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1. (10 points) Which of the following statements is not always true?

A. If u, v, and w are linearly independent vectors in a vector space, then u+ v, v +w,
and w are linearly independent.

B. Every linearly independent set of Rn consists of at most n vectors.

C. Every spanning set of Rn contains a basis of Rn.

D. If the nullity of a matrix A is zero, then linear system Ax = b has a unique solution
for every b.

E. Any integer between 1 and 4 can be the rank of a 6⇥ 4 matrix.

Correct Answer is: D

2. (10 points) Let M3⇥3 be the vector space of all 3⇥ 3 matrices, and let H be its subspace
consisting of all A satisfying

2

4
1 0 0
0 2 0
0 0 3

3

5A = A

2

4
1 0 0
0 2 0
0 0 3

3

5

What is the dimension of H?

A. 1

B. 2

C. 3

D. 4

E. 5

Correct Answer is: C
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3. (10 points) For which number(s) a does the matrix A =

2

664

4 0 0 0
�2 �1 0 0
10 �9 6 a

1 5 a 3

3

775 have 2 as

an eigenvalue?

A. a = 3 only

B. a = 3 and a = �3 only

C. a = 2 only

D. a = 2 and a = 3 only

E. a = 2 and a = �2 only

Correct Answer is: E

4. (10 points) Let A and B be similar n ⇥ n matrices with real entries. Which of the
following statements must be TRUE?

(i) A and B have the same characteristic polynomial.

(ii) If the columns of A are linearly independent, then 0 is an eigenvalue of A.

(iii) If A is diagonalizable, then all the eigenvalues of A must be nonzero.

(iv) If �� is an eigenvalue of A, then �
4 is an eigenvalue of B4.

(v) If A is diagonalizable, then B is diagonalizable.

A. (i), (ii), (iv), (v)

B. (i), (iii), (iv), (v)

C. (iv), (v)

D. (i), (iv), (v)

E. All of the statements are true.

Correct Answer is: D

3
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5. (10 points) Consider the di↵erential equation

x
0(t)

y
0(t)

�
=


4 2
3 5

� 
x(t)
y(t)

�
.

Then the origin is

A. an attractor

B. a repeller

C. a saddle point

D. a spiral point

E. none of the above

Correct Answer is : B

6. (10 points) Let P3 denote the vector space of all polynomials of degree at most 3, which
of the following subsets are subspaces of either R3 or P3 ?

(i) The set of all vectors

2

4
x

y

z

3

5 in R3 such that x+ 2y + 3z = 1.

(ii) The set of all vectors

2

4
x

y

z

3

5 in R3 such that 10x� 2y = z.

(iii) The set of all polynomials p(t) in P3 such that the degree of p(t) is 3.

(iv) The set of all polynomials p(t) in P3 satisfying p(2) = 0.

A. (ii) and (iv) only

B. (i), (ii) and (iv) only

C. (ii) and (iii) only

D. (ii), (iii) and (iv) only

E. (iii) and (iv) only

Correct Answer is : A

4
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"'"
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⇒ B is symmetric .



7. (10 points) A real 2 ⇥ 2 matrix A has an eigenvalue �1 = 1 + i with corresponding

eigenvector v1 =


1� 2i
3 + 4i

�
. Which of the following is the general REAL solution to the

system of di↵erential equations x0(t) = Ax(t)?

A. c1e
t


cos t+ 2 sin t
3 cos t� 4 sin t

�
+ c2e

t


sin t� 2 cos t
3 sin t+ 4 cos t

�

B. c1e
t


cos t� 2 sin t
3 cos t+ 4 sin t

�
+ c2e

t


sin t+ 2 cos t
3 sin t� 4 cos t

�

C. c1e
t


cos t+ 2 sin t
3 cos t+ 4 sin t

�
+ c2e

t


sin t� 2 cos t
3 sin t� 4 cos t

�

D. c1e
t


� cos t+ 2 sin t
�3 cos t� 4 sin t

�
+ c2e

t


sin t� 2 cos t
3 sin t+ 4 cos t

�

E. c1e
t


cos t+ 2 sin t
3 cos t� 4 sin t

�
+ c2e

t


� sin t� 2 cos t
�3 sin t+ 4 cos t

�

Correct Answer is : A
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8. Let P2 denote the vector space of all polynomials of degree at most 2 in the variable t, and
let M2⇥2 denote the vector space of all 2⇥ 2 matrices. Consider a linear transformation:

T : P2 ! M2⇥2 given by T (p(t)) =


p(0) p

0(0)
p(1) p

0(1)

�
.

(1) (3 points) Find T (at2 + bt+ c).

T (at2 + bt+ c) =


c b

a+ b+ c 2a+ b

�
.

(2) (3 points) Find a polynomial p(t) in P2 such that T (p(t)) =


1 2
4 4

�
.

p(t) = t
2 + 2t+ 1.

(3) (4 points) Find a basis for the range of T.
⇢

0 0
1 2

�
,


0 1
1 1

�
,


1 0
1 0

��
is a basis for the range of T . (Answer may vary!)
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9. (6 points) (1) Find all the eigenvalues of matrix A =

2

4
2 0 0
1 5 1
�1 �3 1

3

5, and find a basis for

the eigenspace corresponding to each of the eigenvalues.

�1 = 4, basis for the eigenspace
n
2

4
0
�1
1

3

5
o

�2 = �3 = 2, basis for the eigenspace
n
2

4
�3
1
0

3

5 ,

2

4
�1
0
1

3

5
o
(Answer may vary)

(4 points) (2) Find an invertible matrix P and a diagonal matrix D such that

2

4
2 0 0
1 5 1
�1 �3 1

3

5 = PDP
�1
.

P =

2

4
0 �3 �1
�1 1 0
1 0 1

3

5 , D =

2

4
4 0 0
0 2 0
0 0 2

3

5 (Answer may vary)
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A-= ( I 5 I÷:L
det ( A - a1)

= 0

I 5-A 1
•+ :

.

:/ = .
(2-11) out /

5-̂ I

→
a) = 0

(2- ✗I (41-111×-4+3)=0

A-2) ( k - sa- a -15+31=0

4--2) ( d
'
- Gd -181=0

¢-4 ( X-4 (d- 4) = 0
.

✗ , = Xz
= 2

{ is = 4



A - X,
=L

Find V40
,
sit .

( A- XI / v
= 0

(
◦ ◦ ◦

13 ;) / ¥
,
)=0

-1 -3

0 0 ) ⇒ -×, -3×2 - ×, = 0

( ◦ ! ◦
-1 -3 -1 ×,

= -3s - t
↑ ↑

s t

F;) -1-3%+1=1%1+1:)
= -14-11++141

Y= (%) Vi = (& / an 2 linearly iudep

eigenvectors :X



✗3=4. → = / %)

p=fÉ:?)
☐ =l%Ñ

.

,

Trace of a matrix ( square )

def
tr (A) = Éaii , At 112

" "

1=1
-

Ith V0
"

aij
jthiul
entry



→ summation of all diagonal entries .

①
A-_ (

a
b

c
d)

tr (A) = at d

detl A) = ad - bc

eigenvalues
det 1 A - ✗1) = 0

a.- d b
out ( e. d-a) = °

④ - a) C d- d)
- be = 0

N - da- ai -1 ad- be
- 0

✗2- Cdt a) it lad -64=0

N - trlA) it -1 detCA) = 0 .



② tr (A) = tr ( At )

③ HRCAB) = tr CBA)

④ suppose It is diagonalized .

A = Ppp
-1

tr (A) = tr ( PDP
-1
)

w w

c ☐

③
= tr ( Pt . PD ) = tr (D)

= sumatbu of
all e. values .

If we further assume A is invertible .

0=(18%5%6%8)
" = Poi

'

At = ( p-15
'
- (Pb )

-1
= PD-1151

D-
'

=/ { %) tr C. A-
' I = trc.D.tl



linear transformation & A.

T : 1km → 112
"
is a linear transformation .

there exists a unique matrix A
c- /Rn

'm

set . -11×7 = AI

H[A)www.t

A- = [ 1- ceil . _ _ -11%1]

éi
,
. . .

éi are std basis of 1km

éj = ( f- jth entry .
T : III.→ IÑ , reflection through ✗- axis

↑_%
"

✗

Tv
-

- in -b)

Find A matrix .



Std basis eY= (b) ei' =/
°

, /

ya tieit- I :) ↑↑"4=ei¥E¥, -

'

t.ieiw.is/A--('Tlei'I T.ie?./ = [ .

]

T : Rotation counter-clockwise through angle ¢
.

ya
"" "¥"→
Y Tai , = (

""

¢11sick

=L 'd



↑ Tléi ) = f-
""↑"*

A = (
cos i

- stat)

she ④ 1 cos@1)
AV = XV eigen _ problem .

↓ ↓
Tcu ) scaling

Rotate counterclockwise through an angle ¥
.

→ A = (
cos (E) - s:y¥)

sin#1 "SIE) )
⇒ there will be no

vent eig-value .

✗To)=AV=±v
✗= -1

rotate - - - - -
-
- angle = IT



10. (4 points) (1) Find the eigenvalues and corresponding eigenvectors of the matrix

A =


9 5
�6 �2

�
.

Correct Answer is : �1 = 3,v1 =


5
�6

�
,�2 = 4,v2 =


1
�1

�
(Answer may vary)

(2 points) (2) Find a general solution to the system of di↵erential equations


x
0(t)

y
0(t)

�
=


9 5
�6 �2

� 
x(t)
y(t)

�
.

Correct Answer is :


x(t)
y(t)

�
= c1e

3t


5
�6

�
+ c2e

4t


1
�1

�
(Answer may vary)

(4 points) (3) Let


x(t)
y(t)

�
be a particular solution to the initial value problem


x
0(t)

y
0(t)

�
=


9 5
�6 �2

� 
x(t)
y(t)

�
,


x(0)
y(0)

�
=


1
0

�
.

Find x(1) + y(1).

Correct Answer is : c1 = �1, c2 = 6, x(1) + y(1) = e
3
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Please write your answers of the 7 multiple choice questions in the following table.

Question Answer

1. (10 points)

2. (10 points)

3. (10 points)

4. (10 points)

5. (10 points)

6. (10 points)

7. (10 points)

Total Points:

9


