Section 1.7 Linear Independence

Definition:
An indexed set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution. \Leftrightarrow the system hes no fur variable.
The set $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ is said to be linearly dependent if there exist weights $c_{1}, c_{2}, \cdots, c_{p}$, not all zero, such that

Fy the vector equation Buss non rival

$$
\stackrel{\downarrow}{v} \text { exists } \boldsymbol{c}_{i}, \mathbf{C}_{i} \neq 0 \quad c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}
$$ solutions \Leftrightarrow the system Pas at le oust

Exam lust oke $C_{i}, C_{i} \neq 0$ $[5] \quad[7]$ ore frees variables
$\mathbf{v}_{3}=\left[\begin{array}{c}9 \\ 4 \\ -8\end{array}\right]$

$$
\left\{\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right\}=\left(\begin{array}{ccc}
5 & 7 & 9 \\
0 & 2 & 4 \\
0 & -6 & -8
\end{array}\right) \underset{-6 \rightarrow 0}{R_{3}=R_{3}+3 \beta_{2}}\left(\begin{array}{ccc}
\frac{5}{3} & 7 & 9 \\
0 & 2 & 4 \\
0 & 0 & 4
\end{array}\right)
$$

$x_{1} x_{6} x_{s}$ are basic \Leftrightarrow there is no free variable \Leftrightarrow trivial solution orly
(E) linearly indep.

Example 2: Find the values) of h for which the vectors are linearly dependent. $\left[\begin{array}{c}1 \\ 5 \\ -3\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{c}
-2 \\
-9 \\
6
\end{array}\right]\left[\begin{array}{c}
3 \\
h \\
-9
\end{array}\right]}
\end{aligned}
$$

be cane x_{3} is face \Leftrightarrow We have non-trivial solutions

Linear independence of matrix columns:

$$
A=\left\langle\vec{a}_{1}, \vec{a}_{0}, \ldots, \vec{a}_{n}\right\rangle_{m, n}
$$

If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$, then the matrix equation $A \mathbf{x}=\mathbf{0}$ can be written as

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

Then the columns of a matrix A are linearly independent if and only if the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
Example 3: Let the matrix $\left[\begin{array}{cccc}0 & -3 & 9 & 0 \\ 2 & 1 & -7 & 0 \\ -1 & 4 & -5 & 0 \\ 1 & -4 & -3 & 0\end{array}\right]$, be an augmented matrix of a linear linear independent columns?

Set of one or two vectors:

1. A set containing only one vector \mathbf{v} is linearly independent if and only if \mathbf{v} is not the zero vector. $\rightarrow\{\vec{v}\} \rightarrow \vec{v}=0$ I'mendy dep
$\vec{J} \neq 0$ linearly inclep.
2. A set of two vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent if at least one of the vectors is a multiple of the other. The set is linearly independent if and only if neither of the vectors is a multiple of the other.

Set of two or more vectors:

1. Theorem: An indexed set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

In fact, if S is linearly dependent and $\mathbf{v}_{1} \neq \mathbf{0}$, then some \mathbf{v}_{j} (with $j>1$) is a linear combination of the preceding vectors, $\mathbf{v}_{1}, \cdots, \mathbf{v}_{j-1}$.
Remark:
(1 1...1 1) $p_{i} ;$ of vectors in the set $n:$ the site/
2. Theorem: If a set contains more vectors than the n tor, then the set is linearly linearly depend of $p>n$.
3. Theorem: If a set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} contains the zero vectlo indep/dep. is linearly dependent.
Example 4: Determine whether the vectors are linearly independent. $\left[\begin{array}{l}5 \\ 1\end{array}\right]\left[\begin{array}{l}2 \\ 8\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]$

$$
\begin{aligned}
& 3 \text { vectors, } p=3 \\
& n=2 \quad P>2 \text { by then } 2 \Rightarrow \text { lineouly } \\
& \text { dep. } \\
& \left(\begin{array}{lll}
3 & 2 & 1 \\
1 & 8 & 3
\end{array}\right) \xrightarrow[1 \rightarrow 0]{P_{2}=R_{2} \rightarrow R_{1} \cdot \frac{1}{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \text { the system hiss nontrivial } \\
& \text { solutions } \\
& \Leftrightarrow \text { liar dependent. }
\end{aligned}
$$

