Section 1.9 The matrix of a linear transformations

Example 1: The columns of
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 are $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Suppose *T* is a linear transformation from \mathbb{R}^2 into \mathbb{R}^3 such that $T(e_1) = \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix}$ and $T(e_2) = \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}$.
With no additional information, find a formula for the image of an arbitrary \mathbf{x} in \mathbb{R}^2 .
 $\vec{\mathbf{x}} = \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{x}_k \end{pmatrix}$. $\mathbf{x}_1 \mathbf{x}_k$ one carbitrony in $[\mathbb{R}^2$.
 $\vec{\mathbf{x}} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_k \end{pmatrix}$. $\mathbf{x}_1 \mathbf{x}_k$ one carbitrony in $[\mathbb{R}^2$.
 $\mathbf{T}(\mathbf{x}) = \mathbf{T}(\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_k \end{bmatrix}) = \mathbf{T}(\begin{bmatrix} \mathbf{x}_1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \mathbf{x}_k \end{bmatrix})$
 $= \mathbf{T}(\mathbf{x}_1 \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \mathbf{x}_k \end{bmatrix})$
 $\mathbf{T}(\mathbf{x}) = \mathbf{x}_k$
 $\mathbf{x}_1 \mathbf{T}(\mathbf{e}_1) + \mathbf{x}_k \mathbf{T}(\mathbf{e}_k)$
 $\mathbf{x}_1 \mathbf{T}(\mathbf{e}_1) = \mathbf{x}_1 \mathbf{T}(\mathbf{x}_k)$
 $\mathbf{x}_1 \mathbf{T}(\mathbf{x}_k) = \mathbf{x}_k$
 $\mathbf{x}_k \mathbf{T}(\mathbf{x}_k) = \mathbf{x}_k$

there exists a unique matrix A such that

 $A = \begin{bmatrix} G_{1} & G_{2} & \dots & G_{n} \end{bmatrix}_{m \in \mathbf{N}} T(\mathbf{x}) = A\mathbf{x}, \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^{n}$

In fact, A is the $m \times n$ matrix whose *j*th column is the vector $T(\mathbf{e}_i)$, where \mathbf{e}_i is the *j*th column of the identity matix in \mathbb{R}^n :

$$\underline{A} = [T(\mathbf{e}_1) \quad \cdots \quad T(\mathbf{e}_n)] \tag{1}$$

The matrix A in (1) is called the standard matrix for the linear transformation T.

Example 2:

(1)Find the standard matrix A for $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a vertical shear transformation that maps \mathbf{e}_1 into $\mathbf{e}_1 - 3\mathbf{e}_2$, but leaves \mathbf{e}_2 unchanged.

 $T_i(\vec{e_i}) = \begin{pmatrix} e_i \\ -1 \end{pmatrix} = -\vec{e_i}$ $T_{2}(-\vec{e}) = (\vec{e}) = -\vec{e}_{1}$ stal matrix : A = [T(ei), T(ei)] $= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

Q4 lot T be a linear transformation with the sta A= [Ci, C.] as shown in the fly we matrix $\vec{e}_{i}=(\mathbf{b}), \vec{e}_{i}=(\mathbf{b})$ Slatch T(1) $T\left(\frac{1}{3}\right) = T\left(\left(\frac{1}{0}\right) + \left(\frac{b}{3}\right)\right) = T\left(-\vec{e_1} + 3\vec{e_1}\right)$ Focts#2 $(-1)^{+}(\vec{e_i}) + 3 \cdot T(\vec{e_2}) = -\vec{a_1} + 3\vec{e_2}$ $i \cdot 8$ 127

Definition:

(=)

linear transformation.

1. A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is onto if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n . This is an existense question. $(\zeta v) \in C^+ v^e$ for any y t 1/2", we can find at least one x t 1k

c-domain

Ax = 0 Pers only trivial solution.

Rus only wivin

 $A = [\vec{u}_1, \vec{v}_2, \dots, \vec{u}_n] \times [\vec{u}_1 + \dots + \chi_n \vec{v}_n]^{-0}$

TA

2. A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is one to one if each **b** in \mathbb{R}^m is the image of at most one x in \mathbb{R}^n . This is a uniqueness question. (injective) a se alor

such that $\vec{y} = T(\vec{x})$

<u>Theorem</u>: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a finear transformation. Then T is one-to-one if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution. there exists A such that (siti) AX = T(x)

Theorem: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then: (check 1.4)

- 1. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m .
- 2. *T* is one-to-one if and only if the columns of *A* are linearly independent.

Example 4: Let $T(x_1, x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$. Show that T is a one-to-pne

$$T\left(\binom{Y_{l}}{X_{L}}\right) = \binom{3 \times 1 + \times L}{5 \times 1 + 7 \times L} = \binom{3 \times 1}{5 \times 1} + \binom{Y_{L}}{7 \times L}$$
$$= \binom{3}{1} + \binom{Y_{L}}{5 \times 1}$$
$$= \times 1 \binom{3}{1} + \frac{1}{7} \frac{1}{3}$$

We need show

$$X_{1} \overline{u_{1}} + X_{2} \overline{u_{2}} = 0 \quad \text{fors only trivial solution}$$

$$\left(\overline{u_{1}} \overline{u_{2}}\right) = \left(\begin{array}{c} 3 & 1 \\ 5 & 7 \\ 1 & 3\end{array}\right) \xrightarrow{\mu_{1} \sim \mu_{2}} \left(\begin{array}{c} 1 & 3 \\ 3 & 1\end{array}\right)$$

$$R_{2} = R_{2} - 5R_{1}$$

$$\left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 3 & 1\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & -8 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right) \xrightarrow{R_{3} = R_{3} - 3R_{1}} \left(\begin{array}{c} 1 & 3 \\ 0 & 8\end{array}\right)$$

TABLE 1 Reflections

TABLE 2 Contractions and Expansions

TABLE 3 Shears

TABLE 4 Projections

