

1. Parallelogram Rule for Addition: If **u** and **v** in \mathbb{R}^2 are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are **u**, 0, and **v**. See Figure 1.

2. All scalar multiples of one fixed nonzero vector is a line through the origin, (0,0).

Generalization to \mathbb{R}^3 and \mathbb{R}^n

- eneralization to \mathbb{R}^3 and \mathbb{R}^n 1. Vectors in \mathbb{R}^3 are 3×1 column matrices with three entries.
- 2. Let *n* be a positive integer \mathbb{R}^n denotes the collection of all lists of n real numbers, usually written as $n \times 1$ column matrices, such as

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \cdots \\ u_n \end{bmatrix}$$

Algebraic Properties of
$$\mathbb{R}^n$$

For all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^n and all scalars c and d :
(i) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
(ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
(iii) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ (vii) $c(d\mathbf{u}) = (cd)(\mathbf{u})$
(iv) $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$, (viii) $\mathbf{l} \mathbf{u} = \mathbf{u}$
where $-\mathbf{u}$ denotes $(-1)\mathbf{u}$

Linear Combinations
Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ in \mathbb{R}^n and given scalars c_1, c_2, \dots, c_p , the vector \mathbf{y} defined
by
 $\mathbf{y} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$
is called a linear Combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ with weights c_1, c_2, \dots, c_p .
Example 3: Determine if \mathbf{b} is a linear combination of $\mathbf{a}_1, \mathbf{a}_2$, and \mathbf{a}_3 .

$$\mathbf{a}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \mathbf{a}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \mathbf{a}_3 = \begin{bmatrix} 1\\0\\1 \end{bmatrix} \mathbf{b} = \begin{bmatrix} -2\\1\\6 \end{bmatrix}$$

If
$$G$$
 is a linear combination of G_1 is u_3
by the linear construction.
 dat_3 there exist $C_1 C_2 C_3$ such that.
 $C_1 \overline{C_1} + (_2 \overline{C_3} + (_3 \overline{C_3} = b)$
 $C_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (L_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}) + (L_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}) = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 6 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ C_3 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ C_3 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ C_3 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 + C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ C_3 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix}$
(=) $\begin{pmatrix} C_1 - C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} C_1 - C_3 \\ C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} C_1 - C_3 \\ C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} C_1 - C_3 \\ C_3 \\ C_3 \\ C_3 \end{pmatrix} = \begin{pmatrix} C_1 - C_3 \\ C_3$

(

In particular, **b** can be generated by a linear combination of $\mathbf{a}_1, \dots, \mathbf{a}_n$ if and only if there exists a solution to the linear system corresponding to the matrix (1). **Definition:**

(1)

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$ is denoted by Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ and is called the subset of \mathbb{R}^n spanned (or generated) by $\mathbf{v}_1, \dots, \mathbf{v}_p$. That is, Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is the collection of all vectors that can be written in the form

$$c_1\mathbf{v}_1+\cdots+c_p\mathbf{v}_p$$

with c_1, c_2, \dots, c_p scalars. <u>Example 4:</u> Let $\mathbf{a}_1 = \begin{bmatrix} 1\\3\\-1 \end{bmatrix} \mathbf{a}_2 = \begin{bmatrix} -5\\-8\\2 \end{bmatrix} \mathbf{b} = \begin{bmatrix} 3\\-5\\h \end{bmatrix}$. For what value(s) of h is \mathbf{b} in the plane spanned by \mathbf{a}_1 and \mathbf{a}_2 ? If \mathbf{b} is in the spans c_1 c_2 \mathbf{a}_1 in $\mathbf{a}_1^{i_1 \dots i_n}$ there exist c_1 δ c_2 such that. $\mathbf{a}_1 \in \mathbf{a}_1^{i_1 \dots i_n}$ is $\mathbf{a}_1 \in \mathbf{a}_1 \in \mathbf{a}_1$ (i.e., $\mathbf{a}_1 \in \mathbf{a}_2$ (i.e., $\mathbf{a}_1 \in \mathbf{a}_2$ (i.e., $\mathbf{a}_1 \in \mathbf{a}_2$ (i.e., $\mathbf{a}_1 \in \mathbf{a}_2$ (i.e., $\mathbf{a}_2 \in \mathbf{a}_1 + \mathbf{a}_2$) to find the solution of (\mathbf{x}, \mathbf{x}) (i.e., $\mathbf{a}_1 \in \mathbf{a}_2$ if $\mathbf{a}_1 \in \mathbf{a}_2$ is \mathbf{a}_2 model methods. by then: to find the solution of (\mathbf{x}, \mathbf{x}) (c) to find the solution of (\mathbf{x}, \mathbf{x}) (c) to find the linear system whose argumental methods \mathbf{x} of \mathbf{a}_1 is \mathbf{a}_2 if \mathbf{a}_1 is \mathbf{a}_2 if \mathbf{a}_1 is \mathbf{a}_2 is \mathbf{a}_1 .

A Geometric Description of Span $\{v\}$ and Span $\{u, v\}$

- 1. Let v be a nonzero vector in \mathbb{R}^3 , Span $\{v\}$ is the set of points on the line in \mathbb{R}^3 through v and 0.
- 2. Let **u** and **v** be a nonzero vectors in \mathbb{R}^3 , and **v** is not a multiple of **u**, then $\{\mathbf{u}, \mathbf{v}\}$ is the plane in \mathbb{R}^3 that contains **u**, **v** and **0**.

Example 5: Give a geometric description of Span{ $\mathbf{v}_1, \mathbf{v}_2$ } for the vectors $\mathbf{v}_1 = \begin{bmatrix} 8 \\ 2 \\ -6 \end{bmatrix}$

$$\mathbf{v}_2 = \begin{bmatrix} 12\\3\\-9 \end{bmatrix}.$$