Section 1.9 The matrix of a linear transformations

Example 1: The columns of $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Suppose T is a linear transformation from \mathbb{R}^{2} into \mathbb{R}^{3} such that $T\left(e_{1}\right)=\left[\begin{array}{c}5 \\ -7 \\ 2\end{array}\right]$ and $T\left(e_{2}\right)=\left[\begin{array}{c}-3 \\ 8 \\ 0\end{array}\right]$. With no additional information, find a formula for the image of an arbitrary \mathbf{x} in \mathbb{R}^{2}.

$$
\begin{aligned}
& \vec{x}=\binom{x_{1}}{x_{2}} . x_{1} x_{2} \text { ane arbitrary in } \mathbb{R} \text {. } \\
& T(\vec{x})=T\left(\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]\right)=T\left(\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
x_{2}
\end{array}\right]\right) \\
& \text { scalars }
\end{aligned}
$$

$$
\begin{aligned}
& =x_{1}\left(\begin{array}{c}
5 \\
-7 \\
2
\end{array}\right)+x_{2}\left(\begin{array}{c}
-3 \\
8 \\
0
\end{array}\right) \\
& \text { there exists a unique matrix } A \text { such that } \\
& \vec{j}_{1} \quad \vec{v}_{3} \\
& T\left(\overrightarrow{v_{1}}\right)=\overrightarrow{y_{1}} \\
& T\left(\overrightarrow{v_{2}}\right)=\overrightarrow{y_{2}} \\
& T(\vec{\omega}) \\
& \vec{w}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}} \\
& \text { solve for ci\& } C_{2} \\
& {\left[\begin{array}{ll}
\overrightarrow{v_{1}} & \overrightarrow{v_{2}}
\end{array}\right]\binom{c_{1}}{c_{2}}=\vec{\omega}} \\
& T(\vec{w})=\varphi_{i} T\left(\overrightarrow{v_{1}}\right) \\
& +c_{2} \uparrow\left(\vec{v}_{2}\right)
\end{aligned}
$$

$\boldsymbol{A}=\left[\begin{array}{llll}\overrightarrow{u_{1}} & \overrightarrow{u_{2}} & \ldots & \vec{u}_{n}\end{array}\right]_{\text {minn }} T(\mathbf{x})=A \mathbf{x}$, for all \mathbf{x} in \mathbb{R}^{n}
In fact, A is the $m \times n$ matrix whose j th column is the vector $T\left(\mathbf{e}_{j}\right)$, where \mathbf{e}_{j} is the j th column of the identity matix in \mathbb{R}^{n} :

$$
\underline{A}=\left[\begin{array}{lll}
T\left(\underline{\mathbf{e}_{1}}\right) & \cdots & T\left(\overrightarrow{\mathbf{e}_{n}}\right) \tag{1}
\end{array}\right]
$$

The matrix A in (1) is called the standard matrix for the linear transformation T.
$\vec{e}{ }_{j} \in \mathbb{R}^{\prime \prime}$,
$\vec{C}_{2} \in-1 R^{3}$
$\vec{e}_{2} \in 11^{4}$
$\overrightarrow{e_{j}}=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ \vdots \\ \vdots\end{array}\right) \quad \begin{aligned} & \text { th entry } \\ & \\ & \\ & \text { enter } y \neq 0,\end{aligned}$
$\vec{e}_{2}=\left(\begin{array}{c}0 \\ 1 \\ 0\end{array}\right)_{3.1}$
$\overrightarrow{e_{B}}=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)_{4.1}$

Example 2:
(1)Find the standard matrix A for $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a vertical shear transformation that maps \mathbf{e}_{1} into $\mathbf{e}_{1}-3 \mathbf{e}_{2}$, but leaves \mathbf{e}_{2} unchanged.

$$
\begin{aligned}
& T\left(\overrightarrow{e_{1}}\right)=\overrightarrow{e_{1}}-\delta \overrightarrow{e_{2}} \quad=\left[\overrightarrow{e_{1}}-3 \overrightarrow{e_{2}}, \overrightarrow{e_{2}}\right] \\
& T\left(\overrightarrow{e_{2}}\right)=\vec{e}_{2} \quad \text { the } z_{\lambda}^{n d}(0)=\left[\binom{1}{0}-3\binom{0}{1},\binom{0}{1}\right] \\
& \begin{array}{c}
{\left[\begin{array}{c}
\text { Tent, } \\
\text { the first } 101
\end{array}\right.} \\
1
\end{array}=\left[\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right]=A
\end{aligned}
$$

(2) Find the standard matrix A for the rotation transformation that rotates each point \mathbb{R}^{2} about the origin through an anlge ϕ. (countr-clock wise)
step, $\vec{e}_{1}=\binom{1}{0} \quad \vec{e}_{3}=\binom{0}{1}$ step 2. $T\left(\vec{R}_{1}\right)$

$$
\Rightarrow T\left(\vec{e}_{2}\right)=\binom{-\sin (\hat{i})}{\cos \left(\phi_{1}\right)}
$$

step 3.

$$
T\left(\overrightarrow{e_{1}}\right)=\binom{\cos (\phi)}{\sin (\phi)}
$$

$$
A=\left[T(\vec{e}), T\left(\overrightarrow{e_{3}}\right)\right]
$$

$\underline{\text { Geometric interpretations: See Table 1-4. }=\left(\begin{array}{cc}\cos (\phi), & -\sin (\phi) \\ \sin (\phi) & \cos (\phi)\end{array}\right) . . ~}$
Example 3: Assume that T is a linear transformation. Find the standard matrix of $\overline{T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}}$ first reflects points through the and then reflects points through the line $x_{2}=x_{1}$.

$$
x_{1} \text { axis } \quad T_{2}
$$

step 1

$$
\begin{aligned}
& \overrightarrow{e_{1}}=\binom{1}{0} \\
& \overrightarrow{e_{0}}=\binom{0}{1}
\end{aligned}
$$

step 2.

$$
\begin{aligned}
& T_{1}\left(\overrightarrow{e_{1}}\right)=\overrightarrow{e_{n}} \\
& T_{2}\left(\vec{e}_{1}\right)=\vec{e}_{2} \\
& T\left(\vec{e}_{1}\right)=\vec{e}_{2}=\binom{0}{1}
\end{aligned}
$$

$$
\begin{aligned}
T_{1}\left(\overrightarrow{e_{2}}\right)=\binom{0}{1} & =-\overrightarrow{e_{2}} \\
T_{2}(-\vec{e})=\binom{-1}{0} & =-\overrightarrow{e_{1}} \\
\text { std matrix: } A & =\left[T\left(e_{1}^{\vec{~}}\right), T\left(\overrightarrow{e_{2}}\right)\right] \\
& =\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Q 4 ut T be a linear transformation with the std matrix $A=\left[\vec{a}_{1}, \vec{a}_{2}\right]$ as shown in the fy are

Stitch $T\binom{-1}{3}$.

$$
\text { Sloth } \left.T\binom{-1}{3} . \quad T\binom{-1}{3}=T\binom{-1}{0}+\binom{0}{3}\right)=T\left(-\vec{e}_{1}+3 \vec{e}_{2}\right)
$$

$\vec{e}_{1}=\binom{1}{0}, \vec{e}_{2}=\binom{0}{1}$
$\vec{e}_{1}=\binom{1}{0}, \overrightarrow{e_{i}}=\binom{0}{1}$

Definition:

1. A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if each \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}. This is an existence question. C subjective)
for any $\vec{y} \in \mathbb{R}^{n}$) we can find at least one $\vec{x} \in \mathbb{R}^{h}$

$$
\text { such that } \vec{y}=T(\vec{x})
$$

2. A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one to one if each \mathbf{b} in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}. This is a uniqueness question. (injective)

co domain
(x) wot one - to -one.
Theorem: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.
$\Leftrightarrow \quad$ there $\frac{\text { exists }}{(7)} A$ suds that (sits) $A x=T(x)$

$$
A x=0 \text { lngsoily }
$$

trivial solution.
\#3
Theorem: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let A be the standard matrix for T. Then:
(check 1,4)

1. T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if and only if the columns of A span \mathbb{R}^{m}.
2. T is one-to-one if and only if the columns of A are linearly independent.

$$
A=\left[\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}\right]
$$

$$
x_{1} \overrightarrow{a_{1}}+x_{2} \overrightarrow{u_{2}}+\ldots+x_{u} \vec{a}_{n}=0
$$

Example 4: Let $T\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2}, 5 x_{1}+7 x_{2}, x_{1}+3 x_{2}\right)$. Show that T is a one-to-pne linear transformation.

$$
\begin{aligned}
T\left(\binom{x_{1}}{x_{2}}\right)=\left(\begin{array}{c}
3 x_{1}+x_{2} \\
5 x_{1}+7 x_{2} \\
x_{1}+3 x_{2}
\end{array}\right) & =\left(\begin{array}{c}
3 x_{1} \\
5 x_{1} \\
x_{1}
\end{array}\right)+\left(\begin{array}{c}
y_{2} \\
7 x_{2} \\
3 x_{2}
\end{array}\right) \\
& =x_{1}\left(\begin{array}{c}
\left(\begin{array}{l}
3 \\
5 \\
1
\end{array}\right)
\end{array}+x_{2}\left(\begin{array}{c}
\left.\begin{array}{c}
1 \\
7 \\
3
\end{array}\right)
\end{array}\right.\right.
\end{aligned}
$$

we heed show
$x_{1} \vec{a}_{1}+x_{2} \overrightarrow{c_{2}}=0$ has only trivial solution.

$$
\begin{aligned}
& \left(\begin{array}{ll}
\vec{u}_{1} & \vec{u}_{2}
\end{array}\right)=\left(\begin{array}{ll}
3 & 1 \\
5 & 7 \\
1 & 3
\end{array}\right) \xrightarrow{R_{1} \sim R_{3}}\left(\begin{array}{cc}
1 & 3 \\
(5) & 7 \\
3 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \text { onij trivial solution. }
\end{aligned}
$$

TABLE 1 Reflections

Transformation \quad Image of the Unit Square \quad Standard Matrix
 Reflection through the x_{1}-axis

 $$
\left[\begin{array}{rr} 1 & 0 \\ 0 & -1 \end{array}\right]
$$

Reflection through the x_{2}-axis

$$
\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Reflection through the line $x_{2}=x_{1}$

$$
\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

Reflection through the line $x_{2}=-x_{1}$

TABLE 2 Contractions and Expansions
Transformation

Horizontal
contraction
and expansion

x_{2}

Vertical contraction and expansion

$0<k<1$
$k>1$

TABLE 3 Shears

Vertical shear

TABLE 4 Projections

Transformation
Projection onto
the x_{1}-axis

Image of the Unit Square

Projection onto the x_{2}-axis

