Section 1.8 Introduction to Linear Transformations
A matrix equation $A \mathbf{x}=\mathbf{b}$ can be thought of the matrix A as an object that "acts" on a vector $\mathbf{x}$ by multiplication to produce a new vector called $A \mathbf{x}$.
Definition: A transformation $T$ from $\mathbb{R}^{n}$ to $\mathbb{R}^{m}$ is a rule that assigns to each vector $\mathbf{x}$ in $\mathbb{R}^{n}$ a vector $T(\mathbf{x})$ in $\mathbb{R}^{m}$. Denote by $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
The set $\mathbb{R}^{n}$ is called the domain of $T$, and $\mathbb{R}^{m}$ is called the codomain of $T$. For $\mathbf{x}$ in $\mathbb{R}^{n}$, $T(\mathbf{x})$ is called the image of $\mathbf{x}$. The set of all images $T(\mathbf{x})$ is called the range of $T$.

the set which contains the imago of all $x$ in the domain.

Domain
Codomain
the st now of $A$
Example 1: Let $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$, and def i
under $T$ of $\mathbf{u}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}a \\ b\end{array}\right]$.

$$
\begin{aligned}
& \vec{v}, T(\vec{u})=A \cdot \vec{v}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \cdot\binom{a}{b}=\binom{2 \cdot a+a \cdot b}{0 \cdot a+2 \cdot b}^{\text {the }} 2^{\text {nd }} \text { row } \downarrow\binom{2 \cdot 1}{2 b}
\end{aligned}
$$

Remark: If $A$ is an $n \times m$ matrix, solving the equation $A \mathbf{x}=\mathbf{b}$ amounts to finding all vectors $\mathbf{x}$ in $\mathbb{R}^{n}$ that are transformed into the vector $\mathbf{b}$ in $\mathbb{R}^{m}$ under the "action" of multiplication by $A$.

Example 3: The trasnformation $T$ defined by $T(\mathbf{x})=A \mathbf{x}$, find a vector $\mathbf{x}$ whose image under $T$ is $\mathbf{b}$, and determine whether $\mathbf{x}$ is unique.

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
-2 & 1 & 6 \\
3 & -2 & -5
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
-1 \\
7 \\
-3
\end{array}\right]
$$


$b \neq 0, \Rightarrow$ solution exists.
Since wo dona a free vovinble
Linear Transformations:
Definition: A transformation $T$ is linear if: $\Rightarrow$ solution is unique.
$1 T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v}))$ for all $\mathbf{u}, \mathbf{v}$ in the domain of $T$,
$2 T(c \mathbf{u})=c T(\mathbf{u})$ for all scalars $c$ and all $\mathbf{u}$ in the domain of $T$.
Facts: If $T$ is a linear transformation, then

$$
\begin{aligned}
& 1 T(\mathbf{0})=\mathbf{0} \\
& \left.2 T(c \mathbf{u}+d \mathbf{v})_{2}=c T(\mathbf{u})+d T(\mathbf{v})_{\rightharpoonup_{n}}\right)=c_{1} T\left(v_{1}\right)+c_{2} T\left(\vec{v}_{2}\right)
\end{aligned}
$$

for all scalars $c, d$ and all $\mathbf{u}, \mathbf{v}$ in the domain of $T$. t... $\left.\mathcal{C n}_{n} T \vec{U}_{n}\right)$

Solution of the system. "go from the lust row"
$3^{m} 5 x_{3}=10 \Rightarrow x_{3}=2$ $2^{6 d}$

$$
\begin{aligned}
& x_{2}+2 x_{3}=5 \\
& x_{2}=5-4=1
\end{aligned}
$$

$1^{\text {st }}$

$$
\begin{array}{r}
x_{1}-2 x_{3}=-1 \\
x_{1}=3 \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right) \tag{园}
\end{array}
$$

 be a linear transformation that maps $\mathbf{e}_{1}$ into $\mathbf{y}_{1}$ and maps $\mathbf{e}_{2}$ into $\mathbf{y}_{2}$. Find the images of
$\vec{V}=\left[\begin{array}{c}5 \\ -3\end{array}\right]$

$\left.T\left(\vec{e}_{1}\right\}=\vec{y}_{1} \quad T \int \vec{e}_{2}\right)=\vec{Y}_{2}$

$$
=3 \vec{y}_{1}-3 \vec{y}_{2}
$$

$\vec{v}=\binom{5}{-3}=\binom{5}{0}+\binom{0}{-3}$

$$
=\zeta\binom{1}{0}+(-3)\binom{0}{1}
$$

$$
=5\binom{2}{5}-3\binom{-1}{6}=\binom{13}{7}
$$

$$
\begin{gathered}
=\zeta \vec{e}_{1}-3 \overrightarrow{e_{2}} \\
T(\vec{v})=T\left(5 \vec{e}_{1}-3 \vec{e}_{3}\right)
\end{gathered}
$$

solve the vector equation

$$
x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}=\vec{V}
$$

Example 5: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a linearly dependent set in $\mathbb{R}^{n}$. Explain why the set $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is linearly dependent.
If $\overrightarrow{v_{1}} \overrightarrow{v_{2}} \overrightarrow{v_{3}}$ un línauv dap.
there exists $C_{1} c_{2} c_{3}$ not all
zero. such that.

$$
c_{1} \vec{v} \vec{v}_{1}+c_{2} \overrightarrow{v_{3}}+c_{3} \overrightarrow{v_{3}}=0
$$

$$
T(\underbrace{\left(\vec{v}_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{8} \overrightarrow{v_{0}}\right.}_{0})=0
$$

Factstl2

$$
\underbrace{c_{1} T\left(\vec{v}_{1}\right)+c_{2} T\left(\vec{v}_{3}\right)+c_{3} T\left(\vec{v}_{3}\right)}
$$

by the definition of the l'reat clepencency

