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Section 1.7 Linear Independence

Definition:
An indexed set of vectors v1,v2, · · · ,vp in Rn is said to be linearly independent if the
vector equation

x1v1 + · · ·+ xpvp = 0
has only the trivial solution.
The set v1,v2, · · · ,vp is said to be linearly dependent if there exist weights c1,c2, · · · ,cp,
not all zero, such that

c1v1 + · · ·+ cpvp = 0
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Example 2: Find the value(s) of h for which the vectors are linearly dependent.
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Linear independence of matrix columns:
If A is an m⇥ n matrix, with columns a1, · · · ,an, then the matrix equation Ax = 0 can
be written as

x1a1 + x2a2 + · · ·+ xnan = 0
Then the columns of a matrix A are linearly independent if and only if the equation
Ax = 0 has only the trivial solution.

Example 3: Let the matrix
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Set of one or two vectors:

1. A set containing only one vector v is linearly independent if and only if v is not
the zero vector.

2. A set of two vectors {v1,v2} is linearly dependent if at least one of the vectors is
a multiple of the other. The set is linearly independent if and only if neither of
the vectors is a multiple of the other.

Set of two or more vectors:

1. Theorem: An indexed set S = {v1,v2, · · · ,vp} of two or more vectors is linearly
dependent if and only if at least one of the vectors in S is a linear combination of
the others.

In fact, if S is linearly dependent and v1 6= 0, then some v j (with j > 1) is a linear
combination of the preceding vectors, v1, · · · ,v j�1.
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2. Theorem: If a set contains more vectors than the number of entries in each vec-
tor, then the set is linearly dependent. That is, any set {v1,v2, · · · ,vp} in Rn is
linearly dependent if p > n.

3. Theorem: If a set S = {v1,v2, · · · ,vp} in Rn contains the zero vector, then the set
is linearly dependent.

Example 4: Determine whether the vectors are linearly independent.


5
1

� 
2
8

� 
1
3

�

3

$ )
Pi # of vectors

in the
set

n: the
size /dim of

the vectors
( I 1 . I - - - -

in the set .

✗ But when NZP , we can not see this is

linearly indep/ dep .

3 vectors, p =3

n= 2 P > 2 by thin2 ⇒ linearly
dep .

1 ? I ;) I→ 0

Rid 12,
(
/ 8 }

§ 2 1)i

:÷÷÷↳ 8 3

0 -14 )
T
xs is free

⇐> the system has non -
trivial

solutions

⇐) linear dependent .


