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Section 1.2 Row Reduction And Echelon Forms
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onz&" roW (%lumn in a matrix means a row or column that contains at

least one nonzero entry; a leading entry of a row refers to the leftmost nonzero
entry (in a nonzero row).
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2. A rectangular matrix is in ':ng echelon form or row echelon form
if it has the following three properties: ew
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* Each leading entry of a row is in a column to the right of the leading entry
of the row above it.

* All nonzero rows are above any rows of all zeros

» All entries in a column below a leading entry are zeros. (Property 3 is a
simple consequence of property 2, but we include it for emphasis.)

3. If a matrix in echelon form satisfies the following additional conditions, then it is
n reduced/e\helon form (or reduced rovrz echelon form, we usually call it rref):
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3 W o The le\gdmg entry in each nohzero row is 1.

3" Each leading 1 is the only nonzero entry in its column.
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Theorem: Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one reduced echelon matrix.
Definitions

pivot position in a matrix A is a location in A that corresponds to a leading 1 in
the reduced echelon form of A.

A pivot column is a column of A that contains a pivot position.
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STEP 1: Begin with the leftmost nonzero column. This is a pivot column. The
pivot position is at the top.

The Row Reduction Algorithm ( u\\“o w

STEP 2: Select a nonzero entry in the pivot column as a pivot. If necessary,
interchange rows to move this entry into the pivot position.

STEP 3: Use row replacement operations to create zeros in all positions below
the pivot.

STEP 4: Cover (or ignore) the row containing the pivot position and cover all
rows, if any, above it. Apply steps 1 to 3 to the submatrix that remains. Repeat
the process until there are no more nonzero rows to modify.

STEP 5: Backward phase. Beginning with the rightmost pivot and working
upward and to the left, create zeros above each pivot. If a pivot is not 1, make it
1 by a scaling operation.
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Example 2: Row reduce the matrix A below to echelon form, and locate the pivot

columns of A. 3 | 2 3
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Solutions of Linear Systems
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Basic variable: the variables correponding to pivot columns in the matrix
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Example 3: The augmented matrix of a linear system has been written in the reduced
echelon form as follows ¥
0 %] e ‘3:] dlew
1

oD 1 |4
0 9 0
(1) Determine the basic varia fid free varfable, = 3 UuVllM‘ﬁ&Qs
x| .
Aing eutv'es = Levd \
Y Xs aviode 3 93"‘““’ S
XJ - {m v.'z u\h.
(2)Find the general solution of the above system.
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Remark 1 We have some remarks:

1. Each different choice of x3 determines a (different) solution of the system, and
every solution of the system is determined by a choice of x3.

2. Parametric descriptions of solution sets. The free variables act as parameters.
Solving a system amounts to finding a parametric description of the solution set
or determining that the solution set is empty.

3. Whenever a system is consistent and has free variables, the solution set has many
parametric descriptions. Whenever a system is inconsistent, the solution set is
empty, even when the system has free variables. In this case, the solution set has
no parametric representation.

Theorem: Existence and Uniqueness Theorem
A linear system is consistent consistent if and only if the rightmost column of the
augmented matrix is not a pivot column —that is, if and only if an echelon form of the
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augmented matrix has no row of the form \\l l\ ::N. LY 0 © 1)
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with b nonzero.
If a linear system is consistent, then the solution set contains either ;) WS Qe ‘U‘\““‘
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* unique solution, when there is no free variable, or,

* infinitely many solutions, when there is at least one free variable.
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Using Row Reduction To Solve A Linear System Juar -
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Step 1: Write the augmented matrix of the system.

Step 2: Use the row reduction algorithm to obtain an equivalent augmented
matrix in echelon form. Decide whether the system is consistent. If there is no
solution, stop; otherwise, go to the next step.

Step 3: Continue row reduction to obtain the reduced echelon form.

Step 4: Write the system of equations corresponding to the matrix obtained in
step 3.

Step 5: Rewrite each nonzero equation from step 4 so that its one basic variable
is expressed in terms of any free variables appearing in the equation.
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