real symmetric matrix has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn

with a complete set of real orthonormal eigenvectors.

For a Hermitian matrix A, Rayleigh-Ritz quotient is defined as

RA(x) = x∗Ax

x∗x
, x ∈ Cn.

Theorem A.1 (Courant-Fischer-Weyl min-max principle). Let λ1 and λn

be the largest and the smallest eigenvalues of a Hermitian matrix A, then
for any vector x ∈ Cn,

λn ≤
x∗Ax

x∗x
≤ λ1,

λn = min
x

x∗Ax

x∗x
,

λ1 = max
x

x∗Ax

x∗x
.

Proof. Let {vj ∈ Cn : j = 1, · · · , n} be orthonormal eigenvectors of A
then they form a basis. Thus x =

n∑
j=1

ajvj . Let V be a matrix with

columns as vj and a be a column vector with entries aj . Then x = V a and

271

272 APPENDIX A. LINEAR ALGEBRA

x∗x = a∗V ∗V a = a∗a =
n∑

j=1
|aj |2. Let Λ be a diagonal matrix with diagonal

entries λj . We have Avj = λjvj thus Ax =
n∑

j=1
ajAvj =

n∑
j=1

ajλjvj = V Λa.

Thus x∗Ax = a∗V ∗V Λa = a∗Λa =
n∑

j=1
λj |aj |2. The min-max principle holds

because

λn

n∑
j=1
|aj |2 ≤

n∑
j=1

λj |aj |2 ≤ λ1

n∑
j=1
|aj |2.

Obviously, the minimum is attained when x = vn, and the maximum is
attanned when x = v1.

A.2 Singular values

For a matrix A ∈ Cm×n, let A∗ denote the conjugate transpose of A. Then
A∗A and AA∗ are both positive semi-definite (or definite) Hermitian matri-
ces thus have real non-negative eigenvalues, denoted as λi(A∗A) and λi(AA∗)
ordering by magnitudes.

The matrix A has l = min{m,n} singular values, defined as

σi(A) =
√
λi(A∗A) =

√
λi(AA∗).

The singular values are defined for any matrix A and are always real non-
negative. Eigenvalues are defined for square matrices and are not necessarily
real.

A.3 Singular value decomposition

Theorem A.2. Let l ≤ min{m,n}. Any matrix A ∈ Cm×n of rank k has a
decomposition A = UΣV ∗ (singular value decomposition (SVD) where
U of size m × l and V of size n × l have orthonormal columns and Σ of
size l× l is diagonal matrix with singular values of A. It also has a compact
decomposition A = U1Σ1V1 (compact SVD) where where U of size m× k
and V of size n×k have orthonormal columns and Σ1 of size k×k is diagonal
matrix with nonzero singular values of A.

Proof. Assume n ≤ m, we consider the matrix A∗A (if n > m, similar
procedure for AA∗). The matrix A∗A is positive semi-definite Hermitian
thus has non-negative real eigenvalues with a complete set of orthonormal
eigenvectors. And A∗A has the same rank as A (why? good excercise to
figure it out), thus A∗A has k nonzero eigenvalues. Let D be a k×k diagonal
matrix with all nonzero eigenvalues of A∗A as diagonal entries, and V be a

A.3. SINGULAR VALUE DECOMPOSITION 273

n× n matrix with orthonormal eigenvectors as columns. Then

V ∗A∗AV =
[
D 0
0 0

]
.

Let V = [V1 V2] corresponding to nonzero and zero eigenvalues, then[
V ∗

1
V ∗

2

]
A∗A

[
V1 V2

]
=
[
D 0
0 0

]
.

By multiplying matrices in the left hand side above, we get

V ∗
1 A

∗AV1 = D, V ∗
2 A

∗AV2 = 0.

Recall V = [V1 V2] has orthonormal columns thus V V ∗ = I, which implies
V1V

∗
1 + V2V

∗
2 = I.

Next, since V2 consists of eigenvectors to zero eigenvalue of A∗A, we
get A∗AV2 = 0 thus V ∗

2 A
∗AV2 = 0. So we must have AV2 = 0 because it

contradicts with V ∗
2 A

∗AV2 = 0 otherwise.
Let U1 = AV1D

− 1
2 where D 1

2 is defined as taking square root for diagonal
entries of D. Then

U1D
1
2V ∗

1 = AV1V
∗

1 = A(I − V2V
∗

2) = A− (AV2)V ∗
2 = A.

The decomposition A = U1D
1
2V ∗

1 is exactly the compact SVD. Pick any U2
of size n × (n − k) such that U = [U1 U2] is a unitary matrix and define Σ
of size n× n as

Σ =
[
D

1
2 0

0 0

]
,

then A = UΣV is the full SVD.

From the proof above, we get the following facts:

• The columns of V (right-singular vectors) are eigenvectors of A∗A.

• The columns of U (left-singular vectors) are eigenvectors of AA∗.

• A real matrix A has real singular vectors.

• Let ui and vi be i-th columns of U and V corresponding i-th singular
value σi(A), then

Avi = σiui, A∗ui = σivi.

• The rank of A is also the number of nonzero singular values of A.

274 APPENDIX A. LINEAR ALGEBRA

• The compact SVD of A looks like this:

A = U1 Σ1 V ∗
1

with

Σ1 =

σ1
. . .

σk

 .
It is a convention to order σi in decreasing order: σ1 ≥ σ2 ≥ · · · ≥ σk.

• For a Hermitian (or real symmetric) positive semi-definite (PSD) ma-
trix A and its SVD A = UΣV ∗ we must have U = V , thus its SVD
A = UΣU∗ is also its eigenvalue decomposition. Therefore, singular
values are also eigenvalues for PSD matrices.

A.4 Vector norms

For x =
[
x1 x2 · · · xn

]T
:

• 2-norm: ∥x∥ =
√

n∑
j=1
|x|2j .

• 1-norm: ∥x∥1 =
n∑

j=1
|x|j .

• ∞-norm: ∥x∥∞ = maxj |x|j .

A.5 Matrix norms

For a rank k matrix A = (aij) of sizem×n, assume its SVD is A = UΣV with
nonzero singular values σ1 ≥ σ2 ≥ · · · ≥ σk. Let σ =

[
σ1 σ2 · · · σk

]T
.

There are many norms of matrices. The following are a few important ones:

• Spectral norm: ∥A∥ is defined as ∥A∥ = max
x∈Cn

∥Ax∥
∥x∥ (x ∈ Rn for real

matrices) and ∥A∥ is equal to the largest singular value of A. By
Courant-Fischer-Weyl min-max principle Theorem A.1,

∥Ax∥
∥x∥

=
√
∥Ax∥2
∥x∥2

=
√
x∗A∗Ax

x∗x
≤
√
λ1(A∗A).

By taking x = v1, the eigenvector of A∗A corresponding to λ1(A∗A),
we get ∥A∥ =

√
λ1(A∗A) = σ1.

A.6. NORMAL MATRICES 275

• Frobenius norm: ∥A∥F =
√
tr(A∗A) =

√
m∑

i=1

n∑
j=1
|aij |2.We have ∥A∥F =

∥σ∥ because

∥A∥F =
√
tr(V ∗ΣU∗UΣV) =

√
tr(V ∗Σ2V) =

√
tr(V V ∗Σ2) =

√∑
j

σ2
j ,

where we have used the property of trace function tr(ABC) = tr(CAB)
for three matrices A,B,C of proper sizes.

• Nuclear norm: ∥A∥∗ = σ1 + σ2 + · · ·σk. Then the nuclear norm of A
is simply ∥σ∥1.

• Matrix 1-norm: ∥A∥1 = max
x∈Cn

∥Ax∥1
∥x∥1

(x ∈ Rn for real matrices). Since
Ax is a linear combination of columns of A, therefore ∥Ax∥1 for ∥x∥1 =
1 is less than or equal to a convex combination of 1-norm of columns
of A thus ∥A∥1 = max

j

m∑
i=1
|aij |.

• Matrix ∞-norm: ∥A∥∞ = max
x∈Cn

∥Ax∥∞
∥x∥∞

(x ∈ Rn for real matrices). It

is easy to show ∥A∥∞ = max
i

n∑
j=1
|aij |.

Useful facts:

• For a matrix norm |||A||| induced by vector norms such as spectral
norm, 1− norm and ∞-norm, by definition we have

|||Ax||| ≤ |||A||| · |||x|||.

Since |||ABx||| ≤ |||A||| · |||Bx||| ≤ |||A||| · |||B||| · |||x|||, we also have

|||AB||| ≤ |||A||| · |||B|||.

• For a matrix norm |||A||| defined through singular values such as spec-
tral norm, Frobenius norm and nuclear norm, it is invariant after uni-
tary transformation: let T and S be unitary matrices, then |||A||| =
|||TAS|||. Notice that TAS = (TU)Σ(V ∗S) is the SVD of TAS, so
TAS has the same singular values as A.

A.6 Normal matrices

A matrix A is normal if A∗A = AA∗. The following are equivalent:

• A∗A = AA∗.

276 APPENDIX A. LINEAR ALGEBRA

• σi(A) = |λi(A)|.

• A is diagonalizable by unitary matrix: A = UΛU∗ where Λ is diago-
nal. (Obviously, A = UΛU∗ is also its eigenvalue decomposition. In
other words, A has a complete set of orthonormal eigenvectors (but
eigenvalues could be negative, could be complex). If Λ has negative
or complex diagonal entries, then A = UΛU∗ is not SVD and its SVD
has the form A = U |Λ|V ∗ where |Λ| is a diagonal matrix with diagonal
entries |λi|.)

The equivalency can be easily established by SVD. All Hermitian matrices
including PSD matrices are normal. Here is one non-Hermitian normal
matrix example: a matrix A is skew-Hermitian if A∗ = −A. Skew-Hermitian
matrices are normal and always have purely imaginary eigenvalues.

Appendix B

Taylor expansion

Lemma B.1 (Second-order Mean Value Theorem). Suppose that I ⊂ R is
an open interval and that f(x) is a function of class C2 (f ′′(x) exists and
is continuous) on I. For a ∈ I and h such that a+ h ∈ I, there exists some
θ ∈ (0, 1) such that

f(a+ h) = f(a) + hf ′(a) + h2

2 f
′′(a+ θh).

Proof. Consider g1(x) = f(x)− f(a)− (x− a)f ′(a) then g1(a) = g′
1(a) = 0.

Define
g(x) = g1(x)−

(
x− a
h

)2
g1(a+ h),

then g(a) = g′(a) = g(a+ h) = 0. By Mean Value Theorem , we have

g(a) = g(a+ h) = 0 =⇒ g′(a+ αh) = 0,

for some α ∈ (0, 1). Use Mean Value Theorem again on g′(a) = g′(a+αh) =
0, we get g′′(a+θh) = 0 for some θ ∈ (0, α). Since g′′(x) = f ′′(x)− 2

h2 g1(a+
h), g′′(a+ θh) = 0 implies that we get the explicit remainder for the second
order Taylor expansion as g1(a+ h) = h2

2 f
′′(a+ θh).

Theorem B.1 (Multivariate Quadratic Taylor’s Theorem). Suppose that
S ⊂ Rn is an open set and that f : S −→ R is a function of class C2 on
S. Then for a ∈ S and h ∈ Rn such that the line segment connecting a and
a + h is contained in S, there exists θ ∈ (0, 1) such that

f(a + h) = f(a) +∇f(a) · h + 1
2hT∇2f(a + θh)h.

Proof. Define g(t) = f(a + th). By Lemma B.1 on g(t), there is θ ∈ (0, 1)
s.t.

g(1) = g(0) + g′(0) + 1
2g

′′(θ).

By chain rule, we have g′(0) = ∇f(a) · h and g′′(θ) = hT∇2f(a + θh)h,
which complete the proof.

277

278 APPENDIX B. TAYLOR EXPANSION

Appendix C

Convex functions

Consider a function f : Rn → R and any x, y ∈ Rn and any t ∈ (0, 1).

• f(x) is called convex if f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

• f(x) is called strictly convex if f(tx+ (1− t)y) < tf(x) + (1− t)f(y).

• f(x) is called strongly convex with a constant parameter m > 0 if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− m

2 t(1− t)∥x− y∥
2.

• f(x) is (strictly or strongly) concave if −f(x) is (strictly or strongly)
convex.

• East to verify that f(x) is strongly convex with m > 0 if and only if
f(x)− m

2 ∥x∥
2 is convex. Strong convexity with m = 0 is convexity.

• A convex function by definition satisfies the Jensen’s inequality:

f(a1x+ a2y) ≤ a1f(x) + a2f(y), ∀a1, a2 ≥ 0, a1 + a2 = 1.

A convex function does not need to be differentiable, e.g., the single
variable absolute value function f(x) = |x|. If a single variable function is
continuously differentiable, then being convex (concave) simply means that
the derivative f ′(x) is increasing (decreasing), i.e., [f ′(y)−f ′(x)](y−x) ≥ 0.
If twice continuously differentiable, then convexity simply means f ′′(x) ≥ 0
(Hessian matrix ∇2f(x) is positive semi-definite for multivariable case).

Lemma C.1. Assume f : Rn → R is continuously differentiable. Then the
following are equivalent definitions of f(x) being convex:

• f(x) ≥ f(y) + ⟨∇f(y), x− y⟩, ∀x, y.

• ⟨∇f(y)−∇f(x), y − x⟩ ≥ 0, ∀x, y.

279

280 APPENDIX C. CONVEX FUNCTIONS

If replacing ≥ with > above, then we get equivalent definitions for strict
convexity. For strong convexity with parameter m > 0, the following are
equivalent definitions:

• f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ m
2 ∥x− y∥

2, ∀x, y.

• ⟨∇f(y)−∇f(x), y − x⟩ ≥ m∥x− y∥2, ∀x, y.

Proof. We only prove the equivalency for strong convexity, since convexity
is simply strong convexity with m = 0 and discussion for strict convexity is
similar to convexity.

First, assume f(x) is strongly convex, then f(tx + (1 − t)y) ≤ tf(x) +
(1− t)f(y)− m

2 t(1− t)∥x− y∥2 ⇒
f(tx+(1−t)y)−f(y)

t ≤ f(x)− f(y)− m
2 (1−

t)∥x − y∥2. Let g(t) = f(tx + (1 − t)y) then g(0) = f(y) and g′(t) =
∇f(tx+ (1− t)y)T (x− y) = ⟨∇f(tx+ (1− t)y), x− y⟩. By the Mean Value
Theorem on g(t), there exists s ∈ (0, t) such that g′(s) = g(t)−g(0)

t . So
f(tx+(1−t)y)−f(y)

t = g(t)−g(0)
t = g′(s) = ⟨∇f(sx+ (1− s)y), x− y⟩ thus

⟨∇f(sx+ (1− s)y), x− y⟩ ≤ f(x)− f(y)− m

2 (1− t)∥x− y∥2.

Let t→ 0 then s→ 0, we get f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ m
2 ∥x− y∥

2.

Second, assume f(x) ≥ f(y)+⟨∇f(y), x−y⟩+ m
2 ∥x−y∥

2. Then combing
with f(y) ≥ f(x) + ⟨∇f(x), y−x⟩+ m

2 ∥x− y∥
2, we get ⟨∇f(y)−∇f(x), y−

x⟩ ≥ m∥x− y∥2.

Third, assume ⟨∇f(y)−∇f(x), y−x⟩ ≥ m∥x−y∥2. Let xt = tx+(1−t)y,
then

⟨∇f(xt)−∇f(y), xt − y⟩ ≥ m∥xt − y∥2,

thus
⟨∇f(tx+ (1− t)y)−∇f(y), t(x− y)⟩ ≥ mt2∥x− y∥2,

and
⟨∇f(tx+ (1− t)y), x− y⟩ ≥ ⟨∇f(y), x− y⟩+mt∥x− y∥2.

Consider g(t) = f(tx+ (1− t)y), then∫ 1

0
g′(t)dt =

∫ 1

0
⟨∇f(tx+(1−t)y), x−y⟩dt ≥

∫ 1

0
(⟨∇f(y), x−y⟩+mt∥x−y∥2)dt

= ⟨∇f(y), x− y⟩+ m

2 ∥x− y∥
2.

So f(x)− f(y) = g(1)− g(0) ≥ ⟨∇f(y), x− y⟩+ m
2 ∥x− y∥

2.
Finally, assume f(x) ≥ f(y) + ⟨∇f(y), x − y⟩ + m

2 ∥x − y∥
2. Let xt =

tx+ (1− t)y, then

f(x) ≥ f(xt) + ⟨∇f(xt), x− xt⟩+ m

2 ∥x− xt∥2,

281

f(y) ≥ f(xt) + ⟨∇f(xt), y − xt⟩+ m

2 ∥y − xt∥2.

Combining two inequalities with coefficients t and 1− t, we get f(tx+ (1−
t)y) ≤ tf(x) + (1− t)f(y)− m

2 t(1− t)∥x− y∥2.

Lemma C.2. Assume f : Rn → R is twice continuously differentiable
(second order partial derivatives exist and are continuous).

• f(x) is convex if ∇2f(x) ≥ 0 (Hessian matrix is positive semi-definite)
for all x. This is also a necessary condition for single variable func-
tions.

• f(x) is strictly convex if ∇2f(x) > 0 for all x. This is not necessary
even for single variable functions: f(x) = x4 is strictly convex but
f ′′(x) > 0 is not true at x = 0.

• f(x) is strongly convex if ∇2f(x) ≥ mI (∇2f(x)−mI is positive semi-
definite) for all x. This is also a necessary condition for single variable
function.

Proof. Apply Multivariate Quadratic Taylor’s Theorem (Theorem B.1), we
get

f(x) = f(y) +∇f(y)T (x− y) + 1
2(y − x)T∇2f(y + θx)(x− y), θ ∈ (0, 1).

Strong convexity is proven by Lemma C.1 and the fact that

∇2f(y + θx) ≥ mI ⇒ 1
2(x− y)T∇2f(y + θx)(x− y) ≥ m

2 ∥x− y∥
2.

Convexity and strict convexity are similarly proven.

Problem C.1. In gas dynamics, governing hydrodynamics equations are
defined by conservation of mass ρ, momentum m = (mx,my,mz) and total
energy E. The pressure is defined as p = (γ − 1)(E − 1

2
∥m∥2

ρ) in equation of
state for for ideal gas where γ > 1 is a constant parameter, e.g., γ = 1.4 for
air. Regard p as a function of conservative variables ρ,mx,my,mz, E, verify
that p(ρ,m, E) is a concave function for ρ > 0 thus satisfies the Jensen’s
inequity:

p

a1

 ρm
E

+ a2

 ρm
E


 ≤ a1p


 ρm
E


+a2p


 ρm
E


 , a1, a2 > 0, a1+a2 = 1.

Hint: show the Hessian matrix is negative definite. Start with an easier
problem by considering 1D case: p = (γ − 1)(E − 1

2
m2

ρ) where m is scalar.

282 APPENDIX C. CONVEX FUNCTIONS

Appendix D

Sobolev Spaces

D.1 Poincaré inequalities
Theorem D.1. Assume Ω ⊂ Rn is a bounded open set. Then for any
u ∈W 1,p

0 (Ω) with 1 ≤ p < n, we have

∥u∥Lq(Ω) ≤ C∥∇u∥Lq(Ω),

for each q ∈ [1, p∗] (p∗ := np
n−p), where the constanc C depends only on

p, q, n,Ω. In particular, for all 1 ≤ p ≤ +∞, we have

∥u∥Lp(Ω) ≤ C∥∇u∥Lp(Ω) ,∀u ∈W 1,p
0 (Ω).

Also, for p = 2, we have

∥u∥L2(Ω) ≤ C∥∇u∥L2(Ω), ∀u ∈ H1
0 (Ω).

Theorem D.2. Assume Ω ⊂ Rn is a bounded connected open set and its
boundary ∂Ω is C1. Then for any u ∈W 1,p(Ω) with 1 ≤ p ≤ +∞, we have

∥u− ū∥Lp(Ω) ≤ C∥∇u∥Lp(Ω),

where ū = 1
|Ω|
∫

Ω udx is the average of u.

283

284 APPENDIX D. SOBOLEV SPACES

References

285

286 APPENDIX D. SOBOLEV SPACES

Bibliography

[1] William L Briggs, Van Emden Henson, and Steve F McCormick. A
multigrid tutorial. SIAM, 2000.

[2] Lothar Collatz. The numerical treatment of differential equations, vol-
ume 60. Springer Science & Business Media, 2012.

[3] Lawrence C. Evans. Partial differential equations, volume 19 of Grad-
uate Studies in Mathematics. American Mathematical Society, Provi-
dence, RI, 1998.

[4] Bertil Gustafsson, Heinz-Otto Kreiss, and Joseph Oliger. Time depen-
dent problems and difference methods, volume 24. John Wiley & Sons,
1995.

[5] L Kantorovich and V Krylov. Approximate methods of higher analysis.
Bull. Amer. Math. Soc, 66(3):146–147, 1960.

[6] Heinz-Otto Kreiss and Jens Lorenz. Initial-boundary value problems
and the Navier-Stokes equations. SIAM, 2004.

[7] Randall J LeVeque. Finite difference methods for ordinary and par-
tial differential equations: steady-state and time-dependent problems.
SIAM, 2007.

[8] Hao Li, Danielö Appelo, and Xiangxiong Zhang. Accuracy of Spec-
tral Element Method for Wave, Parabolic, and Schrödinger Equations.
SIAM Journal on Numerical Analysis, 60(1):339–363, 2022.

[9] Hao Li and Xiangxiong Zhang. Superconvergence of high order finite
difference schemes based on variational formulation for elliptic equa-
tions. Journal of Scientific Computing, 82(2):36, 2020.

[10] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total vari-
ation based noise removal algorithms. Physica D: nonlinear phenomena,
60(1-4):259–268, 1992.

287

288 BIBLIOGRAPHY

[11] Ken Sauer and Charles Bouman. Bayesian estimation of transmission
tomograms using segmentation based optimization. IEEE Transactions
on Nuclear Science, 39(4):1144–1152, 1992.

[12] John C Strikwerda. Finite difference schemes and partial differential
equations. SIAM, 2004.

	Preface
	Introduction
	Partial differential equations
	Numerical schemes
	Computational tools

	Finite difference methods for the Poisson's equation
	Finite difference approximations
	Poisson's equation
	1D BVP: Dirichlet b.c.
	Consistency, stability and convergence
	Eigenvalues of K and stability in 2-norm
	Poisson's solver by eigenvectors
	Nonhomegeous Dirichlet b.c.

	1D BVP: Dirichlet and Neumann b.c.
	A symmetric matrix T
	Nonsymmetric matrix T2

	Convergence in maximum norm
	Dirichlet boundary conditions
	Dirichlet and Neumann b.c.

	1D BVP: Neumann b.c.
	The matrix B on the one-half grid
	An alternative point of view for one-half grid
	The matrix B on the integer grid
	The matrix B2 on the integer grid
	Compatibility Condition of Neumann b.c.
	Inverting B and B2

	1D BVP: periodic b.c.
	2D BVP: Dirichlet b.c.
	2D BVP: Neumann b.c.
	The one-half grid
	The integer grid: matrix B
	The integer grid: matrix B2

	The 9-point Laplacian
	Variable coefficient problems
	1D Dirichlet b.c.
	2D Dirichlet b.c.
	1D Neumann b.c.

	A brief introduction of finite element methods
	Motivation and plans
	Preliminaries
	Weak derivatives and Sobolev spaces
	Interpolation and quadrature

	1D BVP: homogeneous Dirichlet b.c.
	Variational formulation
	The abstract finite element method
	The abstract implementation
	The simple practical implementation on uniform meshes

	Basic properties of the bilinear form
	Coercivity
	Continuity
	Coercivity is stability

	Error estimates of the abstract finite element method
	H1-norm estimate: stability and consistency imply convergence
	L2-norm estimate: elliptic regularity and duality arguments
	Summarization and comparison

	Vh-ellipticity: properties of the bilinear form with quadrature
	Equivalent norms of the piecewise linear polynomial space
	Coercivity
	Continuity
	Coercivity implies stability of the finite difference scheme

	Error estimates of the finite element method with quadrature
	First Strang Lemma
	Quadrature estimate: Bramble Hilbert Lemma
	Error estimates

	Generalization: general domain in two dimensions
	Generalization: purely Neumann b.c.
	Quotient space H1()/P0()
	Variational formulation and coercivity
	The finite element method
	Coercivity implies the stiffness matrix null space
	The finite difference form
	How to solve the singular linear system

	Generalization: nonhomogeneou Dirichlet b.c.
	A scheme in theory
	A scheme for implementation
	A scheme in theory for 2D general domain
	A scheme for implementation for 2D general domain
	The error in the 2-norm over grid point values

	Generalization: a general elliptic operator
	Generalization: higher order accuracy via P2
	Dirichlet b.c.
	Neumann b.c.
	The fourth order accuracy as a finite difference scheme

	Superconvergence
	The delta function
	The one-dimensional Green's function
	Superconvergence at knots in one dimension

	Comparison with traditional finite difference method
	Advantages of the finite element method
	Limitations of the finite element method

	Fourier Analysis
	The Fourier transform
	Sampling and restriction
	The DFT and its algorithm, the FFT
	Smoothness and truncation

	Well Posedness
	Definition and examples
	Lower Order Terms
	General results on constant coefficient problems
	Hyperbolic equations

	Ordinary differential equations
	Exact solutions
	Some numerical methods
	Truncation errors
	Convergence of the forward Euler's method
	Linear problems
	Nonlinear problems

	0-stability
	Absolute stability
	Method of lines
	A-stability in solving linear systems
	Stiffness
	Runge-Kutta methods
	Order of accuracy
	0-stability and convergence
	Absolute stability of explicit Runge-Kutta methods

	Linear multistep methods
	Adams methods
	Backward Differentiation Formulae
	Order of accuracy
	Characteristic polynomials
	0-stability and convergence
	Stability region
	Strong stability

	Finite difference schemes for linear time-dependent problems
	Basic concepts, definitions and notation
	Properties of Finite Difference Schemes
	Basic definitions and notations for stability
	von Neumann stability
	The leapfrog scheme
	The one way wave equation
	The two way wave equation
	Convergence for the two way wave equation

	Dissipative schemes
	0-stability V.S. absolute stability

	Difference schemes for hyperbolic systems in one dimension
	First order schemes
	Second order schemes

	Iterative methods for solving linear systems
	Linear iterative methods
	Jacobi and weighted Jacobi iterations
	Gauss-Seidel iteration
	SOR

	Steepest descent
	The Conjugate Gradient method
	Multigrid methods
	Interpolation and restriction
	A two-grid V-cycle
	The errors eh and Eh
	High and low frequencies in O (n) operations

	Preconditioned Conjugate Gradient

	A brief introduction to nonlinear conservation laws
	Boundary conditions for hyperbolic systems
	Statement of the problem
	Boundary conditions for 1D hyperbolic systems
	Kreiss theory, the multidimensional case

	Selected applications
	TV norm minimization and Poisson equation
	Continuum ROF image denoising model
	Discrete ROF model
	Primal, dual and primal-dual forms
	ADMM and Douglas-Rachford splitting
	Discrete Laplacian in ADMM on primal
	Discrete Laplacian in Douglas-Rachford on the dual

	Appendices
	Linear algebra
	Eigenvalues and Courant-Fischer-Weyl min-max principle
	Singular values
	Singular value decomposition
	Vector norms
	Matrix norms
	Normal matrices

	Taylor expansion
	Convex functions
	Sobolev Spaces
	Poincaré inequalities

