Review
suppose $\left(\begin{array}{ccc|c}1 & 4 & -5 & 0 \\ 2 & \underbrace{}_{2 \times 3} & 8 & 9\end{array}\right) / \begin{array}{cc}x_{1} x_{2} x_{2} \text { vai.intes } \\ \text { is an any vented matrix of a }\end{array}$
linear system, sole it!
$\left[\begin{array}{llll}\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \ldots & \overrightarrow{u_{n}}\end{array} \vec{b}\right] \rightarrow$ ungmonted matrix
$\Leftrightarrow \quad x_{1} \vec{a}_{1}+x_{2} \vec{c}_{2}+\ldots x_{n} \vec{a}_{u}=\vec{b}$, vector form $x_{1} \ldots x_{n}$ are scalars (unknown)
x_{3} is free, sot $x_{3}=8$
from the row $2,-9 x_{2}+18 x_{3}=9$

$$
\begin{aligned}
9 x_{2}=18 x_{3}-9 & =185-9 \\
x_{2} & =25-1
\end{aligned}
$$

from the roo 1,

$$
\begin{aligned}
& x_{1}+4 x_{2}-5 x_{3}=0 \\
& x_{1}=-4(2 s-1)+5 s=-3 s+4
\end{aligned}
$$

Section 1.4 The Matrix Equation $A x=b$
Definition: Matrix vector product
 If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$, and if \mathbf{x} in \mathbb{R}^{n}, then the product of A and \mathbf{x}, is the linear combination of the columns of A using the corresponding entries in \mathbf{x} as weights, that is

$$
\left.A x=\begin{array}{lll}
\overrightarrow{a_{1}} & \ldots & \vec{a}_{n}
\end{array}\right] \cdot \underbrace{\left.\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)}_{\text {definition to compute }}=x_{1} \vec{x}_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}
$$

Example 1: Use the definition to compute

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 3 & -4 \\
4 & 5 & 2 \\
\overrightarrow{a_{1}} & \overrightarrow{\omega_{0}} & \overrightarrow{a_{b}}
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
1 \\
\vec{x}
\end{array}\right]} \\
& A x=\left\{\overrightarrow{a_{1}}, \overrightarrow{a_{z}}, \overrightarrow{a_{3}}\right\} \vec{x} \stackrel{\text { def }}{=} x_{1} \overrightarrow{a_{1}}+x_{2} \overrightarrow{u_{b}}+x_{3} \overrightarrow{a_{3}} \\
& \begin{array}{l}
\text { antiplect } 1 \cdot\binom{1}{4}+2 \cdot\binom{3}{5}+1\binom{-4}{2} \\
\text { veer witur }=\binom{1}{4}+\binom{6}{10}+\binom{-4}{2}=\binom{3}{16}
\end{array}
\end{aligned}
$$

Row-Vector Rule for Computing Ax:
If the product $A \mathbf{x}$ is defined, then the i th entry in $A \mathbf{x}$ is the sum of the products of corresponding entries from row i of A and from the vector \mathbf{x}.

Example 2: Use the Row-Vector Rule to compute

Theorem:

If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is a scalar, then:

1. $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$
2. $A(c \mathbf{u})=c A \mathbf{u} \quad$ scalar

Theorem: Three equivalent ways of representing a linear system

If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$, and if \mathbf{b} in \mathbb{R}^{m}, the matrix equation

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \quad \text { the solution of }(1) \text { : } \tag{1}
\end{equation*}
$$

has the same solution set as the vector equation vector $x \in \mathbb{R}^{n}$ which

$$
\begin{equation*}
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b} \tag{2}
\end{equation*}
$$

which has the same solution set as the system of linear equations whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b} \tag{3}
\end{array}\right]
$$

Example 3: Write the system first as a vector equation and then as a matrix equation.
$\overrightarrow{a_{1}}$: conf of x_{1} in call equations $5 x_{1}+3 x_{2}-2 x_{3}=0 \quad$ vector equation.

$$
\vec{u}_{1}=\binom{5}{0}
$$

\vec{h}_{2} : coeff of x_{2} in each egn.

$$
\overrightarrow{c_{2}}=\binom{3}{1}
$$

$$
\overrightarrow{a 3}=\binom{-2}{6}
$$

Example 4: Let $A=\left[\begin{array}{rr}-3 & -4 \\ 12 & 16\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$. Show that the equation $A \mathbf{x}=\mathbf{b}$ does not have a solution for some choices of \mathbf{b}, and describe the set of all \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ does have a solution.
by the theorem, we can solve the augmented form,

$$
\left[\begin{array}{ll}
A & \vec{b}
\end{array}\right]=\left[\begin{array}{ccc}
-3 & -4 & b_{1} \\
12 & 16 & b_{2}
\end{array}\right]
$$

Find the solution of the system whose cangrented matrix is $\left[\begin{array}{ll}A & \vec{b}\end{array}\right]$
by theorem in 1.2 , the system hus a solution if $4 b_{1}+b_{2}=0$.
now set $x_{2}=S$ (free)
from the 1 st row $-3 x_{1}-4 x_{2}=b_{1}$

$$
\begin{aligned}
-3 x_{1} & =+4 s+b_{1} \\
x_{1} & =-\frac{1}{3}\left(4 s+b_{1}\right)
\end{aligned}
$$

Theorem:

$$
A=\left\{\overrightarrow{a_{1}}, \overrightarrow{a_{n}}, \ldots, \overrightarrow{a_{n}}\right\rangle
$$

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.

1. For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
2. Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
a)
3. The columns of A span \mathbb{R}^{m}.
4. A has a pivot position in every row.

Example 5: Let $\mathbf{v}_{1}=\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}0 \\ -1 \\ 3\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}2 \\ -1 \\ -3\end{array}\right]$. Does $\left\{\mathbf{v}_{1}, \vec{v}_{2}, x_{6}\right\}$ span \mathbb{R}^{3} ?
this is point \#3 in the the orem
so we cen use point $\# 4$ to chock.

$$
\begin{aligned}
& A=\left\{\begin{array}{lll}
\overrightarrow{v_{1}} & \overrightarrow{v_{i}} & \overrightarrow{v_{3}}
\end{array}\right\}=\left(\begin{array}{ccc}
0 & 0 & 2 \\
0 & -1 & -1 \\
-1 & 3 & -3
\end{array}\right) \\
& \xrightarrow[R_{1} \& R_{3}]{\text { inkercheng }}\left(\begin{array}{ccc}
-1 & 3 & -3 \\
0 & -1 & -1 \\
0 & 0 & 2
\end{array}\right)^{R E F}
\end{aligned}
$$

we reed to check, if there is a lending entry in each row.
by the theorem, $\left\{\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right\}$ spun \mathbb{R}^{3}.

