Review
$A=\left(\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right)$, Find the inverse of A.

$$
\left[\begin{array}{ll|ll}
2 & 1 & 1 & 0 \\
5 & 3 & 0 & 1
\end{array}\right]
$$

change A to the I_{2} (if A is invertlulle, this is simpler to find pref (A)

$$
\begin{aligned}
& \underset{p_{1} \& p_{2}}{\text { inner charge }}\left[\begin{array}{ll|ll}
5 & 3 & 0 & 1 \\
2 & 1 & 1 & 0
\end{array}\right] \xrightarrow[5 \rightarrow 1]{R_{1}=R_{1}-2 p_{2}}\left[\begin{array}{cc|cc}
1 & 1 & -2 & 1 \\
2 & 1 & 1 & 0
\end{array}\right] \\
& \underset{(2) \rightarrow 0}{R_{2}=R_{2}-2 R_{1}}\left[\begin{array}{cc|cc}
1 \\
0 & 1 & -2 & 1 \\
-1 & 5 & -2
\end{array}\right] \underset{0}{R_{1}-R_{1}+R_{2}}\left[\begin{array}{cc:cc}
1 & 0 & 3 & -1 \\
0 & -1 & 5 & -2
\end{array}\right]
\end{aligned}
$$

Section 2.8 Subspaces of \mathbb{R}^{n}

Definition: A subspace of \mathbb{R}^{n} is any set H in \mathbb{R}^{n} that has three properties:

1. The zero vector is in $H . \vec{O} \in H_{\text {, }}$
$N^{3}, H \leq \|^{2}, B=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
2. For each \mathbf{u} and \mathbf{v} in H, the $\operatorname{sum} \mathbf{u}+\mathbf{v}$ is in H.
3. For each \mathbf{u} in H and each scalar c, the vector $c \mathbf{u}$ is in H.

Remark: A subspace is closed under addition and scalar multiplication.
Example 1: If \mathbf{v}_{1} and \mathbf{v}_{2} are in \mathbb{R}^{n} and $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, then H is a subspace of \mathbb{R}^{n}. Verify this.

$$
\begin{aligned}
& y \\
& \text { all poss sb e liner combination } \\
& \text { of } \vec{v}_{1} 8 \vec{V}_{2} \\
& \left\{v=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}, c_{1} 8 c_{1}\right. \\
& \text { we wobitrowy scalars }\} .
\end{aligned}
$$

Remark: The set of all linear combinations of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is a subspace of \mathbb{R}^{n}.

Definitions: The column space of a matrix A is the set $\mathrm{Col}(A)$ of all linear combinatrons of the columns of A.

$$
\left.\begin{array}{ll}
\text { e columns of } A . & \overrightarrow{V_{1}} \& \vec{V}_{b} \text { are columns of } A . \\
\left.\overrightarrow{V_{1}}, \vec{V}_{2}\right\}, & \operatorname{co} \mid(A)=\operatorname{span}\} \vec{V}_{1}, \vec{V}_{d}
\end{array}\right\} .
$$

Definition: The null space of a matrix A is the set $\operatorname{Null}(A)$ of all solutions of the homogeneous equation $A \mathbf{x}=\mathbf{0}$.

Theorem: $\quad A=\left[\vec{v}_{1}, \ldots, \vec{v}_{n}\right]_{m \cdot n}, \vec{v}_{1}, \cdots \vec{v}_{n}+\mathbb{R}^{m}$

- The column space of an $m \times n$ matrix is a subspace of \mathbb{R}^{m}. $[A] x=\vec{O} \in \mathbb{R}^{n}$
- The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}. min Example 3: For the matrix A below, find a nonzero vector in Null A and a nonzero $\vec{X}\left(-1 z^{\circ}\right.$
vector in $\operatorname{Col} A$.

$$
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 3
\end{array}\right]_{2-3}
$$

$$
\text { sit. } A \cdot x=0\}
$$

$$
B=\left\{\vec{b}_{1} \vec{b}_{i} \ldots \overrightarrow{b_{p}}\right\}
$$

Definition: A basis for a subspace H of \mathbb{R}^{n} is linearly independent set in H that spans H.

The columns of $n \times n$ identity matrix $\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}$ is called the standard basis for

$$
\begin{gathered}
\text { cols of } \\
I_{n} . \\
\left.\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \cdots, \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right], ~\right], ~
\end{gathered}
$$

$$
\begin{aligned}
& \text { eg } 4 \\
& \left(\begin{array}{cccc}
4 & 3 & 9 & -2 \\
6 & 5 & 1 & 12 \\
3 & 4 & 8 & -3
\end{array}\right) \xrightarrow[4 \rightarrow 1]{R_{1}=R_{1}-R_{3}}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
6 & 5 & 1 & 12 \\
3 & 4 & 8 & -3
\end{array}\right) \\
& \xrightarrow[6 \rightarrow 0]{R_{2}=R_{2}-6 R_{1}}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -1 & -5 & 6 \\
(3) & 4 & 8 & -3
\end{array}\right) \\
& \xrightarrow[3 \rightarrow 0]{R_{3}=R_{3}-3 R_{1}}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -1 & -5 & 6 \\
0 & 0 & 5 & -6
\end{array}\right) \xrightarrow{R_{3}=R_{2}+R_{3}} \\
& \left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -1 & -5 & 6 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \underbrace{\substack{\downarrow 1 \\
x_{1} \\
x_{2} \\
x_{2}}}_{\text {beos }} \begin{array}{l}
\underbrace{\downarrow}_{\text {fuee }} \underbrace{\downarrow}_{x_{4}} \\
x_{4}
\end{array}
\end{aligned}
$$

$$
\left\{\begin{array}{rlr}
x_{3}=s & \text { row 2, } & -1 x_{2}-5 x_{3}+6 x_{4}=0 \\
x_{4}=t
\end{array} \quad \begin{array}{rl}
x_{2} & =-5 s+6 t \\
\text { row 1, } \quad x_{1}+x_{2}+x_{3}+x_{4}=0 \\
x_{1} & =-x_{2}-5-t \\
& =55-6 t-5-t \\
& =45-7 t \\
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
45-7 t \\
-5 s+6 t \\
s+0 . t \\
0.5+t
\end{array}\right) & =\left(\begin{array}{c}
45 \\
-55 \\
5 \\
0.5
\end{array}\right)+\left(\begin{array}{c}
-7 t \\
6 t \\
0 t \\
t
\end{array}\right) \\
& =5\left(\begin{array}{c}
-4 \\
5 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-7 \\
6 \\
0 \\
1
\end{array}\right)
\end{array}\right.
$$

$$
\operatorname{null}(A)=\{\begin{array}{c}
s \underbrace{v}_{b u b s}\left(\begin{array}{c}
-4 \\
5 \\
0 \\
0 \\
b
\end{array}\right)
\end{array} \underbrace{-7}_{1} \begin{array}{c}
6 \\
0 \\
\hline
\end{array})
$$

boss of null(A) $S \& t$ are orbitrany in $\mathbb{R}\}$

$$
\left\{\left(\begin{array}{c}
-4 \\
5 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-7 \\
6 \\
0 \\
1
\end{array}\right)\right\}
$$

bos's of null(f1)
: pacamotric colution of the $A x=0$
(1) linour combination (spun bull (A))
(2) I'veurly in dep.
by the theovem,
bus's of col (A) is $\left\{\left(\begin{array}{l}4 \\ 6 \\ 3\end{array}\right),\left(\begin{array}{l}5 \\ 5 \\ 4\end{array}\right)\right\}$
ist col

$$
\text { of } A
$$ of A

els $\quad A=\left(\begin{array}{lll}1 & 2 & 0 \\ 2 & 1 & 3\end{array}\right)$

For null (A)

$$
A x=0,
$$

$$
\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 3
\end{array}\right) \xrightarrow{R_{2}=R_{2}-2 R_{1}} \underset{2 \rightarrow 0}{ }\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & -3 & 3
\end{array}\right)
$$

$$
x_{3}=S_{1} \quad s \in \mathbb{R}
$$

From Row 2, $-3 x_{2}+3 x_{3}=\underset{=0}{\rightarrow}$ we are solving a hong y sh chem.

$$
x_{2}=x_{3}=3
$$

From Row 1,

$$
\begin{aligned}
x_{1}+2 x_{2} & =0 \\
x_{1} & =-2 x_{2}=-25
\end{aligned}
$$

solutions to homog. system

$$
\begin{aligned}
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{c}
-2 s \\
s \\
s
\end{array}\right)=s\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right) \\
\text { unll }(A) & =\left\{s\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right), s \in \mathbb{R}\right\}
\end{aligned}
$$

pick up any $S \neq 0$, ey: let $S=1$.
$\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$ is in null (A)
buss of hull (A).
$\vec{u}=\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$,
(1) \vec{u} is linewrly indlep.
(1) uny vector in hull (A)

$$
\vec{V}=\alpha \cdot \vec{u}, \text { for } \alpha
$$

is a scolur.

