Vectors and $\mathbb{R}^{2} \quad\binom{1}{2}_{2,1}$

1. A matrix with only one column is a \qquad column vector or a \qquad vector
2. The set of all vectors with two entries is denoted by \qquad \mathbb{R}^{2}
3. Two vectors in \mathbb{R}^{2} are equal if and only if corresponding entries are equal.
4. Sum of two vectors \mathbf{u} and \mathbf{v} : \qquad $\binom{a}{b}+\binom{c}{d}=\binom{a+c}{b+d}$ $\begin{aligned}\binom{a}{b} & =\binom{1}{2} \\ a & =1 \\ b & =2\end{aligned}$
$\left.\begin{array}{l}\text { 5. Scalar multiple of } \mathbf{u} \text { by } c: \ldots\binom{a}{b}=\binom{c}{c} \\ c b\end{array}\right)$.
\qquad

$$
2 \vec{u}=2\binom{2}{6}=\binom{4}{12}
$$

$$
\begin{aligned}
& \frac{1}{2} \vec{u}-2 \vec{v}=\frac{1}{2}\binom{2}{6}-2\binom{1}{-3}=\binom{1}{3}-\binom{2}{-6} \\
& \text { can identify a geometric point }(a, b) \text { with the column vector }\left[\begin{array}{l}
a \\
b
\end{array}\right]
\end{aligned}
$$

1. Parallelogram Rule for Addition: If \mathbf{u} and \mathbf{v} in \mathbb{R}^{2} are represented as points in the plane, then $\mathbf{u}+\mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are $\mathbf{u}, 0$, and \mathbf{v}. See Figure 1 .

Figure 1: Parallelogram Rule
2. All scalar multiples of one fixed nonzero vector is a line through the origin, $(0,0)$.

Generalization to \mathbb{R}^{3} and \mathbb{R}^{n}

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

1. Vectors in \mathbb{R}^{3} are 3×1 column matrices with three entries.
2. Let n be a positive integer \mathbb{R}^{n} denotes the collection of all lists of n real numbers, usually written as $n \times 1$ column matrices, such as

$$
\mathbf{u}=\underbrace{\left[\begin{array}{l}
u_{1} \\
u_{2} \\
\cdots \\
u_{n}
\end{array}\right]} \text { nil } \rho \text { n rows }
$$

Algebraic Properties of \mathbf{R}^{n}

For all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^{n} and all scalars c and d :
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(v) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(ii) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(vi) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(iii) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(vii) $c(d \mathbf{u})=(c d)(\mathbf{u})$
(iv) $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}$,
(viii) $1 \mathbf{u}=\mathbf{u}$
where $-\mathbf{u}$ denotes $(-1) \mathbf{u}$

Linear Combinations

Given vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ in \mathbb{R}^{n} and given scalars $c_{1}, c_{2}, \cdots, c_{p}$, the vector \mathbf{y} defined by

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

is called a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ with weights $c_{1}, c_{2}, \cdots, c_{p}$.
Example 3: Determine if \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3}.
$\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \mathbf{a}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \mathbf{a}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \mathbf{b}=\left[\begin{array}{c}-2 \\ 1 \\ 6\end{array}\right]$

If \vec{b} is a liner combination of $\overrightarrow{a_{1}} \overrightarrow{u_{2}} \overrightarrow{u_{3}}$
def of the linear combination.
there exist $C_{1} C_{2} C_{3}$ such that.

$$
\begin{aligned}
& c_{1} \vec{c}_{1}+c_{2} \vec{c}_{2}+c_{3} \vec{c}_{3}=b \\
& c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 \\
6
\end{array}\right) \\
& \Leftrightarrow\left(\begin{array}{c}
c_{1}+c_{3} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 \\
6
\end{array}\right) \\
& \Leftrightarrow \quad \begin{aligned}
c_{2}+c_{3} & =-2 \\
c_{3} & =1
\end{aligned}
\end{aligned}
$$

$$
\Leftrightarrow \quad\left\{\begin{array}{l}
c_{3}=6 \\
c_{2}=1 \\
c_{1}=-8
\end{array}\right.
$$

(A) hus ungive solis"
$\Rightarrow b$ is a linear combination of ar $a_{2} a_{3}$

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b} \tag{1}
\end{array}\right]
$$

In particular, \mathbf{b} can be generated by a linear combination of $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$ if and only if there exists a solution to the linear system corresponding to the matrix (1).
Definition:
If $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ in \mathbb{R}^{n}. then the set of all linear combinations of $\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}$ is denoted by $\operatorname{Span}\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$ and is called the subset of \mathbb{R}^{n} spanned (or generated) by $\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}$. That is, Span $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$ is the collection of all vectors that can be written in the form

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{\underline{p}} \mathbf{v}_{p}
$$

with $c_{1}, c_{2}, \cdots, c_{p}$ scalars.
Example 4: Let $\mathbf{a}_{1}=\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right] \mathbf{a}_{2}=\left[\begin{array}{c}-5 \\ -8 \\ 2\end{array}\right] \mathbf{b}=\left[\begin{array}{c}3 \\ -5 \\ h\end{array}\right]$. For what values) of h is \mathbf{b} in the plane spanned by \mathbf{a}_{1} and \mathbf{a}_{2} ?

If b is in the $\operatorname{span}\left\{\begin{array}{ll}a_{1} & c_{2}\end{array}\right\}$
\Leftrightarrow ination there exist $c_{1} \& C_{2}$ such that. of spun

$$
\vec{b}=c_{1} \overrightarrow{a_{1}}+c_{2} \overrightarrow{a_{2}} \quad(* *)
$$

by the: to find the solution of $(* A) \in)$ to find the solution of the linear system whose augmounal matrix is

$$
\left[\begin{array}{lll}
\vec{a}_{1} & \vec{a}_{2} & \vec{b}
\end{array}\right]
$$

A Geometric Description of $\operatorname{Span}\{\mathbf{v}\}$ and $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$

1. Let \mathbf{v} be a nonzero vector in $\mathbb{R}^{3}, \operatorname{Span}\{\mathbf{v}\}$ is the set of points on the line in \mathbb{R}^{3} through \mathbf{v} and $\mathbf{0}$.
2. Let \mathbf{u} and \mathbf{v} be a nonzero vectors in \mathbb{R}^{3}, and \mathbf{v} is not a multiple of \mathbf{u}, then $\{\mathbf{u}, \mathbf{v}\}$ is the plane in \mathbb{R}^{3} that contains \mathbf{u}, \mathbf{v} and $\mathbf{0}$.
 $\mathbf{v}_{2}=\left[\begin{array}{c}12 \\ 3 \\ -9\end{array}\right]$.
