
Section 1.8 Introduction to Linear Transformations

A matrix equation $A\mathbf{x} = \mathbf{b}$ can be thought of the matrix A as an object that "acts" on a vector \mathbf{x} by multiplication to produce a new vector called $A\mathbf{x}$.

<u>Definition</u>: A transformation *T* from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector **x** in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m . Denote by $T : \mathbb{R}^n \to \mathbb{R}^m$.

The set \mathbb{R}^n is called the domain of T, and \mathbb{R}^m is called the codomain of T. For \mathbf{x} in \mathbb{R}^n , $T(\mathbf{x})$ is called the image of \mathbf{x} . The set of all images $T(\mathbf{x})$ is called the range of T.

<u>Remark:</u> If *A* is an $n \times m$ matrix, solving the equation $A\mathbf{x} = \mathbf{b}$ amounts to finding all vectors \mathbf{x} in \mathbb{R}^n that are transformed into the vector \mathbf{b} in \mathbb{R}^m under the "action" of multiplication by *A*.

Example 3: The transformation *T* defined by $T(\mathbf{x}) = A\mathbf{x}$, find a vector \mathbf{x} whose image under *T* is \mathbf{b} , and determine whether \mathbf{x} is unique.

Example 4: Let $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, and $\mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$, and let $T : \mathbb{R}$ be a linear transformation that maps \mathbf{e}_1 into \mathbf{y}_1 and maps \mathbf{e}_2 into \mathbf{y}_2 . Find the in	$\mathbb{R}^2 \to \mathbb{R}^2$ mages of
$\vec{v} = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$ Foul #2 STIEN - 3TIEN	-
$T(\vec{e_1}) = \vec{y_1} T(\vec{e_2}) = \vec{y_2} = 5\vec{y_1} - 3\vec{y_2}$	
$\vec{J} = \begin{pmatrix} S \\ -3 \end{pmatrix} = \begin{pmatrix} S \\ 0 \end{pmatrix}^+ \begin{pmatrix} 0 \\ -3 \end{pmatrix} = 5 \begin{pmatrix} 2 \\ 5 \end{pmatrix}^- 3 \begin{pmatrix} -1 \\ 6 \end{pmatrix} = \begin{pmatrix} U \\ 2 \end{pmatrix}$	
= 5(0) + (-3)(1)	
$= \overline{5e_1} - \overline{3e_2}$ $= \overline{5e_1} - \overline{3e_2}$ $= \overline{3e_1} - \overline{3e_2}$	
$T(\vec{v}) = T(\vec{s}\vec{e} - \vec{s}\vec{e}) \qquad \qquad$	

Example 5: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a linearly dependent set in \mathbb{R}^n . Explain why the set $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ is linearly dependent.

 $T_{i} T_{i} T_{i$

=> {T(vi) T(vi) T(vi)] are linourly dep.