## Section 1.2 Row Reduction And Echelon Forms



1. A nonzeio row or column in a matrix means a row or column that contains at least one nonzero entry; a leading entry of a row refers to the leftmost nonzero entry (in a nonzero row).
2. A rectangular matrix is in $\qquad$ echelon form or row echelon form if it has the following three properties:

- All nonzero rows are above any rows of all zeros. $>\left(\begin{array}{l}2 \text { en rows button of } \\ \text { at the matrix) }\end{array}\right.$
- Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- All entries in a column below a leading entry are zeros. (Property 3 is a simple consequence of property 2 , but we include it for emphasis.)

3. If a matrix in echelon form satisfies the following additional conditions, then it is in reduced echelon form (or reduced row echelon form, we usually call it ref): row
3 I) The leading entry in each nonzero row is 1.
$3 \cdot \bullet^{\bullet}$ Each leading 1 is the only nonzero entry in its column.


## Theorem: Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one reduced echelon matrix.

## Definitions

pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A .

A pivot column is a column of A that contains a pivot position.
 matrix)
( STEP 1: Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top.

STEP 2: Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position.

STEP 3: Use row replacement operations to create zeros in all positions below the pivot.

STEP 4: Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps 1 to 3 to the submatrix that remains. Repeat the process until there are no more nonzero rows to modify.

STEP 5: Backward phase. Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1 , make it 1 by a scaling operation.

Example 2: Row reduce the matrix $A$ below to echelon form, and locate the pivot columns of $A$.

$$
\begin{aligned}
& \left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 4 & 8
\end{array}\right) \xrightarrow[R_{1} 8 R_{2}]{\text { interchange }}\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
3 & 4 & 8
\end{array}\right) \xrightarrow[R_{3}=R_{3}-3 R_{1}]{\text { ropluement }}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & -2 & -1
\end{array}\right) \\
& \xrightarrow[R_{3}=R_{3}+2 \cdot R_{2}]{\text { replacement }}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & \square & 2 \\
0 & 0 & 3
\end{array}\right) \downarrow R E F \\
& \text { Go to RREF } \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right) \xrightarrow[R_{3}=\frac{1}{3} \cdot R_{3}]{ }\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \xrightarrow[R_{1}=R_{1}-2 \cdot R_{2}]{ }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)(\text { PREF) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left(\begin{array}{lll:l}
2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 \\
0 & 2 & 3 & 14 \\
b_{1} & b & b & 4
\end{array}\right]_{3 \cdot 4} \text { s ecus }=\# \text { of rows } \\
\text { (REF) }
\end{array} \\
& \left(\underset{6}{R_{2}=R_{2}-3 R_{1}}\left(\begin{array}{cccc}
2 & 3 & 4 & 5 \\
0 & -2 & -4 & -6 \\
0 & 2 & 3 & 4
\end{array}\right) \xrightarrow[2]{R_{3}=R_{2}+R_{2}}\left(\begin{array}{cccc}
2 & 3 & 4 & 5 \\
0 & -2 & -4 & -6 \\
0 & 0 & -1 & -2
\end{array}\right)\right. \\
& \xrightarrow[R_{3}=R_{3}(-1)]{R_{2}=R_{2}-\frac{1}{2}}\left(\begin{array}{llll}
2 & 3 & 4 & 5 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2
\end{array}\right) \xrightarrow[2 \rightarrow 2]{R_{2}=R_{2}-2 R_{3}}\left(\begin{array}{cccc}
2 & 3 & 4 & 5 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right) \\
& \xrightarrow[4 \rightarrow 0]{R_{1}=R_{4}-4 R_{3}}\left(\begin{array}{cccc}
2 & (3) & 0 & -3 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right) \xrightarrow[3]{R_{1}=R_{1}-3 R_{2}}\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right) \\
& \xrightarrow[2 \rightarrow 1]{R_{1}=\frac{1}{2} R_{1}}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right)^{R R E F .}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{llll}
2 & 3 & 4 & 5 \\
(6) & 7 & 8 & 9 \\
0 & 2 & 3 & 4
\end{array}\right) \xrightarrow[-6 \rightarrow 0]{R_{2}=R_{2} \rightarrow 3 R_{1}}\left(\begin{array}{cccc}
2 & 3 & 4 & 5 \\
0 & -2 & -4 & -6 \\
0 & 2 & 3 & 4
\end{array}\right) \\
& \xrightarrow[\text { (2) } \rightarrow 0]{R_{3}=R_{3}+R_{2}}\left(\begin{array}{cccc}
2 & 3 & 4 & 5 \\
0 & -2 & -4 & -6 \\
0 & 0 & -1 & -2
\end{array}\right)^{(R E F)} \\
& \xrightarrow[R_{3}=-1 \cdot R_{3}]{R_{2}=-\frac{1}{2} R_{2}}\left(\begin{array}{cccc}
2 & 3 & 4 & 5 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2
\end{array}\right) \\
& \xrightarrow[\substack{2 \\
R_{2}=R_{2}-2 R_{3}}]{\substack{1 \\
0}}\left(\begin{array}{cccc}
2 & 3 & 5 \\
0 & 0 & 1 & 2
\end{array}\right) \\
& \underset{(4) \rightarrow 0}{R_{1}=R_{1}-4 R_{3}}\left(\begin{array}{cccc}
2 & 3 & 0 & -3 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right) \xrightarrow[(3) \rightarrow 0]{R_{1}=R_{1}-3 R_{2}} \\
& \left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right) \xrightarrow[(2) \rightarrow 1]{R_{1}=\frac{1}{2} R_{1}}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right)
\end{aligned}
$$

Definition:
Basic variable: the variables corresponding to pivot columns in the matrix valval Free variable: the other variables acts vo the parameter, determines the solution of
Example 3: The augmented matrix of a linear system has been written in the reduced echelon form as follows
(1) D

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{2} & 0 \\
0 & 0 & -5 & 1 \\
0 & 1 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \text { the system. } \\
& \text { Leading entries } \Rightarrow\left\{\begin{array}{lll}
x_{1} & \text { based } \\
x_{2} & \text { varialld } & 3 \text { agnations }
\end{array}\right. \\
& x_{3} \rightarrow \text { ore variable. }
\end{aligned}
$$

(2 )Find the general solution of the above system.
(free variate)
set $x_{3}=\delta$, $s$ can be any number.

$$
\begin{array}{r}
\text { from the } 2^{\text {nd }} \text { row } x_{2}+x_{3}=4 \\
\Rightarrow x_{2}=4-x_{3}=4-3 \\
\text { from the } 1^{\text {st }} \text { row } \Rightarrow x_{1}-5 x_{3}=1 \\
x_{1}=1+5 x_{3}=1+53
\end{array}
$$

parametric form of the solution

$$
\left\{\begin{array}{l}
x_{1}=1+5 s \\
x_{2}=4-5, \text { s is the parameter } \\
x_{3}=5 \text { \& can be any number. }
\end{array}\right.
$$

Remark 1 We have some remarks:

1. Each different choice of $x_{3}$ determines a (different) solution of the system, and every solution of the system is determined by a choice of $x_{3}$.
2. Parametric descriptions of solution sets. The free variables act as parameters. Solving a system amounts to finding a parametric description of the solution set or determining that the solution set is empty.
3. Whenever a system is consistent and has free variables, the solution set has many parametric descriptions. Whenever a system is inconsistent, the solution set is empty, even when the system has free variables. In this case, the solution set has no parametric representation.

## Theorem: Existence and Uniqueness Theorem

A linear system is consistent consistent if and only if the rightmost column of the augmented matrix is not a pivot column -that is, if and only if an echelon form of the augmented matrix has no row of the form
with $b$ nonzero.


If a linear system is consistent, then the solution set contains either $\Rightarrow$ wo solution

- unique solution, when there is no free variable, or,
- infinitely many solutions, when there is at least one free variable.

Using Row Reduction To Solve A Linear System
Step 1: Write the augmented matrix of the system.
Step 2: Use the row reduction algorithm to obtain an equivalent augmented matrix in echelon form. Decide whether the system is consistent. If there is no solution, stop; otherwise, go to the next step.

Step 3: Continue row reduction to obtain the reduced echelon form.
Step 4: Write the system of equations corresponding to the matrix obtained in step 3.

Step 5: Rewrite each nonzero equation from step 4 so that its one basic variable is expressed in terms of any free variables appearing in the equation.
solve

$x_{2} 8 x_{4}$ ore froe, set

$$
\left\{\begin{array}{l}
x_{3}=s \\
x_{4}=t
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x_{1}=2 s-\frac{10}{3} t+1 \\
x_{2}=s \\
x_{3}=1-t / 3 \\
x_{4}=t
\end{array}\right.
$$

from row 2, $3 x_{3}+x_{4}=3 \Rightarrow x_{3}=\frac{1}{3}\left(3-x_{4}\right)=1-\frac{t}{3}$
from row 1, $\quad x_{1}-2 x_{2}-x_{3}+3 x_{4}=0$

$$
\Rightarrow x_{1}=25+1-\frac{t}{3}-3 t=25-\frac{10}{3} t+1
$$

