Section 2.2 The Inverse of a Matrix

Definitions:

1. An $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix C such that

$$
C A=I \quad \text { and } \quad A C=I \quad C A=A \cdot C=I^{L}
$$

where $I=I_{n}$ is the $n \times n$ identity matrix. C is an inverse of A, and C is uniquely determined by A. The unique inverse is denoted by A^{-1}.
2. A matrix that is not invertible is sometimes called a singular matrix, and an invertible matrix is called a nonsingular matrix.

Theorem: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] . \begin{array}{r}\text { If } a d-b c \neq 0, \text { then } A \text { is invertible and } \\ 山 \operatorname{vet}(A) \neq 0\end{array}$

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

If $a d-b c=0$, then A is not invertible.
The quantity $a d-b c$ is called the \qquad 5 of A,

$$
\operatorname{det}(A)=a d-b c
$$

Example 1: Find the inverse of $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$.

$$
\begin{aligned}
& \operatorname{det}(A)=1 \cdot 3-2 \cdot 3=-1 \\
& A^{-1}=\frac{1}{-1}\left[\begin{array}{cc}
5 & -2 \\
-3 & 1
\end{array}\right]=\left(\begin{array}{cc}
-5 & 2 \\
3 & -1
\end{array}\right)
\end{aligned}
$$

Theorem: If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbb{R}^{n}, the equation $A \mathbf{x}=\mathbf{b}$ has the unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Example 2: Use the inverse of the matrix A to solve the system

$$
\begin{array}{r}
x_{1}+2 x_{2}=1 \\
3 x_{1}+5 x_{2}=3
\end{array}
$$

$$
\begin{aligned}
& x=A^{-1} \cdot b=\left(\begin{array}{cc}
-5 & 2 \\
3 & -1
\end{array}\right)_{2 \cdot 2}\binom{1}{3}^{2-1} \\
& =\left(\begin{array}{c}
(-5,3) \cot (1.3) \\
-3.1+2.3=1 \\
(3,-1) \operatorname{dot}(1,3)
\end{array}\right)_{2.1}=\binom{1}{0} \\
& 3 \cdot 1-1.3=0
\end{aligned}
$$

Theorem:

1. If A is an invertible matrix, then A^{-1} is invertible and

$$
\left(A^{-1}\right)^{-1}=A
$$

2. If A and B are $n \times n$ matrices, then so is $A B$, and the inverse of $A B$ is the product of the inverses of A and B in the reverse order. That is,

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

3. If A is an invertible matrix, then so is A^{T}, and the inverse of A^{T} is the transpose of A^{-1}. That is,

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

Elementaty Matrices: An elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix.

Example 3: Let $E_{1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1\end{array}\right], E_{2}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], E_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5\end{array}\right], A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$. Compute $E_{1} A, E_{2} A$ and $E_{3} A$, and describe how these products can be obtained by elementary row operations on A.
$E_{1:}$ go from the $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)_{3-2}=I_{3}$

$$
R_{3}=R_{3}-4 R_{1} \quad \text { (replacement). }
$$

E6. interchange $R_{1} \& D_{2}$ of I_{3}
$E_{3}: R_{3}=S \cdot R_{3} \rightarrow$ (comas from $\left.I_{3}\right)$

Remark: If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as $E A$, where the $m \times m$ matrix E is created by performing the same row operation on I_{m}.

$$
\begin{aligned}
E_{1} A & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
a & b & c \\
d & e & t \\
j & h & i
\end{array}\right) \\
& =\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
-4 a+j,-4 b+h,-4 c+i
\end{array}\right)
\end{aligned}
$$

Theorem: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}, and in this case, any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} into A^{-1}.

Algorithm for finding A^{-1} :

Row reduce the augmented matrix $[A I]$. If A is row equivalent to I, then $[A I]$ is row equivalent to $\left[I A^{-1}\right]$. Otherwise, A does not have an inverse $E_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), ~ E_{1} \cdot I$
Example 4: Find the inverse of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ if it exists.

Section 2.3 Characterizations of Invertible Matrices

Theorem:

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.
a. A is an invertible matrix.
b. A is row equivalent to the $n \times n$ identity matrix.
c. A has n pivot positions.
d. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
e. The columns of A form a linearly independent set.
f. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
g. The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{n}.
h. The columns of A span \mathbb{R}^{n}.
i. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
j. There is an $n \times n$ matrix C such that $C A=I$.
k. There is an $n \times n$ matrix D such that $A D=I$.

1. A^{T} is an invertible matrix.
