Section 2.2 The Inverse of a Matrix

Definitions:

1. An $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix C such that

$$CA = I$$
 and $AC = I$ $CA = A \cdot C = I$ matrix

where $I = I_n$ is the $n \times n$ identity matrix. *C* is an inverse of *A*, and *C* is uniquely determined by *A*. The unique inverse is denoted by A^{-1} .

2. A matrix that is not invertible is sometimes called a singular matrix, and an invertible matrix is called a nonsingular matrix.

<u>Theorem:</u> Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and b det (A) to $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

If ad - bc = 0, then A is not invertible.

The quantity ad - bc is called the <u>determinant</u> of A, det(A) = ad - bc $Example 1: \text{ Find the inverse of } A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}.$ $det(A) = 1 \cdot 5 \cdot 2 \cdot 3 = -1$ $A^{-1} = -1 \begin{bmatrix} 5 & -2 \\ -3 & 1 \end{bmatrix} = \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix}$

<u>**Theorem:**</u> If *A* is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Example 2: Use the inverse of the matrix *A* to solve the system

$$x_1 + 2x_2 = 1$$
$$3x_1 + 5x_2 = 3$$

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \stackrel{\text{th ogens}}{\longrightarrow} \stackrel{\text{th$$

Theorem:

1. If A is an invertible matrix, then A^{-1} is invertible and

$$(A^{-1})^{-1} = A$$

2. If *A* and *B* are $n \times n$ matrices, then so is *AB*, and the inverse of *AB* is the product of the inverses of *A* and *B* in the reverse order. That is,

$$(AB)^{-1} = B^{-1}A^{-1}$$

3. If A is an invertible matrix, then so is A^T , and the inverse of A^T is the transpose of A^{-1} . That is,

$$(A^T)^{-1} = (A^{-1})^T$$

Elementaty Matrices: An elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix.

Example 3: Let
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$
, $E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$, $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$.

Compute E_1A , E_2A and E_3A , and describe how these products can be obtained by elementary row operations on A.

E1: go from the $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \end{pmatrix}_{3-3} = I_3$ $R_3 = R_3 - 4R_1$ (replacement). E2: interchange R & R of I3 E3: $R_3 = 5 \cdot R_3 \rightarrow (comes from I_3)$

Remark: If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operation on I_m .

Theorem: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .

Algorithm for finding A^{-1} :

Row reduce the augmented matrix [A I]. If A is row equivalent to I, then [A I] is row equivalent to $[I A^{-1}]$. Otherwise, A does not have an inverse I

Section 2.3 Characterizations of Invertible Matrices

Theorem:

The Invertible Matrix Theorem

Let *A* be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given *A*, the statements are either all true or all false.

- a. A is an invertible matrix.
- b. A is row equivalent to the $n \times n$ identity matrix.
- c. A has n pivot positions.
- d. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- g. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- h. The columns of A span \mathbb{R}^n .
- i. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- j. There is an $n \times n$ matrix C such that CA = I.
- k. There is an $n \times n$ matrix D such that AD = I.
- 1. A^T is an invertible matrix.