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Section 2.1 Matrix Operations

Definitions:

1. The diagonal entries in an m⇥n matrix A = [ai j] are a11,a22, · · ·, and they form
the main diagonal of A.

2. A diagonal matrix is a square n⇥n matrix whose nondiagonal entris are zero.

3. An m⇥n matrix whose entries are all zero is a zero matrix and is written as 0.

4. Two matrices are equal if they have the same size and if their corresponding
entries are equal.

Sums and Scalar Multiples:

1. If A and B are m⇥ n matrices, then the sum A+B is the m⇥ n matrix whose
columns are the sums of the corresponding columns in A and B.

2. If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose
columns are r times the corresponding columns in A.

Theorem: Let A,B and C be matrices of the same size, and let r and s be scalars.

A+B = B+A r(A+B) = rA+ rB
(A+B)+C = A+(B+C) (r+ s)A = rA+ sA
A+0 = A r(sA) = rsA

Example 1: Let A =


2 0
4 �5

�
and B =


7 �5
1 �4

�
, compute �3A and A�2B.

Matrix Multiplication:

Recall: When a matrix B multiplies a vector x, it transforms x into the vector Bx.

If this vector is then multiplied in turn by a matrix A, the resulting vector is A(Bx).
Thus A(Bx) is produced from x by a composition of linear transformations.
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We would like to represent this composite mapping as multiplication by a single matrix,
denoted by AB, so that

A(Bx) = (AB)x.

Definition: If A is an m⇥n matrix, and if B is an n⇥ p matrix with columns b1, · · · ,bp,
then the product AB is an m⇥ p matrix whose columns are Ab1, · · · ,Abp, i.e.

Remark:

• Each column of AB is a linear combination of the columns of A using weights
from the corresponding column of B.

• AB has the same number of rows as A and the same number of columns as B.

Example 2: If a matrix A is 4⇥5 and the product AB is 4⇥6, what is the size of B?

Row-column rule for computing AB:

If the product AB is defined, then the entry in row i and column j of AB is the sum of
the products of corresponding entries from row i of A and column j of B.

If (AB)i j denotes the (i, j)-entry in AB, and if A is an m⇥n matrix, then

Example 3: Let A =


2 0
4 �5

�
and B =


1 2
�2 1

�
, compute the product AB by the

row–column rule for computing AB.
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Theorem: Properties of Matrix Multiplication:

Power of a Matrix:

If A is an n⇥ n matrix and if k is a positive integer, then Ak denotes the product of k
copies of A.

Example 4: Let A =


1 2
2 3

�
and D =


1 0
0 3

�
. Compute AD and DA. Find a 2⇥ 2

matrix B 6= I2, such that AB = BA.
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The transpose of a Matrix:

Given an m⇥n matrix A, the transpose of A is the n⇥m matrix, denoted by AT , whose
columns are formed from the corresponding rows of A.

Remark: (d)The transpose of a product of matrices equals the product of their trans-
poses in the reverse order.

Example 6: Let u =


�3
2

�
and v =


a
b

�
, compute u

T
v, v

T
u, uv

T , vu
T .
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