Perieve
(upple)
$$(1 + -5)$$
 (is an any preview instrict of a
(upple) $(2 + 3 + 1)$ (is an any preview instrict of a
(index system, solve it)
 $[a_1 \ a_2 \ \dots \ a_n \ b_n \ b_n$

Section 1.4 The Matrix Equation Ax = bA= { a, ..., a, j, a, ... by Elk **Definition: Matrix vector product** If *A* is an $m \times n$ matrix, with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$, and if \mathbf{x} in \mathbb{R}^n , then the product of *A* and \mathbf{x} , is the linear combination of the columns of A using the corresponding entries in \mathbf{x} as weights, that is $A x = [\vec{a_1} \dots \vec{a_n}] \cdot (')$ $= x_1 \alpha_1 + x_1 \alpha_2$ **Example 1:** Use the definition to compute $\begin{bmatrix} 1 & 3 & -4 \\ 4 & 5 & 2 \\ \hline \mathbf{a} & \mathbf{c} & \mathbf{c} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \\ \end{bmatrix}$ $A = \{\vec{a}, \vec{b}, \vec{c}, \vec{c}\} \neq \begin{bmatrix} \vec{a} \\ \vec{c} \end{bmatrix} \neq \end{bmatrix} \neq \begin{bmatrix} \vec{a} \\ \vec{c} \end{bmatrix} \neq \end{bmatrix} \neq \end{bmatrix} \neq \begin{bmatrix} \vec{a} \\ \vec{c} \end{bmatrix} \neq \end{bmatrix} \neq \end{bmatrix} \neq \begin{bmatrix} \vec{a} \\ \vec{c} \end{bmatrix} \neq \end{bmatrix} \neq \begin{bmatrix} \vec{a} \\ \vec{c} \end{bmatrix} \neq \end{bmatrix} \neq \begin{bmatrix} \vec{a} \\ \vec{c} \end{bmatrix} \neq \end{bmatrix} \neq \end{bmatrix} \neq \begin{bmatrix} \vec{a} \\ \vec{c} \end{bmatrix} \neq \end{bmatrix} \neq \begin{bmatrix} \vec{a} \\ \vec{c} \end{bmatrix} \neq \end{bmatrix} \neq \end{bmatrix} \neq \begin{bmatrix} \vec{a} \\ \vec{c} \end{bmatrix} \neq \end{bmatrix} \neq \begin{bmatrix} \vec{a} \\ \vec{c} \end{bmatrix} \neq \end{bmatrix} \neq \begin{bmatrix} \vec{a} \\ \vec{c}$ $\frac{vector}{vector} = \left(\frac{1}{4}\right) + \left(\frac{1}{5}\right) + \left(\frac{-4}{2}\right)$ $\frac{vector}{\sqrt{5}} = \left(\frac{1}{4}\right) + \left(\frac{6}{10}\right) + \left(\frac{-4}{2}\right) = \left(\frac{8}{16}\right)$

Row-Vector Rule for Computing Ax:

If the product $A\mathbf{x}$ is defined, then the *i* th entry in $A\mathbf{x}$ is the sum of the products of corresponding entries from row i of A and from the vector \mathbf{x} .

Example 2: Use the Row-Vector Rule to compute

1

If A is an $m \times n$ matrix, **u** and **v** are vectors in \mathbb{R}^n , and c is a scalar, then:

- 1. $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$
- 2. $A(c\mathbf{u}) = cA\mathbf{u}$ scalar

Theorem: Three equivalent ways of representing a linear system

If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$, and if \mathbf{b} in \mathbb{R}^m , the matrix equation $A\mathbf{x} = \mathbf{b}$

has the same solution set as the vector equation

the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}$$

vector $\mathbf{x} \in \mathbf{a}^n$ which
 \mathbf{s} obves $\mathbf{A} \mathbf{x} = \mathbf{b}$.
(2)

(1)

which has the same solution set as the system of linear equations whose augmented matrix is

$$[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n \quad \mathbf{b}] \tag{3}$$

Example 3: Write the system first as a vector equation and then as a matrix equation.

by the theorem, we can solve the augmented form,

$$\begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} -3 & -4 & b \end{bmatrix}$$
Find the solution of the system alove anymented metrix
is $\begin{bmatrix} A & b \end{bmatrix}$
 $\begin{bmatrix} -3 & -4 &$

7

for any BER,

such that

Theorem: $A = \{ \vec{a}_1, \vec{a}_2, \dots, \vec{a}_n \}$

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.

- 1. For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- 2. Each **b** in \mathbb{R}^m is a linear combination of the columns of *A*.
- 3. The columns of A span \mathbb{R}^m .
- 4. A has a pivot position in every row.

Example 5: Let
$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix}$. Does $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ span \mathbb{R}^3 ?

this is point #3 in the theorem so we can use point #14 to check. $A = \{ \vec{v}_i \ \vec{v}_i \ \vec{v}_i \} = \begin{pmatrix} 0 & 0 & 2 \\ 0 & -1 & -1 \\ -1 & 3 & -3 \end{pmatrix}$ interding $\vec{P}_i \ \vec{B} \ \vec{P}_3$ $\begin{pmatrix} -1 & 3 & -3 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}$ REF we used to check, if there is a leading entry in each row. by the theorem, $\{v_i \ v_i \ v_i$